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ENUMERATING THE SYMPLECTIC DELLAC
CONFIGURATIONS

ANGE BIGENI

Abstract. Fang and Fourier defined the symplectic Dellac config-
urations in order to parametrize the torus fixed points of the sym-
plectic degenerated flag varieties, and conjectured that their num-
bers are the elements of a sequence (rn)n≥0 = (1, 2, 10, 98, 1594, . . .)
which appears in the study by Randrianarivony and Zeng of the
median Euler numbers. In this paper, we prove the conjecture
by considering a combinatorial interpretation of the integers rn
in terms of the surjective pistols (which form a well-known com-
binatorial model of the Genocchi numbers), and constructing an
appropriate surjection from the symplectic Dellac configurations
to the surjective pistols.

Notations

For all pair of integers (n,m) such that n < m, the set of integers
{n, n + 1, . . . , m} is denoted by [n,m]. If n is a positive integer, we
denote by [n] the set [1, n]. The cardinality of a finite set S is denoted
by #S. If a set of integers {i1, i2, . . . , im} has the property ik < ik+1

for all k ∈ [m− 1], we denote it by {i1, i2, . . . , im}<.

1. Introduction

Let n be a positive integer. Recall that a Dellac configuration of size
n [2] is a tableau D, made of n columns and 2n rows, that contains 2n
dots such that :

— every row contains exactly one dot;

— every column contains exactly two dots;

— if there is a dot in the box (j, i) of D (i.e., in the intersection of
its j-th column from left to right and its i-th row from bottom
to top), then j ≤ i ≤ j + n.

The set of the Dellac configurations of size n is denoted by DCn. For
example, in Figure 1 are depicted the 7 elements of DC3.
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2 ANGE BIGENI

Figure 1. The h3 = 7 elements of DC3.

It is well-known [5] that the cardinality of DCn is hn where (hn)n≥0 =
(1, 1, 2, 7, 38, 295, . . .) is the sequence of the normalized median Genoc-
chi numbers [7]. Feigin [5, 1] proved that the Poincaré polynomial
of the degenerate flag variety Fa

n has a combinatorial interpretation
in terms of the Dellac configurations of size n, in particular its Eu-
ler characteristic equals #DCn = hn. Afterwards, following com-
puter experiments, Cerulli Irelli and Feigin conjectured that in the
case of the symplectic degenerate flag varieties SpFa

2n [6], the role of
the sequence (hn)n≥0 is played by the sequence of positive integers
(rn)n≥0 = (1, 2, 10, 98, 1594, . . .) [8] defined by Randrianarivony and
Zeng [10] following rn = Dn(1)/2

n where D0(x) = 1 and

Dn+1(x) = (x+ 1)(x+ 2)Dn(x+ 2)− x(x+ 1)Dn(x).

Now, Fang and Fourier [4] have defined a combinatorial model of the
Euler characteristic χ(SpFa

2n) of the symplectic degenerate flag variety
SpFa

2n, through the set SpDC2n of the symplectic Dellac configurations
of size 2n.

Definition 1 (Fang and Fourier [4]). A symplectic Dellac configuration
of size 2n is an element S of DC2n such that, for all i ∈ [4n] and j ∈ [2n],
there is a dot in the box (j, i) of S if and only if there is a dot in its box
(2n+1− j, 4n+1− i) (in other words, there exists a central reflection
of S with respect to the center of S). The set of the symplectic Dellac
configurations of size 2n is denoted by SpDC2n.

For example, in Figure 2 are depicted the 10 elements of SpDC4.

Proposition 2 (Fang and Fourier [4]). For all n ≥ 1, the Euler char-
acteristic of SpFa

2n is the cardinality of SpDC2n.

Conjecture 3 (Cerulli Irelli and Feigin, Fang and Fourier [4]). The
cardinality of SpDC2n equals rn for all n ≥ 1.

The aim of this paper is to prove the above conjecture. To do so,
we use a combinatorial interpretation of the integers rn in terms of
the surjective pistols. Recall that, for a given n ≥ 1, a surjective
pistol f ∈ Pn is a surjective map f : [2n] ։ {2, 4, . . . , 2n} such that
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Figure 2. The 10 elements of SpDC4.

f(j) ≥ j for all j ∈ [2n]. For a given element f ∈ Pn, an integer
j ∈ [2n − 2] is said to be a doubled fixed point if there exists j′ < j
such that f(j′) = f(j) = j (in particular j is even). Let ndf(f) be
the number of elements of {2, 4, . . . , 2n} that are not doubled fixed
points of f (by definition ndf(f) ≥ 1 because 2n is never considered
as a doubled fixed point, even though f(2n − 1) = f(2n) = 2n for
all f). From now on, we assimilate every surjective pistol f ∈ Pn

into the sequence (f(1), f(2), . . . , f(2n)), in which the images of the
even integers that are doubled fixed points (respectively not doubled
fixed points) are underlined (respectively written in bold characters).
Also, we represent f ∈ Pn by a tableau made of n left-justified rows
of length 2, 4, 6, . . . , 2n (from bottom to top) by plotting a dot inside
the (f(j)/2− j)-th box (from bottom to top) of the j-th column of the
tableau for all j ∈ [2n] ; with precision, if j is an even integer that is
not a doubled fixed point of f , we plot a symbol × instead of a dot. For
example, we represent in Figure 3 the 3 elements of P2, whose numbers
of non doubled fixed points are respectively 2, 1 and 2.

×
×

1 2 3 4

2
4

f1 = (4, 2, 4, 4)

×
1 2 3 4

2
4

f2 = (2, 2, 4, 4)

× ×
1 2 3 4

2
4

f3 = (2, 4, 4, 4)

Figure 3. The G6 = 3 elements of P2.
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Randrianarivony and Zeng [10] proved the following Formula for all
n ≥ 1 :

(1) rn =
∑

f∈Pn

2ndf(f).

For example, in the case n = 2, we do obtain r2 = 22+2+22 as seen in
Figure 3. We know from Dumont [3] that the surjective pistols form a
combinatorial interpretation of the sequence of the Genocchi numbers
(G2k)k≥1 = (1, 1, 3, 17, 155, 2073, . . .) [9] : for all n ≥ 1, the cardinality
of Pn equals G2n+2.

Now, we are going to obtain (in Proposition 5) an analogous for-
mula for the cardinality SpDC2n, in terms of the combinatorial objects
defined as follows.

Definition 4. Let T n be the set of tableaux T made of n columns and
2n rows, that contain 2n dots such that :

— every row contains exactly one dot;

— every column contains exactly two dots;

— if there is a dot in the box (j, i) of T , then j ≤ i.

(This is in fact the Definition of DCn, minus the condition that each
box (j, i) that contains a dot implies i ≤ j + n.)

If a dot of T is located in a box (j, i) such that i ≥ 2n + 1 − j, we
say that it is free and we represent it by a star instead of a dot. Let
fr(T ) be the number of free dots of T .

For example, in Figure 4 are depicted the 3 elements of T 2, and their
numbers of free dots are respectively 2, 1 and 2.

⋆

⋆ ⋆

⋆

⋆

Figure 4. The 3 elements of T 2.

By considering the
Ä

n+1
2

ä

= (n + 1)n/2 possible locations of the two
dots of the last column of any T ∈ T n (from left to right), it is easy to
obtain the induction formula # T n =

Ä

n+1
2

ä

# T n−1 for all n ≥ 2, and
finally to compute

# T n = (n + 1)!n!/2n.
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Proposition 5. For all n ≥ 1, we have

# SpDC2n =
∑

T∈T n

2fr(T ).

Proof. Any S ∈ SpDC2n can be partitioned as follows,

S =

XS

X̃S

YS

ỸSZ̃S

ZS

where there are no dots in the blank areas, and where the area X̃S

(respectively ỸS and Z̃S) is symmetrical to the area XS (respectively YS

and ZS) following the center of S. Now, for any dot of YS (respectively
ZS), say, located in the box (j, i) with 2n ≥ i ≥ 2n+1−j (respectively
2n ≥ i ≥ j), we can define a new configuration si(S) ∈ SpDC2n by
relocating this dot in the box (2n + 1 − j, i) of ZS (respectively YS),
and relocating the dot located in the box (2n + 1 − j, 4n + 1 − j) of
ỸS (respectively Z̃S), in the box (j, 4n+1− i) of Z̃S (respectively ỸS).
Thus, if Ei is defined as the set of the configurations S ∈ SpDC2n whose
i-th row (from bottom to top) doesn’t contain its dot in XS, then it
is clear that si is an involution of Ei. Also, if S ∈ Ei1 ∩ Ei2 for some
(i1, i2) ∈ [n+1, 2n]2, obviously si1 ◦ si2(S) = si2 ◦ si1(S). Consequently,
for all S ∈ SpDC2n, there exists one unique T ∈ T n such that S
is obtained by applying a finite number of these involutions on the
configuration ST ∈ SpDC2n defined by ZST

and Z̃ST
being empty, and

T = XST

YST

so that ST generates a total amount of 2#YST elements of SpDC2n,
where #YST

is the number of dots located in YST
(in other words

#YST
= fr(T )). �

For example, we depict in Figure 5 how the 3 elements of T 2 generate
the 10 = 22 + 2 + 22 elements of SpDC4.

Now, Conjecture 3 is a corollary of the following Theorem in view of
Formula (1) and Proposition 5.
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Figure 5. Generation of the 22 + 2+ 22 elements of SpDC4 from
the 3 elements of T 2.

Theorem 6. There exists a surjective map ϕ : T n ։ Pn such that

(2)
∑

T∈ϕ−1(f)

2fr(T ) = 2ndf(f)

for all f ∈ Pn.

The rest of this paper aims at proving Theorem 6, and is organized as
follows. In Section 2, we introduce the j-tableaux (a generalization of
the tableaux T ∈ T n), on which we define a family of paths, namely, the
T -paths. In Section 3, we use these paths to define the pistol labeling
of a tableau (in Algorithm 13), which produces (in Definition 16) the
Definition of ϕ. In Section 4, we define the notion of (f, j)-insertion
of a dot into a j-tableau, which allows to formulate Algorithm 25 and
produces the Definition of a map φ : Pn → T n. In Section 5, we first
prove that ϕ ◦ φ is the identity map of Pn (hence φ : Pn → T n is
injective and ϕ : T n → Pn is surjective), then we make the image
φ(Pn) ⊂ T n of φ explicit, and we prove that φ ◦ ϕ|φ(Pn) is the identity
map of this set. Finally, in Section 6, we finish the proof of Theorem 6,
i.e., we show that Formula (2) is true for all f ∈ Pn. To do so, we make
ϕ−1(f) explicit by defining Algorithm 42 and Algorithm 44, which allow
to construct every element of ϕ−1(f) from one given element of it (like
φ(f)).
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2. j-tableaux and T -paths

Definition 7. Let j ∈ [n], a j-tableau T ∈ T j
n is a tableau made of n

columns (denoted by CT
1 , C

T
2 , . . . , C

T
n from left to right) and 2n rows

(denoted by RT
1 , R

T
2 , R

T
n , R

T
2n−1, R

T
2n−2, . . . , R

T
n+1, R

T
2n from bottom to

top), that contain between 2j and 2n dots above the line y = x (for all
i ∈ [2n], if the row RT

i contains a dot, it is denoted by dTi ) such that :

— each column CT
1 , C

T
2 , . . . , C

T
j−1 contains exactly two dots and

the other columns contain at most two dots;

— each row RT
1 , R

T
2 , . . . , R

T
j−1 contains exactly one dot and the

other rows contain at most one dot.

In particular, a tableau T ∈ T n is also a j-tableau for all j ∈ [n].

Definition 8. Let j ∈ [n], T ∈ T j
n and i ∈ [j, 2n] such that the

intersection of the row RT
i with the columns CT

1 , C
T
2 , . . . , C

T
j−1 is empty.

The T -path from the box CT
j ∩ RT

i is the sequence (i0, i1, . . .) ∈ [2n]N

defined by i0 = i, and, for all k ∈ N, by the following rules.

(1) If ik ∈ [j, n] ⊔ [n+ j, 2n], then ik+1 = ik.

(2) If ik is of the kind n+ jk with jk ∈ [j − 1], then dTik+1
is defined

as the upper dot of the column CT
jk

.

(3) Otherwise ik ∈ [j − 1], and dTik+1
is defined as the lower dot of

the column CT
ik

.

Remark 9. In the context of Definition 8, the T -path from the box
CT

j ∩RT
i becomes stationary if and only if ik ∈ [j, n] ⊔ [n+ j, 2n] for k

big enough.

Proposition-Definition 10. With the notations of Definition 8, the
T -path (i0, i1, . . .) from the box CT

j ∩ RT
i becomes stationary, i.e., the

integer ik belongs to the set [j, n] ⊔ [n + j, 2n] for k big enough. This
integer is said to be the arrival of this T -path. Also, let πT

j be the map

that maps every integer i ∈ [j, 2n] such that the first j − 1 boxes of RT
i

are empty, to the arrival of the T -path from the box CT
j ∩RT

i . Then πT
j

is bijective.

Proof. Suppose that ik 6∈ [j, n] ⊔ [n + j, 2n] for all k ≥ 0. Since [2n]
is a finite set, and because (ik)k≥0 is defined by induction, there exists
0 ≤ k1 < k2 such that ik1 = ik2 . Now, Rule (1) of Definition 8 is
never applied, so the sequence (ik)k≥0 is reversible : for all k > 0, let
jk−1 ∈ [n] such that dTik ∈ CT

jk−1
; if dTik is the upper dot of CT

jk
, then

ik−1 = n + jk−1, otherwise ik−1 = jk−1. Consequently, the equality
ik1 = ik2 implies i = i0 = ik2−k1 . Since k2 − k1 > 0 and, for all k > 0,
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the dot dTik belongs to a column CT
jk−1

for some jk−1 ∈ [j − 1], then dTi
cannot belong to CT

j , which is absurd. So ik ∈ [j, n] ⊔ [n + j, 2n] for k
big enough.

Let kmin be the smallest integer k ≥ 0 such that ik is the arrival of
the T -path. As stated before, the sequence (i0, i1, . . . , ikmin

) is reversible
because it never involves Rule (1) of Definition 8, so the application πT

j

is injective. Finally, the number of integers i ∈ [j, 2n] such that the first
j−1 boxes of RT

i are empty, is exactly 2(n−j+1) = #([j, n]⊔[n+j, 2n]) :
by definition of T n

j , the first j−1 rows of T contain exactly j−1 dots,
and the first j−1 columns of T contain exactly 2(j−1) dots, so, among
the 2n − j + 1 rows RT

j , R
T
j+1, . . . , R

T
2n, exactly j − 1 of them contain

their dot in one of their j − 1 first boxes. So πT
j is bijective. �

Remark 11. The fixed points of πT
j are the integers i ∈ [j, n]⊔[j+n, 2n]

such that the first j − 1 boxes of RT
i are empty.

For example (in this case n = 7 and j = 4), consider the 4-tableau
T0 ∈ T 4

7 which appears in Figure 6. In this example the columns
CT0

4 , CT0
5 , CT0

6 , CT0
7 are empty. The set of integers i ∈ [j, n]⊔[n+j, 2n] =

[4, 7] ⊔ [11, 14] such that the j − 1 = 3 first boxes of RT0
i are empty,

is {4, 5, 7, 8, 9, 11, 12, 13}. For all i ∈ {4, 5, 7, 11, 12, 13}, we obtain
πT0
4 (i) = i because i ∈ [j, n] ⊔ [n + j, 2n]. In Figure 6, we show that

the T0-path from the box CT0
4 ∩ RT0

8 (respectively CT0
4 ∩ RT0

9 ) is the
sequence (ik)k≥0 = (8, 2, 10, 6, 6, 6, . . .), which becomes stationary at
i3 = 6, element of [j, n] ⊔ [n + j, 2n], hence πT0

4 (8) = 6 (respectively
the sequence (i′k)k≥0 = (9, 14, 14, 14, . . .), which becomes stationary at
i′1 = 14 ∈ [j, n] ⊔ [n + j, 2n], hence πT0

4 (9) = 14). As a summary, we
obtain

πT0
4 =

Ç

4 5 7 8 9 11 12 13
4 5 7 6 14 11 12 13

å

.

3. From the tableaux to the surjective pistols

3.1. Pistol labeling of a tableau. Let T ∈ T n. We consider a
vectorial version of the statistic of free dots fr : T n → [n], through
−→
fr : T n → {0, 1}n defined by

−→
fr (T ) = [fr1(T ), fr2(T ), . . . , frn(T )]

where fri(T ) = 1 if and only if the dot dTn+i is free.
We are going to give (in Algorithm 13) three labels to every dot of T :

— a digital label, i.e., an element of [0, n− 1];

— a type label, i.e., either the letter α or β;
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T0 =

⋆

1

2

3

4

5

6

7

8

9

10

11

12

13

14

i0 = 8

i1 = 2

i2 = 10

i3 = 6

i′0 = 9

i′1 = 14

Figure 6. T0-paths (8, 2, 10, 6, 6, 6, . . .) and (9, 14, 14, 14, . . .) from

the respective boxes CT0

4
∩RT0

8
and CT0

4
∩RT0

9
.

— a parity label, i.e., either the letter o (for odd) or e (for even).

If a dot d is labeled with the type label t ∈ {α, β}, the digital label
h ∈ [0, n−1] and the parity label p ∈ {o, e}, we denote the data of these
three labels by tph, and we name it the pistol label of d. Sometimes, we
will also write that d is labeled with th if we know its digital label h
and its type label t but not its parity label.

Definition 12. Let T ∈ T n and i ∈ [n]. The dots dTi and dTn+i are said
to be twin dots. Let j1 and j2 such that dTi ∈ CT

j1
and dTn+i ∈ CT

j2
. The

dot dTi,min is defined as dTi if j1 ≤ j2, as dTn+i otherwise.

Algorithm 13 (pistol labeling of a tableau). For j from n down to 1,
assume that each of the 2(n−j) dots of the columns CT

j+1, . . . , C
T
n have

already received its pistol label. At this step, in the parts I., II. and III.,
we give every dot of CT

j its digital, type and parity label respectively.

I. The digital labels. For all i ∈ [j, 2n], if the dot dTi belongs to

CT
j , let i′ = πT

j (i) ∈ [j, n] ⊔ [n + j, 2n]. We define the digital

label of dTi as i′ − j if i′ ∈ [j, n], as i′ − n− j if i′ ∈ [n+ j, 2n].

II. The type labels. For all i ∈ [j, 2n], if the dot dTi belongs to CT
j ,

let h ∈ [0, n− j] be its digital label. We consider j′ = j + h ∈
[j, n], and i′ = πT

j (i) ∈ {j′, n+ j′}.

1 - Assume first that j′ > j. By hypothesis, the two dots of
CT

j′ have already received their pistol labels. If they have
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different type labels, we define (γ, γ̄) as (α, β), otherwise
we define (γ, γ̄) as (β, α).

a) If one of the dots of CT
j′ is labeled with βe

0, then we

define the type label of dTi as α if i′ = j′, as β if
i′ = n+ j′.

b) Otherwise, we define the type label of dTi as γ if dTi′ =
dTj′,min, as γ̄ otherwise.

2 - If j′ = j, let d 6= dTi be the other dot of CT
j .

a) If the digital label of d is 0, then we define the type
label of dTi as α if i′ = j, as β if i′ = n+ j.

b) Otherwise, the type label t of d has already been
defined by Rule II.1- of this algorithm.

i. If t = α, we define the type label of dTi as α if i 6= i′

and i′ = j, as β otherwise.

ii. If t = β, we define the type label of dTi as α if
dTi′ = dTj,min, as β otherwise.

III. The parity labels. Let h1 ≤ h2 be the digital labels of the dots

of CT
j .

1 - If the type labels of the dots of CT
j are different, we label

with o the dot whose type label is α, and with e the dot
whose type label is β.

2 - Otherwise, it is necessary that h1 6= h2 (if h1 = h2, then
the type labels of the dots of CT

j are defined by Rule II.1-
or Rule II.2-a) of this algorithm, and in both case the type
labels are different).

a) If the type label of the dots of CT
j is α, we label with

e the dot whose digital label is h1, and with o the
other dot.

b) If they both have the type label β, we label with o
the dot whose digital label is h1, and with e the other
dot.

For example, we depict in Figure 7 the pistol labeling of a tableau
T1 ∈ T 7. On the left of this figure appears the tableau T1 per se (and
we specified on the left the indices of its rows, and on the right its

vector statistic
−→
fr (T1) = [1, 1, 0, 0, 1, 1, 1]) ; on the right appears its

pistol-labeled version. The details of this pistol labeling are given in
Appendix A.
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14 1

1

1

0

0

1

1

αo
0

βe
2

αo
0

βe
2

βe
0

αo
3

βe
1

βo
0

αo
2

αe
1

αo
0

βe
1

βe
0

αo
0

Figure 7. Tableau T1 ∈ T 7 (on the left) mapped to its pistol
labeling (on the right).

Remark 14. We enumerate here a few facts about the pistol labeling
of T ∈ T n.

(a) For all j ∈ [n] and i ∈ [j, 2n], if the dot dTi ∈ CT
j , then its digital

label belongs to the set [0, n− j].

(b) If a dot dTi in a column CT
j is labeled with αe

0, then by Rule

III.2-a) of Algorithm 13 the other dot of CT
j has the pistol

label αo
h for some h ∈ [n − j]. Also, the type label α of dTi

has necessarily been defined by Rule II.2-b)i., and in particular
i ∈ [n + 1, n+ j − 1].

(c) Every column of T contains exactly one dot whose parity label
is o (respectively e).

(d) By Rule II.2-a) and Rule III.1- of Algorithm 13, the pistol labels
of the two dots of CT

n are αo
0 and βe

0. Consequently, the type
label of dTn (respectively dT2n) is defined either by Rule II.1-
a) or Rule II.2-a), and in either case it is α (respectively β).
Also, whether its parity label is defined by Rule III.1- or Rule
III.2-a) (respectively Rule III.1- or Rule III.2-b)), it equals o
(respectively e), and its pistol label is αo

n−j (respectively βe
n−j)

where CT
j is the column that contains dTn (respectively dT2n).

(e) For all i ∈ [n], if one of the dots of CT
i has the pistol label βe

0,
then the other dot of CT

i has the type label α (otherwise the
parity labels of the two dots of CT

i would have been defined by
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Rule III.2-b) of Algorithm 13, following which the digital label
of the dot labeled with e cannot be 0).

(f) For all j ∈ [n] and i ∈ [j, 2n], if dTi ∈ CT
j , let h ∈ [0, n − j] be

its digital label and j′ = j + h, then

i ∈
{

Ä

πT
j

ä−1
(j′),

Ä

πT
j

ä−1
(n+ j′)

}

.

Consequently, if the dots of CT
j are dT

(πT
j )

−1
(j′)

and dT
(πT

j )
−1

(n+j′)
,

then the twin dots dTj′ and dTn+j′ are located in the columns

CT
1 , C

T
2 , . . . , C

T
j .

(g) For all i ∈ [n], if no dot of CT
i is labeled with βe

0, then the type
label of dTi,min is α if the dots of CT

i have different type labels,
otherwise it is β.

Definition 15. Following Remark 13.(c), for all T ∈ T n and j ∈ [n],
we define the odd dot (respectively even dot) of CT

j as the dot whose
parity label is o (respectively e).

3.2. A map from the tableaux to the surjective pistols.

Definition 16 (Map ϕ : T n → {2, 4, . . . , 2n}[2n]). Let T ∈ T n, we
define a map ϕ(T ) : [2n] → {2, 4, . . . , 2n} as follows : for all j ∈ [n],
following Remark 14.(a) and 13.(c), let to ∈ {α, β} and ho ∈ [0, n− j]
(respectively te ∈ {α, β} and he ∈ [0, n − j]) be the type and digital
labels of the odd dot (respectively even dot) of CT

j . We first define
ϕ(T )(2j − 1) as 2(j + ho). Afterwards,

— if te = α and he = 0, we also define ϕ(T )(2j) as 2(j + h0);

— otherwise, we define ϕ(T )(2j) as 2(j + he).

Lemma 17. Let T ∈ T n, f = ϕ(T ) and i ∈ [n]. If the dot dTi,min is

located in the column CT
j , then there exists k ∈ {2j − 1, 2j} such that

f(k) = 2i, and j is the integer jmin = ⌈kmin/2⌉ where

kmin = min {k ∈ [2i] : f(k) = 2i} .

Proof. Since dTi,min = dTi or dTn+i, by Part I. of Algorithm 13 its digital

label is i− j. Consequently, either dTi,min is the odd dot of CT
j , in which

case ϕ(T )(2j−1) = 2i, or it is the even dot and ϕ(T )(2j) = 2i because
dTi,min cannot be labeled with αe

0 in view of Remark 14.(b). In either
case there exists k ∈ {2j − 1, 2j} such that f(k) = 2i, so j ≥ jmin.
Reciprocally, since f(kmin) = 2i, by Definition 16 one dot of CT

jmin
has

the digital label i− jmin. By Definition 8, this implies that there exists
j′ ≤ jmin such that dTi ∈ CT

j′ or dTn+i ∈ CT
j′ , hence j ≤ j′ ≤ jmin, and

j = jmin. �
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Corollary 18. In particular, for all T ∈ T n, the map ϕ(T ) is surjec-
tive, thus belongs to Pn.

For example, the tableau T1 ∈ T 7 depicted in Figure 7 provides
the surjective pistol f1 = (2, 6, 4, 8, 12, 6, 8, 10, 14, 12, 12, 14, 14, 14) ∈

P7 (whose vector statistic is
−→
ndf(f1) = [1, 1, 0, 1, 1, 1, 1]) depicted in

Figure 8.

αo
0

βe
2

αo
0

βe
2

βe
0

αo
3

βe
1

βo
0

αo
2

αe
1

αo
0

βe
1

βe
0

αo
0

×
×

×
×

× ×

2
4
6
8
10
12
14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 8. The pistol-labeled version of T1 ∈ T 7 (on
the left) is mapped by ϕ to the surjective pistol f1 =
(2,6, 4,8, 12, 6, 8,10, 14,12, 12,14, 14,14) ∈ P7 (on the right).

We now introduce a vectorial version of the statistic of non-doubled
fixed points ndf : DCn → [n] through

−→
ndf : DCn → {0, 1}n defined by

−→
ndf(f) = [ndf1(f), ndf2(f), . . . , ndfn(f)]

where ndfi(f) = 1 if and only if 2i is not a doubled fixed point of
f ∈ Pn.

In the example of T1 ∈ T 7 and f1 = ϕ(T1) ∈ P7, note that

−→
ndf(f1) = [1, 1, 0, 1, 1, 1, 1] 6= [1, 1, 0, 0, 1, 1, 1] =

−→
fr (T1).

In order to define a statistic on tableaux that would be preserved by
ϕ, we introduce the notion of grounded dots hereafter.

Definition 19. Let T ∈ T n and i ∈ [n]. We say that the dot dTn+i is
grounded if it is not free and if one of the dots of the column CT

i has
the pistol label βe

0. Let −→ng(T ) = [ng1(T ), ng2(T ), . . . , ngn(T )] where
ngi(T ) ∈ {0, 1} equals 0 if and only if dTn+i is grounded for all i ∈ [n].
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For example, consider the tableau T1 ∈ T 7 depicted in Figure 7, we
depict in Figure 9 the pistol labeling of T1 in which every non-grounded
dot has been encircled, which gives

−→ng(T1) = [1, 1, 0, 1, 1, 1, 1] =
−→
ndf(f1).

Note that in general the dot dT2n, always being free, is never grounded,
even though the column CT

n always has a dot labeled with βe
0 (which is

similar to 2n never being considered as a doubled fixed point of f ∈ Pn

even though f(2n− 1) = f(2n) = 2n).

αo
0

βe
2

αo
0

βe
2

βe
0

αo
3

βe
1

βo
0

αo
2

αe
1

αo
0

βe
1

βe
0

αo
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14 1

1

1

0

1

1

1

Figure 9. Pistol labeling of the tableau T1 ∈ T 7.

Lemma 20. Let T ∈ T n and f = ϕ(T ) ∈ Pn. For all i ∈ [n], the
integer 2i is a fixed point of f if and only if CT

i has a dot labeled with βe
0.

Proof. If CT
i has a dot labeled with βe

0, by Definition 16 we have f(2i) =
2i. Reciprocally, suppose that no dot of CT

i has the pistol label βe
0,

and that f(2i) = 2i. If the digital label of the even dot of CT
i was

he > 0, we would have f(2i) = 2(i + he) > 2i, so its digital label is
necessarily he = 0, and since its pistol label is not βe

0 by hypothesis,
then it must be αe

0. In view of Remark 14(b), this implies that the
other dot of CT

i has the pistol label αo
ho

for some ho > 0. We then have
f(2i) = 2(i+ ho) > 2i, which is absurd. �

Proposition 21. Let f ∈ Pn and T ∈ ϕ−1(f) ⊂ T n. We have −→ng(T ) =
−→
ndf(f).

Proof. Let i ∈ [n]. If dTn+i is a grounded dot, then in particular the
even dot of CT

i has the pistol label βe
0, so f(2i) = 2i by Lemma 20.
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Also, the dot dTn+i is not free, i.e., it is located in a column CT
j with

j ≤ i. Let also j′ ≤ j such that dTi,min ∈ CT
j′ . By Lemma 17, there

exists k ∈ {2j′ − 1, 2j′} such that f(2k) = 2i. Consequently, if j′ < i,
then 2i is a doubled fixed point of f . Otherwise, we have j′ = j = i, so
the two dots of CT

i are dTi and dTn+i, in which case it is straightforward
from Algorithm 13 that their pistol labels are respectively αo

0 and βe
0,

thus f(2i− 1) = f(2i) = 2i, and 2i is still a doubled fixed point of f .
Reciprocally, if dTn+i is not a grounded dot, then either it is free, or

the even dot of CT
i is not labeled with βe

0. If the even dot of CT
i is

not labeled with βe
0, then 2i is not a fixed point of f by Lemma 20, in

particular it is not a doubled fixed point. Assume now that the even
dot of CT

i is labeled with βe
0 but that dTn+i is free (which implies that

dTi,min = dTi ). We have f(2i) = 2i by Lemma 20. By Remark 14(f), since

dTn+i is free, the dot of CT
i labeled with βe

0 is dT
(πT

i )
−1

(i)
. This forces its

label β to have been defined by Rule II.2-b) of Algorithm 13, and in
view of Remark 14(e), it has been defined with precision by Rule II.2-
b)i., which implies in this situation that dTi ∈ CT

i . As a summary, the
two dots of CT

i are dTi,min = dTi (whose pistol label is βe
0), and another

dot whose pistol label is αo
k with k 6= 0. By Definition 16, we then

have f(2i) = 2i and f(2i − 1) = 2(i + k) > 2i. Also, since dTi,min =

dTi , by Lemma 17 we know that min {k ∈ [2i] : f(k) = 2i} belongs to
{2i− 1, 2i}, so it is 2i, which is consequently a fixed point of f but not
a doubled fixed point. �

4. From the surjective pistols to the tableaux

4.1. Insertion labels and (f, j)-insertions.

Definition 22 (Insertion of a dot into a j-tableau). Let f ∈ Pn, j ∈ [n]

and T ∈ T j
n. We consider i ∈ [j, n] ⊔ [n + j, 2n], and i′ =

Ä

πT
j

ä−1
(i) ∈

[j, 2n]. Following Proposition-Definition 10, the j− 1 first boxes of RT
i′

are empty. Now, if the box CT
j ∩ RT

i′ is also empty, we define a new
j-tableau by plotting a dot in this box. This operation is called the
insertion of a dot into the box CT

j ∩RT
i .

For example (in this case n = 7 and j = 4), the insertion of a
dot into the box CT0

4 ∩ RT0
6 (respectively the box CT0

4 ∩ RT0
14) of the

4-tableau T0 ∈ T 4
7 depicted in Figure 7, leads to plotting a dot in the

box CT0
4 ∩ RT0

8 (respectively the box CT0
4 ∩RT0

9 ).

Definition 23 (labeled j-tableaux). Let j ∈ [n], we denote by T
j
n the

set of tableaux T ∈ T j
n whose dots are labeled with the letter a or b,
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whose columns CT
j+1, . . . , C

T
n are empty, and whose column CT

j contains
at most one dot.

Definition 24 ((f, j)-insertion of labeled dots into a labeled j-tableau).
Let j ∈ [n] and T ∈ T

j
n. We consider l ∈ {a, b} and h ∈ [0, n− j]. The

(f, j)-insertion in T of a dot labeled with l at the height h consists of
the following. Let i = j + h ∈ [j, n].

1. Suppose that i = j.

(a) If RT
j is empty, we insert a dot labeled with l in the box

CT
j ∩RT

j .

(b) Otherwise, we insert a dot labeled with l in the box CT
j ∩R

T
j

(respectively CT
j ∩ RT

n+j) if l = a (respectively l = b).

2. Suppose that i > j.

(a) If RT
i is empty,

i. if l = b and f(2i) = 2i, then we insert a dot labeled
with l in the box CT

j ∩RT
n+i;

ii. otherwise, we insert a dot labeled with l in the box
CT

j ∩ RT
i .

(b) Otherwise, let l′ ∈ {a, b} be the label of the dot of RT
i . If

l = l′ (respectively l 6= l′), then we insert a dot labeled
with l in the box CT

j ∩ RT
i (respectively CT

j ∩ RT
n+i).

4.2. A map from the surjective pistols to the tableaux. Let
f ∈ Pn, and T 1 ∈ T

1
n be the empty labeled 1-tableau. For j from 1

to n, we are going to define (in Algorithm 25) a labeled (j+1)-tableau

T j+1 ∈ T
j+1
n by filling CT j

j with two dots located above the line y = x,
and labeled with the letter a or b.

Algorithm 25. For j from 1 to n, we consider the induction hypothesis
H(j) defined as follows.

(A) T j ∈ T
j
n.

(B) If the row RT j

j is empty and f(2j) > 2j, then f(2k) 6= 2j for
all k ∈ [2j − 2] (hence f(2j − 1) = 2j because f is surjective).

Hypothesis H(1) is obviously true and we initiate the following algo-
rithm for j = 1. Let (δo, δe) = (f(2j−1)/2−j, f(2j)/2−j) ∈ [0, n−j]2.

I. We define first two labels lo and le as follows.

1 - If the row RT j

j is empty, let (lo, le) = (a, b).

2 - Otherwise, let d be the dot of RT j

j .
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a) If d is labeled with a, let (lo, le) = (a, b).

b) Else,

i. if δo < δe, let (lo, le) = (b, b);

ii. if δo ≥ δe, let (lo, le) = (a, a).

II. Then, we define two heights (ho, he) ∈ [0, n−j]2 as follows. The
height ho is defined as δo. Afterwards,

1 - if le = a and δo = δe, we define he as 0;

2 - otherwise, we define he as δe.

We finally define T j+1 as the tableau obtained first by (f, j)-inserting
in T j a dot labeled with lo at the height ho, then by (f, j)-inserting in
the resulted tableau a dot labeled with le at the level he. We prove
now that Hypothesis H(j + 1) is true.

(A) Following the condition (A) of Hypothesis H(j), since T j+1 is

obtained by plotting two dots in CT j

j and in two empty rows

of T j , we only need to prove that RT j+1

j contains a dot. Either

RT j

j contains a dot, in which case RT j+1

j too, or, following the
condition (B) of Hypothesis H(j), we have δo = 0 or δe = 0,

hence ho = 0 or he = 0, which implies that the box CT j+1

j ∩RT j+1

j

contains a dot by Rule 1.(a) of Definition 24. So T j+1 ∈ T
j+1
n .

(B) If 2j + 2 is not a fixed point of f and if there exists k ∈ [2j]
that is mapped to 2j + 2 by f , suppose that k is the smallest
integer to have that property and let j′ = ⌈k/2⌉ ≤ j ; at the
j′-th step of the algorithm, a dot is (f, j′)-inserted in T j′ at the

level h = j +1− j′. Since k is minimal, the row RT j′

j+1 is empty,

so the box CT j′+1

j′ ∩ RT j′+1

j+1 contains a dot by Rule 2.(a)ii. of
Definition 24.

So the above algorithm is well-defined and, following Hypothesis
H(n + 1), produces a tableau T n+1 ∈ T

n+1
n , in other words, a tableau

T ∈ T n whose dots are labeled with the letter a or b. We define Φ(f)
as this tableau T ∈ T n.

For example, consider the surjective pistol

f1 = (2, 6, 4, 8, 12, 6, 8, 10, 14, 12, 12, 14, 14, 14) ∈ P7,

whose graphical representation is depicted in Figure 8. We depict in
Figure 10 the insertion-labeled version of the tableau Φ(f1) ∈ T 7, which
is in fact the tableau T1 ∈ T 7 depicted in Figure 7, mapped to f1
by ϕ (see Figure 8). The details of this computation are given in
Appendix B.
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Figure 10. The insertion labeling of the tableau Φ(f1) ∈ T 7.

5. Connection between ϕ and φ

Lemma 26. Let f ∈ Pn, T = Φ(f) ∈ T n and i ∈ [n]. If dTi,min = dTn+i,

then f(2i) = 2i and the two dots of CT
i have different insertion labels.

Proof. In general, the dot dTi,min is, by its definition, always plotted

by Rule 1.(a) or Rule 2.(a) of Definition 24. Now, if dTi,min = dTn+i,
then with precision it must be plotted by Rule 2.(a)i., following which
f(2i) = 2i.

Afterwards, if the insertion labels of the dots of CT
i are defined by

Rule I.1- of Algorithm 25, then they are different by definition. If they
are defined by Rule I.2-, then dTi belongs to a column CT

j with j < i,
which implies that it was plotted by Rule 2.(a)ii. of Definition 24. Since
f(2i) = 2i, this implies that its insertion label is a, hence the insertion
labels of the dots of CT

i are different by Rule I.2-a) of Algorithm 25. �

Lemma 27. Let f ∈ Pn and T = Φ(f) ∈ T n. The type label of a dot
of T is α if and only if its insertion label is a.

Proof. Assume that the Lemma is true for the dots of the columns
CT

j+1, C
T
j+2, . . . , C

T
n for some j ∈ [n]. First of all, we prove that for

all k ∈ [j + 1, n], if dTk,min = dTn+k, then the even dot of the column

CT
k is labeled with βe

0 : if so, then by Lemma 26, the two dots of CT
k

have different insertion labels, hence different type labels by hypothesis
(because k > j). With precision, the dot whose type label is β has
been (f, j)-inserted in T k with the label le = b at the height he =
f(2k)/2 − k = 0, so the pistol label of this dot is βe

0 in view of Rule
III.1- of Algorithm 13.
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Now, let dTi ∈ CT
j , j′ = j + h where h ∈ [0, n− j] is the digital label

of dTi , and i′ = πT
j (i) ∈ {j′, n+ j′}.

— If the type label of dTi is defined by Rule II.1-a) of Algorithm 13,
then f(2j′) = 2j′ : indeed, by Remark 14(e), the type label of
the odd dot of CT

j′ is α, so by hypothesis the insertion labels of

the dots of CT
j′ are a and b, which implies that (lo, le) = (a, b) at

the j′-th step of Algorithm 25, hence he = δe = f(2j)/2 − j is
the digital label 0 of the even dot of CT

j′ . Since j′ > j, the dot

dTi′ has been plotted by Rule 2.(a) of Definition 24, and since
f(2j′) = 2j′, its insertion label equals a (respectively b) if and
only if i′ = j′ (respectively i′ = n + j′) following Rule 2.(a)ii.
(respectively Rule 2.(a)i.) of Definition 24, hence if and only if
its type label is α (respectively β) in this context.

— If the type label of dTi is defined by Rule II.1-b) of Algorithm 13,
let (c, c̄) be defined as (a, b) if the two dots of CT

j′ have different
type labels, as (b, a) otherwise. The aim of this part is to prove
that the insertion label of dTi is c (respectively c̄) if its type
label is γ (respectively γ̄), i.e., if dTi′ = dTj′,min (respectively if

dTi′ 6= dTj′,min). Now, if dTi′ = dTj′,min (respectively dTi′ 6= dTj′,min),
then in this context we know that i′ = j′ (respectively i′ =
n + j′), because we showed at the beginning of the proof that
if dTj′,min = dTn+j′ then one of the dots of CT

j′ is labeled with βe
0,

which is not true by hypothesis. So the insertion label of dTi′ is c
(respectively c̄) following Rule I.2- of Algorithm 25 (respectively
following that very same rule and the fact that dTn+j′ has been
plotted by Rule 2.(b) of Definition 24).

— If the type label of dTi is defined by Rule II.2-a) of Algorithm
13, it is straightforward that the two dots of CT

j are dTio (labeled

with αo
0) and dTie (labeled with βe

0) where io =
Ä

πT
j

ä−1
(j) and

ie =
Ä

πT
j

ä−1
(n+ j). Now, at the j-th step of Algorithm 25, we

prove that (lo, le) = (a, b) and that the insertion labels of dTio
and dTie are respectively a and b.

* If (lo, le) has been defined by Rule I.1- of Algorithm 25,
it is straightforward that it is (a, b), and by Rule 1.(a)
(respectively Rule 1.(b)) of Definition 24, the dot dTio = dTj
belongs to CT

j and is labeled with a (respectively the dot

dTie was plotted by inserting a dot labeled with b in the box
CT

j ∩RT
n+j).
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* Else, let d be the dot of RT
j . It has been plotted by Rule

2.(a)ii. of Definition 24, so, since f(2j − 1) = f(2j) = 2j
by hypothesis, it implies that its insertion label is a, hence
(lo, le) = (a, b) by Rule I.2-a) of Algorithm 25. Conse-
quently, by Rule 1.(b) of Definition 24, the dot dTio (respec-
tively dTie) was plotted by inserting a dot labeled with a (re-
spectively b) in the box CT

j ∩RT
j (respectively CT

j ∩RT
n+j).

— If the type label of dTi is defined by Rule II.2-b) of Algorithm
13, the insertion label of the other dot d of CT

j being a if and
only if its type label is t = α has already been proved above.

* If t = α, suppose first that the type label of dTi is α, i.e.,
that i 6= i′ = j. The equality i 6= i′ implies that dTi has been
plotting by Rule 1.(b) of Definition 24, and the equality
i′ = j then implies that its insertion label is a. Afterwards,
if the type label of dTi is β, then either i = i′ or i′ = n+ j.
If i′ = n + j, then dTi has been plotted by Rule 1.(b) of
Definition 24 with the insertion label b. Assume finally
that i = i′ = j. Then, at the j-th step of Algorithm
25, the pair of labels (lo, le) has been defined by Rule I.1-,
i.e., it equals (a, b). Since the insertion label of d is a by
hypothesis, then the insertion label of dTi is b.

* If t = β, since the digital label of d is not 0 by hypothesis,
by Rule III. of Algorithm 13 no dot of CT

j is labeled with
βe
0. Following the beginning of this proof, this implies that

dTj,min = dTj . In view of this, the type label of dTi is α
if and only if i′ = j. If i′ = j, either the pair of labels
(lo, le) is defined by Rule I.1- of Algorithm 25 hence is (a, b),
and the insertion label of dTi is a because that of d is b
by hypothesis, or dTi has been plotted by Rule 1.(b) of
Definition 24, so its insertion label is a because i′ = j.
Assume finally that i′ 6= j, i.e., that i′ = n+j and the type
label of dTi is β. It has necessarily been plotted by Rule
1.(b) of Definition 24, and its insertion label is b because
i′ = n+ j.

So the Lemma is true by induction. �

Proposition 28. The composition ϕ ◦ Φ is the identity map of Pn.

Proof. Let f ∈ Pn, T = Φ(f) ∈ T n and g = ϕ(T ) ∈ Pn. We want
to prove that g = f . Let j ∈ [n]. By Part II. of Algorithm 25 and
Definition 24, we know that one of the dots do of CT

j has the digital
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label ho = δo = f(2j − 1)/2 − j, and that the other dot de of CT
j has

the digital label he that has the following property :

— if δo = δe and le = a, then he = 0;

— otherwise he = δe = f(2j)/2− j.

Also, by Lemma 27, the type label of do (respectively de) is α if and
only if lo = a (respectively le = a).

We prove now that the parity labels of do and de are o and e respec-
tively, and, at the same time, that g|{2j−1,2j} = f|{2j−1,2j}.

1 - If their type labels are different, we know that their insertion
labels are different, and by Part I. of Algorithm 25 this implies
that lo = a and le = b, hence the type labels of do and de are α
and β respectively. As a result, by Part III.1- of Algorithm 13,
the parity labels of do and de are o and e. Also, since le 6= a,
the digital labels of do and de are δo and δe respectively, so, by
Definition 16, we have g(2j − 1) = 2(j + δo) = f(2j − 1) and
g(2j) = 2(j + δe) = f(2j).

2 - Otherwise, the insertion labels of do and de are the same, so
they have been defined by Rule I.2-(b) of Algorithm 25.

1) If the type label of do and de is β, their insertion label is
b, so it has been defined by Rule I.2-(b)i. of Algorithm 25.
In particular δo < δe, and since in that case δo and δe are
the digital labels of do and de respectively, by Rule III.2-b)
of Algorithm 13 the parity labels of do and de are o and
e respectively, and by Definition 16, we have g(2j − 1) =
2(j + δo) = f(2j − 1) and g(2j) = 2(j + δe) = f(2j).

2) If their type labels are α, their insertion label is a, which
has been defined by Rule I.2-(b)ii. of Algorithm 25. In
particular δo ≥ δe. Let ho and he be the digital labels of
do and de respectively. Since we are in the context III.2-
of Algorithm 13, we know that ho 6= he. If δo = δe then
(ho, he) = (δo, 0), otherwise (ho, he) = (δo, δe), so in any
case ho > he and by Rule III.2-a) of Algorithm 13 the parity
labels of do and de are o and e respectively. Afterwards,

— If δo = δe, hence (ho, he) = (δo, 0), then by Defini-
tion 16 we have g(2j − 1) = 2(j + δo) = f(2j − 1)
and g(2j) = 2(j + δo) = 2(j + δe) = f(2j);

— otherwise (ho, he) = (δo, δe) and, by Definition 16, we
have g(2j − 1) = 2(j + δo) = f(2j − 1) and g(2j) =
2(j + δe) = f(2j).
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So g|{2j−1,2j} = f|{2j−1,2j} for all j ∈ [n]. �

Proposition 28 implies that the maps φ : Pn → T n and ϕ : T n →
Pn are respectively injective and surjective. We intend now to make
the image of Φ explicit.

Definition 29. Let T ∈ T n, we define S(T ) ⊂ [n] as the set of integers
i ∈ [n] such that :

— the dot dTn+i is not free;

— the twin dots dTi and dTn+i are not in the same column;

— no dot of CT
i has the pistol label βe

0.

For all such i, we define µT (i) as 1 if dTi,min = dTi , as −1 otherwise.
Afterwards, we define C(T ) ⊂ [n − 1] as the set of integers j ∈ [n]

such that CT
j contains twin dots, say, the dots dTi and dTn+i for some

i ∈ [n], such that no dot of CT
i is labeled with βe

0. For all such j, we
define tT (j) as the type label of dTi .

Remark 30. For all T ∈ T n, by Proposition 21, we have the formula

fr(T ) + #S(T ) + #C(T ) = ng(T ) = ndf(f)

where f = ϕ(T ).

Remark 31. In the proof of Lemma 27, we showed that for all T of the
kind φ(f) for some f ∈ Pn, and for all i ∈ [n], if dTi,min = dTn+i, then

one of the dots of CT
i is labeled with βe

0, hence i 6∈ S(T ).

Definition 32. Let T̃ n be the subset of T n made of the tableaux T
that have the following properties : for all i ∈ [n],

(a) if i ∈ S(T ), then dTi,min = dTi ;

(b) if j ∈ C(T ), then tT (j) = α.

Lemma 33. The image of Φ : Pn → T n is a subset of T̃ n.

Proof. Let f ∈ Pn and T = Φ(f) ∈ T n. The tableau T having the
property (a) of Definition 32 comes from Remark 31. Now, let j ∈ C(T )
and i ≥ j such that CT

j contains the twin dots dTi and dTn+i. They both
have the same digital label i − j (which implies that ho = he = i − j
at the j-th step of Algorithm 25), so by Part III. of Algorithm 13 their
type labels are different. In view of Lemma 27, this implies that their
insertion labels are lo = a and le = b. Now, at the beginning of the j-th
step of Algorithm 25, the row RT j

i is empty, so the (f, j)-insertion in
T j of a dot labeled with lo = a at the height ho = i−j leads to plotting
a dot labeled with a in the box CT j

j ∩RT j

i following Rule 1.(a) or Rule
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2.(a)ii. of Definition 24. So dTi is the dot of CT
j whose insertion label is

a, and its type label is α by Lemma 27, hence T has the property (b)
of Definition 32. �

Definition 34. For all T ∈ T n and j ∈ [n], we define ǫTj as the set of

the pistol labels of the dots of CT
j .

Lemma 35. Let f ∈ Pn and (T, T ′) ∈ ϕ−1(f)2. Let j ∈ [n] such that
ǫTj 6= ǫT

′

j . There exists k ∈ C(T )∩C(T ′)∩[j−1] such that tT (k) 6= tT ′(k).

Proof. Suppose first that the dots of CT
j (respectively CT ′

j ) have the

same type label. If, with precision, the four dots of CT
j and CT ′

j have
the same type label, since ϕ(T ) = ϕ(T ′) = f , in view of Definition 16
the set of the digital labels of the dots of CT

j equals the set of the digital

labels of the dots of CT ′

j , and by Part III.2- of Algorithm 13 we have

in fact ǫTj = ǫT
′

j , which is false by hypothesis. So, should T and T ′

be transposed, we can suppose that the dots of CT
j (respectively CT ′

j )
have the type label α (respectively β). By Part III.2- of Algorithm
13, we have ǫTj =

¶

αo
ho
, αe

he

©

with ho > he, and ǫT
′

j =
¶

βo
h′

o
, βe

h′

e

©

with

h′
o < h′

e. Following Definition 16, this implies that f(2j − 1) ≥ f(2j)
and f(2j − 1) < f(2j), which is absurd.

So, should T and T ′ be transposed, we can suppose that the dots of
CT

j have different type labels, and by Part III.1- of Algorithm 13, we

have ǫTj =
¶

αo
ho
, βe

he

©

for some (ho, he) ∈ [0, n − j]2, which, following
Definition 16, implies that f(2j−1) = 2(j+ho) and f(2j) = 2(j+he).
Now, if the dots of CT ′

j had different type labels, then by Part III.1-

of Algorithm 13 and Definition 16 we would have ǫTj = ǫT
′

j , so it is

necessary that the dots of CT ′

j have the same type label. This implies
several things, enumerated hereafter.

(A) Since no dot of CT ′

j is labeled with βe
0 in view of Remark 14(e),

then by Lemma 20 the integer 2j is not a fixed point of f , hence
no dot of CT

j is labeled with βe
0 (i.e., we have he > 0).

(B) Suppose that dT
′

j,min ∈ CT ′

j (hence dT
′

j,min = dT
′

j ). Then its type
label is defined by Rule II.2- of Algorithm 13. Since no dot
of CT ′

j has the pistol label βe
0, then it is with precision defined

by Rule II.2-b). Since it is dT
′

j,min, whether it is defined by Rule

II.2-b)i. or Rule II.2-b)ii., the type labels of the two dots of CT ′

j

are different, which is absurd. So dT
′

j,min belongs to a column CT ′

j′

with j′ < j.

(C) Consequently, by Lemma 17, we know that dTj,min ∈ CT
j′ .
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(D) Following Remark 14(e), the type label of dTj,min is α, whereas

the type label of dT
′

j,min is β.

Now, if j′ ∈ C(T ), then with precision dTj,min = dTj because the

other dot of CT
j′ is dTn+j (in particular tj′(T ) = α following (D)), also

ǫTj′ =
¶

αo
j−j′, β

e
j−j′

©

in view of Rule II.1-b) and Rule III.1- of Algorithm
13, and by Definition 16 we have f(2j′−1) = f(2j′) = 2j. Still by Def-
inition 16, since one of the dots of CT ′

j′ (the dot dT
′

j,min by (D)) doesn’t

have the type label α, then the two dots of CT ′

j′ have the same digital
label j − j′ (incidentally, by Part III.2- of Algorithm 13 this implies
that they have different type labels, i.e., that the dot of CT ′

j′ that is

not dT
′

j,min has the type label α). Let d be the twin dot of dT
′

j,min, i.e.,

the dot defined as dT
′

j if dT
′

j,min = dT
′

n+j, as dT
′

n+j if dT
′

j,min = dT
′

j . Since

dT
′

j,min ∈ CT ′

j′ and the other dot of CT ′

j′ has the digital label j − j′, by

Definition 8 this implies that d is located in a column CT ′

j′′ with j′′ ≤ j′.

By Definition of dT
′

j,min, we have j′′ ≥ j′ hence j′′ = j′. In other words,

the integer j′ belongs to C(T ′) and dT
′

j,min = dT
′

j has the type label β in
view of (D), hence tj′(T

′) = β 6= tj′(T ), which is exactly the statement
of the lemma.

Otherwise (if j′ 6∈ C(T )), suppose that ǫTj′ = ǫT
′

j′ . Since the type

labels of dTj,min ∈ CT
j′ and dT

′

j,min ∈ CT ′

j′ are respectively α and β and
their digital label j−j′, in view of Part III. of Algorithm 13 this implies
that ǫTj′ = ǫT

′

j′ =
¶

αo
j−j′, β

e
j−j′

©

. In particular, the two dots of CT
j have

the same digital label j− j′. By Definition 8, this means that both the
twin dots dTj and dTn+j are located in columns CT

j′′ with j′′ ≤ j′. By

Definition of dTj,min ∈ CT
j′ , this forces those two dots to be the dots of

CT
j′ , which contradicts j′ 6∈ C(T ) since no dot of CT

j is labeled with βe
0

in view of (A). So, necessarily ǫTj′ 6= ǫT
′

j′ and we are in the situation of
the beginning of the proof with j being replaced by j′. This produces
some integer j(2) ∈ [j′ − 1] such that dTj′,min ∈ CT

j(2)
and dT

′

j′,min ∈ CT ′

j(2)

do not have the same type label. If the statement of the Lemma is
false, then it in fact produces a strictly decreasing sequence of integers
(j(2), j(3), . . .) ∈ [n]N, which is absurd. So the Lemma is true. �

Proposition 36. The map ϕ|T̃n
is injective.

Proof. Let (T1, T2) ∈
Ä

T̃n

ä2
such that ϕ(T1) = ϕ(T2) =: f ∈ Pn. By

Lemma 35 and the property (b) of Definition 32, we know that ǫT1
j = ǫT2

j

for all j ∈ [n]. Let H(j) be the induction hypothesis that for all
k ∈ [j−1] and i ∈ [k, 2n], the dot dT1

i belongs to CT1
k only if dT2

i belongs
to CT2

k . Hypothesis H(1) is obviously true. Suppose that Hypothesis
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H(j) is true for some j ∈ [n − 1]. The fact that the dots of T1 and
T2 are located at the same levels in their j − 1 first columns implies
that πT1

j = πT2
j =: πj. Let i1 ∈ [j, n] such that d1 = dT1

i1
∈ CT1

j ,
we consider the digital label h ∈ [0, n − j] of d1, j′ = j + h, and
i′1 = πj(i1) ∈ {j′, n+ j′}. We denote by d2 = dT2

i2
the dot of CT2

j that

has the same pistol label as d1. We intend to prove that d2 = dT2
i , i.e.,

that i′1 = i′2 because πj is injective. Since ǫT1
j = ǫT2

j and the column

CT1
j has a dot labeled with βe

0 if and only if the column CT2
j has a

dot labeled with βe
0 (in view of Lemma 20), then the type label of

d1 and d2 is defined by the same rule among Rules II.1-a),II.1-b),II.2-
a),II.2-b)i. and II.2-b)ii. of Algorithm 13. The equality i′1 = i′2 is then
straightforward in each case in view of dT1

j′,min = dT1
j′ and dT2

j′,min = dT2
j′

following the condition (a) of Definition 32. So Hypothesis H(j) is true.
By induction, Hypothesis H(n) is true, thence T1 = T2. �

Corollary 37. The map Φ ◦ ϕ|T̃n
is the identity map of T̃n. (In view

of Lemma 33, it implies that the image of Φ : Pn → T n is exactly T̃ n.)

Proof. Let T ∈ T̃n, f = ϕ(T ) ∈ Pn and T ′ = φ(f) ∈ T̃n. By Propo-
sition 28, we know that ϕ(T ′) = f , so T = T ′ in view of Proposi-
tion 36. �

6. Proof of Theorem 6

We now know that the injection φ : Pn →֒ T n induces a bijection
from Pn to T̃ n ⊂ T n, whose inverse map is ϕ|T̃ n

, and which maps the

statistic
−→
ndf to the statistic −→ng in view of Proposition 21. To finish the

proof of Theorem 6, it remains to show Formula (2) for all f ∈ Pn,
which we do in this section with the help of Algorithm 42 and Algorithm
44, which compute ϕ−1(f).

Definition 38. Let f ∈ Pn and j ∈ [n]. We define T f(j) as the set
of the tableaux T ∈ ϕ−1(f) such that j ∈ C(T ). Let T0 ∈ T f(j). We
define T (T0, j) as the set of tableaux T ∈ ϕ−1(f) such that C(T ) ∩
[j − 1] = C(T0) ∩ [j − 1] and tT (k) = tT0(k) for all k ∈ C(T ) ∩ [j − 1]
(this set is not empty because it contains T0).

Lemma 39. Using the notations of Definition 38, if T ∈ T (T0, j), then
the dots of CT

j have the same levels as the dots of CT0
j , and j ∈ C(T ).

Proof. Let i ∈ [j, n] such that the dots of CT0
j are the twin dots dT0

i

and dT0
n+i. Since j ∈ C(T0), we have i > j (otherwise the dot dT0

n+i

would have the pistol label βe
0). Consequently, the type labels of the
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twin dots of CT0
j are both defined by Rule II.1-b) of Algorithm 13, so

they are different. Let j′ ≤ j such that dT0
j,min ∈ CT0

j′ . With precision,

we have j′ < j : otherwise, we would have dT0
j,min = dT0

j ∈ CT0
j and i

would equal j, which is false. The type label of dT0
j,min is α following

Rule II.1-b) of Algorithm 13. Now, if T ∈ T (T0, j), suppose that the
type label of dTj,min is β. By Lemma 17, we know that dTj,min ∈ CT

j′ .

Also, by hypothesis and Lemma 35, it is necessary that ǫT0
j = ǫTj . Since

dT0
j,min is labeled with αj−j′ and dTj,min with βj−j′, it is necessary that

ǫT0
j = ǫTj =

¶

αo
j−j′, β

e
j−j′

©

. In particular, by Remark 14(f), the dots of

CT0
j′ are dT0

Ä

π
T0
j′

ä

−1
(j)

and dT0
Ä

π
T0
j′

ä

−1
(n+j)

, and the dots of CT
j′ are dTÄ

πT
j′

ä

−1
(j)

and dTÄ
πT
j′

ä

−1
(n+j)

. Now, by Definition 12 of dT0
j,min ∈ CT0

j′ and dTj,min ∈ CT
j′ ,

these two dots are dT0
j and dT0

n+j (respectively dTj and dTn+j). In other

words, since no dot of CT0
j is labeled with βe

0 (hence no dot of CT
j is

labeled with βe
0 in view of Lemma 20), we have j′ ∈ C(T0) ∩ C(T ) and

tT0(j
′) = α 6= β = tT (j

′), which is absurd by hypothesis. So the type
label of dTj,min is α, hence the two dots of CT

j have different type labels.
Afterwards, since ϕ(T0) = ϕ(T ) = f and the type labels of the dots of
CT0

j and CT
j are not both α, by Definition 16 the digital label of the

odd dot (respectively even dot) of CT
j is the same as the digital label

of the odd dot (respectively even dot) of CT0
j . Since the dots of CT0

j are

twins, they have the same digital label i− j, and so do the dots of CT
j .

Consequently, by Remark 14(f), the dots of CT
j are dT

(πT
j )

−1
(i)

= dTi and

dT
(πT

j )
−1

(n+i)
= dTn+i.

Finally, let f = ϕ(T0). By hypothesis j ∈ C(T0), so f(2j) > 2j in
view of Lemma 20. Since f = ϕ(T ), then Lemma 20 also implies that
j ∈ C(T ). �

Definition 40. Using the notations of Definition 38, by Lemma 39 we
can decompose T (T0, j) into the disjoint union T (T0, j, α)⊔T (T0, j, β)
where, for all γ ∈ {α, β}, the subset T (T0, j, γ) is the set of the tableaux
T ∈ T (T0, j) such that tT (j) = γ.

6.1. An operation on S(T ).

Definition 41. Let T ∈ T n and {i1, i2, . . . , im}< = S(T ). For all
k ∈ [m], we define µT

k as 1 if dTik,min = dTik , as −1 otherwise.

Algorithm 42. Let T ∈ T n and {i1, i2, . . . , im}< = S(T ). We consider
µ = (µ1, µ2, . . . , µm) ∈ {−1, 1}m, and we define a tableau Sµ(T ) as
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follows. Let T ′
1 be the empty 1-tableau. For j from 1 to n, suppose

that T ′
j is a j-tableau (which is true for j = 1). In particular the map

π
T ′

j

j is defined. Let (r1, r2) ∈ [j, 2n]2 such that dTr1 and dTr2 are the two

dots of CT
j . For all p ∈ {1, 2}, we consider the integer r′p = πT

j (rp) ∈
[j, n] ⊔ [n+ j, 2n].

1 - If r′p ∈ {ik, n+ ik} for some k ∈ [m], let (rγ , rγ̄) be the pair
(ik, n + ik) if µk = 1, or the pair (n + ik, ik) if µk = −1. We

define the integer r′′p as
Å

π
T ′

j

j

ã−1

(rγ) if the type label of dTrp is

the same as that of dTik,min, as
Å

π
T ′

j

j

ã−1

(rγ̄) otherwise.

2 - Otherwise, we define the integer r′′p as
Å

π
T ′

j

j

ã−1

(r′p).

Since π
T ′

j

j is bijective, the integers r′′1 and r′′2 are different, and by

definition the rows R
T ′

j

r′′1
and R

T ′

j

r′′2
are empty. We then define the (j+1)-

tableau T ′
j+1 by plotting two dots in the boxes C

T ′

j

j ∩R
T ′

j

r′′1
and C

T ′

j

j ∩R
T ′

j

r′′2
.

This algorithm produces a (n+1)-tableau T ′
n which we denote by Sµ(T ),

and which belongs to T n as a (n+ 1)-tableau.

For example, in Figure 11, we consider a tableau T ∈ T 7 such that
S(T ) = {3, 5} and (µT

1 , µ
T
2 ) = (−1, 1). In this figure, the tableau T is

depicted with its pistol labeling.

βe
0

αo
2

αo
0

βe
1

βe
1

αo
1

αe
2

αo
3

αo
0

βe
1

αo
1

βe
1

βe
0

αo
0

3

10

5

12

Figure 11. Tableau T ∈ T 7 such that S(T ) = {3, 5}.
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In Figure 12, we represent the pistol-labeled versions of the tableaux
Sµ(T ) for all µ ∈ {−1, 1}2.

βe
0
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2
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0
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1

βe
1
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1
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0
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0
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0
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βe
1

βe
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0
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0
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0
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0
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0
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1

βe
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0
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3

10

5

12

Figure 12. The tableaux Sµ(T ) for all µ ∈ {−1, 1}2.

Note that if µ0 = (µT
1 , µ

T
2 ) (= (−1, 1)), then Sµ0(T ) = T (in the

bottom left-hand corner in Figure 12). Afterwards, for all µ ∈ {−1, 1}2
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and j ∈ [7], we have ǫ
Sµ(T )
j = ǫTj , consequently ϕ(Sµ(T )) = ϕ(T ) ; also,

we have C(Sµ(T )) = C(T ) = {3}, and tSµ(T )(3) = β = tT (3). All these
remarks are generalized in the easy following result.

Proposition 43. Let T ∈ T n, f = ϕ(T ) ∈ Pn and {i1, i2, . . . , im}< =
S(T ). For all µ = (µ1, µ2, . . . , µm) ∈ {−1, 1}m, the tableau Sµ(T ) is
the unique tableau T ′ ∈ ϕ−1(f) such that :

— S(T ′) = S(T ) and for all k ∈ [m], we have µT ′

k = µk;

— C(T ′) = C(T ) and for all j ∈ C(T ), we have tT (j) = tt′(j).

6.2. An operation on C(T ).

Algorithm 44. Let T ∈ ϕ−1(f) for some given f ∈ Pn, j0 ∈ C(T ) and
γ ∈ {α, β}. We define a tableau Mj0,γ(T ) as follows. First of all, let

{i1, i2, . . . , im}< = S(T ), we define T̃ ∈ ϕ−1(f) as Sµ(T ) where µ is the
sequence (1, 1, . . . , 1) ∈ {−1, 1}m. Afterward, we define T j0+1 ∈ Tj0+1

n

as follows. Let (c, c̄) be defined as (a, b) if γ = α, as (b, a) otherwise.

— For all j < j0 and i ∈ [j, 2n], if the column C T̃
j contains the

dot dT̃i whose type label is α (respectively β), then the column

CT j0+1

j contains the dot dT
j0+1

i labeled with the letter a (respec-
tively b).

— If dTi and dTn+i are the twin dots of C T̃
j0

, then the column CT j0+1

j0

contains the twin dots dT
j0+1

i and dT
j0+1

n+i labeled with the letters
c and c̄ respectively.

Afterwards, we define Mj0,γ(T ) ∈ T n as the tableau produced by the
restriction of Algorithm 25 from step j0 + 1 (using T j0+1) to step n.

Remark 45. With the notations of Algorithm 44, for all µ ∈ {−1, 1}m,
we have the equality Mj0,γ(T ) = Mj0,γ(Sµ(T )).

For example, consider the tableau T ∈ T 7 of Figure 11, with S(T ) =
{3, 5} and C(T ) = {3}. To compute M3,α(T ) and M3,β(T ), we first
need to make f = ϕ(T ) explicit, which can be read from the pistol
labeling of T in Figure 11 (or from any pistol labeling of the tableaux
depicted in Figure 12 for that matter) :

f = (6, 2, 4, 6, 8, 8, 14, 12, 10, 12, 14, 14, 14, 14) ∈ P7,

whose graphical representation is depicted in Figure 13.
Following the notations of Algorithm 44, we have T̃ = S(1,1)(T ) ∈ T 7,

which is represented at the top left-hand corner of Figure 12. We then
use T̃ to compute the insertion labeled versions of M3,α(T ) and M3,β(T )
in Figure 14.
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Figure 13. The surjective pistol f = ϕ(T ) ∈ P7.
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Figure 14. The insertion-labeled versions of the tableaux
M3,α(T ) and M3,β(T ).

Lemma 46. With the notations of Algorithm 44, let T ′ = Mj0,γ(T )
and i ∈ [n]. If dT

′

i,min = dT
′

n+i, then f(2i) = 2i and the two dots of CT ′

i

have different insertion labels.

Proof. Let j ∈ [n] such that CT ′

j contains dT
′

n+i. Since CT ′

j0
contains twin

dots, we know that j 6= j0. If j < j0, we also have dT̃n+i = dT̃i,min. By

Definition of T̃ , this implies that i 6∈ S(T̃ ). Since dT̃n+i is not free, it is

then necessary that C T̃
i contains a dot labeled with βe

0, hence f(2i) = 2i
by Lemma 20. If j > j0, the proof of f(2i) = 2i is the same as in the
proof of Lemma 26.

Afterwards, since f(2i) = 2i and f(2j0) 6= 2j0 because j0 ∈ C(T̃ ),
we have i 6= j0. If i < j0, then by Lemma 20 and Remark 14(e) the

type labels of the dots of C T̃
i are different, hence the insertion labels

of the dots of T ′ are different by definition. If i > j0, the proof of the
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insertion labels of the dots of T ′ being different is the same as in the
proof of Lemma 26. �

Lemma 47. With the notations of Algorithm 42, the type label of a
dot of the tableau T ′ = Mj0,γ0(T ) is α if and only if its insertion label
is a.

Proof. The proof of the Lemma for the dots of CT ′

j0+1, C
T ′

j0+2, . . . , C
T ′

n

is the same as that of Lemma 27 where Lemma 46 plays the role of
Lemma 26.

Now, let i ∈ [j0, 2n] such that CT ′

j0
contains the twin dots dT

′

i and

dT
′

n+i. Since j0 ∈ C(T̃ ), we know that i > j0. Let (c, c̄) and γ̄0 be defined
as (a, b) and β respectively if γ0 = α, as (b, a) and α otherwise. By
Definition the insertion labels of dT

′

i and dT
′

n+i are c and c̄ respectively.

Afterwards, suppose that CT ′

i contains a dot de labeled with βe
0. By

Remark 14(e), the other dot do of CT ′

i has the type label α. Since
i > j0, we know that the insertion labels of do and de are a and b
respectively, so these insertion labels have been defined following Rule
I.2-a) of Algorithm 25. Since the digital label of de is 0 = he = f(2i)/2−

i in this situation, by Lemma 20 the column C T̃
i contains a dot labeled

with βe
0, which contradicts j0 ∈ C(T̃ ). So no dot of CT ′

i is labeled with
βe
0, and the type labels of dT

′

i and dT
′

n+i are defined by Rule II.1-b) of

Algorithm 13. Since the insertion labels of the dots of CT ′

i are defined
by Rule I.2- of Algorithm 25, and since they are different labels if and
only if these two dots of different type labels because i > j0, then
by Rule I.1-b) of Algorithm 13, the type labels of dT

′

i and dT
′

n+i are
respectively α and β if c0 = a (i.e., if γ0 = α), as β and α otherwise
(if γ0 = β), in other words their type labels are respectively γ0 and γ̄0,
and the Lemma is true for these two dots.

Finally, a thorough analysis of the rules of Algorithm 13 following
which the type labels of the dots of CT ′

1 , CT ′

2 , . . . , CT ′

j0−1 are defined show

that these type labels are the same as in T̃ , hence that the type label
of each dot is α if and only if its insertion label is a by definition. �

Proposition 48. With the notations of Algorithm 42, the tableau T ′ =
Mj0,γ(T ) is an element of T (T, j0, γ).

Proof. Let g = ϕ(T ′). The proof of g|[2j0+1,2n] = f|[2j0+1,2n] is the same
as in the proof of Proposition 28 where Lemma 47 plays the role of
Lemma 20. Also, in the proof of Lemma 47, we show with precision

that ǫT
′

j = ǫT̃j for all j ≤ j0, so g = f .

Afterwards, for all (i, j) ∈ [j0]
2, the twin dots dT

′

i and dT
′

n+i are by

definition the two dots of CT ′

j if and only if dT̃i and dT̃n+i are the two
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dots of C T̃
j . In that case, the integer j belongs to C(T ′) if and only if no

dot of CT ′

i is labeled with βe
0, which, in view of Lemma 20, is equivalent

with f(2i) > 2i and no dot of C T̃
i being labeled with βe

0, hence with

j ∈ C(T̃ ). So C(T ′) ∩ [j0] = C(T̃ ) ∩ [j0] = C(T ) ∩ [j0].
Finally, if j < j0, the type label of dT

′

i being α is equivalent with its

insertion label being a (by Lemma 47), hence with the type label of dT̃i
being α by definition. By Proposition 43, this is also equivalent with
the type label of dTi being α. In other words tT ′(j) = tT (j), and T ′ ∈
T (T, j0). With precision, by Part I.2- of Algorithm 44, the insertion
label of the lower dot of CT ′

j0
is c defined as a if γ0 = α, as b otherwise.

So its type label is γ0 by Lemma 47, and T ′ ∈ T (T, j0, γ). �

Remark 49. Proposition 48 implies that for all T ∈ T n, j ∈ C(T ) and
γ ∈ {α, β}, the set T (T, j, γ) is not empty.

Remark 50. For all f ∈ Pn, we can now construct every element of
ϕ−1(f). Indeed, every two elements T and T ′ of ϕ−1(f) are linked by
a finite numbers of applications of the kind Sµ and Mj0,γ0. To prove it,
it is enough to show that we can obtain φ(f) ∈ ϕ−1(f) by applying a
finite number of these applications to any element T ∈ ϕ−1(f). Recall
that φ(f) is the unique element of T̃n in ϕ−1(f) because ϕ|T̃n

is injective
by Proposition 36, so we only need to show that T is mapped to an
element of T̃n by a finite number of these applications. We do that as
follows.

If C(T ) is not empty, let j0 be its minimal element. We define T1

as Mj0,α(T ). Afterwards, if C(T1) ∩ [j0 + 1, n] is not empty, we set
j1 as its minimal element, and we define T2 as Mj1,α(T1). Clearly,
by induction, we define a finite sequence (T = T0, T1, T2, . . . , Tk) (for
some k ≥ 0, where the case k = 0 corresponds to C(T ) being empty)
such that tTk

(j) = α for all j ∈ C(Tk) in view of Proposition 48.

Finally, let m = #S(Tk) ∈ [0, n]. If m = 0, then obviously Tk ∈ T̃n.
Otherwise, let µ = (1, 1, . . . , 1) ∈ {−1, 1}m, then Sµ(Tk) ∈ T̃n in view
of Proposition 43.

6.3. Proof of Formula (2).

Lemma 51. Let f ∈ Pn, T0 ∈ ϕ−1(f) and k ∈ {0} ⊔ C(T0). We
consider T ∈ T (T0, k) (where T (T0, 0) is defined as ϕ−1(f)). If C(T0)∩
[k + 1, n] = ∅, then C(T ) ∩ [k + 1, n] = ∅. Otherwise, we have

min C(T0) ∩ [k + 1, n] = min C(T ) ∩ [k + 1, n].

Proof. Let j0 (respectively j) be defined as n+1 if C(T0)∩ [k+1, n] = ∅
(respectively C(T )∩[k+1, n] = ∅), as min C(T0)∩[k+1, n] (respectively



ENUMERATING THE SYMPLECTIC DELLAC CONFIGURATIONS 33

min C(T ) ∩ [k + 1, n]) otherwise. The proof of the Lemma consists in
proving the equality j0 = j. Assume that j0 6= j. Since T (T0, j) =
T (T, j), should (T0, T ) be replaced with (T, T0), we can suppose that
j0 > j (which implies that C(T ) 6= ∅ and j ∈ [n]). Since f = ϕ(T ),
by Definition 16 we know that f(2j − 1) = f(2j) = 2i where the dots
of CT

j are the twin dots dTi and dTn+i. Also, by Part III. of Algorithm

13, since dTi and dTn+i have the same digital label i− j, then they have

different type labels, and we obtain ǫTj =
¶

αo
i−j, β

e
i−j

©

. Also, in this

situation dTi,min = dTi ∈ CT
j . But f is also ϕ(T0), so by Lemma 35

it is necessary that ǫT0
j = ǫTj =

¶

αo
i−j , β

e
i−j

©

. Now, since j 6∈ C(T0)

and CT0
i has no dot labeled with βe

0 (otherwise, by Lemma 20 it would
imply that f(2i) = 2i and that CT

i also contains a dot labeled with
βe
0, which would contradict j ∈ C(T )), this implies that the dots of

CT0
j are not twin dots. Still, since ǫT0

j =
¶

αo
i−j , β

e
i−j

©

, by Remark 14(f)

the dots of CT0
j are dT0

(πT0
j )

−1
(i)

and dT0

(πT0
j )

−1
(n+i)

; since they are not the

twin dots dT0
i and dT0

n+i, this implies that either dT0
i or dT0

n+i belongs to

a column CT0
j′ with j′ < j′, hence dT0

i,min 6∈ CT0
j , which is absurd in view

of Lemma 17 and the fact that dTi,min ∈ CT
j . So j0 = j. �

Lemma 52. Let f ∈ Pn and (T, T ′) ∈ ϕ−1(f)2. Let i ∈ [n] such
that dTn+i is not free and dT

′

n+i is free. Let also (j1, j2) ∈ [i]2 such that
dTi,min ∈ CT

j1
and d ∈ CT

j2
where d is the twin dot of dTi,min. Then, there

exists k ∈ C(T ) ∩ C(T ′) ∈ [j2 − 1] such that tT (k) 6= tT ′(k).

Proof. By Lemma 35, it suffices that show that ǫTj2 6= ǫT
′

j2
. Since dT

′

n+i is

free, and in view of Lemma 17, we know that dT
′

i,min = dT
′

i ∈ CT ′

j1
. Also,

since dT
′

n+i is in particular non grounded, Proposition 21 and Lemma 20

imply that no dot of CT
i or CT ′

i is labeled with βe
0. Now, by Rule

I. of Algorithm 13, the digital label of d is i − j2. By Definition 16,
this implies that either f(2j2 − 1) = 2i or f(2j2) = 2i, hence at least
one of the dots of CT ′

j2
has the digital label i − j2. In fact, since dTn+i

is free, by Remark 14(f) there exists exactly one such dot : the dot
d′ = dT

′

(πT ′

j )
−1

(i)
. Now, the type labels of d and d′ are defined by the same

rule of Algorithm 13, and this rule is either Rule II.1-b) or Rule II.2-.
Suppose that the type labels of d and d′ are defined by Rule II.1-b).

Since d ∈
¶

dTi , d
T
n+i

©

\
¶

dTi,min

©

but d′ = dT
′

(πT ′

j )
−1

(i)
where dT

′

i = dT
′

i,min,

the type labels of d and d′ are different. Assume now that ǫTj2 = ǫT
′

j2
.

Then these two sets equal
¶

αo
i−j2

, βe
i−j2

©

, which contradicts d′ being the

only dot of CT ′

j2
that has the digital label i− j2. So ǫTj2 6= ǫT

′

j2
.
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Suppose finally that the type labels of d and d′ are defined by Rule
II.2-. In this situation, since i = j2, we know that d = dTn+i. Whether
its type label is defined by Rule II.2-a), Rule II.2-b)i. or Rule II.2-b)ii.,
it equals β. Afterwards, since the dots of CT ′

j2
(among which is d′) have

different digital labels, the type label of d′ is defined by Rule II.2-b),
and whether it follows Rule II.2-b)i. or Rule II.2-b)ii., the dots of CT ′

j2

have the same type label. Consequently, if we suppose that ǫTj2 = ǫT
′

j2
,

then they must have the type label β following Rule II.2-b)ii., which is
absurd because it implies that dT

′

i 6= dT
′

i,min. So ǫTj2 6= ǫT
′

j2
. �

Proposition 53. For all f ∈ Pn, we have

(3)
∑

T∈ϕ−1(f)

2fr(T ) = 2ndf(f).

Proof. Let T0 ∈ ϕ−1(f). If C(T0) = ∅, then C(T ) = ∅ for all T ∈ ϕ−1(f)
by Lemma 51, and fr(T ) = fr(T0) by Corollary 52. Consequently, we
obtain

(4)
∑

T∈ϕ−1(f)

2fr(T ) = 2fr(T0) ×#ϕ−1(f).

Now, by Proposition 43, we know that #ϕ−1(f) = 2#S(T0). Also, by
Remark 30, the integer fr(T0)+S(T0) equals ndf(f) because C(T0) = 0
by hypothesis, hence 2fr(T0) × #ϕ−1(f) = 2ndf(f), and Formula (4) be-
comes Formula (3).

It remains to prove Formula (3) if there exists T ∈ ϕ−1(f) such that
C(T ) is not empty, i.e., if there exists j ∈ [n] such that T f(j) 6= ∅.
Under that hypothesis, let {j1, j2, . . . , jp}< = {j ∈ [n] : T f (j) 6= ∅}.

Let Tp be any element of T f (jp), and γ ∈ {α, β}. We consider T̃p ∈
T (Tp, jp, γ) (which is not empty in view of Remark 49). For all T ∈

T (Tp, jp, γ), we have fr(T ) = fr(T̃p) by Corollary 52. Consequently, we
obtain

(5)
∑

T∈T (Tp,jp,γ)

2fr(T ) = 2fr(T̃p) ×# T (Tp, jp, γ).

Now, in view of Proposition 43, the cardinality of T (Tp, jp, γ) equals

2#S(T̃p), so Formula (5) becomes

(6)
∑

T∈T (Tp,jp,γ)

2fr(T ) = 2fr(T̃p)+#S(T̃p).
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By Remark 30, we know that fr(T̃p)+#S(T̃p) = ndf(f)−C(T̃p), and by

hypothesis T̃p ∈ T (Tp, jp), so C(T̃p) = C(Tp), and Formula (6) becomes

(7)
∑

T∈T (Tp,jp,γ)

2fr(T ) = 2ndf(f)−#C(Tp).

Since Formula (7) is true for all γ ∈ {α, β}, and in view of the equality
T (Tp, jp) = T (Tp, jp, α) ⊔ T (Tp, jp, β), we obtain

(8)
∑

T∈T (Tp,jp)

2fr(T ) = 2ndf(f)−#C(Tp)+1.

Suppose now that for some q ∈ [2, p], and for all Tq ∈ T f (jq), we have
the Formula

(9)
∑

T∈T (Tq ,jq)

2fr(T ) = 2ndf(f)−#(C(Tq)∩[jq−1])

(it is true for q = p in view of Formula 8). Let Tq−1 ∈ T f (jq−1),

γ ∈ {α, β} and T̃q−1 ∈ T (Tq−1, jq−1, γ) (which is not empty in view of
Remark 49). We first intend to prove the following Formula :

(10)
∑

T∈T (Tq−1,jq−1,γ)

2fr(T ) = 2ndf(f)−#(C(Tq−1)∩[jq−1]).

— If [jq−1 + 1, n] ∩ C(T̃q−1) = ∅, by Lemma 51, it is necessary
that [jq−1 + 1, n] ∩ C(T ) = ∅ for all T ∈ T (Tq−1, jq−1, γ), and

fr(T̃q−1) = fr(T ) by Corollary 52, hence

(11)
∑

T∈T (Tq−1,jq−1,γ)

2fr(T ) = 2fr(T̃q−1) ×# T (Tq−1, jq−1, γ).

By Proposition 43, we have # T (Tq−1, jq−1, γ) = 2#S(T̃q−1). By

Remark 30, the integer fr(T̃q−1) + S(T̃q−1) equals the integer

ndf(f)−C(T̃q−1) = ndf(f)−#(C(Tq−1)∩[jq−1]) because C(T̃q−1)∩
[jq−1 + 1, n] = ∅ by hypothesis, hence Formula (11) becomes
Formula (10).

— Otherwise, let j = min[jq−1 + 1, n] ∩ C(T̃q−1). By Lemma 51,
it is necessary that j is also min[jq−1 + 1, n] ∩ C(T ) for all T ∈
T (Tq−1, jq−1, γ). In other words, the set T (Tq−1, jq−1, γ) is in

fact T (T̃q−1, j). Let q′ > q−1 such that j = jq′. By hypothesis,
we know that

(12)
∑

T∈T (T̃q−1,jq′)

2fr(T ) = 2ndf(f)−#(C(T̃q−1)∩[jq′−1]).
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Since jq′ = min C(T̃q−1)∩ [jq−1 +1, n] and T̃q−1 ∈ T (Tq−1, jq−1),

we have #(C(T̃q−1) ∩ [jq′ − 1]) = #(C(Tq) ∩ [jq−1]), hence For-
mula (12) becomes Formula (10) in view of T (Tq−1, jq−1, γ) =
T (Tq−1, jq−1, γ).

So Formula (10) is true for all γ ∈ {α, β}, and in view of

T (Tq−1, jq−1) = T (Tq−1, jq−1, α) ⊔ T (Tq−1, jq−1, β),

we obtain
∑

T∈T (Tq−1,jq−1)

2fr(T ) = 2ndf(f)−#(C(Tq−1)∩[jq−1])+1

= 2ndf(f)−#(C(Tq−1)∩[jq−1−1]).

So Formula (9) is true for all q ∈ [p] by induction. In particular, for
q = 1, we obtain Formula (3). �

This ends the proof of Theorem 6.
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Appendices

A. Pistol labeling of the tableau T1 ∈ T 7

We give in Figure 15 the details of the pistol labeling of the tableau
T1 ∈ T 7 depicted in Figure 7. From j from 7 down to 1, we show
how the two dots of the column CT1

j receive their pistol labels. In the
following, we specify which rule of Part II. of Algorithm 13 is applied,
for j from 7 down to 1.

— j = 7 : Rule II.2-a) for both dots dT1
8 and dT1

12 .

— j = 6 : Rule II.1-a) for dT1
14 , then Rule II.2-b)ii. for dT1

9 .

— j = 5 : Rule II.1-a) for dT1
7 and Rule II.1-b) for dT1

13 .

— j = 4 : Rule II.1-b) for dT1
5 , then Rule II.2-b)ii. for dT1

10 .

— j = 3 : Rule II.1-b) for dT1
6 , then Rule II.2-b)i. for dT1

3 .

— j = 2 : Rule II.1-b) for dT1
4 , then Rule II.2-b)ii. for dT1

2 .

— j = 1 : Rule II.1-a) for dT1
11 , then Rule II.2-b)i. for dT1

1 .

mailto:abigeni@hse.ru
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Figure 15. Pistol labeling of T1 ∈ T 7.



38

B. Computation of Φ(f1)

We give in Figure 16 the details of the computation of Φ(f1) ∈ T 7

where f1 ∈ P7 is the surjective pistol depicted in Figure 8. From j

from 1 to 7, we show how the two labeled dots of C
Φ(f1)
j are inserted.

At each step j, on the left of every suitable row, we specify the integer
δ ∈ [0, 7− j] it corresponds with (in blue, for dots labeled with a, and
in red for dots labeled with b). In the following table, we make explicit
every rule of Algorithm 25 and Definition 24 that leads to the plotting

of the dots of C
Φ(f1)
j .

j Rule of Algorithm 25 Rules of Definition 24
1 I.1- 1.(a) and 2.(a)i.
2 I.1- 1.(a) and 2.(a)ii.
3 I.1- 1.(a) and 2.(a)ii.
4 I.2-b)i. 1.(b) and 2.(a)ii.
5 I.2-b)ii. 2.(b) and 2.(a)ii.
6 I.2-a) 2.(b) and 2.(a)i.
7 I.1- 1.(b) and 1.(b)
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j = 1 j = 2 j = 3

j = 4 j = 5 j = 6
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Figure 16. Computation of Φ(f1) ∈ T 7.
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