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GENERALIZING A PARTITION THEOREM OF ANDREWS

SHISHUO FU AND DAZHAO TANG

Abstract. Abstract: Motivated by Andrews’ recent work related to Euler’s partition
theorem, we consider the set of partitions of an integer n where the set of even parts has
exactly j elements, versus the set of partitions of n where the set of repeated parts has
exactly j elements. These two sets of partitions turn out to be equinumerous, and this
naturally encloses Euler’s theorem and Andrews’ theorem as two special cases. We give
two proofs, one using generating function, and the other is a direct bijection that builds
on Glaisher’s bijection

1. Introduction

A partition [1] π of a positive integer n is a finite sequence of weakly decreasing positive
integers π1 ≥ π2 ≥ · · · ≥ πr > 0 such that

∑r

i=1 πi = n. The πi’s are called the parts of
π. Sometimes it is useful to use a notation that makes explicit the number of times that a
particular integer occurs as a part and we write

π = (1m12m23m3 · · · ),

where exactly mj of the πi’s are equal to j.
In 1748, Euler [3] gave the generating function proof of the following partition theorem:

Theorem 1.1. The number of partitions of n into odd parts equals the number of partitions
of n into distinct parts.

When odd numbers are viewed as numbers not divisible by 2, the following theorem of
Glaisher [1, Corollary 1.3] can be viewed as a natural generalization of Theorem 1.1.

Theorem 1.2. The number of partitions of n into parts not divisible by d equals the number
of partitions of n into parts each occuring no more than d− 1 times.

Partitions into parts not divisible by d are usually called d-regular partitions, and this is
the term we use in the sequel.

In order to solve two conjectures of Beck posted on the OEIS (see [4] and [5]), Andrews [2]
established the following

Theorem 1.3 (Theorem 1 in [2]). If a(n) denotes the number of partitions of n such that
the set of even parts has only one element (possibly repeated), b(n) counts the difference
between the number of parts in the odd partitions of n and the number of parts in the distinct
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partitions of n, and c(n) denotes the number of partitions of n where exactly one part is
repeated. Then a(n) = b(n) = c(n) for all n ≥ 1.

In particular, the assertion a(n) = b(n) verifies Beck’s conjecture listed in [4]. In this
note, we give two generalizations of Andrews’ theorem. Let Oj,k(n) denote the number of
partitions of n such that there are exactly j different parts ≡ 0 (mod k) (possibly repeated),
and Dj,k(n) denote the number of partitions of n such that there are exactly j different
parts repeated at least k times. We obtain the first generalization of Theorem 1.3.

Theorem 1.4. For all j, n ≥ 0 and k ≥ 1, Oj,k(n) = Dj,k(n).

Evidently, j = 0, k = 2 gives us Theorem 1.1, j = 0, k ≥ 2 produces Theorem 1.2, and
j = 1, k = 2 leads us back to the a(n) = c(n) part of Theorem 1.3.

Next, in order to state another generalization of Theorem 1.3 involving b(n), let Ek(n)
denote the excess of the number of parts ≡ 1 (mod k) in the k-regular partitions of n, over
the number of distinct parts in the partitions of n with no parts being repeated more than
k − 1 times, then we have the following theorem, which is precisely Theorem 1.3 when we
set k = 2.

Theorem 1.5. For all n ≥ 0 and k ≥ 2, O1,k(n) = D1,k(n) = Ek(n).

2. Proof of Theorems

In this section, we first give a generating function proof as well as a bijective proof of
Theorem 1.4. This partially answers to Andrews’ request [2]. Then we follow Andrews’
method and give a generating function proof of Theorem 1.5.

Generating function proof of Theorem 1.4.
Firstly, define the following two bivariate generating functions

Ok(z, q) :=

∞∑

n=0

∞∑

j=0

Oj,k(n)z
jqn,

Dk(z, q) :=

∞∑

n=0

∞∑

j=0

Dj,k(n)z
jqn.

Obviously, we have

Ok(z, q) =
∞∏

m=1

(
1 + zqkm + zq2km + zq3km + · · ·

) ∞∏

n=1
n6≡0 (mod k)

1

1− qn
(2.1)

=
∞∏

m=1

(
1 +

zqkm

1− qkm

) ∞∏

n=1

1− qkn

1− qn
,



GENERALIZING A PARTITION THEOREM OF ANDREWS 3

and

Dk(z, q) =
∞∏

n=1

(
1 + qn + q2n + · · ·+ q(k−1)n + zqkn + zq(k+1)n + · · ·

)
(2.2)

=
∞∏

n=1

(
1 + qn + q2n + · · ·+ q(k−1)n

) (
1 + zqkn + zq2kn + · · ·

)

=
∞∏

n=1

1− qkn

1− qn

∞∏

m=1

(
1 +

zqkm

1− qkm

)
.

Equating the coefficients of zjqn for Ok(z, q) and Dk(z, q) finishes the proof. �

Bijective proof of Theorem 1.4.
We construct a family of bijections {ϕk}k≥1 on P, the set of all partitions. For k = 1,
we simply take ϕ1 to be the identity map since in this case the two sets of partitions in
question coincide with each other. For general k ≥ 2, let π = π1 + · · ·+ πr be a partition.
We discuss by two cases, depending on whether the part πi is divisible by k or not.

• πi ≡ 0 (mod k): Denote by π the partition composed of all parts ≡ 0 (mod k) in
π. In this case, we simply map the part πi to the k-copies of equal parts

πi

k
+

πi

k
+ · · ·+

πi

k︸ ︷︷ ︸
k copies

.

Collect all parts converted this way and denote as λ the partition composed of them.
Consequently, the parts in λ are all repeated at least k times, which means we can
identify them when we apply the inverse map. Actually the multiplicity of every
part in λ must be a multiple of k.

• πi 6≡ 0 (mod k): Denote by π̃ the partition composed of all parts 6≡ 0 (mod k) in
π. Assume π̃ has the form

q1 + q1 + · · ·+ q1︸ ︷︷ ︸
m1 times

+ q2 + q2 + · · ·+ q2︸ ︷︷ ︸
m2 times

+ · · ·+ qs + qs + · · ·+ qs︸ ︷︷ ︸
ms times

.

We now consider two cases again, depending on whether mi is no less than k or not.
If mi ≥ k, then we split k copies off of the part qi and combine (add) these k parts
of equal size into a new part, and we keep splitting k copies off of the remaining
parts (if any) and combining these parts of equal size into a new parts until there
are no more parts repeated more than k − 1 times, then we eventually obtain a

partition λ̃ where all parts occur less than k times. This is essentially Glaisher’s
map for proving Theorem 1.2.

Finally let ϕk(π) := λ = λ
⋃
λ̃, where the union λ

⋃
λ̃ is the partition consists of

all parts in λ and λ̃ (arranged in nonincreasing order). We observe that the number
of different parts ≡ 0 (mod k) in partition π is the same as the number of parts
that are repeated more than k − 1 times in λ via the above map ϕk.
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Table 1. One-to-one correspondence in Example 2.1

≡ 0 (mod 4) fi ≥ 4
(12, 4) (3, 3, 3, 3, 1, 1, 1, 1)
(8, 4, 4) (2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1)
(8, 4, 3, 1) (3, 2, 2, 2, 2, 1, 1, 1, 1, 1)
(8, 4, 2, 2) (2, 2, 2, 2, 2, 2, 1, 1, 1, 1)
(8, 4, 2, 1, 1) (2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1)
(8, 4, 1, 1, 1, 1) (4, 2, 2, 2, 2, 1, 1, 1, 1)

The inverse map should mostly be clear, with the only caveat being that when we de-

compose λ as λ
⋃

λ̃, λ consists of those parts in λ being repeated, say m ≥ k times, but in
general not all m copies of this part is included in λ. More precisely, we can uniquely write
m = tk + l, with 0 ≤ l < k, then exactly tk copies of this part are included in λ, with the

remaining l copies included in λ̃. �

Example 2.1. Table 1 lists all partitions of 16 enumerated by O2,4(16) and D2,4(16) re-
spectively, with one-to-one correspondence between each row via ϕ4.

Proof of Theorem 1.5. The proof of Theorem 1.5 relies on generating functions and differ-
entiation. According to (2.1) and (2.2), by extracting the coefficients of z in both generating
functions we have

∞∑

n=0

O1,k(n)q
n =

∞∑

n=0

D1,k(n)q
n =

∞∑

m=1

qkm

1− qkm

∞∏

n=1

1− qkn

1− qn
.(2.3)

Moreover, in the infinite product

∞∏

n=1

1

(1− zqk(n−1)+1)(1− qk(n−1)+2) · · · (1− qk(n−1)+k−1)
,

the coefficient of zMqN is the number of k-regular partitions of N with exactly M parts
≡ 1 (mod k), while in the infinite product

∞∏

n=1

(
1 + zqn + zq2n + · · ·+ zq(k−1)n

)
,

the coefficient of zMqN is the number of partitions of N into M different parts, each part
repeated less than k times.
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Thus if we differentiate each of these functions with respect to z we will then be counting
each partition with M designated parts with weight M . Consequently

∞∑

n=0

Dk(n)q
n =

∂

∂z

∣∣∣∣
z=1

( ∞∏

n=1

1

(1− zqk(n−1)+1)(1− qk(n−1)+2) · · · (1− qk(n−1)+k−1)

−

∞∏

n=1

(
1 + zqn + zq2n + · · ·+ zq(k−1)n

))

=

∞∑

n=1

qk(n−1)+1

(1− qk(n−1)+1)2(1− qk(n−1)+2) · · · (1− qk(n−1)+k−1)
×

∞∏

m=1
m6=n

1

(1− qk(m−1)+1)(1− qk(m−1)+2) · · · (1− qk(m−1)+k−1)

−

∞∑

n=1

(
qn + q2n + · · ·+ q(k−1)n

) ∞∏

m=1
m6=n

(
1 + qm + q2m + · · ·+ q(k−1)m

)

=

∞∏

m=1

1− qkm

1− qm

∞∑

n=1

qk(n−1)+1

1− qk(n−1)+1
−

∞∑

n=1

qn − qkn

1− qkn

∞∏

m=1

1− qkm

1− qm

=

∞∑

n=1

qkn

1− qkn

∞∏

m=1

1− qkm

1− qm
,

where the last equality follows from
∞∑

n=1

qk(n−1)+1

1− qk(n−1)+1
=

∞∑

n=1

∞∑

m=1

qm(k(n−1)+1) =

∞∑

m=1

qm

1− qkm
.

Comparing the final expression with (2.3) completes the proof. �

Example 2.2. Table 2 lists all four types of partitions of 8, i.e., partitions with exactly
one part divisible by 3, partitions with exactly one part repeated at least 3 times, 3-regular
partitions and partitions all of whose parts are repeated at most 2 times. One checks that
O1,3(8) = D1,3(8) = 9, E3(8) = 37− 28 = 9.

3. Conclusion

Several questions present themselves from this study. We collect them here to motivate
further work.

1) The bijection between partition sets enumerated by a(n) and b(n), or between c(n) and
b(n) is still unclear.

2) A more ambicious task than 1) is to “complete the puzzle” and find the family of parti-
tions enumerated by certain Ej,k(n) such that Oj,k(n) = Dj,k(n) = Ej,k(n) for all j ≥ 1
and our Theorem 1.5 becomes the special case of j = 1. The differentiation technique
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Table 2. Three-way correspondence in Example 2.2

≡ 0 (mod 3) fi ≥ 3 3-regular partitions fi ≤ 2
(6, 2) (2, 2, 2, 2) (8) (8)
(6, 1, 1) (2, 2, 2, 1, 1) (7, 1) (7, 1)
(3, 3, 2) (2, 1, 1, 1, 1, 1, 1) (2, 2, 2, 2) (6, 2)
(3, 3, 1, 1) (1, 1, 1, 1, 1, 1, 1, 1) (2, 2, 2, 1, 1) (6, 1, 1)
(5, 3) (5, 1, 1, 1) (5, 1, 1, 1) (5, 3)
(4, 3, 1) (4, 1, 1, 1, 1) (5, 2, 1) (5, 2, 1)
(3, 2, 2, 1) (2, 2, 1, 1, 1, 1) (4, 4) (4, 4)
(3, 2, 1, 1, 1) (3, 2, 1, 1, 1) (4, 1, 1, 1, 1) (4, 3, 1)
(3, 1, 1, 1, 1, 1) (3, 1, 1, 1, 1, 1) (4, 2, 2) (4, 2, 2)

(4, 2, 1, 1) (4, 2, 1, 1)
(2, 1, 1, 1, 1, 1, 1) (3, 3, 2)
(1, 1, 1, 1, 1, 1, 1, 1) (3, 3, 1, 1)
(2, 2, 1, 1, 1, 1) (3, 2, 2, 1)

suggests the complexity of the computation and reverse engineering our proof to track
down this third family becomes less optimistic.

3) Theorem 1.4 sets the classical Euler’s partition theorem at the center of a natural family
of partition theorems. On a general note, can we try this new perspective with other
classical partition theorems? More precisely, for a partition theorem that links those
partitions of n without certain parts of “type A” (even parts in the case of Euler’s
theorem), with those partitions of n without certain parts of “type B” (repeated parts
in the case of Euler’s theorem), we can consider what happens if we require that there
are exactly j different parts of type A (resp. type B) in the first (resp. the second) set
of partitions.
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