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ENUMERATION OF MEANDERS AND MASUR–VEECH

VOLUMES

VINCENT DELECROIX, ÉLISE GOUJARD, PETER ZOGRAF, AND ANTON ZORICH

Abstract. A meander is a topological configuration of a line and a simple
closed curve in the plane (or a pair of simple closed curves on the 2-sphere)
intersecting transversally. In physics, meanders provide a model of polymer
folding, and their enumeration is directly related to the entropy of the associ-
ated dynamical systems.

We combine recent results on Masur–Veech volumes of the moduli spaces
of meromorphic quadratic differentials in genus zero and our previous result
that horizontal and vertical separatrix diagrams of integer quadratic differen-
tials are asymptotically uncorrelated to derive two applications to asymptotic
enumeration of meanders.

First, we get simple asymptotic formulae for the number of pairs of trans-
verse simple closed curves on a sphere and for the number of closed meanders
of fixed combinatorial type when the number of crossings 2N goes to infinity.

Second, we compute the asymptotic probability of getting a simple closed
curve on a sphere by identifying the endpoints of two arc systems (one on each
of the two hemispheres) along the common equator. Here the total number of
minimal arcs of the two arc systems is considered as a fixed parameter while
the number of all arcs (same for each of the two hemispheres) grows.

The number of all meanders with 2N crossings grows exponentially when
N grows. However, the additional combinatorial constraints we impose in this
article yield polynomial asymptotics.
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1. Introduction and statements of main results

In the seminal paper [Mi] M. Mirzakhani has computed the asymptotics for the
number of simple closed hyperbolic geodesics on a hyperbolic surface of constant
negative curvature and frequencies of simple closed hyperbolic geodesics of fixed
combinatorial type.

We count the asymptotics for the number of pairs of transverse simple closed
curves of a fixed combinatorial type on a sphere when the number of intersections
tends to infinity. The similar enumeration problems in higher genera will be con-
sidered in the sequel.

M. Mirzakhani establishes a relations between counting of simple closed curves
and Weil–Petersson volumes of the moduli spaces of bordered hyperbolic surfaces.
Counting pairs of transverse simple closed curves leads naturally to Masur–Veech
volumes of the moduli spaces of meromorphic quadratic differentials with at most
simple poles.

In this section we state our results on meander enumeration. The link with
quadratic differentials and Masur-Veech volumes will be explained in Section 2.

1.1. Counting meanders with given number of minimal arcs. A closed plane
meander is a smooth closed curve in the plane transversally intersecting the hori-
zontal line as in Figure 1. According to the paper [LZv] of S. Lando and A. Zvonkine
(serving as a reference paper in the literature on meanders) the notion “meander”
was suggested by V. I. Arnold in [Ar] though meanders were studied already by
H. Poincaré [Po]. Meanders appear in various contexts, in particular in physics,
see [DiGG1]. Counting meanders has a reputation of a notoriously difficult prob-
lem. The number of meanders with 2n crossings is conjecturally asymptotic to
R2nn−α where R and α are some constants. A conjectural value of the critical
exponent α is given in [DiGG2].

We say that a closed meander has a maximal arc (“rainbow” in terminology
of [ACPRS]) if it has an arc joining the leftmost and the rightmost crossings with
the horizontal line. Otherwise meander does not a have maximal arc. Meander on
the left of Figure 1 has maximal arc, while the one on the right – does not.

By minimal arc (“pimple” in terminology of [ACPRS], or “internal arch” in
terminology of [DiGG1]) we call an arc which does not have any crossings inside.
The areas between the horizontal line and the minimal arcs of meanders are colored
in black in Figure 1; each of the two meanders has p = 5 minimal arcs.

By convention, in this paper we do not consider the trivial closed meander rep-
resented by a circle. All other closed meanders satisfy p ≥ 3 when they have a
maximal arc and p ≥ 4 when they do not.

Let M+
p (N) and M−

p (N) be the numbers of closed meanders respectively with
and without maximal arc (“rainbow”) and having at most 2N crossings with the



ENUMERATION OF MEANDERS AND MASUR–VEECH VOLUMES 3

Contributes to M+
5 (N) Contributes to M−

5 (N)

Figure 1. Meander with a maximal arc (“rainbow”) on the left
and without one on the right. Both meanders have 5 minimal arcs
(“pimples”).

horizontal line and exactly p minimal arcs (“pimples”). We consider p as a param-
eter and we study the leading terms of the asymptotics of M+

p (N) and M−
p (N) as

N → +∞.

Theorem 1. For any fixed p the numbers M+
p (N) and M−

p (N) of closed meanders
with p minimal arcs (pimples) and with at most 2N crossings have the following
asymptotics as N → +∞:

M+
p (N) = 2(p+ 1) · cyl1,1

(
Q(1p−3,−1p+1)

)

(p+ 1)! (p− 3)!
· N

2p−4

4p− 8
+ o(N2p−4) =(1.1)

=
2

p! (p− 3)!

(
2

π2

)p−2

·
(
2p− 2

p− 1

)2

· N
2p−4

4p− 8
+ o(N2p−4) .

M−
p (N) =

2 cyl1,1
(
Q(1p−4, 0,−1p)

)

p! (p− 4)!
· N2p−5

4p− 10
+ o(N2p−5) =(1.2)

=
4

p! (p− 4)!

(
2

π2

)p−3

·
(
2p− 4

p− 2

)2

· N2p−5

4p− 10
+ o(N2p−5) .

The quantities cyl1,1
(
Q(1p−3,−1p+1)

)
and cyl1,1

(
Q(1p−4, 0,−1p)

)
in the above

formulae are related to Masur–Veech volumes of the moduli space of meromorphic
quadratic differentials. Their definition and role would be discussed in section 2.
Theorem 1 is proved in section 3.5 with exception for the explicit expressions for
these two quantities evaluated in Corollary 4.1 in section 4.

Note that the number M+
p (N) grows as N2p−4 while M−

p (N) grows as N2p−5.
This means that for largeN all but negligible fraction of meanders having any given
number p of minimal arcs (pimples) do have a maximal arc (rainbow) as the left
one in Figure 1.

As the reader could observe in the statement of Theorem 1, our approach to
counting meanders differs from the traditional one: we fix the combinatorics of the
meander and then count the asymptotic number of meanders of chosen combinato-
rial type as the number of intersections N tends to infinity. Our settings can be seen
as a zero temperature limit in the thermodynamical sense, where the complexity of
a meander is measured in terms of the number of minimal arcs.
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Applying Stirling’s formula we get the following asymptotics for the coefficients
in formulae (1.1) and (1.2) for large values of parameter p:

2

p! (p− 3)!

(
2

π2

)p−2

·
(
2p− 2

p− 1

)2

· 1

4p− 8
∼ π2

256
·
(
32e2

π2p2

)p

for p ≫ 1 .

4

p! (p− 4)!

(
2

π2

)p−3

·
(
2p− 4

p− 2

)2

· 1

4p− 10
∼ π2e2

128p
·
(
32e2

π2p2

)p−1

for p ≫ 1 .

(we again recall that in our setting we always assume that N ≫ p).
In section 3.5 we provide an analogous statement, Theorem 5, which counts

meanders in the setting where the combinatorial type is specified in a more detailed
way.

1.2. Counting meanders with given reduced arc systems. Extending the
horizontal segment of a plane meander to the infinite line and passing to a one-
point compactification of the plane we get a meander on the 2-sphere. A meander
on the sphere is a pair of transversally intersecting labeled simple closed curves. It
will be always clear from the context whether we consider meanders in the plane
or on the sphere. Essentially, we follow the following dichotomy: enumerating
meanders, as in the previous section, we work with meanders in the plane, while
considering frequencies of pairs of simple closed curves among more complicated
pairs of multicurves, as in the current section, we work with meanders on the
sphere.

Each meander defines a pair of arc systems in discs as in Figure 2. An arc system
on the disc (also known as a “chord diagram”) can be encoded by the dual tree, see
the trees in dashed lines on the right pictures in Figure 2. Namely, the vertices of
the tree correspond to the faces in which the arc system cuts the disc; two vertices
are joined by an edge if and only if the corresponding faces have common arc. It
is convenient to simplify the dual tree by forgetting all vertices of valence two. We
call the resulting tree the reduced dual tree.

Figure 2. A closed meander on the left. The associated pair of
arc systems in the middle. The same arc systems on the discs and
the associated dual trees on the right.

It is much easier to count arc systems (for example, arc systems sharing the
same reduced dual tree). However, this does not simplify counting meanders since
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identifying a pair of arc systems with the same number of arcs by the common equa-
tor, we sometimes get a meander and sometimes — a curve with several connected
components, see Figure 3.

Figure 3. Gluing two hemispheres with arc systems along the
common equator we may get either a single simple closed curve
(as on the left picture) or a multicurve with several connected
components (as on the right picture).

We now consider the more specialized setting where we fix a pair of plane trees
and count meanders whose corresponding pair of arc systems have these given dual
trees. Let us mention that everywhere in this paper we consider only plane trees,
that is trees embedded into the plane.

Let (Ttop, Tbottom) be a pair of plane trees with no vertices of valence 2. We
consider arc system with the same number of arcs n ≤ N on a labeled pair of
oriented discs having Ttop and Tbottom as reduced dual trees. We draw the arc system
corresponding to Ttop on the northern hemisphere, and the arc system corresponding
to Tbottom on the southern hemisphere. To simplify gluing of the two hemispheres,
we assume that all segments of the boundary circle between adjacent endpoints of
the arcs have equal length and that the arcs are orthogonal to the boundary circle.
There are 2n ways to isometrically identify the boundaries of two hemispheres into
the sphere in such way that the endpoints of the arcs match. We consider all
possible triples

(n-arc system of type Ttop; n-arc system of type Tbottom; identification)

as described above for all n ≤ N . Define

(1.3) Pconnected(Ttop, Tbottom;N) :=
number of triples giving rise to meanders

total number of different triples
.

Theorem 2. For any pair of trivalent plane trees Tbottom, Ttop, having the total
number p of leaves (vertices of valence one) the following limit exists:

(1.4) lim
N→+∞

Pconnected(Tbottom, Ttop;N) = P1(Q(1p−4,−1p)) =

=
cyl1(Q(1p−4,−1p))

VolQ(1p−4,−1p)
=

1

2

(
2

π2

)p−3

·
(
2p− 4

p− 2

)

.

The quantity cyl1
(
Q(1p−4,−1p)

)
in the above formula is related to Masur–Veech

volume of the moduli space of meromorphic quadratic differentials. Its definition
and role would be discussed in section 2.

The quantity in this Theorem should be interpreted as the asymptotic probability
Pconnected(Tbottom, Ttop) with which a random choice of twist identifying a pair of
random arc systems of fixed combinatorial types of the same cardinality defines a
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meander. To be more accurate, one should rather speak of asymptotic frequency of
meanders among resulting multicurves.

Theorem 2 is proved at the end of section 3.4.We will actually state and prove a
more general statement, Theorem 4, where not only trivalent trees are considered.

The fact that this asymptotic frequency is nonzero is already somehow unex-
pected. For example, for the pair of trees as on the right side of Figure 2 the
corresponding asymptotic frequency is equal to

Pconnected( , ) =
280

π6
≈ 0.291245 ,

which is not even close to 0.
Stirling’s formula gives the following asymptotics for P1(Q(1p−4,−1p)) for large

values of parameter p:

P1(Q(1p−4,−1p)) =
1

2

(
2

π2

)p−3

·
(
2p− 4

p− 2

)

∼ 2√
πp

·
(

8

π2

)p−3

for p ≫ 1

(we recall that in our setting we always assume that N ≫ p).
Another unexpected fact that follows from Theorem 2 is that the way the leaves

(univalent vertices) are distributed between the two trees is irrelevant: the answer
depends only on the total number p of leaves. This observation suggests an alterna-
tive (and much less restrictive) way to fix combinatorics of the meanders. Namely,
we can fix only the total number p of leaves (vertices of valence one) of the two
trees together, where p ≥ 4.

Theorem 3. Let p ≥ 4. The frequency Pconnected(p;N) of meanders obtained by
all possible identifications of all arc systems with at most N arcs represented by
all possible pairs of (not necessarily trivalent) plane trees having the total number
p of leaves (vertices of valence one) has the same limit P1(Q(1p−4,−1p)) as the
frequency Pconnected(Tbottom, Ttop;N) of meanders represented by any individual pair
of trivalent plane trees with the total number p of leaves:

(1.5) lim
N→+∞

Pconnected(p;N) = P1(Q(1p−4,−1p)) =

=
cyl1(Q(1p−4,−1p))

VolQ(1p−4,−1p)
=

1

2

(
2

π2

)p−3

·
(
2p− 4

p− 2

)

.

Theorem 3 is proved at the end of section 3. The proof is based on the fact that
the contribution of any pair of trees where at least one of the trees has a vertex of
valency 4 or higher is negligible in comparison with the contribution of any pair of
trivalent trees.

Acknowledgements. The vague idea that counting results concerning linear invo-
lutions (see Appendix B) might have applications to meanders was discussed by the
authors in independent conversations with M. Kontsevich and with M. Mirzakhani
on the early stage of the project [DGZZ]. We are grateful to M. Kontsevich and to
M. Mirzakhani for these discussions and for their insights in enumerative geometry
which were very inspiring for us.

We thank MPIM in Bonn, where part of this work was performed, for providing
us with friendly and stimulating environment.
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2. Idea of proof

2.1. Pairs of transverse multicurves on the sphere as pillowcase covers. A
multicurve on the sphere, is a collection of pairwise nonintersecting smooth simple
closed curves in the sphere.

Definition 2.1. We say that two multicurves on the sphere form a transverse
connected pair if any intersection between any connected component of the first
curve and any connected component of the second curve is transverse and if in
addition the union of two multicurves is connected.

Having a transverse connected pair of multicurves we always assume that the
pair is ordered. By convention, the first multicurve is called “horizontal” and the
second one — “vertical”. We consider natural equivalence classes of transverse
connected pairs of multicurves up to diffeomorphisms preserving the orientation of
the sphere and respecting horizontal and vertical labelling.

Let G be the graph defined by a transverse connected pair of multicurves. The
vertices of G are intersections of the multicurves, so all vertices of G have valence 4.
Hence, all faces of the dual graph G∗ are 4-gons. The edges of G∗ dual to horizontal
edges of G will be called vertical, and those dual to the vertical edges of G will be
called horizontal. By construction, any two non-adjacent edges of any face of G∗

are either both horizontal or both vertical.
Let us choose metric squares with side 1

2 as faces of G∗. By the Two Color
Theorem every plane graph whose faces all have even numbers of sides is bipartite
(see e. g. [So], pp. 136–137), so G is bipartite. This means that the squares of
G∗ can be colored in the chessboard manner. A square-tiled surface which admits
a chessboard coloring is called pillowcase cover. It is a ramified cover over the
standard “pillow” (obtained by isometric identification of the boundaries of two
squares with side 1

2 ) ramified only over the corners of the pillow, see Figure 4. By
convention we memorize which sides of the pillow are horizontal, and which ones
are vertical. Conversly, every pillowcase cover defines a transverse connected pair
of multicurves: collections of closed horizontal and vertical curves passing through
the centers of the squares of the tiling.

Figure 4. Graph dual to a transverse connected pair of multic-
urves on a sphere defines a pillowcase cover.

We have proved the following statement.

Proposition 1. There is a natural one-to-one correspondence between transverse
connected pairs of multicurves on the sphere and pillowcase covers of genus 0, where
the square tiling is given by the graph dual to the graph formed by the union of two
multicurves.
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The “pillow” as above defines a unique quadratic differential q0 on CP1 having
simple poles at the four corners of the pillow and no other singularities. A pillowcase
cover is thus endowed with the meromorphic quadratic differential q = π∗q0 that
is a pullback of the pillow differential q0 by the covering map π. Simple poles of q
correspond to bigons of G; zeroes of order j ∈ N correspond to (2j + 4)-gons.

Remark. “Pillowcase covers” are defined differently by different authors. In the
original paper [EO2], A. Eskin and A. Okounkov define pillowcase covers as ramified
covers π of degree 2d over the sphere having the following ramification type. They
fix a partition µ with entries µi ≤ 2d and a partition ν of an even number bounded
from above by 2d into odd parts. The cover π has the profile [ν, 2d−|ν|/2] over one
corner of the pillow and the profile [2d] over three other corners. Additionally, π
has profile [µi, 1

2d−µi ] over ℓ(µ) distinct non-corner points of the pillow.
Lemma B.2 in [AEZ2] relates the asymptotic numbers of pillowcase covers of

degree at most 2N defined in these two different ways in the strata of genus 0
moduli spaces as N → +∞.

2.2. Couting pillowcase covers. The moduli space of meromorphic quadratic
differentials on CP1 with exactly p simple poles is naturally stratified by the strata
Q(ν,−1|ν|+4) of quadratic differentials with prescribed orders of zeroes ν (νi zeroes
of order i) and with p = |ν|+ 4 simple poles (see e.g. [Zor1] for references). Here

(2.1) |ν| = 1 · ν1 + 2 · ν2 + 3 · ν3 + . . . .

Under the above interpretation, transverse connected pairs of multicurves having
fixed number of bigonal faces correspond to pillowcase covers with fixed number
of simple poles. The transverse connected pairs of multicurves having fixed num-
ber ν1 of hexagonal faces, fixed number ν2 of octagonal faces, fixed number νj of
2(j + 2)-gonal faces for j ∈ N correspond to pillowcase covers in the fixed stratum
Q(ν,−1|ν|+4).

In particular, the number of bigonal faces equals |ν|+4. The number of squares
is the total number of crossings between the two multicurves. Generally speak-
ing, pillowcase covers play the role of integer points in strata of moduli spaces of
quadratic differentials.

Gluing two hemispheres with arc systems along the common equator, we get a
transverse connected pair of multicurves. The horizontal multicurve has a single
connected component, it is just a simple closed curve represented by the equator,
whereas the vertical multicurve may have several connected components. Such
transverse connected pairs of multicurves correspond to pillowcase covers having a
single horizontal cylinder of height 1

2 .
Labeled connected pairs of transverse simple closed curves correspond to pil-

lowcase covers having a single horizontal cylinder of height 1
2 and a single vertical

cylinder of height 1
2 . Closed meanders in the plane correspond to pillowcase covers

as above with a marked vertical side of one of the squares of the tiling.
Having translated our counting problems into the language of pillowcase covers,

we are ready to present our approach in detail.

Pillowcase covers of fixed combinatorial type and Masur–Vech volumes.

For any (generalized) partition ν = [0ν01ν12ν2 . . . ] denote by VolQ(ν,−1|ν|+4)
the Masur–Veech volume of the stratum Q(ν,−1|ν|+4) of genus 0 meromorphic
quadratic differentials with at most simple poles (for the precise definition of the
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Masur–Veech volume see e. g. [AEZ2]). Then the following formula holds:

(2.2) VolQ(ν,−1|ν|+4) := 2π2 · (f(0)
)ν0

(f(1)
)ν1

(f(2)
)ν2 · · · ,

where |ν| = 1 · ν1 + 2 · ν2 + . . . and

f(j) =
j !!

(j + 1)!!
· πj ·

{

π if j is odd

2 if j is even .

(here we use the notation

j !! :=

{

1 · 3 · 5 · · · · j, when j is odd,

2 · 4 · 6 · · · · j, when j is even .

and the common convention 0!! := 1). This formula was originally conjectured by
M. Kontsevich and recently proved in [AEZ2]. In this setting zeroes and poles of
quadratic differentials are labeled.

As it follows from the definition of the Masur–Veech volume, the number of
pillowcase covers in the stratum Q(ν,−1|ν|+4) in the moduli space of meromorphic
quadratic differentials with labeled zeroes and poles tiled with at most 2N squares
has asymptotics

(2.3) VolQ(ν,−1|ν|+4) · N
d

2d
+ o(Nd) as N → +∞ ,

where

(2.4) d = dimC Q(ν,−1|ν|+4) = ℓ(ν) + |ν|+ 2

and

(2.5) ℓ(ν) := ν0 + ν1 + . . . .

As “combinatorial type” of a pillowcase cover one can use the number p of bigons,
as in Theorems 1 and 3. In this setting formulae (2.3) and (2.4) imply that all but
negligible part of transverse connected pairs of multicurves having large number N
of intersections would have only bigons, squares, and hexagons as faces and would
correspond to pillowcase covers in the principal stratum Q(1p−4,−1p).

As an alternative choice of “combinatorial type” of a pillowcase cover one can
specify the number of hexagons, octagons, etc, separately, thus fixing the stratum
Q(ν,−1|ν|+4). This corresponds to the setting of Theorems 4 and 5 below. Under
either choice we have a simple asymptotic formula for the number of transverse
connected pairs of multicurves of fixed combinatorial type with at most 2N inter-
sections.

Remark 2.1 (Labeled versus non-labeled zeroes and poles). When we introduced
pillowcase covers in section 2.1 and identified them with transverse connected pairs
of multicurves in Proposition 1, we did not label zeroes and poles of the correspond-
ing quadratic differential, which was quite natural in this setting. Traditionally, one
labels zeroes and poles of a pillowcase cover in the contex of Masur–Veech volumes.
So we do label zeroes and poles in the current section. We remind the setting every
time when there may be any ambiguity.

Pillowcase covers with a single horizontal cylinder. Enumeration of pillow-
case covers with a single horizontal cylinder was performed in [DGZZ]. In Section 4
we reproduce the relevant computations in the case of the sphere. The number of
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pillowcase covers tiled with at most 2N squares lying in the stratum Q(ν,−1|ν|+4)
and having a single horizontal cylinder of minimal possible height 1

2 has asymptotics

(2.6) cyl1(Q(ν,−1|ν|+4)) · N
d

2d
+ o(Nd) as N → +∞ ,

where the coefficient cyl1(Q(ν,−1|ν|+4)) is positive and is given by the explicit
formula (see (4.2)) that is particularly simple for the principal stratum, see (4.3).
(Here we assume that zeroes and poles of the corresponding quadratic differentials
are labeled.)

Pillowcase covers with a single horizontal and a single vertical cylin-

der. We are particularly interested in counting pillowcase covers having a single
horizontal cylinder of height 1

2 and a single vertical cylinder of width 1
2 .

The number P labeled
ν (N) of genus 0 pillowcase covers in the stratumQ(ν,−1|ν|+4)

with at most 2N squares having a single horizontal cylinder of height 1/2 and a
single vertical cylinder of width 1/2 has asymptotics

(2.7) P labeled

ν (N) = cyl1,1

(

Q(ν,−1|ν|+4)
)

· N
d

2d
+ o(Nd) as N → +∞ ,

where the constant cyl1,1
(
Q(ν,−1|ν|+4

)
satisfies the relation

(2.8) cyl1,1(Q(ν,−1|ν|+4)) =

(
cyl1(Q(ν,−1|ν|+4))

)2

VolQ(ν,−1|ν|+4)
.

The both statements are formulated more precisely in Theorem 6 in Section 4 and
follow from the results of [DGZZ].

The relation 2.8 can be viewed as a statement about independence of horizontal
and vertical decompositions of pillowcase covers: the asymptotic fraction of pil-
lowcase covers having a single horizontal cylinder of height 1

2 among all pillowcase

covers in Q(ν,−1|ν|+4) tiled with at most 2N squares is the same as the asymp-
totic fraction of pillowcase covers having a single horizontal cylinder of height 1

2

and a single vertical cylinder of width 1
2 among all pillowcase covers having a single

vertical cylinder of width 1
2 and tiled with at most 2N squares.

Forgetting the labeling of zeroes and poles we get the asymptotics of the number
of connected pairs of transverse simple closed curves of fixed combinatorial type
with at most 2N crossings.

Further remarks. It is worth mentioning that all the above quantities have
combinatorial nature, but were computed by alternative methods. The Masur–
Veech volumes in genus zero are closely related to Hurwitz numbers counting covers
of the sphere of some very special ramification type. However, all attempts to
compute these volumes by purely combinatorial methods have (up to now) failed
even for covers of the simplest ramification type, see e. g. [AEZ1]. The proof
in [AEZ2] of the formula for the Masur–Veech volumes implicitly uses the analytic
Riemann–Roch theorem in addition to combinatorics.

The result about pillowcase covers with a single horizontal and a single vertical
cylinder is proved in [DGZZ] using ergodicity of the Teichmüller geodesic flow with
respect to the Masur–Veech measure and Moore’s ergodicity theorem. The proof
was inspired by the approach of M. Mirzakhani to counting simple closed geodesics
on hyperbolic surfaces.
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3. From arc systems and meanders to pillowcase covers

In this section we give precise bijections between meanders and pillowcase covers
with a single maximal cylinder in both horizontal and vertical directions. We
consider meanders in the plane in sections 3.1–3.3 and meanders on the sphere in
section 3.4.

3.1. Orientation, marking and weight. We have seen in Proposition 1 from
Section 2.1 that transverse connected pairs of multicurves on the sphere are in
bijection with pillowcase covers of genus 0. A pillowcase cover arising from a pair
of arc systems has a single horizontal cylinder of height 1

2 . In particular, a pillowcase
cover arising from a meander has a single horizontal and a single vertical cylinder
of height (respectively width) 1

2 .
However, pairs of arc systems and meanders (both in the plane and on the

sphere) carry an extra marking. Namely, a pair of arc systems comes with a given
choice of a top and bottom sides. Furthermore, the pillowcase cover corresponding
to a plane meander has a special square corresponding to the leftmost intersection.
Summarizing, we get the following result:

Lemma 3.1. There is a natural bijection between meanders in the plane and pil-
lowcase covers with a marked oriented vertical side of one of the squares that have
a single horizontal and a single vertical cylinder of height (width) 1

2 .

In order to provide exact counting of meanders we present the conventions for
counting pillowcase covers and see how these quantities are related to arc systems
and meander counting. The pillowcase covers considered in Lemma 3.1 are not well
suited for counting. We will consider pillowcase covers with a marked vertex of the
square tiling.

Convention 3.1. By convention, the marked vertex is located at the end of the
marked oriented vertical edge on the top boundary component of the single hori-
zontal cylinder.

Note that the two boundary components of the single horizontal cylinder do not
intersect. Thus, the marked vertex uniquely defines the top boundary component
and, hence, provides us with the canonical orientation of the waist curve of the
single horizontal cylinder.

Let us reconstruct the labeled pair of arc systems in the plane from a pillowcase
cover of genus zero tiled with a single horizontal band of squares and having a
marked vertex. If the marked vertex of the square tiling is a simple pole of the
quadratic differential, there is a single vertical side of the square tiling adjacent to
it, and the choice of the vertical side is canonical. If the marked vertex of the square
tiling is a regular point of the quadratic differential, there are two adjacent vertical
sides, so there are two ways to chose a distinguished vertical side which, generally,
lead to two different arc systems. We say “generally” because it might happen that
the pillowcase cover is particularly symmetric (like pillowcase covers associated to
arc systems from Figure 3) and the resulting two arc systems are isomorphic.

As soon as we are interested only in the asymptotic counting we can simply
neglect this issue: the pillowcase covers with extra symmetries occur too rarely to
affect the asymptotics. To perform exact count we establish the following standard
Convention.
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Convention 3.2. We always count a marked or non-marked pillowcase cover with
a weight reciprocal to the order |Aut | of the automorphism group of the cover.
In the current context we keep track of which sides of the pillowcase cover are
horizontal and which ones are vertical, but we do not label either the sides or the
vertices of the pillowcase cover. By definition, the automorphism group Aut acts
by flat isometries sending horizontal (respectively vertical) sides of the tiling to
horizontal (respectively vertical) sides and keeping the marked point (if any) fixed.

In particular, if we have a marked point at a regular vertex of a pillowcase cover,
the automorphism group is either trivial or Z/2Z. If we have a marked point at a
zero of degree j of a pillowcase cover, the automorphism group is a (usually trivial)
subgroup of the cyclic group Z/(j + 2)Z.

3.2. Meanders with a given number of minimal arcs and pillowcase cov-

ers. In this section and in the next one we continue to work with plane meanders.
Under Conventions 3.1 and 3.2, any collection of weighted pillowcase covers on the
sphere with a single band of horizontal squares and with a marked regular point
defines twice as much arc systems; the weighted collection of pillowcase covers as
above with a marked zero of degree j defines (j + 2) times more arc systems for
any j ∈ N.

Lemma 3.2. Let the initial closed meander in the plane have p minimal arcs, where
p ≥ 3. The associated pillowcase cover has p+1 simple poles if the initial meander
has a maximal arc and p simple poles if it does not.

Proof. A maximal arc becomes indistinguishable from a minimal arc after passing
to a labeled pair of transverse simple closed curves on the sphere. Minimal and
maximal arcs are in bijective correspondence with bigons in the partition of the
sphere by the union of these transverse simple closed curves. Bigons, in turn, are in
bijective correspondence with simple poles of the associated pillowcase cover. �

Recall that M+
p (N) and M−

p (N) denote the number of meanders with p minimal
arcs and respectively with and without a maximal arc. Denote Pp(N) the number
of pillowcase covers of genus zero tiled with at most 2N squares, having exactly p
simple poles, a single horizontal cylinder of height 1

2 and a single vertical cylinder

of width 1
2 . Denote by Pp,j(N), where j = 0, 1, 2, . . . , the number of pillowcase

covers as above having in addition a marked point at a regular vertex when j = 0
and at a zero of order j when j > 0.

Note that a pillowcase cover of genus 0 with p simple poles cannot have zeroes
of order greater than p− 4.

Lemma 3.3. Under Convention 3.2 on the weighted count of pillowcase covers the
following equalities hold:

M+
p (N) = 2(p+ 1) · Pp+1(N)(3.1)

M−
p (N) =

p−4
∑

j=0

(j + 2) · Pp,j(N) − 1

2
M+

p−1(N) .(3.2)

Proof. If the meander has 2n intersections, then the associated pillowcase cover is
tiled with 2n squares with side 1

2 .
To every closed meander with a maximal arc and with p minimal arcs we asso-

ciated a canonical pillowcase cover of genus zero with p + 1 simple poles, a single
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horizontal cylinder of height 1
2 and a single vertical cylinder of width 1

2 , see Proposi-
tion 1. Conversely, to every such pillowcase cover we can associate 2(p+1) meanders
with one maximal arc and p minimal arcs. Indeed, choose any of the (p+1) simple
poles and choose independently one of the two possible orientations of the waist
curve of the horizontal cylinder. Cutting this waist curve at the intersection with
the single vertical edge of the square tiling adjacent to the selected pole we get a
closed meander in the plane with a maximal arc.

It might happen that some of the resulting 2(p+ 1) meanders are pairwise iso-
morphic. However, this implies that the automorphism group of the pillowcase
cover is nontrivial, and Convention 3.2 provides the exact count. This completes
the proof of equality (3.1).

Similarly, to every closed meander without a maximal arc and with p minimal
arcs we assigned a canonical pillowcase cover of genus zero having p simple poles,
a single horizontal cylinder of height 1

2 , a single vertical cylinder of width 1
2 , and a

marked vertex following Convention 3.1. The assumption that the initial meander
does not have any maximal arc excludes coincidence of the marked point with a
simple pole on the top side. In order to exclude a maximal arc on the bottom
side, one needs to subtract a half of M+

p−1(N) (that is, p · Pp,−1(N)). At the
end of section 3.1 we have seen that under Convention 3.2 on the weight with
which we count pillowcase covers with a marked vertex, any collection of weighted
pillowcase covers on the sphere with a single horizontal cylinder of height 1

2 and
with a marked regular point defines twice as much closed meanders in the plane;
the weighted collection of pillowcase covers as above with a marked zero of degree j
defines (j+2) times more closed meanders in the plane for any j ∈ N. As before, if
some of the resulting meanders are isomorphic we do not count them several times
since by definition of the automorphism group Aut of the corresponding pillowcase
cover, the resulting multiplicity coincides with the order |Aut | of the automorphism
group. This completes the proof of equality (3.2). �

3.3. Meanders and pilowcase covers in a given stratum. We now introduce
finer counting with respect to a fixed stratum. For a partition ν = [1ν12ν2 . . . ]
denote byM+

ν (N) andM−
ν (N) the number of meanders leading to pillowcase covers

in the stratum Q(ν,−1|ν|+4) of meromorphic quadratic differentials respectively
with a maximal arc and without maximal arcs. We say that such meanders are
of type ν. Similarly, let Pν(N) be the number of pillowcase covers in the stratum
Q(ν,−1|ν|+4) of genus zero tiled with at most 2N squares, with a single horizontal
cylinder of height 1

2 and a single vertical cylinder of width 1
2 . Denote by Pν,j(N),

j = 0, 1, 2, . . . , the number of pillowcase covers as above having in addition a
marked point at a regular vertex when j = 0 and at a zero of order j when j >
0. By definition, we let Pν,j(N) = 0 for any N when νj = 0. Recall that by
Convention 3.2 we count pillowcase covers with weights reciprocal to the orders of
their automorphism groups.

Lemma 3.4. Under Convention 3.2 on weights with which we count pillowcase
covers the following equalities hold

M+
ν (N) = 2(|ν|+ 4) · Pν(N)(3.3)

M−
ν (N) =

|ν|
∑

j=0

(j + 2) · Pν,j(N) − 1

2
M+

ν (N) .(3.4)



14 V. DELECROIX, É. GOUJARD, P. G. ZOGRAF, AND A. ZORICH

Proof. The proof is completely analogous to the proof of Lemma 3.3. �

3.4. Asymptotic frequency of meanders: general setting. In this section
we return to meanders on the sphere. Let T be a plane tree. We associate to
T a generalized integer partition ν = ν(T ) = [0ν01ν12ν2 . . .] where νj denotes the
number of internal vertices of valence j + 2 for j ∈ N. The number of leaves, or
equivalently of vertices of valence 1, is then expressed in terms of the (generalized)
partition ν as 2 + |ν| where |ν| is the sum of the partition (see (2.1)).

Given two generalized partitions ι = [0ι01ι12ι2 . . . ] and κ = [0κ01κ12κ2 . . . ] we
define their sum as ν = ι + κ = [0ι0+κ01ι1+κ12ι2+κ2 . . . ]. We say that ι is a
subpartition of ν and denote it as ι ⊂ ν. For a subpartition ι ⊂ ν we define the
difference κ = ν − ι.

The following Lemma recalls what graphs of horizontal saddle connections have
horizontally one-cylinder pillowcase covers in a given stratum of meromorphic qua-
dratic differentials in genus zero.

Lemma 3.5. A ribbon graph D represents the graph of horizontal saddle connec-
tions of some pillowcase cover in a stratum Q(ν,−1|ν|+4) having a single horizontal
cylinder if and only if it is represented by a pair of plane trees with associated par-
titions νtop and νbottom such that the sum νtop + νbottom = ν.

Proof. The Lemma was proved in section 2.2. �

We formulate and prove the following generalization of Theorem 2 giving a for-
mula for the limit of the fraction (1.3) of meanders which we get identifying arc
systems of types Ttop and Tbottom with the same number of arcs, see Figure 3.

Though we agreed in section 1.2 to consider reduced trees, suppressing the ver-
tices of valence 2, it is often convenient to keep several marked points, so we
state the Theorem below in this slightly more general setting. Note that since
f(0) = 2, the number ν0 of zeroes in the partition ν affects the value of the func-
tion VolQ(ν,−1|ν|+4). Adding an extra marked point we double the Masur–Veech
volume of the corresponding stratum.

Theorem 4. For any pair of plane trees Ttop, Tbottom with associated generalized
partitions νtop and νbottom the following limit exists and is positive:

lim
N→+∞

Pconnected(Ttop, Tbottom;N) = P1(Q(ν,−1|ν|+4)) > 0

where ν = νtop + νbottom and P1(Q(ν,−1|ν|+4)) is defined by

(3.5) P1

(

Q(ν,−1|ν|+4)
)

=
cyl1(Q(ν,−1|ν|+4))

VolQ(ν,−1|ν|+4)
.

Here VolQ(ν,−1|ν|+4) is given by formula (2.2), and cyl1(Q(ν,−1|ν|+4)) takes the
value

(3.6) cyl1(Q(ν,−1|ν|+4)) = 2
∑

µ⊂ν

(|ν|+ 4

|µ|+ 2

)(
ν0
µ0

)(
ν1
µ1

)(
ν2
µ2

)

· · · .

Proof. The trees Ttop and Tbottom represent the trees formed by the horizontal
saddle connections of the pillowcase cover. Vertices of valence one are in bijective
correspondence with simple poles. Vertices of valence two represent marked points
(if any). Vertices of valence j + 2 are in bijective correspondence with zeroes of
degree j for j ∈ N. Recall that the type ν = [1ν12ν23ν3 . . . ] of the graph Tbottom⊔Ttop
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encodes the total number νj of vertices of valence j + 2 in Tbottom ⊔ Ttop for j ∈
N. We conclude that a pair of arc systems having Tbottom and Ttop as dual trees

defines a pillowcase cover in the stratum Q(ν,−1|ν|+4) of meromorphic quadratic
differentials.

We are ready to express the numerator and the denominator of (1.3) in terms
of pillowcase covers. First, note that arc systems are defined on a pair of labeled
oriented discs (called top and bottom, or northern and southern hemispheres).

When Tbottom and Ttop are not isomorphic as ribbon graphs, the “total number
of different triples” in the denominator of (1.3) is equal to the weighted number of
pillowcase covers tiled with at most 2N squares that form a single horizontal band
and having the non-labeled ribbon graph D := Tbottom ⊔ Ttop as the diagram of
horizontal saddle connections. Here we identify triples leading to isomorphic pairs
of labeled multicurves. We do not label either of components, vertices, or edges of
the graph D, but we consider the plane trees Tbottom and Ttop as ribbon graphs, so
the corresponding topological discs are oriented.

When Tbottom and Ttop are isomorphic as ribbon graphs, the “total number of
different triples” in the denominator of (1.3) is equal to twice the weighted number
of pillowcase covers as above.

When Tbottom and Ttop are not isomorphic as ribbon graphs, the “number of
triples leading to meander” in the numerator of (1.3) is equal to the weighted num-
ber of pillowcase covers as above which in addition have a single vertical cylinder.
When Tbottom and Ttop are isomorphic, the “number of triples leading to a mean-
der” is twice the weighted number of pillowcase covers as above that have a single
vertical cylinder.

Thus, the limit in Theorem 4 is the asymptotic fraction of pillowcase covers hav-
ing a single horizontal cylinder of height 1

2 corresponding to the separatrix diagram

D of horizontal saddle connections, and a single vertical cylinder of width 1
2 among

all pillowcase covers with a single horizontal cylinder of height 1
2 corresponding to

the separatrix diagram D of horizontal saddle connections.
Theorem 1.19 in [DGZZ] asserts that such limit exists and that the “horizontal

and vertical cylinder decompositions are asymptotically uncorrelated”, so the above
limit coincides with the asymptotic fraction of pillowcase covers having a single
vertical cylinder of width 1

2 among all pillowcase covers – we can omit the conditions
on the horizontal foliation. This proves existence of the limit in Theorem 4. By
definition, the latter asymptotic fraction is precisely the quantity P1(Q(ν,−1|ν|+4))
which proves the second statement in Theorem 4 together with formula (3.5). The
remaining formula (3.6) for the quantity cyl1(Q(ν,−1|ν|+4)) introduced in (2.6) will
be derived in Theorem 6 of section 4. This completes the proof of Theorem 4. �

Proof of Theorem 2. Theorem 2 is a particular case of the Theorem 4 when the
plane trees Tbottom, Ttop are trivalent and have the total number p of leaves (vertices
of valence one). In this situation ν = [1p−4 − 1p]. By Theorem 4 we have

lim
N→+∞

Pconnected(Tbottom, Ttop;N) = P1(Q(1p−4,−1p)) .

We apply now formula (4.6) proved in Corollary 4.2 in section 4 which states that

P1(Q(1p−4,−1p)) =
cyl1(Q(1p−4,−1p))

VolQ(1p−4,−1p)
.
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It remains to apply formula (4.3) for the numerator and equation (2.2) for the de-
nominator of the latter quantity to complete the proof. We have proved Theorem 2
conditional to Corollaries 4.1 and 4.2 left to section 4. �

3.5. Counting meanders of special combinatorial types. In this section we
return to plane meanders with exception for the Proof of Theorem 3 at the very
end of the section, where we work with meanders on the sphere.

We state now an analog of Theorem 1, where instead of the number of minimal
arcs (pimples) we use the partition ν as a combinatorial passport of the meander.

Theorem 5. For any partition ν = [1ν12ν23ν3 . . . ], the number M+
ν (N) (respec-

tively M−
ν (N)) of closed plane meanders of type ν, with (respectively without)

a maximal arc and with at most 2N crossings has the following asymptotics as
N → +∞:

M+
ν (N) = 2(|ν|+ 4) · cyl1,1

(
Q(ν,−1|ν|+4)

)

(|ν| + 4)! ·∏j νj !
· N ℓ(ν)+|ν|+2

2ℓ(ν) + 2|ν|+ 4
+(3.7)

+ o
(
N ℓ(ν)+|ν|+2

)
,

M−
ν (N) =

2 cyl1,1
(
Q(ν, 0,−1|ν|+4)

)

(|ν|+ 4)! ·∏j νj !
· N ℓ(ν)+|ν|+3

2ℓ(ν) + 2|ν|+ 6
+(3.8)

+ o
(
N ℓ(ν)+|ν|+3

)
,

where

(3.9) cyl1,1
(
Q(ν, 0,−1|ν|+4)

)
= 2 · cyl1,1

(
Q(ν,−1|ν|+4)

)

and

(3.10) cyl1,1
(
Q(ν,−1|ν|+4)

)
=

=
4

VolQ(ν,−1|ν|+4)
·
(

ν1∑

ι1=0

ν2∑

ι2=0

...∑

...

(
ν1
ι1

)(
ν2
ι2

)

· · ·
(|ν|+ 4

|ι|+ 2

))2

Note that contrary to the original Theorem 1, where the setting is somewhat
misleading, in the setting of Theorem 5 we get more natural formula M+

ν (N) =
o
(
M−

ν (N)
)
as N → +∞.

Up to now we performed the exact count. The Lemma below gives the term
with dominating contribution to the asymptotic count when the bound 2N for the
number of squares in the pillowcase cover tends to infinity.

Lemma 3.6. The following limits hold

lim
N→+∞

1

P1p−4(N)
· Pp(N) = 1 ,(3.11)

lim
N→+∞

1

2P1p−4,0(N)
·





p−4
∑

j=0

(j + 2) · Pp,j(N)



 = 1 ,(3.12)

lim
N→+∞

1

2Pν,0(N)
·





|ν|
∑

j=0

(j + 2) · Pν,j(N)



 = 1 .(3.13)
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Proof. Let ν = [1ν12ν2 . . . ], where |ν| = p−4 be a partition of the number p−4 into
the sum of positive integers j1, . . . , jr, where j1+ · · ·+ jr = p−4. By Theorem 1.19
in [DGZZ],

(3.14) Pν(N) =
cyl1,1

(
Q(ν,−1p)

)

p! ·
∏

j νj !
· N

d

2d
+ o(Nd) , when N → +∞ ,

where the constant cyl1,1 (Q(ν,−1p)) defined in (2.7) is positive, and

(3.15) d = dimC Q(ν,−1|ν|+4) = dimC Q(j1, . . . , jr,−1p) = r + p− 2 .

For a given number p ≥ 4 of simple poles, the only stratum of the maximal
dimension is the principal stratum Q(1p−4,−1p), where all zeroes are simple. This
is the only stratum which contributes a term of order N2p−6 to Pp(N), where
2p− 6 = dimC Q(1p−4,−1p). This proves equation (3.11).

For j ≥ 1 the quantity Pν,j(N) counts pillowcase covers with a marked zero of

order j in the stratum Q(ν,−1|ν|+4). Hence, it has the asymptotic growth rate
of the same order as the quantity Pν(N) counting pillowcase covers in the same
stratum without any marking, i. e. it grows like Nd, where d = dimCQ(ν,−1|ν|+4).
The dimensional count as above implies that the contribution of any term Pν,j(N)
with j ≥ 1 to the sum in the right-hand side of (3.12) has the order at most N2p−6.

Let us now analyse the contribution of various strata to Pp,0(N). It follows from
Theorem 1.19 in [DGZZ] that

(3.16) Pν,0(N) =
cyl1,1

(
Q(ν, 0,−1|ν|+4)

)

(|ν|+ 4)! ·∏j νj !
· N ℓ(ν)+|ν|+3

2ℓ(ν) + 2|ν|+ 6
+

+ o
(
N ℓ(ν)+|ν|+3

)
, when N → +∞ ,

where the constant cyl1,1
(
Q(ν, 0,−1|ν|+4)

)
is positive. Here we used the same

notation as in formula (2.4) for the dimension of the stratum Q(ν, 0,−1|ν|+4).
This implies that for any partition ν of p−4 different from 1p−4, its contribution

Pν,0 also has order at most N2p−6, which means that Pp,0(N) behaves like N2p−5

for N large, and that the only stratum which gives a contribution of this order is the
principal stratum with a marked point Q(1p−4, 0,−1p). This proves equality (3.12).

By the same reason the summand 2Pν,0(N) dominates in the sum in the right-
hand side of (3.13). It is the only term whose contribution is of order Nd+1, where
d = dimC Q(ν,−1|ν|+4). The asymptotics of other terms in the sum have lower
orders in N as N → +∞. This proves equality (3.13). �

Now we have everything for the proofs of Theorem 1 and of Theorem 5.

Proof of Theorem 1. The chain of relations including (3.1) from Lemma 3.3, (3.11)
from Lemma 3.11 and (3.14) yields

M+
p (N) = 2(p+ 1) · Pp+1(N) = 2(p+ 1) · P1p−3(N) + o(N2p−4) =

= 2(p+ 1) · cyl1,1
(
Q(1p−3,−1p+1)

)

(p+ 1)! (p− 3)!
· N

2p−4

4p− 8
+ o(N2p−4) when N → +∞ .

This proves the first equality in (1.1). The constant cyl1,1
(
Q(1p−3,−1p+1)

)
is

expressed by our main formula (2.8) in terms of cyl1
(
Q(1p−3,−1p+1)

)
computed in

Corollary 4.1 in section 4 and in terms of the Masur–Veech volume of the stratum
Q(1p−3,−1p+1) given by formula (2.2).
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Similarly, the chain of relations including (3.2) from Lemma 3.3, (3.12) from
Lemma 3.11 and (3.16) implies

M−
p (N) =

p−4
∑

j=0

(j + 2) · Pp,j(N) − 1

2
M+

p−1(N) = 2P1p−4,0(N) + o(N2p−5) =

=
2 cyl1,1

(
Q(1p−4, 0,−1p)

)

p! (p− 4)!
· N2p−5

4p− 10
+ o(N2p−5) , when N → +∞ .

This proves the first equality in (1.2). The constant cyl1,1
(
Q(1p−4, 0,−1p)

)
is

expressed by our main formula (2.8) in terms of cyl1
(
Q(1p−4, 0,−1p)

)
computed in

Corollary 4.1 of Section 4 and in terms of the Masur–Veech volume of the stratum
Q(1p−4, 0,−1p) given by formula (2.2).

Thus, the proof of Theorem 1 is conditional subject to the explicit count of
cyl1

(
Q(1p−3,−1p+1)

)
and of cyl1

(
Q(1p−4, 0,−1p)

)
performed in Corollary 4.1 be-

low. �

Proof of Theorem 5. The proof of Theorem 5 is completely analogous to the proof
of Theorem 1.

Composing relation (3.3) from Lemma 3.4 with relation (3.14), we get

M+
ν (N) = 2(|ν|+ 4) · Pν(N) =

= 2(|ν|+ 4) · cyl1,1
(
Q(ν,−1|ν|+4)

)

(|ν|+ 4)! ·∏j νj !
· N ℓ(ν)+|ν|+2

2ℓ(ν) + 2|ν|+ 4
+

+ o
(
N ℓ(ν)+|ν|+2

)
, when N → +∞ ,

where we translated formula (3.15) for the dimension d of the stratum Q(ν,−1|ν|+4)
to notations (2.4). This proves formula (3.7) in Theorem 5.

Composing relation (3.4) from Lemma 3.4 with relation (3.13), followed by (3.16)
we get

M−
ν (N) =

|ν|
∑

j=0

(j + 2) · Pν,j(N) − 1

2
M+

ν (N) = 2Pν,0(N) + o
(
N2ℓ(ν)+2|ν|+3

)
=

=
2 cyl1,1

(
Q(ν, 0,−1|ν|+4)

)

(|ν|+ 4)! ·
∏

j νj !
· N ℓ(ν)+|ν|+3

2ℓ(ν) + 2|ν|+ 6
+

+ o
(
N ℓ(ν)+|ν|+3

)
, when N → +∞ .

This proves formula (3.8) in Theorem 5.
We have proved Theorem 5 conditional to expressions (3.9) and (3.10) for the

quantities cyl1,1(Q(ν, 0,−1|ν|+4)) and cyl1,1(Q(ν,−1|ν|+4)) left to Theorem 6 in
section 4. �

We conclude this section with the proof of Theorem 3.

Proof of Theorem 3. The number of reduced plane trees with fixed number p of
leaves is finite. By definition of the ratio Pconnected(p;N) its numerator is the sum
of the numerators of (1.3) over all such pairs of trees, and the denominator of the
ratio Pconnected(p;N) is the sum of the denominators of (1.3) over all such pairs of
trees. Applying the dimensional argument as in the proof of Theorem 1 we conclude
that contributions of pairs of trees, where at least one of the trees is not trivalent,
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to the numerator or to the denominator of the above ratio is of the order o(N2p−6)
for such contributions correspond to strata Q(ν,−1p) of meromorphic quadratic
differentials in genus zero different from the principal one. Thus, for large N these
contributions are negligible compared to the contribution of any pair of trivalent
trees. The contribution of any pair of trivalent trees is of the order N2p−6, where
2p − 6 = dimC Q(1p−4,−1p) is the dimension of the principal stratum. Thus,
studying the asymptotics of the ratio Pconnected(p;N) we can ignore the pairs of
trees where at least one of the trees is not trivalent.

To complete the proof of Theorem 3 it remains to notice that by Theorem 2 for
any pair of trivalent plane trees Tbottom, Ttop, the ratio of positive quantities (1.3)
has the same limit P1(Q(1p−4,−1p)).

�

4. Computations for pillowcase covers

Let ν = [0ν01ν12ν2 . . . ] be a (generalized) partition of a natural number |ν| into
the sum of nonnegative integer numbers (in this section we allow entries 0):

|ν| := 0 + · · ·+ 0
︸ ︷︷ ︸

ν0

+1+ · · ·+ 1
︸ ︷︷ ︸

ν1

+2+ · · ·+ 2
︸ ︷︷ ︸

ν2

+ . . .

The common convention on Masur–Veech volumes of the strata of meromorphic
quadratic differentials with at most simple poles suggests to label (give names) to
all zeroes and poles. Denote by P labeled

ν (N) the number of pillowcase covers with
labeled zeroes and poles in the stratum Q(ν,−1|ν|+4) in genus zero tiled with at
most 2N squares with the side 1

2 and having a single horizontal cylinder of height
1
2 and a single vertical cylinder of width 1

2 . It is easy to see that a pillowcase cover
as above cannot have any symmetries. Convention 3.2 on weights with which we
count pillowcase covers with non-labeled zeroes and poles is designed to assure the
following relation between the two counts valid for any N ∈ N:

(4.1) P labeled

ν (N) =





∞∏

j=0

νj !



 · (|ν|+ 4)! · Pν(N) ,

where the product above contains, actually, only finite number of factors.

Theorem 6. The number P labeled
ν (N) of pillowcase covers with labeled zeroes and

poles in the stratum Q(ν,−1|ν|+4) tiled with at most 2N squares (12 )×(12 ) and having

a single horizontal cylinder of height 1
2 and a single vertical cylinder of width 1

2 has
the following asymptotics as N → +∞:

P labeled

ν (N) = cyl1,1

(

Q(ν,−1|ν|+4)
)

· N
d

2d
+ o

(
Nd
)
as N → +∞ ,

were

cyl1,1

(

Q(ν,−1|ν|+4)
)

=

(
cyl1

(
Q(ν,−1|ν|+4)

))2

VolQ(ν,−1|ν|+4)

and

(4.2) cyl1

(

Q(ν,−1|ν|+4)
)

= 2 ·
ν0∑

ι0=0

ν1∑

ι1=0

ν2∑

ι2=0

...∑

...

(
ν0
ι0

)(
ν1
ι1

)(
ν2
ι2

)

· · ·
(|ν|+ 4

|ι|+ 2

)

.

Here ι = [0ι01ι12ι2 . . . ] and d = dimC Q(ν,−1|ν|+4) = ℓ(ν) + |ν|+ 2 .



20 V. DELECROIX, É. GOUJARD, P. G. ZOGRAF, AND A. ZORICH

Before proving Theorem 6 we prove the following Corollary 4.1.

Corollary 4.1. The number P labeled

1k (N) of pillowcase covers with labeled zeroes

and poles in the stratum Q(1k,−1k+4) tiled with at most 2N squares and having a
single horizontal cylinder of height 1

2 and a single vertical cylinder of width 1
2 has

the following asymptotics as N → +∞:

P labeled

1k (N) = cyl1,1
(
Q(1k,−1k+4)

)
· N

2k+2

4k + 4
+ o

(
N2k+2

)
as N → +∞ ,

were

cyl1,1
(
Q(1k,−1k+4)

)
=

(
cyl1

(
Q(1k,−1k+4)

))2

4

(

π2

2

)k+1

and

(4.3) cyl1
(
Q(1k,−1k+4)

)
= 2 ·

(
2k + 4

k + 2

)

The number P labeled

1k,0 (N) of pillowcase covers as above with a marked regular

vertex of the tiling has the following asymptotics as N → +∞:

P labeled

1k,0 (N) = 2 · cyl1,1
(
Q(1k,−1k+4)

)
· N

2k+3

4k + 6
+ o

(
N2k+3

)
as N → +∞ ,

Proof. By (2.2) we have

VolQ(1k,−1k+4) = 2π2 ·
(
π2

2

)k

= 4 ·
(
π2

2

)k+1

To prove (4.3) we apply the following combinatorial identity to simplify for-
mula (4.2) in the particular case when ν = [1k]:

k∑

ι1=0

(
k

ι1

)(
k + 4

ι1 + 2

)

=

(
2k + 4

k + 2

)

,

see (3.20) in [Gd].
It remains to prove that

(4.4) cyl1,1
(
Q(1k, 0,−1k+4)

)
= 2 · cyl1,1

(
Q(1k,−1k+4)

)
.

By (2.8) we have

cyl1,1
(
Q(1k, 0,−1k+4)

)
=

(

cyl1
(
Q(1k, 0,−1k+4)

) )2

VolQ(1k, 0,−1k+4)
.

Equation 4.2 implies that

cyl1
(
Q(1k, 0,−1k+4)

)
= 2 · cyl1

(
Q(1k,−1k+4)

)

Finally, by (2.2) we have

VolQ(1k, 0,−1k+4) = 2VolQ(1k,−1k+4) .

and (4.4) follows. �

We also prove the following elementary technical Corollary of Theorem 6.



ENUMERATION OF MEANDERS AND MASUR–VEECH VOLUMES 21

Corollary 4.2. Consider a (generalized) partition ν = [0ν01ν12ν2 . . . ] and its sub-
partition ν′ = [1ν12ν2 . . . ] obtained by suppressing all zero entries. The following
formulae are valid:

cyl1
(
ν,−1|ν|+4

)
= 2ν0 · cyl1

(
ν′,−1|ν

′|+4
)

(4.5)

P1

(
ν,−1|ν|+4

)
= P1

(
ν′,−1|ν

′|+4
)
.(4.6)

Proof. Note that |ν′| = |ν|. Similarly, having any subpartion ι′ ⊂ ι obtained from
a partition ι by suppressing all zero entries we have |ι′| = |ι|. Thus we can rewrite
formula (4.2) as

cyl1

(

Q(ν,−1|ν|+4)
)

= 2 ·
ν0∑

ι0=0

ν1∑

ι1=0

ν2∑

ι2=0

...∑

...

(
ν0
ι0

)(
ν1
ι1

)(
ν2
ι2

)

· · ·
(|ν|+ 4

|ι|+ 2

)

=

=

(
ν0∑

ι0=0

(
ν0
ι0

))

·
(

2

ν1∑

ι1=0

ν2∑

ι2=0

...∑

...

(
ν1
ι1

)

· · ·
(|ν′|+ 4

|ι′|+ 2

))

= 2ν0cyl1

(

Q(ν′,−1|ν
′|+4)

)

,

which proves (4.5). To prove (4.6) it suffices to note that by formula (2.2), we have

VolQ(ν,−1|ν|+4) = (f(0))ν0 VolQ(ν′,−1|ν
′|+4) = 2ν0 VolQ(ν′,−1|ν

′|+4) .

Passing to the ratios

P1

(

Q(ν,−1|ν|+4)
)

:=
cyl1

(
Q(ν,−1|ν|+4)

)

Vol
(
Q(ν,−1|ν|+4)

) =

=
cyl1

(

Q(ν′,−1|ν
′|+4)

)

Vol
(
Q(ν′,−1|ν′|+4)

) =: P1

(

Q(ν′,−1|ν
′|+4)

)

we get the desired equation (4.5). �

Recall that a type ι = [0ι01ι12ι2 . . . ] of a plane tree T records the number ιj of
vertices of valence j + 2 for j = 0, 1, 2, . . . . Note that in section 4 we allow to the
tree have several vertices of valence 2. Recall also that |ν| denotes the sum of the
entries of the partition ν = [0ν01ν12ν2 . . . ]; by ℓ(ν) we denote the length of ν, where
this time we count the entries 0 if any:

|ν| := 1 · ν1 + 2 · ν2 + 3 · ν3 + . . .

ℓ(ν) := ν0 + ν1 + ν2 + ν3 + . . .

In the Lemma below we reproduce formula (2.2) from Proposition (2.2) in [DGZZ]
adapting it to the language of the current paper.

Lemma 4.3. Consider a separatrix diagram D = T (ι) ⊔ T (ν − ι) represented by
a non-labeled pair of plane trees T (ι) and T (ν − ι) with profiles ι ⊂ ν and ν − ι
respectively. The number of pillowcase covers with labeled zeroes and poles, tiled with
at most 2N squares and having a single horizontal cylinder of height 1

2 representing
a given separatrix diagram D has the following asymptotics when N → +∞

(4.7) cyl1(D) · N
d

2d
+ o(Nd) ,
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where the dimension d of the ambient stratum Q(ν,−1|ν|+4) is defined by equa-
tion (2.4) and

(4.8) cyl1(D) =
4

|Aut(D)| ·
(|ν|+ 4)! · ν0! · ν1! · ν2! · · ·

(
|ι|+ ℓ(ι)

)
! ·
(
|ν − ι|+ ℓ(ν − ι)

)
!
.

Remark 4.1. In this paper we denote by cyl1(D) the coefficient of the leading
term in the asymptotics of the number of pillowcase covers tiled with at most 2N
squares and having a single horizontal cylinder of minimal possible height 1

2 . In
the companion paper [DGZZ] we used a similar notation c1(D) for the coefficient
in asymptotics where we made no restriction on the height of the cylinder. It is
easy to see that the two coefficients differ by the factor ζ(d), namely,

c1(D) = ζ(d) · cyl1(D) ,

where d = dimC Q(ν,−1|ν|+4) is given by formula (2.4).

Proof. The number of edges m of T (ι), and n of T (ν − ι) are expressed as

m = |ι|+ ℓ(ι) + 1

n = |ν − ι|+ ℓ(ν − ι) + 1

and the dimension d of the stratum satisfies relation d = m+ n.
Consider any pillowcase cover having the diagram D as the diagram of horizon-

tal saddle connections. Cut it open along all horizontal saddle connections. By
definition of D it has m pairs of saddle connections on one side of the cylinder; n
pairs of saddle connections on the other side of the cylinder, all saddle connection
has its twin on the same side.

The proof now follows line by line the second part of the proof of the more general
Proposition 2.2 in [DGZZ]. Note that the parameter l used in Proposition 2.2 to
denote the number of saddle connections which after the surgery as above appear
on both sides of the cylinder is equal to zero in genus zero. One extra simplification
comes from the fact that in the proof of Proposition (2.2) in [DGZZ] we sum over
various possible heights of the horizontal cylinder, while in our context it equals to
1
2 , see Remark (4.1). As a result we do not get the extra factor ζ(d) present in the
original expression (2.2) in Proposition (2.2) in [DGZZ]. �

Consider a separatrix diagram D = T (ι) ⊔ T (ν − ι) as above. Defining the
automorphism group Aut(D) we assume that none of the vertices, edges, or bound-
ary components of the ribbon graph D is labeled; however, we assume that the
orientation of the ribbons is fixed. Thus

(4.9) |Aut(D)| = |Aut(T (ι))| · |Aut(T (ν − ι))| ·
{

2 if T (ι) ≃ T (ν − ι)

1 otherwise

Here ≃ stands for an isomorphism of plane (“ribbon”) trees.
The following counting Theorem for plane trees is well known; see, for example,

[Mo, 2, p.6]. It is the last element needed for proof of Theorem 6.

Theorem. For any partition ι = [0ι01ι12ι2 . . . ] the following expression holds

∑

T (ι)

1

|Aut(T (ι))| =
(
|ι|+ ℓ(ι)

)
!

(
|ι|+ 2

)
! · ι0! · ι1! · ι2! · · ·

,
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where we sum over all plane trees corresponding to a partition ι and |Aut(T (ι))| is
the order of the automorphism group of the tree T (ι).

Proof of Theorem 6. The first two statements of Theorem 6 are, a particular case
of Theorem 1.19 in [DGZZ] which, morally, claims that “horizontal and vertical
decompositions of pillowcase covers are asymptotically uncorrelated”.

It only remains to prove expression (4.2).
Combining equation (4.8) with the above Theorem we conclude that the sum of

cyl1(D) over all realizable one-cylinder separatrix diagrams D in any given stratum
Q(ν,−1|ν|+4) in genus zero can be expressed as follows

cyl1

(

Q(ν,−1|ν|+4)
)

=
∑

D

cyl1(D) =
1

2

∑

ι⊂ν

(

4 · (|ν|+ 4)! · ν0! · ν1! · ν2! · · ·
(
|ι|+ ℓ(ι)

)
! ·
(
|ν − ι|+ ℓ(ν − ι)

)
!

)

·

·
( (

|ι|+ ℓ(ι)
)
!

(
|ι|+ 2

)
! · ι0! · ι1! · · ·

)

·
( (

|ν − ι|+ ℓ(ν − ι)
)
!

(
|ν − ι|+ 2

)
! · (ν0 − ι0)! · (ν1 − ι1)! · · ·

)

=

= 2
∑

ι⊂ν

(|ν|+ 4

|ι|+ 2

)(
ν0
ι0

)(
ν1
ι1

)(
ν2
ι2

)

· · ·

�

Appendix A. Meanders and pairs of arc systems satisfying additional
combinatorial constraints

In this appendix we count the frequency of meanders among all pairs of arc
systems imposing additional constraints on combinatorics of the pair of arc systems.

In section 1.2 we have assigned to any closed meander two arc systems on discs
(considered as hemispheres). Passing to the one-point compactification of the plane
we place our closed meander curve on the resulting sphere. By construction, this
meander curve is the simple closed curve on the sphere obtained from the two
arc systems by identifying the two hemispheres along the common equator. By
convention we call the equator the horizontal curve and the simple closed meander
curve — the vertical curve on the resulting sphere.

Figure 5. We can change the roles of the horizontal and verti-
cal curves and construct the reduced dual trees for the horizontal
curve of a closed meander. The tree in the bounded region (which
is shaded in the picture) is denoted by T ∗

0 . The tree in the com-
plementary unbounded region is denoted by T ∗

∞.
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We have constructed two reduced dual graphs to the two arc systems, see the
right picture in Figure 2. We can change the roles of the horizontal and vertical
curves and consider the vertical curve as the new “equator” of the sphere. Then, the
horizontal curve (former equator) takes the role of the meander curve and defines
a pair of arc systems and reduced dual trees, see Figure 5. The meander cuts the
plane in two regions: one bounded and one unbounded. We denote the reduced
dual tree as above staying in the bounded domain of the plane by T ∗

0 and the one
in the complementary unbounded domain — by T ∗

∞.
In the setting where a pair of transverse labeled simple closed curves on a sphere

comes from arc systems on two hemispheres, we do not have the distinction between
“bounded” and “unbounded” domains. In this case the graph D∗ = T ∗

0 ⊔ T ∗
∞

obtained as a disjoint union of the trees T ∗
0 and T ∗

∞ does not have any canonical
labeling of connected components.

As before, consider a pair of arc systems on two hemispheres containing the
same number of arcs and identify them along the equator matching the endpoints
of arcs. We get a simple closed curve on the sphere and a multicurve transverse
to it. Recall that we associate to any transverse connected pair of multicurves its
type ν = [1ν12ν23ν3 . . . ], where the entry νj records the number of (2j + 4)-gons,
for j ∈ N, among the faces in which the pair of multicurves cuts the sphere.

When the two multicurves are simple closed curves, the entry νj also records
the number of vertices of valence j + 2 in the graph T ∗

0 ⊔ T ∗
∞, and in the graph

Tbottom ⊔ Ttop. We will call ν the type of the graphs Tbottom ⊔ Ttop and T ∗
0 ⊔ T ∗

∞.
By duality, if we specify the trees T ∗

0 and T ∗
∞ instead of the trees Tbottom and

Ttop in the setting of Theorem 4 we get the completely parallel statement.
We can state the following more detailed version of Theorem 4. This time we

chose two pairs of trees: Tbottom, Ttop and T ∗
0 , T ∗

∞, such that the graphs D∗ :=
T ∗
0 ⊔T ∗

∞ and Tbottom⊔Ttop share any given type ν. The two connected components
of the graph Tbottom⊔Ttop are labeled; the two components of the graph D∗ — not.

As before, we consider all possible triples

(n-arcs system of type Ttop; n-arcs system of type Tbottom; identification)

as described above for all n ≤ N . In analogy with (1.3) we define the fraction
p(Tbottom, Ttop; T ∗

0 ,D∗;N) of triples as above which lead to a meander with the
graph D∗ dual to the equator, among all triples as above.

Proposition 2. For any two pairs of plane trees Tbottom, Ttop and T ∗
0 , T ∗

∞, such
that the graphs D∗ := T ∗

0 ⊔ T ∗
∞ and Tbottom ⊔ Ttop share any given type ν, the

following limit exists and has the following strictly positive value:

lim
N→+∞

p(Tbottom, Ttop;D∗;N) = P1(D∗) .

The limit P1(D∗) is expressed by the following formula

(A.1) P1(D∗) =
cyl1(D∗)

VolQ(ν,−1|ν|+4)

Denote by ι and ν−ι profiles of the plane trees T ∗
0 and T ∗

∞. The coefficient cyl1(D∗)
in the above formula is given by equation

(A.2) cyl1(D(ι)) =
4

|Aut(D∗)| ·
(|ν|+ 4)! · ν0! · ν1! · ν2! · · ·

(
|ι|+ ℓ(ι)

)
! ·
(
|ν − ι|+ ℓ(ν − ι)

)
!
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Here |Aut(D∗)| denotes the order of the automorphism group of the ribbon graph
D∗, where neither of connected components, edges or vertices of D∗ are labeled, but
the orientation of the ribbon graph is fixed.

Proof. As in Theorem 4 we consider labled pairs of arc systems on oriented discs
assuming that the number of arcs in two systems is the same. “All possible triples”
in the denominator of the ratio p(Tbottom, Ttop;D∗;N) is exactly the same as above:
the graph D∗ does not carry any information in the definition of the “possible
triples”. Computing the numerator we impose now a given separatrix diagram D∗

as the graph of vertical saddle connections of the single vertical cylinder.
Thus, the limit in Proposition 2 is the asymptotic fraction of pillowcase covers

having a single horizontal cylinder of height 1
2 corresponding to the separatrix

diagram D = Tbottom ⊔ Ttop of horizontal saddle connections, and a single vertical
cylinder of width 1

2 corresponding to the separatrix diagram D∗ of vertical saddle
connections among all pillowcase covers having a single horizontal cylinder of height
1
2 corresponding to the separatrix diagram D of horizontal saddle connections.

Theorem 1.19 in [DGZZ] asserts that such limit exists and that “horizontal and
vertical cylinder decompositions are asymptotically uncorrelated”, so the above
limit coincides with the asymptotic fraction of pillowcase covers having a single
vertical cylinder of width 1

2 corresponding to the separatrix diagram D∗ among all
pillowcase covers. As before we can omit conditions on the horizontal foliation.
This proves existence of the limit.

By definition, the latter asymptotic fraction is the quantity P1(D∗). This proves
the first equality in formula (A.1). The value of cyl1(D∗) is computed in equa-
tion (4.8) in Lemma 4.7, which completes the proof of Proposition 2. �

Appendix B. Arc systems as linear involutions

We have seen that every closed meander in the plane defines a pair of arc sys-
tems as in Figure 2. A pair of arc systems can be encoded by a linear involution
(see [DaN] and [BL]) generalizing an interval exchange transformation. In the ex-
ample of Figure 2 we get the linear involution

(
A,B,B,C,C,A

D,E,E, F, F,D,G,G

)

,

see Figure 6.

A B B C C A

D E E F F D G G

Figure 6. Pair of arc systems as a linear involution.

We define the distance between two consecutive intersections of the horizontal
segment with the meander to be 1

2 . Thus, in our example we assign the following
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lengths to the intervals under exchange:

|A| = 1, |B| = 1, |C| = 1

2
, |D| = 1

2
, |E| = 1, |F | = 1

2
, |G| = 1

2
.

Consider the trees T ∗
0 and T ∗

∞ dual to the horizontal line as in Figure 5. Follow
each half-edge of these trees from the vertex till the first intersection with the
horizontal line. The resulting intersection points are exactly the extremities of the
intervals under exchange.

A

B
B C

C
A

DE

E F F
D

GG

Figure 7. Jenkins–Strebel differential with a single horizontal
cylinder on CP1 associated to a linear involution and the ribbon
graph of its horizontal saddle connections.

Reciprocally, every linear involution of intervals of lengths in 1
2N and such that

twins of the top interval are located on top and twins of the bottom intervals
are located on the bottom naturally defines a pair of arc systems in the plane
and a pillowcase cover of genus zero having a single horizontal cylinder. Namely,
consider a rectangle of height 1

2 and with a horizontal side having the same length
as the base segment of the linear involution (see the shadowed rectangle in the
middle of Figure 6). Identify the two vertical sides of the rectangle by a parallel
translation and identify the subsegments of the horizontal sides as prescribes the
linear involution, see Figure 7. We get a Jenkins–Strebel differential with a single
horizontal cylinder.

Appendix C. Meanders of low combinatorial complexity

In this section we present an explicit formula for meanders whose underlying
pillowcase cover belongs to Q(−14). We also present some numerical experiments
for meanders leading to pillowcase covers with 5 poles (stratumQ(1,−15)) and with
6 poles (strataQ(1,−16) andQ(2,−16)). The reader can see that these experiments
provide strong numerical evidence for our asymptotic results.

Let us recall from Theorem 1 that M+
p (N) (respectively M−

p (N)) counts the
number of plane meanders with at most N arcs (or, equivalently, with at most 2N
crossings) and with (resp. without) a maximal arc and p minimal arcs. In the
language of flat surfaces, M+

p−1(N) and M−
p (N) correspond to pillowcases covers

in one of the strata Q(ν,−1p) where ν = [1ν12ν2 . . .] is a partition of p − 4 (see
Lemma 3.3).

We consider here a refined counting. Namely, let Mn,p be the number of me-
anders with exactly n arcs (or, equivalently, with exactly 2n crossings) and either
with p minimal arcs and no maximal arcs, or with p− 1 minimal arcs and a maxi-
mal arc. In other words, Mn,p denotes the number of meanders that correspond to
pillowcase covers of degree n whose associated quadratic differential has exactly p
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poles. We have the following relation

M+
p−1(N) +M−

p (N) =

N∑

n=1

Mn,p.

Note that by equation (1.1) we have M+
p−1(N) = O(N2p−6) while by equation (1.2)

M−
p (N) = O(N2p−5). Thus, the contribution of M+

p−1(N) becomes negligible for
large N .

The following array presents the values Mn,p where the number of arcs n ranges
from 1 to 9 and p ranges from 4 to 8. These values were obtained by listing all
meanders and filtering them by the total number p of minimal and maximal arcs.

n 1 2 3 4 5 6 7 8 9
p❍❍❍

4 1 2 6 8 20 12 4 32 54
5 0 0 0 16 40 168 280 544 1152
6 0 0 2 16 110 416 1470 4128 9102
7 0 0 0 0 60 576 3276 13632 45468
8 0 0 0 2 30 462 4228 26424 130410

The sum of entries
∑+∞

p=4 Mn,p in each column of this biinfinite array is the mysteri-
ous number of meanders with n arcs: 1, 2, 8, 42, 262, 1828, 13820, 110954, 933458,
. . . (sequence A005315 from [OEIS]). Here we study this array by lines.

0 100 200 300 400

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

(a) Number of meanders with exactly n
arcs divided by n2, i. e. the function
n 7→ φ(n)/n.

100 200 300 400

0.1

0.2

0.3

0.4

(b) Number of meanders with at most N
arcs divided by N3 (represented by blue
points) and the asymptotic value 2

π2 (red
line).

Figure 8. The number Mn,4 of meanders with 4 minimal arcs or,
equivalently, the number of meanders whose associated pillowcase
covers belongs to Q(−14).

For p = 4, there is only one stratum Q(−14) and the corresponding generalized
interval exchange transformations (see Appendix B) are reduced to rotations. It is
then easy to deduce the following
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Lemma C.1. We have Mn,4 = nφ(n) where φ is the Euler totient function. In
particular

N∑

n=1

Mn,4 = M+
3 (N) +M−

4 (N) ∼ 2N3

π2
.

This result is coherent with the one suggested by formula (1.2) for M−
4 (N); see

also Figure 8 for graphics related to Mn,4.
We do not hope to get a closed formula for Mn,5. However, it is not hard to

compute these numbers using generalized interval exchanges and Rauzy induction.
We were able to compute 400 of these numbers represented in the second line of
the above table and the list starts with

0, 0, 0, 16, 40, 168, 280, 544, 1152, 1560, 2640, 3504, 5824, 6552, 12000,
11456, 19176, 18648, 31312, 30640, 50064, 43736, 71392, 62304, 104800,
87672, 141048, 121968, 191632, 154200, 255192, 209536, . . .

Figure 9 represents first 400 terms of this sequence. It agrees with the value

P1

(
Q(1,−15)

)
=

16

3π4

predicted by formula (1.2) for M−
5 (N).
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0.3

(a) Normalized number of mean-

ders
M5,n

n4
with exactly n arcs

100 200 300 400

0.01

0.02

0.03

0.04

0.05

(b) Normalized number of mean-

ders

∑N

n=6 M5,n

N5
with at most N

arcs (blue points) and the asymp-
totic value 16

3π4 (red line).

Figure 9. The number Mn,5 of meanders whose associated pil-
lowcase covers belongs to Q(1,−15).

We now present some numerical evidence for the theoretical prediction of The-
orem 4. There are three pairs of trees with 6 univalent vertices in total. For these
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three pairs of trees Theorem 4 gives

Pconnected( , ) = P1

(
Q(2,−16)

)
=

45

2π4
∼ 0.231

Pconnected( , ) = Pconnected( , ) = P1

(
Q(12,−16)

)
=

280

π6
∼ 0.291 .

These limit ratios are represented by horizontal lines dominating the plots of
exact values of Pconnected(Ttop, Tbottom;N) in Figure 10. We denote by T[], T[1],
T[2] and T[1,1] respectively the unique trees with no internal vertices, with a single
internal vertex of valence 3, with a single internal vertex of valence 4 and with two
internal vertices of valence 3.

0 10 20 30 40 50 60 70 80

0.25
0.3

0.35
0.4

0.45
0.5

(a) Trees T[1,1], T[ ].

0 10 20 30 40 50 60 70 80

0.2

0.25

0.3

0.35

0.4

(b) Trees T[1], T[1].

10 20 30 40 50 60 70 80

0.05

0.1

0.15

0.2

(c) Trees T[2], T[ ].

Figure 10. Proportion Pconnected(Ttop, Tbottom;N) of pairs of arcs
systems which lead to meanders among all pairs of arc systems with
at most N arcs. We consider all pairs of trees (Ttop, Tbottom) with
6 leaves.
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