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GORENSTEIN SIMPLICES WITH A GIVEN δ -POLYNOMIAL

TAKAYUKI HIBI, AKIYOSHI TSUCHIYA, AND KOUTAROU YOSHIDA

ABSTRACT. It is fashionable among the study on convex polytopes to classify the lat-

tice polytopes with a given δ -polynomial. As a basic challenges toward the classification

problem, we achieve the study on classifying lattice simplices with a given δ -polynomial

of the form 1+ tk+1 + · · ·+ t(v−1)(k+1), where k ≥ 0 and v > 0 are integers. The lattice

polytope with the above δ -polynomial is necessarily Gorenstein. A complete classifica-

tion is already known, when v is prime. In the present paper, a complete classification

will be performed, when v is either p2 or pq, where p and q are prime integers with

p 6= q. Moreover, we focus on the number of Gorenstein simplices, up to unimodular

equivalence, with the expected δ -polynomial.

INTRODUCTION

It is fashionable among the study on convex polytopes to classify the lattice polytopes

with a given δ -polynomial. A lattice polytope is a convex polytope P ⊂ R
d all of whose

vertices have integer coordinates. Recall from [4, Part II] what the δ -polynomial of P is.

Let P ⊂ Rd be a lattice polytope of dimension d and define δ (P, t) by the formula

(1− t)d+1δ (P, t) = 1+
∞

∑
n=1

|nP ∩Z
d |tn,

where nP = {na : a ∈ P}, the dilated polytopes of P . It follows that δ (P, t) is a

polynomial in t of degree at most d. We say that δ (P, t) is the δ -polynomial of P .

Let δ (P, t) = δ0 + δ1t + · · ·+ δdtd. Then δ0 = 1, δ1 = |P ∩Z
d | − (d + 1) and δd =

|(P \∂P)∩Zd |, where ∂P is the boundary of P , and each δi ≥ 0. When δd 6= 0, one

has δi ≥ δ1 for 1 ≤ i ≤ d. Moreover, δ (P,1) = ∑
d
i=0 δi coincides with the normalized

volume Vol(P) of P .

A lattice polytope P ⊂Rd of dimension d is called reflexive if the origin of Rd belongs

to the interior of P and the dual polytope ([4, pp. 103–104]) of P is again a lattice

polytope. A lattice polytope P ⊂ R
d of dimension d is called Gorenstein of index r

if rP is unimodularly equivalent to a reflexive polytope. It is known that P ⊂ Rd is

Gorenstein if and only if the δ -polynomial δ (P, t) = δ0 +δ1t + · · ·+δst
s, where δs 6= 0

is symmetric, i.e., δi = δs−i for each 0 ≤ i ≤ ⌊s/2⌋.

Gorenstein polytopes are of interest in commutative algebra, mirror symmetry and

tropical geometry ([1, 7]). In each dimension, there exist only finite many Gorenstein

polytopes up to unimodular equivalence ([9]) and, in addition, Gorenstein polytopes are
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completely classified up to dimension 4 ([8]). Recently certain classification results of

higher-dimensional Gorenstein polytopes are obtained by [3, 6, 12].

The final goal of one of our research projects is to classify the Gorenstein simplices

with given δ -polynomials. In [12, Corollary 2.4] it is shown that if ∆ is a Gorenstein

simplex whose normalized volume Vol(∆) is a prime number p, then its δ -polynomial is

of the form

δ (∆, t) = 1+ tk+1 + · · ·+ t(p−1)(k+1),

where k ≥ 0 is an integer (Proposition 3.1). Once the fact became known, we cannot

escape from the temptation to achieve the study on the following problem:

Problem 0.1. Given integers k ≥ 0 and v > 0, classify the Gorenstein simplices with the

δ -polynomial 1+ tk+1 + · · ·+ t(v−1)(k+1).

A lattice simplex is called empty if it possesses no lattice point except for its vertices. A

lattice simplex ∆ with δ (∆, t) = δ0+δ1t+ · · · is empty if and only if δ1 = 0. In particular,

in Problem 0.1, when k > 0, its target is Gorenstein empty simplices.

The present paper is organized as follows. Section 1 consists of the review of funda-

mental materials on lattice simplices and the collection of indispensable lemmata. We

devote Section 2 to discuss a lower bound on the dimensions of Gorenstein simplices

with a given δ -polynomial of Problem 0.1 and, in addition, to classify the Gorenstein

simplices when the lower bound is hold (Theorem 2.1). The highlight of this paper is

Section 3, where a complete answer of Problem 0.1 when v is either p2 or pq, where p

and q are distinct prime integers (Theorems 3.4 and 3.5). Finally, in Section 4, we will

discuss on the number of Gorenstein simplices, up to unimodular equivalence, with a

given δ -polynomial of Problem 0.1.

1. PRELIMINARIES

In this section, we recall basic materials on lattice simplices and we prepare essential

lemmata in this paper.

At first, we introduce the associated finite abelian groups of lattice simplices. For a

lattice simplex ∆ ⊂ Rd of dimension d whose vertices are v0, . . . ,vd ∈ Zd set

Λ∆ = {(λ0, . . . ,λd) ∈ (R/Z)d+1 :
d

∑
i=0

λi(vi,1) ∈ Z
d+1}.

The collection Λ∆ forms a finite abelian group with addition defined as follows: For

(λ0, . . . ,λd)∈ (R/Z)d+1 and (λ ′
0, . . . ,λ

′
d)∈ (R/Z)d+1, (λ0, . . . ,λd)+(λ ′

0, . . . ,λ
′
d)= (λ0+

λ ′
0, . . . ,λd +λ ′

d) ∈ (R/Z)d+1. We denote the unit of Λ∆ by 0, and the inverse of x by −x,

and also denote x+ · · ·+x
︸ ︷︷ ︸

j

by jx for an integer j > 0 and x ∈ Λ∆. For x = (x0, . . . ,xd) ∈

Λ∆, we set ht(x) = ∑
d
i=0 xi ∈ Z and ord(x) = min{ℓ ∈ Z>0 : ℓx = 0}.

It is well known that the δ -polynomial of the lattice simplex ∆ can be computed as

follows:

Lemma 1.1. Let ∆ be a lattice simplex of dimension d whose δ -polynomial equals 1+
δ1t + · · ·+δdtd. Then for each i, we have δi = ♯{λ ∈ Λ∆ : ht(λ ) = i}.
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Recall that a matrix A ∈ Zd×d is unimodular if det(A)= ±1. For lattice polytopes

P,Q ⊂ Rd of dimension d, P and Q are called unimodularly equivalent if there exist a

unimodular matrix U ∈ Zd×d and an integral vector w ∈ Rd such that Q = fU (P)+w,

where fU is the linear transformation in Rd defined by U , i.e., fU (v) = vU for all v ∈Rd .

In [2], it is shown that there is a bijection between unimodular equivalence classes of d-

dimensional lattice simplices with a chosen ordering of their vertices and finite subgroups

of (R/Z)d+1 such that the sum of all entries of each element is an integer. In particular,

two lattice simplices ∆ and ∆′ are unimodularly equivalent if and only if there exists an

ordering of their vertices such that Λ∆ = Λ∆′ .

For a lattice polytope P ⊂ Rd of dimension d, the lattice pyramid over P is defined

by conv(P×{0} ,(0, . . . ,0,1))⊂Rd+1. We denote this by Pyr(P). We can characterize

lattice pyramids in terms of the associated finite abelian groups by using the following

lemma.

Lemma 1.2 ([10, Lemma 12]). Let ∆ ⊂Rd be a lattice simplex of dimension d. Then ∆ is

a lattice pyramid if and only if there is i ∈ {0, . . . ,d} such that λi = 0 for all (λ0, . . . ,λd)∈
Λ∆.

For a lattice polytope P ⊂R
d of dimension d, one has δ (P, t)= δ (Pyr(P), t). There-

fore, it is essential that we characterize polytopes which are not lattice pyramids over any

lower-dimensional lattice simplex.

Finally, we give some lemmata. These lemmata are characterizations of some Goren-

stein simlpices in terms of the associated finite abelian groups.

Lemma 1.3 ([12, Theorem 3.2]). Let p be a prime integer and ∆ ⊂ Rd a d-dimensional

lattice simplex whose normalized volume equals p2. Suppose that ∆ is not a lattice pyra-

mid over any lower-dimensional lattice simplex. Then ∆ is Gorenstein of index r if and

only if one of the followings is satisfied:

(1) There exists an integer s with 0≤ s≤ d−1 such that rp2−1= (d−s)+ ps and Λ∆

is generated by



1/p, . . . ,1/p
︸ ︷︷ ︸

s

,1/p2, . . . ,1/p2

︸ ︷︷ ︸

d−s+1



 for some ordering of the vertices

of ∆;

(2) d = rp− 1 and there exist integers 0 ≤ a0, . . . ,ad−2 ≤ p− 1 with p | (a0 + · · ·+
ad−2−1) such that Λ∆ is generated by ((a0 +1)/p, . . . ,(ad−2 +1)/p,0,1/p) and

((p−a0)/p, . . . ,(p−ad−2)/p,1/p,0) for some ordering of the vertices of ∆.

Lemma 1.4 ([12, Theorem 3.3]). Let p and q be prime integers with p 6= q and ∆ ⊂ Rd

a d-dimensional lattice simplex whose normalized volume equals pq. Suppose that ∆ is

not a lattice pyramid over any lower-dimensional lattice simplex. Then ∆ is Gorenstein

of index r if and only if there exist nonnegative integers s1,s2,s3 with s1 + s2 + s3 = d +1

such that the following conditions are satisfied:

(1) rpq = s1q+ s2p+ s3;
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(2) Λ∆ is generated by



1/p, . . . ,1/p
︸ ︷︷ ︸

s1

,1/q, . . . ,1/q
︸ ︷︷ ︸

s2

,1/(pq), . . . ,1/(pq)
︸ ︷︷ ︸

s3



 for some

ordering of the vertices of ∆.

2. EXISTENCE

In this section, we prove that for integers k ≥ 0 and v > 0, there exists a lattice simplex

with the δ -polynomial 1+ tk+1 + t2(k+1)+ · · ·+ t(v−1)(k+1). Moreover, we give a lower

bound and an upper bound on the dimension of such a lattice simplex which is not a lattice

pyramid. In fact, we obtain the following theorem.

Theorem 2.1. Let v be a positive integer and k a nonnegative integer. Then there exists

a lattice simplex ∆ ⊂ Rd of dimension d whose δ -polynomial is 1+ tk+1 + t2(k+1)+ · · ·+
t(v−1)(k+1). Furthermore, if ∆ is not a lattice pyramid over any lower-dimensional lattice

simplex, then one has v(k + 1)− 1 ≤ d ≤ 4(v− 1)(k + 1)− 2. In particular, the lower

bound holds if and only if Λ∆ is generated by (1/v, . . . ,1/v).

Proof. We assume that there exists a lattice simplex ∆ ⊂ Rd of dimension d whose δ -

polynomial is 1+tk+1+t2(k+1)+ · · ·+t(v−1)(k+1). Let x= (x0, . . . ,xd)∈Λ∆ be an element

such that ht(x) = (v−1)(k+1). Then we have that ht(−x)≥ k+1. Hence since ht(x)+
ht(−x) ≤ d +1, we obtain d ≥ v(k+1)−1. From [10, Theorem 7], if ∆ is not a lattice

pyramid over any lower-dimensional lattice simplex, then one has d ≤ 4(v−1)(k+1)−2.

Now, we assume that d = v(k + 1)− 1. Since for each i, one has 0 ≤ xi ≤ (v− 1)/v,

we obtain ht(x) ≤ (d + 1)(v− 1)/v = (v− 1)(k+ 1). Hence for each i, it follows that

xi = (v−1)/v. Therefore Λ∆ is generated by (1/v, . . . ,1/v). Then it is easy to show that

δ (∆, t) = 1+ tk+1 + t2(k+1)+ · · ·+ t(v−1)(k+1), as desired. �

3. CLASSIFICATION

In this section, we give a complete ansewer of 0.1 for the case that v is the product of

two prime integers. First, we consider the case where v is a prime integer. The following

proposition motivates us to consider Problem 0.1.

Proposition 3.1 ([12, Corollary 2.4]). Let p be a prime integer and ∆ ⊂ R
d a Gorenstein

simplex of index r whose normalized volume equals p. Suppose that ∆ is not a lattice

pyramid over any lower-dimensional lattice simplex. Then d = rp−1 and Λ∆ is generated

by (1/p, . . . ,1/p). Furthermore, one has δ (∆, t) = 1+ tr + t2r + · · ·+ t(p−1)r.

This theorem says that for each integers k ≥ 0 and v > 0, if v is a prime integer,

then there exists just one lattice simplex up to unimodular equivalence such that its δ -

polynomial equals 1+ tk+1 + t2(k+1)+ · · ·+ t(v−1)(k+1). By the following proposition, we

know that if v is not a prime integer, then there exist at least two such simplices up to

unimodular equivalence.
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Proposition 3.2. Given integers k ≥ 0, v > 0 and a proper divisor u of v, let ∆ ⊂ Rd be a

lattice simplex of dimension d such that Λ∆ is generated by



u/v, . . . ,u/v
︸ ︷︷ ︸

(v−1)(k+1)

,1/v, . . . ,1/v
︸ ︷︷ ︸

u(k+1)




 ∈ (R/Z)(v+u−1)(k+1).

Then one has δ (∆, t) = 1+ tk+1 + t2(k+1)+ · · ·+ t(v−1)(k+1).

Proof. Set x=




u/v, . . . ,u/v
︸ ︷︷ ︸

(v−1)(k+1)

,1/v, . . . ,1/v
︸ ︷︷ ︸

u(k+1)




 and y=(v/u)x=




 0, . . . ,0

︸ ︷︷ ︸

(v−1)(k+1)

,1/u, . . . ,1/u
︸ ︷︷ ︸

u(k+1)




.

Then we obtain ht(x) = u(k+1) and ht(y) = k+1. Moreover, it follows that

Λ∆ = {ix+ jy ∈ (R/Z)d+1 : i = 0, . . . ,v/u−1, j = 0, . . . ,u−1}.

For any integers 0 ≤ i ≤ v/u−1 and 0 ≤ j ≤ u−1, one has

ht(ix+ jy) = iht(x)+ jht(y) = (iu+ j)(k+1).

Hence, it follows from Lemma 1.1 that δ (∆, t) = 1+ tk+1 + t2(k+1)+ · · ·+ t(v−1)(k+1), as

desired. �

Furthermore, the following proposition can immediately be obtained by Lemma 1.1.

Proposition 3.3. Given integers v1,v2 > 0 and k ≥ 0, let ∆1 ⊂Rd1 and ∆2 ⊂Rd2 be lattice

simplices of dimension d1 and d2 such that δ (∆1, t) = 1+ tk+1+ t2(k+1)+ · · ·+ t(v1−1)(k+1)

and δ (∆2, t) = 1+ tv1(k+1)+ t2v1(k+1)+ · · ·+ tv1(v2−1)(k+1). Let ∆ ⊂ Rd1+d2+1 be a lattice

simplex of dimension d1 +d2 +1 such that

Λ∆ = {(x,y) ∈ (R/Z)d1+d2+2 : x ∈ Λ∆1
,y ∈ Λ∆2

}.

Then one has δ (∆, t) = 1+ tk+1 + t2(k+1)+ · · ·+ t(v1v2−1)(k+1). In particular, if neither ∆1

nor ∆2 is not a lattice pyramid, then ∆ is not a lattice pyramid.

Now, we consider Problem 0.1 for the case that v is p2 or pq, where p and q are prime

integers with p 6= q. The following theorems are the main results of the present paper.

Theorem 3.4. Let p be a prime integer and k a nonnegative integer, and let ∆ ⊂ Rd be a

lattice simplex of dimension d whose δ -poynomial is 1+tk+1+t2(k+1)+ · · ·+t(p2−1)(k+1).

Suppose that ∆ is not a lattice pyramid over any lower-dimensional lattice simplex. Then

one of the followings is satisfied:

(1) d = p2(k+1)−1;

(2) d = p2(k+1)+(p−1)(k+1)−1;

(3) d = p2(k+1)+ p(k+1)−1.

Moreover, in each case, a system of generators of the finite abelian group Λ∆ is the set

of row vectors of the matrix which can be written up to permutation of the columns as

follows:

(1) (1/p2 · · · 1/p2) ∈ (R/Z)1×p2(k+1);
5



(2)




1/p · · · 1/p
︸ ︷︷ ︸

(p2−1)(k+1)

1/p2 · · · 1/p2

︸ ︷︷ ︸

p(k+1)




 ∈ (R/Z)1×(p2+p−1)(k+1);

(3)





1/p · · · 1/p 0 · · · 0

0 · · · 0
︸ ︷︷ ︸

p(k+1)

1/p · · · 1/p
︸ ︷︷ ︸

p2(k+1)



 ∈ (R/Z)2×p(p+1)(k+1).

Theorem 3.5. Let p and q be prime integers with p 6= q and k a nonnegative integer, and

let ∆ ⊂ Rd be a lattice simplex of dimension d whose δ -poynomial is 1+ tk+1 + t2(k+1)+
· · ·+ t(pq−1)(k+1). Suppose that ∆ is not a lattice pyramid over any lower-dimensional

lattice simplex. Then one of the followings is satisfied:

(1) d = pq(k+1)−1;

(2) d = pq(k+1)+ p(k+1)−1;

(3) d = pq(k+1)+q(k+1)−1;

(4) d = pq(k+1)+(p−1)(k+1)−1;

(5) d = pq(k+1)+(q−1)(k+1)−1.

Moreover, in each case, the finite abelian group Λ∆ is generated by one element which

can be written up to permutation of the coordinates as follows:

(1) (1/(pq), . . . ,1/(pq)) ∈ (R/Z)pq(k+1);

(2)




1/p, . . . ,1/p
︸ ︷︷ ︸

p(k+1)

,1/q, . . . ,1/q
︸ ︷︷ ︸

pq(k+1)




 ∈ (R/Z)p(q+1)(k+1);

(3)




1/q, . . . ,1/q
︸ ︷︷ ︸

q(k+1)

,1/p, . . . ,1/p
︸ ︷︷ ︸

pq(k+1)




 ∈ (R/Z)(p+1)q(k+1);

(4)




1/q, . . . ,1/q
︸ ︷︷ ︸

(pq−1)(k+1)

,1/(pq), . . . ,1/(pq)
︸ ︷︷ ︸

p(k+1)




 ∈ (R/Z)(pq+p−1)(k+1);

(5)




1/p, . . . ,1/p
︸ ︷︷ ︸

(pq−1)(k+1)

,1/(pq), . . . ,1/(pq)
︸ ︷︷ ︸

q(k+1)




 ∈ (R/Z)(pq+q−1)(k+1).

Remark 3.6. The lattice simplices in Theorems 3.4 and 3.5 can be constructed by Propo-

sitions 3.2 and 3.3.

Before proving these theorems, we give the vertex representations of Gorenstein sim-

plices in Theorems 3.4 and 3.5. Given a sequence A = (a1, . . . ,ad) of integers, let ∆(A)⊂
6



Rd be the convex hull of the origin of Rd and all row vectors of the following matrix:







1
. . .

1

ad −a1 · · · ad −ad−1 ad







∈ Z
d×d ,

where the rest entries are all 0. Given sequences B = (b1, . . . ,bs) and C = (c1, . . . ,cd) of

integers with 1 ≤ s < d, let ∆(B,C) ⊂ Rd be the convex hull of the origin of Rd and all

row vectors of the following matrix:
















1
. . .

1

bs −b1 · · · bs −bs−1 bs

1
. . .

1

cd − c1 · · · · · · · · · · · · · · · cd − cd−1 cd
















∈ Z
d×d ,

where the rest entries are all 0.

Corollary 3.7. Let p be a prime integer and k a nonnegative integer, and let ∆ ⊂ Rd be a

lattice simplex of dimension d whose δ -poynomial is 1+tk+1+t2(k+1)+ · · ·+t(p2−1)(k+1).

Suppose that ∆ is not a lattice pyramid over any lower-dimensional lattice simplex. Then

∆ is unimodularly equivalent to one of ∆(A1), ∆(A2) and ∆(B,C), where

(1) A1 = ( 1, . . . ,1
︸ ︷︷ ︸

p2(k+1)−2

, p2);

(2) A2 =




 1, . . . ,1

︸ ︷︷ ︸

p(k+1)−1

, p, . . . , p
︸ ︷︷ ︸

(p2−1)(k+1)−1

, p2




;

(3) B =




 1, . . . ,1

︸ ︷︷ ︸

p(k+1)−1

, p




, C =




p, . . . , p
︸ ︷︷ ︸

p(k+1)

, 1, . . . ,1
︸ ︷︷ ︸

p2(k+1)−2

, p




.

Corollary 3.8. Let p and q be prime integers with p 6= q and k a nonnegative integer, and

let ∆ ⊂ R
d be a lattice simplex of dimension d whose δ -poynomial is 1+ tk+1 + t2(k+1)+

· · ·+ t(pq−1)(k+1). Suppose that ∆ is not a lattice pyramid over any lower-dimensional lat-

tice simplex. Then ∆ is unimodularly equivalent to one of ∆(A1), ∆(A2), ∆(A3), ∆(B1,C1)
and ∆(B2,C2), where

(1) A1 = ( 1, . . . ,1
︸ ︷︷ ︸

pq(k+1)−2

, pq);
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(2) B1 =




 1, . . . ,1

︸ ︷︷ ︸

p(k+1)−1

, p




, C1 =




q, . . . ,q
︸ ︷︷ ︸

p(k+1)

, 1, . . . ,1
︸ ︷︷ ︸

pq(k+1)−2

,q




;

(3) B2 =




1, . . . ,1

︸ ︷︷ ︸

q(k+1)−1

,q




, C2 =




p, . . . , p
︸ ︷︷ ︸

q(k+1)

, 1, . . . ,1
︸ ︷︷ ︸

pq(k+1)−2

, p




;

(4) A2 =




 1, . . . ,1

︸ ︷︷ ︸

p(k+1)−1

, p, . . . , p
︸ ︷︷ ︸

(pq−1)(k+1)−1

, pq




;

(5) A3 =




1, . . . ,1

︸ ︷︷ ︸

q(k+1)−1

, q, . . . ,q
︸ ︷︷ ︸

(pq−1)(k+1)−1

, pq




.

In order to prove Theorems 3.4 and 3.5, we use the following lemma.

Lemma 3.9. Let v be a positive integer and k a nonnegative integer, and let ∆ ⊂ R
d be

a lattice simplex of dimension d whose δ -polynomial equals 1 + tk+1 + t2(k+1) + · · ·+
t(v−1)(k+1). Assume that x ∈ (R/Z)d+1 is an element of Λ∆ such that ht(x) = k+1 and set

m= ord(x). Then by reordering the coordinates, we obtain x=



1/m, . . . ,1/m
︸ ︷︷ ︸

s

,0, . . . ,0
︸ ︷︷ ︸

d−s+1





for some positive integer s.

Proof. Since m = ord(x), x must be of a form (k1/m, . . . ,ks/m,0, . . . ,0) for a positive

integer s and integers 1 ≤ k1, . . . ,ks ≤ m−1 by reordering the coordinates. If there exists

an integer ki ≥ 2 for some 1 ≤ i ≤ s, then one has ki(m−1)/m ≥ 1. Therefore, we obtain

ht((m− 1)x) < (m− 1)ht(x) = (m− 1)(k+ 1). Since m = ord(x), (m− 1)x is different

from 0,x, . . . ,(m− 2)x. We remark that for any a, b ∈ (R/Z)d+1, one has ht(a+b) ≤
ht(a) + ht(b). This fact and the supposed δ -polynomial imply that ht(tx) = tht(x) =
t(k+1) for any 1 ≤ t ≤ m−1. This is a contradiction, as desired. �

Finally, we prove Theorem 3.4 and Theorem 3.5.

Proof of Theorem 3.4. By Lemma 1.3, ∆ is unimodularly equivalent to either ∆1 or ∆2,

where ∆1 and ∆2 are lattice simplices such that each system of generators of Λ∆1
and Λ∆2

is the set of vectors of matrix as follows:

(i)



1/p · · · 1/p
︸ ︷︷ ︸

d−s+1

1/p2 . . . 1/p2

︸ ︷︷ ︸

s



 ∈ (R/Z)1×(d+1);

(ii)

(
(a0 +1)/p · · · (ad−2 +1)/p 0 1/p

(p−a0)/p · · · (p−ad−2)/p 1/p 0

)

∈ (R/Z)2×(d+1),

where s is a positive integer and 0 ≤ a0, . . . ,ad−2 ≤ p−1 are integers.

At first, we assume that ∆ is unimodularly equivalent to ∆1. If s = d +1, then one has

(d +1)/p2 = k+1, hence, d = p2(k+1)−1. This is the case (1). Now, we suppose that
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s 6= d+1. Let x be an element of Λ∆1
with ht(x)= k+1. Then by Lemma 3.9, one has x=



0, . . . ,0
︸ ︷︷ ︸

d−s+1

,1/p, . . . ,1/p
︸ ︷︷ ︸

s



, hence s = p(k+1). Set y =



1/p, . . . ,1/p
︸ ︷︷ ︸

d−s+1

,1/p2, . . . ,1/p2

︸ ︷︷ ︸

s



.

Since for any 1 ≤ m ≤ p− 1, ht(mx) = m(k+ 1), we have ht(y) = p(k + 1). Hence it

follows that d − s+1 = p2(k+1)− (k+1), namely, d = p2(k+1)+(p−1)(k+1)−1.

This is the case (2).

Next, we assume that ∆ is unimodularly equivalent to ∆2. By Lemma 3.9, it follows

that for any 0 ≤ i ≤ d − 2, ai ∈ {0, p−1}. Hence by reordering the coordinates of Λ∆2
,

we can assume that Λ∆2
is generated by

x1 =



1/p, . . . ,1/p
︸ ︷︷ ︸

s

,0, . . . ,0
︸ ︷︷ ︸

d−s+1



 ,x2 =



0, . . . ,0
︸ ︷︷ ︸

s

,1/p, . . . ,1/p
︸ ︷︷ ︸

d−s+1



 ,

where 1 ≤ s ≤ ⌊(d +1)/2⌋. Then since ht(x1) = k+1, one has s = p(k+1). Moreover,

since ht(x2) = p(k+ 1), we have d − s+ 1 = p2(k+ 1), namely, d = p2(k+ 1)+ p(k+
1)−1. Therefore, This is the case (3).

Conversely, in each case, it is easy to show that δ (∆, t) = 1+ tk+1 + t2(k+1) + · · ·+

t(p2−1)(k+1), as desired. �

Proof of Theorem 3.5. By Lemma 1.4, we can suppose that Λ∆ is generated by

x =



1/p, . . . ,1/p
︸ ︷︷ ︸

s1

,1/q, . . . ,1/q
︸ ︷︷ ︸

s2

,1/(pq), . . . ,1/(pq)
︸ ︷︷ ︸

s3



 ,

where s1+s2+s3 = d+1 with nonnegative integers s1,s2,s3. If s1 = s2 = 0, since ht(x) =
k+1, one has d = pq(k+1)−1. This is the case (1). If s3 = 0, we can assume that Λ∆ is

generated by

x1 =



1/p, . . . ,1/p
︸ ︷︷ ︸

s1

,0, . . . ,0
︸ ︷︷ ︸

s2



 ,x2 =



0, . . . ,0
︸ ︷︷ ︸

s1

,1/q, . . . ,1/q
︸ ︷︷ ︸

s2



 ,

with s1,s2 > 0. Then it follows that ht(x1) = k + 1 and ht(x2) = p(k + 1), or ht(x1) =
q(k+1) and ht(x2) = k+1. Assume that ht(x1) = k+1 and ht(x2) = p(k+1). Then one

has s1 = p(k+1) and s2 = pq(k+1). Hence since d = pq(k+1)+ p(k+1)−1, this is

the case (2). Similarly, we can show the case (3).

Next we suppose that s1,s2,s3 > 0. Let a be an element of Λ∆ such that ht(a) = k+
1. By Lemma 3.9, we know that ord(a) 6= pq. Hence, it follows that ord(a) equals

p or q. Now we assume that ord(a) = p. By Lemma 3.9 again, a must be of a form


1/p, . . . ,1/p
︸ ︷︷ ︸

s1

,0, . . . ,0
︸ ︷︷ ︸

s2

,1/p, . . . ,1/p
︸ ︷︷ ︸

s3



. Let b = (b1, . . . ,bd+1) be an element of Λ∆ such

that ht(b) = p(k + 1). If there exists an index 1 ≤ i ≤ s1 such that bi = n/p with an

integer 1 ≤ n ≤ p−1, then ht(b+(p−1)a) < ht(b)+ (p−1)ht(a). Since b+(p−1)a
is different from 0,a,2a, . . . ,(p− 1)a,b,b+ a, . . . ,b+ (p− 2)a, this contradicts to that
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δ∆(t) = 1+ tk+1 + t2(k+1)+ · · ·+ t(pq−1)(k+1). Hence one obtains bi = 0 for any 1 ≤ i ≤

s1. Therefore, we can assume that b =



0, . . . ,0
︸ ︷︷ ︸

s1

, ℓ/q, . . . , ℓ/q
︸ ︷︷ ︸

s2

,m/q, . . . ,m/q
︸ ︷︷ ︸

s3



 for some

positive integers ℓ,m. Then whenever (g1,h1) 6= (g2,h2) with 0 ≤ g1,g2 ≤ p − 1 and

0 ≤ h1,h2 ≤ q− 1, g1a+ h1b and g2a+ h2b are different elements of Λ∆. Hence since

δ∆(t) = 1+ tk+1 + t2(k+1)+ · · ·+ t(pq−1)(k+1), one has

ht(ga+hb) = ght(a)+hht(b)

for any 0 ≤ g ≤ p− 1 and 0 ≤ h ≤ q− 1. This implies that ℓ = m = 1. However since

(p−1)/p+(q−1)/q > 1, we have ht((p−1)a+(q−1)b)< (p−1)ht(a)+(q−1)ht(b),
a contradiction. Therefore, it does not follow s1,s2,s3 > 0.

Finally, we assume that s1 = 0 and s2 > 0. Then one has ht(qx) = k+1, hence, s3 =
p(k+1). Moreover, since ht(x) = p(k+1), we obtain s2 = (pq−1)(k+1). Therefore,

this is the case (4). Similarly, we can show the case (5).

Conversely, in each case, it is easy to see that δ (∆, t) = 1 + tk+1 + t2(k+1) + · · ·+

t(pq−1)(k+1), as desired. �

4. THE NUMBER OF GORENSTEIN SIMPLICES

In [5, Section 4], we asked how many reflexive polytopes which have the same δ -

polynomial exist. Analogy to this question, in this section, we consider how many Goren-

stein simplices which have a given δ -polynomial of Problem 0.1.

Given integers v ≥ 1 and k ≥ 0, let N(v,k) denote the number of Gorenstein simplices,

up to unimodular equivalence, which are not lattice pyramids over any lower-dimensional

lattice simplex and whose δ -polynomials equal 1+ tk+1 + t2(k+1)+ · · ·+ t(v−1)(k+1). For

example, from Proposition 3.1, N(p,k) = 1 for any prime integer p. Moreover, from

Theorems 3.4 and 3.5, N(p2,k) = 3 and N(pq,k) = 5 for any distinct prime integers p

and q. However, in other case, it is hard to determine N(v,k). Therefore, our aim of this

section is to construct more examples of Gorenstein simplices of Problem 0.1 and to give

a lower bound on N(v,k).
The following theorem gives us more examples of Gorenstein simplces of Problem 0.1.

Theorem 4.1. Given a positive integer v, let ∆ ⊂ Rd be a lattice simplex of dimension d

such that Λ∆ is generated by


1/v1, . . . ,1/v1
︸ ︷︷ ︸

s1

,1/v2, . . . ,1/v2
︸ ︷︷ ︸

s2

, . . . ,1/vt , . . . ,1/vt
︸ ︷︷ ︸

st



 ∈ (R/Z)d+1,

where 1 < v1 < · · ·< vt = v and for any 1 ≤ i ≤ t −1, vi | vi+1 and s1, . . . ,st are positive

integers. Then δ (∆, t) = 1+ tk+1 + t2(k+1)+ · · ·+ t(v−1)(k+1) with a nonnegative integer k

if and only if

si =







( vt

vi−1
−

vt

vi+1

)

(k+1), 1 ≤ i ≤ t −1

vt

vt−1
(k+1), i = t,
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where v0 = 1.

Proof. Let

x0 =



1/v1, . . . ,1/v1
︸ ︷︷ ︸

s1

,1/v2, . . . ,1/v2
︸ ︷︷ ︸

s2

, . . . ,1/vt, . . . ,1/vt
︸ ︷︷ ︸

st



 ∈ (R/Z)d+1,

and for i = 1, . . . , t −1, we set xi = vix0. Then it follows that

Λ∆ =

{
t−1

∑
i=0

cixi : ci ∈ Z≥0,0 ≤ ci ≤ vi+1/vi −1 for i = 0, . . . , t −1

}

.

Moreover, we obtain ht(xi) = ∑
t−i
j=1

vi

vi+ j
si+ j for i = 0, . . . , t −1. Since

ht(xi) = ht
( vi

vi−1
xi−1

)

=
vi

vi−1
ht(xi−1)− si

for any 1 ≤ i ≤ t − 1, it follows that for any 1 ≤ i ≤ t − 1, si =
( vt

vi−1
−

vt

vi+1

)

(k + 1)

and st =
vt

vt−1
(k + 1) if and only if for any 0 ≤ i ≤ t − 1, ht(xi) =

vt

vi+1
(k+ 1). Hence

we should prove that δ (∆, t) = 1+ tk+1 + t2(k+1)+ · · ·+ t(v−1)(k+1) if and only if for any

0 ≤ i ≤ t −1, ht(xi) =
vt

vi+1
(k+1).

At first, we assume that δ (∆, t) = 1+ tk+1 + t2(k+1)+ · · ·+ t(v−1)(k+1). By Lemma 3.9,

one has ht(xt−1) = k+ 1. Suppose that for any n ≤ i ≤ t − 1, ht(xi) =
vt

vi+1
(k+ 1) with

an integer 1 ≤ n ≤ t −1. Then since ht(∑t−1
i=n(vi+1/vi −1)xi) = (vt/vn −1)(k+1), there

exists an integer m with 0 ≤ m ≤ n− 1 such that ht(xm) =
vt

vn

(k+ 1). Now, we assume

that m < n−1. Set

Λ′ =

{

cmxm +
t−1

∑
i=n

cixi : 0 ≤ ci ≤ vi+1/vi −1 for i = m,n,n+1, . . . , t −1

}

.

Then one has {ht(x) : x ∈ Λ′}= { j(k+1) : j = 0, . . . ,(vm+1vt)/(vmvn)−1}. However,

ht(xm+1) = ht
(vm+1

vm
xm

)

<
vm+1

vm
ht(xm) =

(vm+1vt

vmvn

)

(k+1).

and xm+1 is not in Λ′, a contradiction. Hence we obtain ht(xi−1) =
vt

vi
(k + 1) for any

0 ≤ i ≤ t −1.

Conversely, we assume that for any 0 ≤ i ≤ t −1, ht(xi) =
vt

vi+1
(k+1). Since for any

ci with 0 ≤ ci ≤ vi+1/vi − 1, ht(∑t−1
i=0 cixi) = ∑

t−1
i=0 ciht(xi), one has δ (∆, t) = 1+ tk+1 +

t2(k+1)+ · · ·+ t(v−1)(k+1), as desired. �

By Theorems 4.1 and [12, Theorem 2.2], we can answer to Problem 0.1 when v is a

power of a prime integer and the associated finite abelian group is cyclic, namely, it is

generated by one element.
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Corollary 4.2. Let p be a prime integer, ℓ a positive integer and k a nonnegative integer,

and let ∆ ⊂ Rd be a lattice simplex of dimension d such that Λ∆ is cyclic and δ (∆, t) =

1+ tk+1 + t2(k+1)+ · · ·+ t(pℓ−1)(k+1). Suppose that ∆ is not a lattice pyramid over any

lower-dimensional lattice simplex. Then there exist positive integers 0 < ℓ1 < · · ·< ℓt = ℓ
and s1, . . . ,st such that the following conditions are satisfied:

• It follows that

si =

{

(pℓ−ℓi−1 − pℓ−ℓi+1)(k+1), 1 ≤ i ≤ t −1

pℓ−ℓt−1(k+1), i = t,

where ℓ0 = 0;

• Λ∆ is generated by


1/pℓ1, . . . ,1/pℓ1

︸ ︷︷ ︸

s1

,1/pℓ2, . . . ,1/pℓ2

︸ ︷︷ ︸

s2

, . . . ,1/pℓt , . . . ,1/pℓt

︸ ︷︷ ︸

st



 ∈ (R/Z)d+1

for some ordering of the vertices of ∆.

The lattice simplices in Theorems 3.4 and 3.5 can be constructed by Propositions 3.2

and 3.3. We conjecture the following.

Conjecture 4.3. Given integers v ≥ 1 and k ≥ 0, let ∆ ⊂ Rd be a Gorenstein simplex of

dimension d with the δ -polynomial 1+ tk+1+ · · ·+ t(v−1)(k+1) which is not a lattice pyra-

mid over any lower-dimensional lattice simplex. Then ∆ can be constructed by repeatedly

using Proposition 3.3 and Theorem 4.1.

Now, we consider to give a lower bound on N(v,k). Given integers v ≥ 1 and k ≥ 0, let

M(v,k) denote the number of Gorenstein simplices, up to unimodular equivalence, which

are appeared in Theorem 4.1. Then one has N(v,k) ≥ M(v,k). By Theorem 4.1, we can

determine M(v,k) in terms of the divisor lattice of v. Given a positive integer v, let Dv

the set of all divisors of v, ordered by divisibility. Then Dv is a partially ordered set, in

particular, a lattice, called the divisor lattice of v. We call subset C ⊂ Dv a chain of Dv if

C is a totally ordered subset with respect to the induced order.

Corollary 4.4. Let v be a positive integer and k a nonnegative integer. Then M(v,k)
equals the number of chains from a non-least element to the greatest element in Dv. In

particular, one has M(v,k) = ∑n∈Dv\{v} M(n,k).

This corollary says that M(v,k) depends on only the divisor lattice Dv. In particular,

letting v= p
a1

1 · · · p
at
t with distinct prime integers p1, . . . , pt and positive integers a1, . . . ,at ,

M(v,k) depends on only (a1, . . . ,at).
Finally, we give examples of M(v,k).

Example 4.5. (1) Let v = pℓ with a prime integer p and a positive integer ℓ. Then from

Corollary 4.4, we know that M(v,k) equals the number of subsets of {1, . . . , ℓ−1}. Hence

one has M(v,k) = 2ℓ−1.

(2) Let v = p1 · · · pt , where p1, . . . , pt are distinct prime integers. From Corollary 4.4,

we know that M(v,k) depends on only t. Now, let a(t) = M(v,k), where we define a(0) =
12



M(1,k) = 1. Then one has

a(t) = M(v,k) = ∑
n∈Dv\{v}

M(n,k) = 1+
t−1

∑
i=1

(
t

i

)

M(p1 · · · pi,k) =
t−1

∑
i=0

(
t

i

)

a(i).

We remark that a(t) is the well-known recursive sequence ([11, A000670]) which is called

the ordered Bell numbers or Fubini numbers.
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