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THE DENOMINATORS OF POWER SUMS OF
ARITHMETIC PROGRESSIONS

BERND C. KELLNER AND JONATHAN SONDOW

ABSTRACT. In a recent paper the authors studied the denomi-
nators of polynomials that represent power sums by Bernoulli’s
formula. Here we extend our results to power sums of arithmetic
progressions. In particular, we obtain a simple explicit criterion
for integrality of the coefficients of these polynomials. As applica-
tions, we obtain new results on the sequence of the denominators
of the Bernoulli polynomials.

1. INTRODUCTION

For positive integers n and x, define the power sum
z—1
Su(w) =Y K" =0"+ 1"+ 4 (z = 1)",
k=0

and for integers m > 1 and r > 0 define the more general power sum
of an arithmetic progression

—_

Spr(T) 1= (km+r)"=r"+(m+r)"+---+(z—1)m+r)".

8

e
i

In particular, we have 8t (z) = S,(z) and, more generally,

mo(®) = m" S, (). (1)
Bazsé et al. [2, 3] considered the generalized Bernoulli formula
mTL

= I (e D) (D).

where the nth Bernoulli polynomial B, () is defined by the series

te:vt > tn
=) Bu)n (il < 2m)
n=0 ’

et —
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and is given by the formula

By(z) = Zn: (Z) Bya"*, (3)

k=0

By, = By(0) € Q being the kth Bernoulli number. Thus, 87, (z) is a
polynomial in x of degree n + 1 with rational coefficients.

Remark. Bazso et al. required r and m to be coprime. However, since
the forward difference AB,,(z) := B,,(z+1)—B,(z) equals nz"~! (cf. [7,
Eq. (5), p. 18]), the telescoping sum of these differences with z = k+ =
implies (2) at once for any r/m € Q.

For a polynomial f(x) € Q[z], define its denominator, denoted by
denom(f(z)), to be the smallest d € N such that d - f(z) € Z[z]. This
includes the usual definition of denom(q) for ¢ € Q.

In the classical case of Bernoulli’s formula

1
= n—H(BnH(I) - Bn+1)>

the authors [0, Thms. 1 and 2] determined the denominator of the
polynomial S, (z). From now on, let p denote a prime.

Sn()

Theorem 1 (Kellner and Sondow [6]). Forn > 1, denote
D, := denom(B,(z) — B,). (4)
Then we have the relation
denom (S, (z)) = (n+ 1) Dyyy

and the remarkable formula

1
r —2|- , if nis odd,
D, = H p o with My =4 T (5)
pP< M, , if n is even,
sp(n) 2p 3

where s,(n) denotes the sum of the base-p digits of n, as defined in
Section 4. Moreover,

D, is odd <= n=2F (k>0). (6)
The first few values of D, are (see [11, Seq. A195441])
D, =1,1,2,1,6,2,6,3,10,2,6,2,210, 30,6, 3, 30, 10, 210, 42, 330, . . . .

Here we extend Theorem 1 to the denominator of 8}, .(x), as follows.
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Theorem 2. We have

n-+1 ]Dn-i-l

d ) = ) ' !
enom( m,r(x)) ng(n + ]_’ mn) ng(Dn—i-la m) ( )

In particular, denom (8, (x)) divides denom(S,(z)) and is indepen-
dent of r. Moreover, for any integers ry,r9 > 0,

8r . (r) =38!, (v) € Zx].

m,r1 m,r2

The next theorem shows exactly when 8}, () itself lies in Z[z].

Theorem 3. Forn > 1, denote
D, :=denom(B,(z)), D, :=denom(B,).
Then we have the equivalence
Smr(r) €Z[z] <= D,|m
as well as the equalities
9, = lem(D,, D,) (8)
and
D, =lem(Dy4q,rad(n + 1)) with rad(k) = H p. (9)
plk
The first few values of ®,, and D,, are (see [L1, Seqs. A144845 and
A027642))

D, = 2,6,2,30,6,42, 6,30, 10, 66,6, 2730, 210, 30, 6, 510, 30, 3990, . . .,
D, =2,6,1,30,1,42,1,30,1,66,1,2730,1,6,1,510,1,798,1,330, . .. .
Example 1. Set m = ®,, = 2,6,2,30,6 for n = 1,2,3,4,5, respec-
tively. Then certainly ©,, | m, so Z[z] contains the polynomials 8}, .(z)

with 7 = 0 (which satisfy (1)):

Shola) = a2~ =2 (s —1) =2 S,(),

1
8go(x) =6(22° — 32° + x) = 6*- G (22° — 32% + z) = 6% - Sy(x),
1
Sg,o(at) =2 (2" — 2% + 2?) = 2% 1 (z* — 223 + 2%) = 23 - Sy(x),
830,0() = 27000 (62° — 152" + 102° — x)
1
= 30" — (62° — 152" + 102° — ) = 30" - Sy(x),

30
85.0(x) = 648 (22° — 62° + 52! — 27)

1
=6 3 (22°% — 62° + 5 — 2*) = 6° - S5(x)
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as well as those with r = 1:
83,1(7) =

8¢1(x) = 122° — 1227 + z,

Sg 1(z) = 2" 5

Sgo L(z) = 1620002° — 378000z + 2178002° + 243602% — 26159z,

82 () = 12962° — 25922° + 5402 4 12002 — 2732* — 170z.

Remark. Bazsé and Mez6 [2, Egs. (7), (8) and Thm. 2, pp. 121-122]
defined a very complicated formula F'(n) in order to give a somewhat
tautological characterization of when 87 (r) € Z[z]. With their for-
mula they computed a few values of F'(n) that apparently equal ©,,,
but without recognizing this relation. They were not aware of advanced
results like those in our Theorems 2 and 3.

As an immediate by-“product” of our theorems, we obtain a new
product formula for ®,, from (9) by applying Theorem 1. (Other ex-
plicit product formulas for this denominator, based on (8), were already
given in [6, Thm. 4].)

Corollary 1. For n > 1, the denominator of the nth Bernoulli poly-

nomial equals
9D, = H p X H P.

pln+1 pin+1
p< MnJrl
sp(n+1)>p

Remark. The first author [5] has shown that the condition s,(n) > p
is sufficient in (5) to define D, as a product over all primes:

D, = [] » (10)

sp(n) >p
(So one can remove the restrictions p < M,, in (5) and p < M, in
Corollary 1.) Moreover, if n + 1 is composite, then (see [5, Thm. 1])
rad(n + 1) | D,,. (11)

Finally, we obtain new properties of D,, and ©,,.

Corollary 2. The sequences (D,,)n>1 and (D,,),>1 satisfy the following
conditions:

(i) We have the relations
D, = lem (D4, rad(n+ 1)), if n > 3 is odd,
D, = lcm(©n+1, rad(n + 1)), if n > 2 is even.
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(ii) We have the divisibilities
Doyt | Dy, ifn>1 is odd,
Dpi1 | Dn, ifn>2 s even.

Theorem 4. For odd n > 1, the quotients (see [11, Seq. A286516])

D,
=1,2,3,2,5,3,7,2,3,5,11,1,13,7,15,2,17,3,19,5,7, . ..
]D)n—l—l
are odd, except that
Dy,
=2 <= n=2"-1(k>2).
]Dn-‘,—l

Moreover, if p is an odd prime and n = 2'p* — 1, then

Dy,
e{l,p} (k{=1),
]Dn—l—l

and more precisely,

—p (k>1,1</{<logyp),

while

=1 k>1,0>
Dn+1 ( - —£p>7

where L, > log, p is a constant depending on p.

Theorem 5. For even n > 2, all terms are odd in the sequence (see
[11, Seq. A286517])

D
=3,5,7,3,11,13,5,17,19,7,23,5,3,29,31,11,35,37,. ...
Qn—l—l
In particular, if p is an odd prime and n = p* — 1, then
D,
= k>1).
o, ! (k>1)

More generally, if p # q are odd primes and n = p*q° — 1, then

Dy
o SiLpapd (k1)

n+1

with the following cases:
Dy

n+1

Dy

n+1

=p (k>L,, 1<{<log,p),

p,q’

@)

=q (I1<k<log,q, (>L},),

@)
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Dn
©n+1

where L, , > log,q and L, > log,p are constants depending on p
and q.

1 (k>C

p,q’

t>Ly,),

The results of Theorems 4 and 5 imply the following corollary.

Corollary 3. For each of the following statements there are infinitely
many values of n for which the statement holds:
(i) D,,/Dy 41 = p for a given prime p > 2.
(iii) ©,/®n1 = p for a given prime p > 3.
(IV) @n = ©n+1'

2. PRELIMINARIES

Let Z, be the ring of p-adic integers, @, be the field of p-adic num-
bers, and v,(s) be the p-adic valuation of s € Q, (see [9, Chap. 1.5,
pp. 36-37]). If s € Z, then p° || s means that p° | s but p* { s, or
equivalently, e = v,(s).

The Bernoulli numbers satisfy the following properties (cf. [1, Chap.

9.5, pp. 63-68]). The first few nonzero values are
1 1 1 1
BO_17 Bl__§7 B2_67 B4__%7 36_57 (12)
while B,, = 0 for odd n > 3. For even n > 2 the von Staudt—Clausen
theorem states that the denominator of B, equals

D,= ] »r (ne2N). (13)

Thus, all nonzero Bernoulli numbers have a squarefree denominator.
Moreover, for even n > 2 the p-adic valuation of the divided Bernoulli
number B, /n is

w(f)={ R

Now let m, n, and r be positive integers. The Bernoulli polynomials
satisfy as Appell polynomials the general relation

B =3 () But) e (15)

k=0
of which (3) is a special case, as well as the reflection formula
B,(1—z)=(—-1)"B,(x) (16)
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(see [8, Chap. 3.5, pp. 114-115]). Further, denote by B} = the number

n—1
n o n L o — n k n—k
8 m (B(7) = ) = X (1) Bemtees )
Almkvist and Meurman [I, Thm. 2, p. 104] showed that
B €Z. (18)

Actually, (18) holds for all r € Z (cf. [4, Thm. 9.5.29, pp. 70-71]). We
also point out an analog to (15) for ry,ry € Z, namely,

n

n

n o E k n—k n

Bm,rl—l—rz - (k‘) Bm,rl,'ﬂ2 + Bm,rz‘
k=0

The integers By, . satisty a useful divisibility property, which we need

later on. The following lemma is part of [4, Thm. 11.4.12, pp. 327-329],
but we give here a clearer and simpler proof.

Lemma 1. Ifm,n>1,r € Z, a prime ptm, and 0 < e <v,(n), then
B, =0 (mod p°). (19)

Proof. 1t suffices to prove the case e = v,(n). If e = 0, then we are
trivially done. So let p© || n with

n>e=vpy(n)>1.

We split the proof into two cases as follows.
Case p | r: From (12) and (17) we deduce that

n—1
n
B%T = Z <k> By, mFynFk

Since p | 7, we have v,(r") > n and v,(r*/k) > 1 for all k > 1. If
B, # 0, then v,(B,,—x) > —1, since the denominator is squarefree.

In this case we obtain
ok
Vp <n B, ?) > e.

Considering all summands, we finally infer that (19) holds.
Case p{r: Since n > 2, we have by (3) and (16) that

n—1
B,(1) - B, = (Z) By =0,
k=0
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which we use in the second step below. Set u :=m/r € ZX. As in the
first case above, we derive that

n—1
rBL =Y (Z) Byu

k=0

n—1 n

:Z(k)Bk'(“k_”

k=0
n—1

oon n—1\DBy 6

- §(u 1)+k:2n(k_1)?(u 1).
20k

In both cases p = 2 and p > 3, we have
g(u —1)=0 (mod p°).

Since (14) implies By/k € Z, if k > 2 is even and p — 11 k, we get

- n—1\B
g = B~ 1) (mod p°).
o= a3 ) F e mody)
2|k
p—1|k
Now fix one k of the above sum. We then have the decomposition

k=a(p—1)p =ap@®™),

where p ta, t = v,(k), and ¢(-) is Euler’s totient function. By assump-

tion v is a unit in Z, and so is 4 := u® € Z;. Euler-Fermat’s theorem
shows that

uF =P =1 (mod ptth).

Thus, v,(u* —1) > t+1. Since v,(By/k) = —(t+1) by (14), we achieve
finally that

vp<n%(uk—1)> >e—(t+1)+(t+1) =e,

implying that
r "B, =0 (mod p)
and showing the result. U

3. PROOF OF THEOREM 2

Before giving the proof of Theorem 2, we need several lemmas with
some complementary results. The next lemma easily shows a related
partial result toward Theorem 2, while the full proof of this theorem
requires much more effort.
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Lemma 2. We have

denom ((n + 1)8}, .(x)) = denom(m" (By41(2) — Bui1))
_ ]Dn—i-l
ng(DTH-l? m) .

Proof. By rewriting 8}, (r) as given in (2), and using (3) and (15), we
easily derive that

(n+ )8}, (2) = m"

k=0

Bk, € gby (18)
+ m" (Bn+1($) - Bn+1). (21)
By applying the simple observation that if f(z) € Z[z] and g(x) € Q[z],
then
denom (f(z) + g(x)) = denom(g()), (22)
we infer that
denom((n +1)8”, () = denom (m™(Bn41(x) — Byy1)).
Finally, from (4) and (5) we deduce that
]Dn—l—l _ ]D)n—l—l
ng(]D)n-l-lv mn) ng(DTH-l? m) ’

the latter equation holding because D, is squarefree. This completes
the proof. O

denom (m™(By41(z) — Bus1)) =

Lemma 3. For positive integers k < n, define the rational number

e
kT e \k—1)

Then we have the following properties:
(i) Symmetry:
Cnk = Cnnt1—k-
(ii) Denominator:
n+1

denom(c,, ;) | ged(n+ 1,k), denom(c, ;) < 5




10 BERND C. KELLNER AND JONATHAN SONDOW
(iii) Integrality:
Ifk =1 ork=mn orn+1is prime, then c, € Z.
Proof. We first observe that

1/ n 1 (n+1
C"”‘“‘E(k—l)_nH( k ) (23)

which shows the symmetry in (i). From (23) it also follows that
denom(c¢y, ;) must divide both of the integers n + 1 and k. Thus,

denom(c, 1) | ged(n + 1, k).

Since k < n + 1, we then infer that denom(c,x) < (n + 1)/2. This
shows (ii). If k =1 or k = n, then ¢, = 1. If n 4+ 1 is prime, then
ged(n+1,k) =1 as k < n, so denom(c,, ;) = 1. This proves (iii). O

Lemma 4. If m,n,r > 1 and 0 < k < n, then

m" (n+1 r
Bi(=)-Bi) ez 24
n+1 < k ) ( "\m k)< (24)
Proof. 1f k = 0, then the quantity in (24) vanishes by By(z) — By = 0.
For 1 < k < n, we can rewrite the quantity in (24) by (17) and (23) as

Cop X MR x BF (25)

m,ry

where BE € Z by (18) and ¢, = 7(,",) € Q. We have to show
that (25) lies in Z. If k =1 or k = n or n+ 1 is prime, then ¢, € Z
by Lemma 3. We can now assume that n > 3, 1 < k£ < n, and
d := denom(c, ) > 1. For each prime power divisor p° || d we consider
two cases, which together imply the integrality of (25).

Case p{m: Since d | k, we have p¢ | BY by Lemma 1.

Case p | m: We show that p® | m"~*, or equivalently,

n+1>e+k. (26)

As p¢ | k, by symmetry in Lemma 3 we also have p® |n+ 1 —k, so
e <n+1—kand (26) holds. This completes the proof. O

Proof of Theorem 2. To prove the last statement, it suffices to show
that for r > 0
S () — 85 0(2) € Zlz]. (27)
By (20) and (21) we have
mn

S () = n—H(BnH(I) — By1) + (), (28)
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where (n + 1)h(z) = f(z) € Z[z] as given by (20). By Lemma 4 it
turns out that the coefficients of h(x) are already integral, and thus
h(x) € Z[z]. Since by (2)

Smolr) = o (Bns1(x) = Bnya),

relation (27) follows.
Applying the rule (22) to (28) and using (4) along with the fact that
By41(x) is monic, we then infer that

denom (8, .(x)) = denom(mff—)nmw). (29)

We have to show that (29) implies (7).

In the following trivial cases we are done: Case m = 1; casesn = 1, 3,
since Dy =Dy = 1; and case n = 2, since n + 1 = 3 and D3 = 2.

So let m > 2 and n > 4. If a prime power p¢ || n + 1, then e < n.
Consequently, we deduce that

ged(n 4 1,m"™) = ged(n 4+ 1, m™ 1), (30)

Then by splitting m™ into m™~! - m in (29) and applying (30) and the
fact that D, is squarefree, we infer that (7) holds.

Since denom (S, (z)) = (n + 1) D,41 by Theorem 1, we see at once
that (7) implies

denom (8, .(z)) | denom (S, (z)).

As a result of (29), the denominator of 8 (x) is independent of 7.
This completes the proof of Theorem 2. O

4. PROOFS OF THEOREM 3 AND COROLLARY 2

Before we give the proofs, we need some definitions and lemmas.
Recall that, given a prime p, any positive integer n can be written in
base p as a unique finite p-adic expansion

n=oayg+ap+---+ap (0<a; <p-1)
This expansion defines the sum-of-digits function
sp(n) ==ap+ a1 + -+ ay,

which satisfies
sp(n) =n (mod (p —1)). (31)
Actually, these properties also hold for any base b > 2 instead of p.

The following lemma (see [9, Chap. 5.3, p. 241]) shows the relation
between s,(n) and s,(n + 1).
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Lemma 5. Ifn > 1 and p is a prime, then
sp(n+1)=s,(n)+1—(p—1) vp(n+1).
In particular,
S+ <sn) e pla+l,
while
sp(n+1)=s,(n)+1 <= pin+1l. (32)
Lemma 6. Ifn > 1, then
lem(Dy,, Dy,) | lem (D11, rad(n + 1)).

Proof. Set L,, := lem (DnH, rad(n+1)). Since D,, and D,, are squarefree
by (5) and (13), we show that p | lem(ID,,, D,,) implies p | L,,. Moreover,
since rad(n + 1) | L, we may assume that p{n + 1.

If p | D, then by (5) we have s,(n) > p. Applying (32) followed by
(10), we obtain p | D, 11, and finally p | L,,.

Since Dy = 2 by (12) and D,, = 1 for odd n > 3, we have D,, | L,
for odd n > 1. So take n > 2 even. If p | D,,, then p — 1 | n by (13),
so also p — 1| s,(n) by (31). Thus s,(n) > p—1. Asptn+1hby
assumption, (32) implies s,(n + 1) > p, so p | D41 by (10). Finally
p | L,. This proves the lemma. U

Lemma 7. Ifn > 1, then
lem(Dy41, rad(n + 1)) | lem(Dy,, D).

Proof. As Dy =Dy =1, and D; = 2 by (12), the case n = 1 holds. So
assume n > 2 and set L, := lem(D,, D,,).

If n+ 1 is not prime, then (11) implies rad(n + 1) | L,,. Otherwise,
p=n+1=rad(n+ 1) is an odd prime and so n is even. By (13) we
have p | D, so rad(n + 1) | Ly,.

It remains to show that D, | L,. As D, is squarefree by (5),
it suffices to show for any prime p | D, ;1 that p | L,,. By (5) again
we have s,(n + 1) > p, and as rad(n + 1) | L, we may assume that
ptn+ 1. Then by (32) we obtain s,(n) = s,(n+1)—1>p—1. If
sp(n) > p, then p | D, by (10), so p | L,,. Otherwise, s,(n) =p—1 and
so p—1|n by (31). Moreover, n must be even, as n odd would imply
p = 2, contradicting p { n+ 1. Hence p | D,, by (13), and finally p | L,,.
This completes the proof. O

Proof of Theorem 3. To show the equivalence, we have to prove that

denom(8), (z)) =1 <= D, |m.

m,r
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By (7), we have denom (87, .(z)) = 1 if and only if

n+1 o ]Dn-i-l
ged(n +1,mn)  ged(Dyy1,m)

=1,

which in turn is true if and only if n41 | m” and D, | m. Moreover,
n+1|m" <= rad(n+1)|m.

Indeed, p | n+ 1 | m™ implies p | m, proving the “=" direction.
Conversely, if p | rad(n + 1) | m, then p™ | m™. But p° || n + 1 with
e < n, so finally n+ 1 | m". It follows that

denom(8y, .(2)) =1 <= lem(Dyyq,rad(n+1)) | m.
By Lemmas 6 and 7, together with the proof of [6, Thm. 4], we have
lcm(]]))n+1, rad(n + 1)) =lem(D,, D,)) = D,.
This proves the theorem. 0

Proof of Corollary 2. (i), (ii) If n > 3 is odd, then D,, = 1. Hence, (8)
and (9) yield D,, = lcm(]]))n+1, rad(n+ 1)) Together with D; = D, = 1,
this implies that D,; | D,, for all odd n > 1, as desired.

Similarly, for even n > 2, we have ©,.; = D, 41 by (8). Then (9)
gives ©,, = lcm(@nH, rad(n + 1)), 50 Dpa1 | Dy, as claimed. O

5. PROOFS OF THEOREMS 4 AND 5

Let a,b > 2 be integers, being multiplicatively independent, that is
a® # b/ for any integers e, f > 1. Senge and Straus [10, Thm. 3] showed
that for a given constant A the number of integers n satisfying

Sa(n) + sp(n) < A

is finite. Steward [12, Thm. 1, p. 64] proved an effective lower bound

such that

loglogn

Sq(n) + sp(n) > 1

logloglogn +C
for n > 25, where C' > 0 is an effectively computable constant depend-
ing on a and b. This leads to the following lemma.

Lemma 8. If p # q are primes, then
li M) = o0
) =
In particular, there exists a positive integer Ly, , > log, p such that

sp(d) 2p (k= Lyg).
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Proof of Theorem 4. If n =1, then D;/Dy = 1. By (6), if n > 3 is odd
and n + 1 is not a power of 2, then D,, and D,,; are both even. Since
by (5) they are squarefree, D,, /D, 11 must be odd.

Likewise, if n = 2 — 1 for some k > 2, then D,,/D,,+1 must be twice
an odd number. If an odd prime p divides D,,, then s,(n) > p by (5).
Since p 28 = n + 1, we infer by (32) that s,(n + 1) > p. Hence by
(10) the prime p also divides D,,41, so indeed D,,/D,, 11 = 2.

Now, let n = 2pF — 1 with p an odd prime and k,¢ > 1. Then
we have rad(n + 1) = 2p, and by (6) that D,, and D,,,; are both even.
Thus, D,,/D,,+1 € {1, p} by Corollary 2 part (i). We consider two cases.

Case 1 < £ < log, p: Since s,(n + 1) = s,(2°) < p, we infer that
p1 D, by (10) implying D,,/D,, 11 = p.

Case ¢ > log, p: Lemma 8 implies a constant £, := L, o > log, p
such that s,(n+1) = s,(2°) > p for all £ > £,. Hence p | D,.; by (10)
and D,,/D,,+; = 1. This proves the theorem. U

Proof of Theorem 5. 1t is shown in [6, Thm. 4] that ©,, is even and
squarefree for all n > 1. (This also follows from (8) for even n > 2,
since 2 | D, and from (9) for odd n > 1, since 2 | rad(n + 1), all
terms in question being squarefree.) Hence if n > 2 is even, so that
D11 | Dy, then the quotient must be odd.

Let p be an odd prime. If n = p* — 1 for some k > 1, then we have
rad(n + 1) = p and s,(n + 1) = s,(p¥) = 1 < p. Thus p { D,y by
(10). Since n is even, we have ©,,,; = D,1 by (8) and so p t ©,,11.
By Corollary 2 part (i) we finally obtain ©,,/9,,11 = p.

Now, let p # ¢ be odd primes and n = p¥q¢* — 1 with k,¢ > 1. We
then have rad(n+ 1) = pg and by Corollary 2 part (i) that ©,,/D,41 €
{1,p,q,pq}. Note that s,(n + 1) = s,(¢°) and s,(n + 1) = s,(p*). By
Lemma 8 we define £}, , := Ly, > log,q and L = Ly, > log,p. We
consider the following statements by using (10):

If 1 < ¢ < log,p, then sp(¢") < p and p  D,,y. Otherwise, if
(> L7, then s,(¢") > pand p | Dy

If 1 <k < log,q, then s(P*) < q and ¢ 1 D, ;. Otherwise, if
k> L, . then s,(p*) > g and q | Dy 1.

All three cases of the theorem follow from the arguments given above,
since ©,+1 = D,,41. This completes the proof of the theorem. O

6. CONCLUSION

B —m" (Bn<1) - Bn) ,

The numbers
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shown by Almkvist and Meurman to be integers, play here a key role
in proofs. By their result, the polynomial B, (x) — B, with an extra
factor, takes integer values at rational arguments z = r/m. In the
present paper, the numbers B7, = reveal their natural connection with
the power sums of arithmetic progressions 8, .(z). Moreover, the di-
visibility properties of By, . are important in attaining our results in
Theorems 2 and 3.
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