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THE DENOMINATORS OF POWER SUMS OF

ARITHMETIC PROGRESSIONS

BERND C. KELLNER AND JONATHAN SONDOW

Abstract. In a recent paper the authors studied the denomi-
nators of polynomials that represent power sums by Bernoulli’s
formula. Here we extend our results to power sums of arithmetic
progressions. In particular, we obtain a simple explicit criterion
for integrality of the coefficients of these polynomials. As applica-
tions, we obtain new results on the sequence of the denominators
of the Bernoulli polynomials.

1. Introduction

For positive integers n and x, define the power sum

Sn(x) :=

x−1∑

k=0

kn = 0n + 1n + · · ·+ (x− 1)n,

and for integers m ≥ 1 and r ≥ 0 define the more general power sum

of an arithmetic progression

S
n
m,r(x) :=

x−1∑

k=0

(km+ r)n = rn + (m+ r)n + · · ·+ ((x− 1)m+ r)n.

In particular, we have Sn
1,0(x) = Sn(x) and, more generally,

S
n
m,0(x) = mnSn(x). (1)

Bazsó et al. [2, 3] considered the generalized Bernoulli formula

S
n
m,r(x) =

mn

n+ 1

(

Bn+1

(

x+
r

m

)

− Bn+1

( r

m

))

, (2)

where the nth Bernoulli polynomial Bn(x) is defined by the series

text

et − 1
=

∞∑

n=0

Bn(x)
tn

n!
(|t| < 2π)
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2 BERND C. KELLNER AND JONATHAN SONDOW

and is given by the formula

Bn(x) =
n∑

k=0

(
n

k

)

Bk x
n−k, (3)

Bk = Bk(0) ∈ Q being the kth Bernoulli number. Thus, Sn
m,r(x) is a

polynomial in x of degree n+ 1 with rational coefficients.

Remark. Bazsó et al. required r and m to be coprime. However, since
the forward difference ∆Bn(x) := Bn(x+1)−Bn(x) equals nx

n−1 (cf. [7,
Eq. (5), p. 18]), the telescoping sum of these differences with x = k+ r

m

implies (2) at once for any r/m ∈ Q.

For a polynomial f(x) ∈ Q[x], define its denominator, denoted by
denom

(
f(x)

)
, to be the smallest d ∈ N such that d · f(x) ∈ Z[x]. This

includes the usual definition of denom(q) for q ∈ Q.
In the classical case of Bernoulli’s formula

Sn(x) =
1

n + 1

(
Bn+1(x)−Bn+1

)
,

the authors [6, Thms. 1 and 2] determined the denominator of the
polynomial Sn(x). From now on, let p denote a prime.

Theorem 1 (Kellner and Sondow [6]). For n ≥ 1, denote

Dn := denom
(
Bn(x)− Bn

)
. (4)

Then we have the relation

denom
(
Sn(x)

)
= (n+ 1)Dn+1

and the remarkable formula

Dn =
∏

p≤Mn

sp(n)≥ p

p with Mn :=







n + 1

2
, if n is odd,

n + 1

3
, if n is even,

(5)

where sp(n) denotes the sum of the base-p digits of n, as defined in

Section 4. Moreover,

Dn is odd ⇐⇒ n = 2k (k ≥ 0). (6)

The first few values of Dn are (see [11, Seq. A195441])

Dn = 1, 1, 2, 1, 6, 2, 6, 3, 10, 2, 6, 2, 210, 30, 6, 3, 30, 10, 210, 42, 330, . . . .

Here we extend Theorem 1 to the denominator of Sn
m,r(x), as follows.
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Theorem 2. We have

denom
(
S
n
m,r(x)

)
=

n+ 1

gcd(n+ 1, mn)
·

Dn+1

gcd(Dn+1, m)
. (7)

In particular, denom
(
Sn
m,r(x)

)
divides denom

(
Sn(x)

)
and is indepen-

dent of r. Moreover, for any integers r1, r2 ≥ 0,

S
n
m,r1

(x)− S
n
m,r2

(x) ∈ Z[x].

The next theorem shows exactly when Sn
m,r(x) itself lies in Z[x].

Theorem 3. For n ≥ 1, denote

Dn := denom
(
Bn(x)

)
, Dn := denom(Bn).

Then we have the equivalence

S
n
m,r(x) ∈ Z[x] ⇐⇒ Dn | m

as well as the equalities

Dn = lcm(Dn, Dn) (8)

and

Dn = lcm
(
Dn+1, rad(n+ 1)

)
with rad(k) :=

∏

p | k

p. (9)

The first few values of Dn and Dn are (see [11, Seqs. A144845 and
A027642])

Dn = 2, 6, 2, 30, 6, 42, 6, 30, 10, 66, 6, 2730, 210, 30, 6, 510, 30, 3990, . . . ,

Dn = 2, 6, 1, 30, 1, 42, 1, 30, 1, 66, 1, 2730, 1, 6, 1, 510, 1, 798, 1, 330, . . . .

Example 1. Set m = Dn = 2, 6, 2, 30, 6 for n = 1, 2, 3, 4, 5, respec-
tively. Then certainly Dn | m, so Z[x] contains the polynomials Sn

m,r(x)
with r = 0 (which satisfy (1)):

S
1
2,0(x) = x2 − x = 2 ·

1

2
(x2 − x) = 2 · S1(x),

S
2
6,0(x) = 6 (2x3 − 3x2 + x) = 62 ·

1

6
(2x3 − 3x2 + x) = 62 · S2(x),

S
3
2,0(x) = 2 (x4 − 2x3 + x2) = 23 ·

1

4
(x4 − 2x3 + x2) = 23 · S3(x),

S
4
30,0(x) = 27000 (6x5 − 15x4 + 10x3 − x)

= 304 ·
1

30
(6x5 − 15x4 + 10x3 − x) = 304 · S4(x),

S
5
6,0(x) = 648 (2x6 − 6x5 + 5x4 − x2)

= 65 ·
1

12
(2x6 − 6x5 + 5x4 − x2) = 65 · S5(x)
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as well as those with r = 1:

S
1
2,1(x) = x2,

S
2
6,1(x) = 12x3 − 12x2 + x,

S
3
2,1(x) = 2x4 − x2,

S
4
30,1(x) = 162000x5 − 378000x4 + 217800x3 + 24360x2 − 26159x,

S
5
6,1(x) = 1296x6 − 2592x5 + 540x4 + 1200x3 − 273x2 − 170x.

Remark. Bazsó and Mező [2, Eqs. (7), (8) and Thm. 2, pp. 121–122]
defined a very complicated formula F (n) in order to give a somewhat
tautological characterization of when Sn

m,r(x) ∈ Z[x]. With their for-
mula they computed a few values of F (n) that apparently equal Dn,
but without recognizing this relation. They were not aware of advanced
results like those in our Theorems 2 and 3.

As an immediate by-“product” of our theorems, we obtain a new
product formula for Dn from (9) by applying Theorem 1. (Other ex-
plicit product formulas for this denominator, based on (8), were already
given in [6, Thm. 4].)

Corollary 1. For n ≥ 1, the denominator of the nth Bernoulli poly-

nomial equals

Dn =
∏

p |n+1

p ×
∏

p ∤n+1

p≤Mn+1

sp(n+1)≥ p

p.

Remark. The first author [5] has shown that the condition sp(n) ≥ p
is sufficient in (5) to define Dn as a product over all primes:

Dn =
∏

sp(n)≥ p

p. (10)

(So one can remove the restrictions p ≤ Mn in (5) and p ≤ Mn+1 in
Corollary 1.) Moreover, if n + 1 is composite, then (see [5, Thm. 1])

rad(n+ 1) | Dn. (11)

Finally, we obtain new properties of Dn and Dn.

Corollary 2. The sequences (Dn)n≥1 and (Dn)n≥1 satisfy the following

conditions:

(i) We have the relations

Dn = lcm
(
Dn+1, rad(n + 1)

)
, if n ≥ 3 is odd,

Dn = lcm
(
Dn+1, rad(n + 1)

)
, if n ≥ 2 is even.
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(ii) We have the divisibilities

Dn+1 | Dn, if n ≥ 1 is odd,

Dn+1 | Dn, if n ≥ 2 is even.

Theorem 4. For odd n ≥ 1, the quotients (see [11, Seq. A286516])

Dn

Dn+1
= 1, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 1, 13, 7, 15, 2, 17, 3, 19, 5, 7, . . .

are odd, except that

Dn

Dn+1

= 2 ⇐⇒ n = 2k − 1 (k ≥ 2).

Moreover, if p is an odd prime and n = 2ℓpk − 1, then

Dn

Dn+1
∈ {1, p} (k, ℓ ≥ 1),

and more precisely,

Dn

Dn+1
= p (k ≥ 1, 1 ≤ ℓ < log2 p),

while

Dn

Dn+1
= 1 (k ≥ 1, ℓ ≥ Lp),

where Lp > log2 p is a constant depending on p.

Theorem 5. For even n ≥ 2, all terms are odd in the sequence (see
[11, Seq. A286517])

Dn

Dn+1
= 3, 5, 7, 3, 11, 13, 5, 17, 19, 7, 23, 5, 3, 29, 31, 11, 35, 37, . . . .

In particular, if p is an odd prime and n = pk − 1, then

Dn

Dn+1
= p (k ≥ 1).

More generally, if p 6= q are odd primes and n = pkqℓ − 1, then

Dn

Dn+1
∈ {1, p, q, pq} (k, ℓ ≥ 1)

with the following cases:

Dn

Dn+1
= p (k ≥ L′

p,q, 1 ≤ ℓ < logq p),

Dn

Dn+1

= q (1 ≤ k < logp q, ℓ ≥ L′′
p,q),
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Dn

Dn+1

= 1 (k ≥ L′
p,q, ℓ ≥ L′′

p,q),

where L′
p,q > logp q and L′′

p,q > logq p are constants depending on p
and q.

The results of Theorems 4 and 5 imply the following corollary.

Corollary 3. For each of the following statements there are infinitely

many values of n for which the statement holds:

(i) Dn/Dn+1 = p for a given prime p ≥ 2.
(ii) Dn = Dn+1.

(iii) Dn/Dn+1 = p for a given prime p ≥ 3.
(iv) Dn = Dn+1.

2. Preliminaries

Let Zp be the ring of p-adic integers, Qp be the field of p-adic num-
bers, and vp(s) be the p-adic valuation of s ∈ Qp (see [9, Chap. 1.5,
pp. 36–37]). If s ∈ Z, then pe ‖ s means that pe | s but pe+1 ∤ s, or
equivalently, e = vp(s).
The Bernoulli numbers satisfy the following properties (cf. [4, Chap.

9.5, pp. 63–68]). The first few nonzero values are

B0 = 1, B1 = −
1

2
, B2 =

1

6
, B4 = −

1

30
, B6 =

1

42
, (12)

while Bn = 0 for odd n ≥ 3. For even n ≥ 2 the von Staudt–Clausen
theorem states that the denominator of Bn equals

Dn =
∏

p−1 |n

p (n ∈ 2N). (13)

Thus, all nonzero Bernoulli numbers have a squarefree denominator.
Moreover, for even n ≥ 2 the p-adic valuation of the divided Bernoulli

number Bn/n is

vp

(
Bn

n

)

=

{
−(vp(n) + 1), if p− 1 | n,

≥ 0, else.
(14)

Now let m, n, and r be positive integers. The Bernoulli polynomials
satisfy as Appell polynomials the general relation

Bn(x+ y) =
n∑

k=0

(
n

k

)

Bk(y) x
n−k, (15)

of which (3) is a special case, as well as the reflection formula

Bn(1− x) = (−1)nBn(x) (16)
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(see [8, Chap. 3.5, pp. 114–115]). Further, denote by Bn
m,r the number

B
n
m,r := mn

(

Bn

( r

m

)

−Bn

)

=

n−1∑

k=0

(
n

k

)

Bk m
krn−k. (17)

Almkvist and Meurman [1, Thm. 2, p. 104] showed that

B
n
m,r ∈ Z. (18)

Actually, (18) holds for all r ∈ Z (cf. [4, Thm. 9.5.29, pp. 70–71]). We
also point out an analog to (15) for r1, r2 ∈ Z, namely,

B
n
m,r1+r2

=

n∑

k=0

(
n

k

)

B
k
m,r1

rn−k
2 + B

n
m,r2

.

The integers Bn
m,r satisfy a useful divisibility property, which we need

later on. The following lemma is part of [4, Thm. 11.4.12, pp. 327–329],
but we give here a clearer and simpler proof.

Lemma 1. If m,n ≥ 1, r ∈ Z, a prime p ∤ m, and 0 ≤ e ≤ vp(n), then

B
n
m,r ≡ 0 (mod pe). (19)

Proof. It suffices to prove the case e = vp(n). If e = 0, then we are
trivially done. So let pe ‖ n with

n > e = vp(n) ≥ 1.

We split the proof into two cases as follows.
Case p | r: From (12) and (17) we deduce that

B
n
m,r =

n−1∑

k=0

(
n

k

)

Bk m
krn−k

= rn +
n−1∑

k=1

n

(
n− 1

k − 1

)

Bn−k m
n−k r

k

k
.

Since p | r, we have vp(r
n) ≥ n and vp(r

k/k) ≥ 1 for all k ≥ 1. If
Bn−k 6= 0, then vp(Bn−k) ≥ −1, since the denominator is squarefree.
In this case we obtain

vp

(

nBn−k

rk

k

)

≥ e.

Considering all summands, we finally infer that (19) holds.
Case p ∤ r: Since n ≥ 2, we have by (3) and (16) that

Bn(1)− Bn =
n−1∑

k=0

(
n

k

)

Bk = 0,
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which we use in the second step below. Set u := m/r ∈ Z×
p . As in the

first case above, we derive that

r−n
B

n
m,r =

n−1∑

k=0

(
n

k

)

Bk u
k

=

n−1∑

k=0

(
n

k

)

Bk · (u
k − 1)

= −
n

2
(u− 1) +

n−1∑

k=2
2 | k

n

(
n− 1

k − 1

)
Bk

k
(uk − 1).

In both cases p = 2 and p ≥ 3, we have
n

2
(u− 1) ≡ 0 (mod pe).

Since (14) implies Bk/k ∈ Zp if k ≥ 2 is even and p− 1 ∤ k, we get

r−n
B

n
m,r ≡

n−1∑

k=2
2 | k

p−1 | k

n

(
n− 1

k − 1

)
Bk

k
(uk − 1) (mod pe).

Now fix one k of the above sum. We then have the decomposition

k = a (p− 1) pt = aϕ(pt+1),

where p ∤ a, t = vp(k), and ϕ(·) is Euler’s totient function. By assump-
tion u is a unit in Zp and so is û := ua ∈ Z×

p . Euler–Fermat’s theorem
shows that

uk ≡ ûϕ(pt+1) ≡ 1 (mod pt+1).

Thus, vp(u
k−1) ≥ t+1. Since vp(Bk/k) = −(t+1) by (14), we achieve

finally that

vp

(

n
Bk

k
(uk − 1)

)

≥ e− (t+ 1) + (t+ 1) = e,

implying that
r−n

B
n
m,r ≡ 0 (mod pe)

and showing the result. �

3. Proof of Theorem 2

Before giving the proof of Theorem 2, we need several lemmas with
some complementary results. The next lemma easily shows a related
partial result toward Theorem 2, while the full proof of this theorem
requires much more effort.
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Lemma 2. We have

denom
(
(n+ 1)Sn

m,r(x)
)
= denom

(
mn(Bn+1(x)− Bn+1)

)

=
Dn+1

gcd(Dn+1, m)
.

Proof. By rewriting Sn
m,r(x) as given in (2), and using (3) and (15), we

easily derive that

(n + 1)Sn
m,r(x) = mn

n∑

k=0

(
n+ 1

k

)

Bk

( r

m

)

xn+1−k

= mn

n∑

k=0

(
n+ 1

k

)(

Bk

( r

m

)

− Bk +Bk

)

xn+1−k

=
n∑

k=0

(
n+ 1

k

)

mn−k mk
(

Bk

( r

m

)

−Bk

)

︸ ︷︷ ︸

Bk
m,r ∈Z by (18)

xn+1−k (20)

+mn
(
Bn+1(x)−Bn+1

)
. (21)

By applying the simple observation that if f(x) ∈ Z[x] and g(x) ∈ Q[x],
then

denom
(
f(x) + g(x)

)
= denom

(
g(x)

)
, (22)

we infer that

denom
(
(n+ 1)Sn

m,r(x)
)
= denom

(
mn(Bn+1(x)−Bn+1)

)
.

Finally, from (4) and (5) we deduce that

denom
(
mn(Bn+1(x)− Bn+1)

)
=

Dn+1

gcd(Dn+1, mn)
=

Dn+1

gcd(Dn+1, m)
,

the latter equation holding because Dn+1 is squarefree. This completes
the proof. �

Lemma 3. For positive integers k ≤ n, define the rational number

cn,k :=
1

k

(
n

k − 1

)

.

Then we have the following properties:

(i) Symmetry:

cn,k = cn,n+1−k.

(ii) Denominator:

denom(cn,k) | gcd(n+ 1, k), denom(cn,k) ≤
n+ 1

2
.
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(iii) Integrality:

If k = 1 or k = n or n+ 1 is prime, then cn,k ∈ Z.

Proof. We first observe that

cn,k =
1

k

(
n

k − 1

)

=
1

n + 1

(
n+ 1

k

)

, (23)

which shows the symmetry in (i). From (23) it also follows that
denom(cn,k) must divide both of the integers n+ 1 and k. Thus,

denom(cn,k) | gcd(n+ 1, k).

Since k < n + 1, we then infer that denom(cn,k) ≤ (n + 1)/2. This
shows (ii). If k = 1 or k = n, then cn,k = 1. If n + 1 is prime, then
gcd(n+ 1, k) = 1 as k ≤ n, so denom(cn,k) = 1. This proves (iii). �

Lemma 4. If m,n, r ≥ 1 and 0 ≤ k ≤ n, then

mn

n + 1

(
n+ 1

k

)(

Bk

( r

m

)

− Bk

)

∈ Z. (24)

Proof. If k = 0, then the quantity in (24) vanishes by B0(x)−B0 = 0.
For 1 ≤ k ≤ n, we can rewrite the quantity in (24) by (17) and (23) as

cn,k × mn−k × B
k
m,r, (25)

where Bk
m,r ∈ Z by (18) and cn,k = 1

k

(
n

k−1

)
∈ Q. We have to show

that (25) lies in Z. If k = 1 or k = n or n + 1 is prime, then cn,k ∈ Z
by Lemma 3. We can now assume that n ≥ 3, 1 < k < n, and
d := denom(cn,k) > 1. For each prime power divisor pe ‖ d we consider
two cases, which together imply the integrality of (25).
Case p ∤ m: Since d | k, we have pe | Bk

m,r by Lemma 1.

Case p | m: We show that pe | mn−k, or equivalently,

n+ 1 > e+ k. (26)

As pe | k, by symmetry in Lemma 3 we also have pe | n + 1− k, so
e < n+ 1− k and (26) holds. This completes the proof. �

Proof of Theorem 2. To prove the last statement, it suffices to show
that for r ≥ 0

S
n
m,r(x)− S

n
m,0(x) ∈ Z[x]. (27)

By (20) and (21) we have

S
n
m,r(x) =

mn

n+ 1

(
Bn+1(x)− Bn+1

)
+ h(x), (28)
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where (n + 1)h(x) = f(x) ∈ Z[x] as given by (20). By Lemma 4 it
turns out that the coefficients of h(x) are already integral, and thus
h(x) ∈ Z[x]. Since by (2)

S
n
m,0(x) =

mn

n + 1

(
Bn+1(x)− Bn+1

)
,

relation (27) follows.
Applying the rule (22) to (28) and using (4) along with the fact that

Bn+1(x) is monic, we then infer that

denom
(
S
n
m,r(x)

)
= denom

(
mn

(n + 1)Dn+1

)

. (29)

We have to show that (29) implies (7).
In the following trivial cases we are done: Casem = 1; cases n = 1, 3,

since D2 = D4 = 1; and case n = 2, since n + 1 = 3 and D3 = 2.
So let m ≥ 2 and n ≥ 4. If a prime power pe ‖ n + 1, then e < n.

Consequently, we deduce that

gcd(n+ 1, mn) = gcd(n+ 1, mn−1). (30)

Then by splitting mn into mn−1 ·m in (29) and applying (30) and the
fact that Dn+1 is squarefree, we infer that (7) holds.
Since denom

(
Sn(x)

)
= (n + 1)Dn+1 by Theorem 1, we see at once

that (7) implies

denom
(
S
n
m,r(x)

)
| denom

(
Sn(x)

)
.

As a result of (29), the denominator of Sn
m,r(x) is independent of r.

This completes the proof of Theorem 2. �

4. Proofs of Theorem 3 and Corollary 2

Before we give the proofs, we need some definitions and lemmas.
Recall that, given a prime p, any positive integer n can be written in
base p as a unique finite p-adic expansion

n = α0 + α1 p+ · · ·+ αt p
t (0 ≤ αj ≤ p− 1).

This expansion defines the sum-of-digits function

sp(n) := α0 + α1 + · · ·+ αt,

which satisfies

sp(n) ≡ n (mod (p− 1)). (31)

Actually, these properties also hold for any base b ≥ 2 instead of p.
The following lemma (see [9, Chap. 5.3, p. 241]) shows the relation
between sp(n) and sp(n+ 1).
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Lemma 5. If n ≥ 1 and p is a prime, then

sp(n+ 1) = sp(n) + 1− (p− 1) vp(n+ 1).

In particular,

sp(n+ 1) ≤ sp(n) ⇐⇒ p | n + 1,

while

sp(n+ 1) = sp(n) + 1 ⇐⇒ p ∤ n + 1. (32)

Lemma 6. If n ≥ 1, then

lcm(Dn, Dn) | lcm
(
Dn+1, rad(n + 1)

)
.

Proof. Set Ln := lcm
(
Dn+1, rad(n+1)

)
. Since Dn andDn are squarefree

by (5) and (13), we show that p | lcm(Dn, Dn) implies p | Ln. Moreover,
since rad(n+ 1) | Ln, we may assume that p ∤ n+ 1.
If p | Dn, then by (5) we have sp(n) ≥ p. Applying (32) followed by

(10), we obtain p | Dn+1, and finally p | Ln.
Since D1 = 2 by (12) and Dn = 1 for odd n ≥ 3, we have Dn | Ln

for odd n ≥ 1. So take n ≥ 2 even. If p | Dn, then p − 1 | n by (13),
so also p − 1 | sp(n) by (31). Thus sp(n) ≥ p − 1. As p ∤ n + 1 by
assumption, (32) implies sp(n + 1) ≥ p, so p | Dn+1 by (10). Finally
p | Ln. This proves the lemma. �

Lemma 7. If n ≥ 1, then

lcm
(
Dn+1, rad(n+ 1)

)
| lcm(Dn, Dn).

Proof. As D1 = D2 = 1, and D1 = 2 by (12), the case n = 1 holds. So
assume n ≥ 2 and set Ln := lcm(Dn, Dn).
If n + 1 is not prime, then (11) implies rad(n + 1) | Ln. Otherwise,

p = n + 1 = rad(n + 1) is an odd prime and so n is even. By (13) we
have p | Dn, so rad(n+ 1) | Ln.
It remains to show that Dn+1 | Ln. As Dn+1 is squarefree by (5),

it suffices to show for any prime p | Dn+1 that p | Ln. By (5) again
we have sp(n + 1) ≥ p, and as rad(n + 1) | Ln we may assume that
p ∤ n + 1. Then by (32) we obtain sp(n) = sp(n + 1) − 1 ≥ p − 1. If
sp(n) ≥ p, then p | Dn by (10), so p | Ln. Otherwise, sp(n) = p− 1 and
so p− 1 | n by (31). Moreover, n must be even, as n odd would imply
p = 2, contradicting p ∤ n+1. Hence p | Dn by (13), and finally p | Ln.
This completes the proof. �

Proof of Theorem 3. To show the equivalence, we have to prove that

denom
(
S
n
m,r(x)

)
= 1 ⇐⇒ Dn | m.
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By (7), we have denom
(
Sn
m,r(x)

)
= 1 if and only if

n + 1

gcd(n + 1, mn)
=

Dn+1

gcd(Dn+1, m)
= 1,

which in turn is true if and only if n+1 | mn and Dn+1 | m. Moreover,

n+ 1 | mn ⇐⇒ rad(n+ 1) | m.

Indeed, p | n + 1 | mn implies p | m, proving the “⇒” direction.
Conversely, if p | rad(n + 1) | m, then pn | mn. But pe ‖ n + 1 with
e ≤ n, so finally n+ 1 | mn. It follows that

denom
(
S
n
m,r(x)

)
= 1 ⇐⇒ lcm

(
Dn+1, rad(n+ 1)

)
| m.

By Lemmas 6 and 7, together with the proof of [6, Thm. 4], we have

lcm
(
Dn+1, rad(n + 1)

)
= lcm(Dn, Dn) = Dn.

This proves the theorem. �

Proof of Corollary 2. (i), (ii) If n ≥ 3 is odd, then Dn = 1. Hence, (8)
and (9) yield Dn = lcm

(
Dn+1, rad(n+1)

)
. Together with D1 = D2 = 1,

this implies that Dn+1 | Dn for all odd n ≥ 1, as desired.
Similarly, for even n ≥ 2, we have Dn+1 = Dn+1 by (8). Then (9)

gives Dn = lcm
(
Dn+1, rad(n+ 1)

)
, so Dn+1 | Dn, as claimed. �

5. Proofs of Theorems 4 and 5

Let a, b ≥ 2 be integers, being multiplicatively independent, that is
ae 6= bf for any integers e, f ≥ 1. Senge and Straus [10, Thm. 3] showed
that for a given constant A the number of integers n satisfying

sa(n) + sb(n) < A

is finite. Steward [12, Thm. 1, p. 64] proved an effective lower bound
such that

sa(n) + sb(n) >
log log n

log log log n+ C
− 1

for n > 25, where C > 0 is an effectively computable constant depend-
ing on a and b. This leads to the following lemma.

Lemma 8. If p 6= q are primes, then

lim
k→∞

sp
(
qk
)
= ∞.

In particular, there exists a positive integer Lp,q > logq p such that

sp
(
qk
)
≥ p (k ≥ Lp,q).
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Proof of Theorem 4. If n = 1, then D1/D2 = 1. By (6), if n ≥ 3 is odd
and n + 1 is not a power of 2, then Dn and Dn+1 are both even. Since
by (5) they are squarefree, Dn/Dn+1 must be odd.
Likewise, if n = 2k − 1 for some k ≥ 2, then Dn/Dn+1 must be twice

an odd number. If an odd prime p divides Dn, then sp(n) ≥ p by (5).
Since p ∤ 2k = n + 1, we infer by (32) that sp(n + 1) > p. Hence by
(10) the prime p also divides Dn+1, so indeed Dn/Dn+1 = 2.
Now, let n = 2ℓpk − 1 with p an odd prime and k, ℓ ≥ 1. Then

we have rad(n+ 1) = 2p, and by (6) that Dn and Dn+1 are both even.
Thus, Dn/Dn+1 ∈ {1, p} by Corollary 2 part (i). We consider two cases.
Case 1 ≤ ℓ < log2 p: Since sp(n + 1) = sp(2

ℓ) < p, we infer that
p ∤ Dn+1 by (10) implying Dn/Dn+1 = p.
Case ℓ > log2 p: Lemma 8 implies a constant Lp := Lp,2 > log2 p

such that sp(n+1) = sp(2
ℓ) ≥ p for all ℓ ≥ Lp. Hence p | Dn+1 by (10)

and Dn/Dn+1 = 1. This proves the theorem. �

Proof of Theorem 5. It is shown in [6, Thm. 4] that Dn is even and
squarefree for all n ≥ 1. (This also follows from (8) for even n ≥ 2,
since 2 | Dn, and from (9) for odd n ≥ 1, since 2 | rad(n + 1), all
terms in question being squarefree.) Hence if n ≥ 2 is even, so that
Dn+1 | Dn, then the quotient must be odd.
Let p be an odd prime. If n = pk − 1 for some k ≥ 1, then we have

rad(n + 1) = p and sp(n + 1) = sp(p
k) = 1 < p. Thus p ∤ Dn+1 by

(10). Since n is even, we have Dn+1 = Dn+1 by (8) and so p ∤ Dn+1.
By Corollary 2 part (i) we finally obtain Dn/Dn+1 = p.
Now, let p 6= q be odd primes and n = pkqℓ − 1 with k, ℓ ≥ 1. We

then have rad(n+1) = pq and by Corollary 2 part (i) that Dn/Dn+1 ∈
{1, p, q, pq}. Note that sp(n + 1) = sp(q

ℓ) and sq(n + 1) = sq(p
k). By

Lemma 8 we define L′
p,q := Lq,p > logp q and L′′

p,q := Lp,q > logq p. We
consider the following statements by using (10):
If 1 ≤ ℓ < logq p, then sp(q

ℓ) < p and p ∤ Dn+1. Otherwise, if

ℓ ≥ L′′
p,q, then sp(q

ℓ) ≥ p and p | Dn+1.

If 1 ≤ k < logp q, then sq(p
k) < q and q ∤ Dn+1. Otherwise, if

k ≥ L′
p,q, then sq(p

k) ≥ q and q | Dn+1.
All three cases of the theorem follow from the arguments given above,

since Dn+1 = Dn+1. This completes the proof of the theorem. �

6. Conclusion

The numbers

B
n
m,r = mn

(

Bn

( r

m

)

− Bn

)

,
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shown by Almkvist and Meurman to be integers, play here a key role
in proofs. By their result, the polynomial Bn(x) − Bn, with an extra
factor, takes integer values at rational arguments x = r/m. In the
present paper, the numbers Bn

m,r reveal their natural connection with
the power sums of arithmetic progressions Sn

m,r(x). Moreover, the di-
visibility properties of Bn

m,r are important in attaining our results in
Theorems 2 and 3.
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