
ar
X

iv
:1

70
5.

05
78

6v
1 

 [
cs

.F
L

] 
 1

6 
M

ay
 2

01
7

A Characterization of Infinite LSP Words⋆
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Abstract. G. Fici proved that a finite word has a minimal suffix automaton if and only if all its
left special factors occur as prefixes. He called LSP all finite and infinite words having this latter
property. We characterize here infinite LSP words in terms of S-adicity. More precisely we provide
a finite set of morphisms S and an automaton A such that an infinite word is LSP if and only if it
is S-adic and all its directive words are recognizable by A.
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1 Introduction

Extending an initial work by M. Sciortino and L.Q. Zamboni [15], G. Fici investigated relations
between the structure of the suffix automaton built from a finite word w and the combinatorics
of this word [8]. He proved that words having their associated automaton with a minimal number
of states (with respect to the length of w) are the words having all their left special factors as
prefixes. G. Fici asked in the conclusion of his paper for a characterization of the set of words
having the previous property, that he called the LSP property, both in the finite and the infinite
case. We provide such a characterization for infinite words in the context of S-adicity.

We assume that readers are familiar with combinatorics on words; for omitted definitions
(as for instance, factor, prefix, ...) see, e.g., [13,14,6]. Given an alphabet A, A∗ is the set of all
finite words over A and Aω is the set of all infinite words over A. A finite word u is a left special
factor of a finite or infinite word w if there exist at least two distinct letters a and b such that
both au and bu occur in w. Given two alphabets A and B, a morphism (endomorphism when
A = B) f is a map from A∗ to B∗ such that for all words u and v over A, f(uv) = f(u)f(v).
Morphisms extend naturally to infinite words.

Let S be a set of morphisms. An infinite word w is said S-adic if there exists a sequence
(fn)n≥1 of morphisms in S and a sequence of letters (an)n≥1 such that limn→+∞ |f1f2 · · · fn(an+1)|
= +∞ and w = limn→+∞ f1f2 · · · fn(a

ω
n+1). The sequence (fn)n≥1 is called the directive word

of w. We consider here S-adicity in a rather larger way: a word w is S-adic with directive
word (fn)n≥1 if there exists an infinite sequence of infinite words (wn)n≥1 such that w1 = w

and wn = fn(wn+1) for all n ≥ 1. Denoting wk = fkfk+1 · · · fn(a
ω
n+1) shows that if the former

definition is verified, the latter is also verified. This second definition may include degenerated
cases as, for instance, the word aω that is {Id}-adic with Id the morphism mapping a on a. For
more information on S-adic systems, readers can consult, e.g., papers [2,3] and their references.

Let pw be the factor complexity of the infinite word w, that is the function that counts the
number of different factors of w. If w is an infinite LSP word, by definition, it has at most one
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left special factor of each length. Thus it is well-known that pw(n+1)−pw(n) ≤ #A−1 (where
for any set X, #X denotes the cardinality of X). We let readers verify that all infinite LSP
words are uniformly recurrent (all factors occur infinitely many times with bounded gaps). By
a result of S. Ferenczi [7] (see also [9,10,11]), there exists a finite set S of morphisms such that
all infinite LSP words are S-adic. But this general result does not provide a characterization of
infinite LSP words.

Our characterization is twofold. First we exhibit an adapted finite set of morphisms SbLSP.
Second we show that there exists an automaton that recognizes the set of directive words of
infinite LSP words. In the binary case, our result can be seen as a version for infinite words
of a result of M. Sciortino and L.Q. Zamboni [15] (see the conclusion). In the ternary case,
morphisms in SbLSP are the mirror morphisms of Arnoux-Rauzy-Poincaré morphisms (here f

is a mirror morphism of g if f(a) is the mirror image or reversal of g(a) for all letters a). These
morphisms were used by V. Berthé and S. Labbé [5] to provide an S-adic system recognizing
sequences arising from the study of the Arnoux-Rauzy-Poincaré multidimensional continued
fraction algorithm. For alphabets of cardinality at least 4, new morphisms appear.

The paper is organized as follows. After introducing in Section 2 our basis of morphisms
SbLSP, in Section 3, we show that all infinite LSP words are SbLSP. Section 4 introduces a
property of infinite LSP words and a property of morphisms in SbLSP that allow to explain why
the LSP property is lost when applying a LSP morphism to an infinite LSP word. Section 5 allows
to trace the origin of the previous property of infinite LSP words. Based on this information,
Section 6 defines our automaton and Section 7 proves our characterization of infinite LSP words.
We end with a few words on characterizations of finite LSP words.

2 Some Basic Morphisms

We call basic LSP morphism on an alphabet A, or bLSP in short, any endomorphism f of A∗

that verifies:

– there exists a letter α such that f(α) = α, and

– for all letters β 6= α, there exists a letter γ such that f(β) = f(γ)β

We let SbLSP(A) (or shortly SbLSP when A is clear) denote the set of all bLSP morphisms over
the alphabet A. Observe that for any bLSP morphism f , there exists a unique letter α such
that f(α) = α. We let first(f) denote this letter as it is also the first letter of f(β) for any letter
β. We also let [u1, u2, . . .] denote the morphism defined by a 7→ u1, b 7→ u2, . . . . For instance,
[a, ab, abc, abcd, abcde] defines the morphism f such that f(a) = a, f(b) = ab, f(c) = abc,
f(d) = abcd, f(e) = abcde.

Remark 1. By definition of bLSP morphisms, given an alphabet A, there is a bijection between
SbLSP(A) and the set of labeled rooted trees with label in A (all labels are on vertices and
distinct vertices have distinct labels). Given a labeled rooted tree T = (A,E), the associated
bLSP morphism f is the one such that, for all letters β, f(β) is the word obtained concatenating
vertices on the path in T from the root to β. For instance, the rooted trees associated with
morphisms [a, ab, abc, abcd], [a, ab, abc, abd], [a, ab, abc, ad] and [a, ab, ac, ad] are given in Figure 1.

The previous remark allows to enumerate bLSP morphisms (see Sequence A000169 in The On-
Line Encyclopedia of Integer Sequences whose first values are 1, 2, 9, 64, 625, 7776, 117649,
2097152).

Here follows some examples of bLSP morphisms.
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Fig. 1. Rooted trees associated with bLSP morphisms

– SbLSP({a, b}) = {[a, ab], [ba, b]}. These morphisms are well-known in the context of Sturmian
words. They are denoted τa and τb in [4] from which it can be seen that standard Sturmian
words are non-periodic {τa, τb}-adic words (see also [12]).

– SbLSP({a, b, c}) = {[a, ab, abc], [a, ab, ac], [a, acb, ac], [ba, b, bac], [ba, b, bc], [bca, b, bc], [ca, cb, c],
[ca, cab, c], [cba, ca, c]} = {p−1◦[a, ab, abc]◦p, p−1◦[a, ab, ac]◦p | p ∈ perm(A)} where perm(A)
is the set of all endomorphisms of A∗ whose restriction to the set of letters is a permutation
of the alphabet. As mentioned in the introduction, these sets SbLSP({a, b, c}) is also the set
of mirror morphisms considered in [5], that is mirrors of the Poincaré substitutions (defined
for {i, j, k} = {a, b, c} by i 7→ ijk, j 7→ jk, k 7→ k) and the Arnoux-Rauzy substitutions
(defined for {i, j, k} = {a, b, c} by i 7→ ik, j 7→ jk, k 7→ k).

– The set SbLSP({a, b, c, d}) is the set of all morphisms on the form p−1◦f ◦p for p ∈ perm(A),
and f being one of the following morphisms: [a, ab, abc, abcd], [a, ab, abc, abd], [a, ab, abc, ad]
and [a, ab, ac, ad].

We end this section with some basic properties of bLSP morphisms that follow directly from
the definition. For a non-empty word u, let first(u) denote its first letter, last(u) its last letter
and alph(u) its set of letters.

Property 2. Let f be a bLSP morphism over the alphabet A.

1. there exists a unique letter α ∈ A such that for all β ∈ A, first(f(β)) = α;
2. for all β ∈ A, last(f(β)) = β;
3. there exists a unique letter α ∈ A such that f(α) = α: α = first(f);
4. f(A) is a suffix code (no word of f(A) is a suffix of another word in f(A));
5. f is injective both on the set of finite words and the set of infinite words;
6. for all β ∈ A, x, y ∈ A∗, if |x| = |y| and if xβ and yβ are factors of words in f(A), then

x = y;
7. for all letters β, γ, |f(β)|γ ≤ 1.

3 SbLSP-Adicity of Infinite LSP Words

Proposition 3. Any infinite LSP word is SbLSP-adic.

Given a set S of morphisms, in order to prove that infinite words verifying a property P are
S-adic, it suffices to prove that for all infinite words w verifying P that:

1. there exists f ∈ S and an infinite word w′ such that w = f(w′), and
2. if w = f(w′) with f ∈ S, then w′ verifies Property P .

Hence Proposition 3 is a direct consequence of the next two lemmas.

Lemma 4. Given any finite or infinite LSP word w, there exist a bLSP morphism f on alph(w)
and an infinite word w′ such that w = f(w′).
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Proof. Let w be a non-empty finite or infinite LSP word and let α be its first letter. Let X be
the set of words over alph(w) \ {α} such that w can be factorized over {α} ∪X. Let G be the
graph (alph(w), E) with E the set of edges (β, γ) such that βγ is a factor of a word αu with
u ∈ X. By LSP Property of w, each letter occurring in a word of X is not left special in w.
Hence G is a rooted tree with α as root, that is, for any letter β, there exists a unique path
from α to β. We let uβ denote the word obtained by concatenating the letters occurring in the
path. Let f be the morphism defined by f(β) = uβ. By construction, f is bLSP and w = f(w′)
for a word w′. ⊓⊔

Remark 5. The word w′ in Lemma 4 is unique. The morphism f is not unique but its restriction
to alph(w′) is. It can also be observed that this restriction is entirely defined by the first letter
of w and the factors of length two of w.

Lemma 6. For any bLSP morphism f and any infinite word w, if f(w) is LSP then w is LSP.

Proof. Assume by contradiction that w is not LSP. This means that w has (at least) one left
special factor that is not one of its prefixes. Considering such a factor of minimal length, there
exist a word u and letters a, b, β, γ such that a 6= b, β 6= γ, ua is a prefix of w, βub and γub

are factors of w. Recall that f is a bLSP morphism: let α = first(f). The word f(u)f(a)α is a
prefix of f(w). Moreover by Property 2(2), words βf(u)f(b)α and γf(u)f(b)α are factors of w
(here the fact that w is infinite is needed: each factor is followed by a letter whose image begins
with α). As f(a) 6= f(b) and as the letter α occurs only as a prefix in f(a) and f(b), f(a)α is
not a prefix of f(b)α and, conversely, f(b)α is not a prefix of f(a)α. Hence there exist a word v

and letters α′, β′ such that α′ 6= β′, vα′ and vβ′ are respectively prefixes of f(a)α and f(b)α. It
follows that f(u)vα′ is a prefix of f(w) while βf(u)vβ′ and γf(u)vβ′ are factors of f(w): f(w)
is not LSP. ⊓⊔

Observe that Lemma 6 does not hold for finite words. For instance the word baa is not LSP
while its image abaa by the morphism [a, ab] is LSP.

To end this section let us mention that in the binary case the converses of Lemma 6 and
Proposition 3 hold.

Proposition 7. If w is a binary LSP infinite word and if f belongs to the set {[a, ab], [ba, b]}
then f(w) is also LSP. Consequently a binary word is LSP if and only if it is {[a, ab], [ba, b]}-
adic.

Proof. The second part of the proposition is a direct consequence of the first part and of
Lemma 4. We prove the first part for f = [a, ab] (exchanging the roles of a and b, the proof is
similar for f = [ba, b]). Assume w is an infinite LSP word over {a, b} such that f(w) is not LSP.
There exists a left special factor v of f(w) which is not a prefix of f(w). Choose v of minimal
length. Hence v = v′β and v′α is a prefix of f(w) for a word v′ and two letters α and β such
that {α, β} = {a, b}. As the letter b is always preceded in f(w′) by the letter a, the word v′ is
a non-empty word ending with a: hence v′ = f(u)a for some word u. As f(u)aα is a prefix of
f(w), by the structure of f , uα is a prefix of w. Also as f(u)aβ is a left special factor of f(w),
as last(f(a)) = a and last(f(b)) = b, the word uβ is also a left special factor of w. As α 6= β,
this contradicts the fact that w is LSP. ⊓⊔

4 Fragility of Infinite LSP Words

For alphabets of cardinality at least 3, the converse of Lemma 6 is false: there exist an infinite
LSP word w and a bLSP morphism f such that f(w) is not LSP. For instance, let F be the

4



well-known Fibonacci word (the fixed point of the endomorphism [ab, a]), and let g be the bLSP
morphism [a, acb, ac]. The word g2(F) begins with the word g2(ab) = g(aacb) = aaacacb that
contains the factor ac which is left special but not a prefix of the word. Hence the word g2(F)
is not LSP while F is LSP and g is bLSP (actually one can prove, using Lemma 10 below, that
g(F) is LSP).

In what follows, we introduce some properties of LSP words and morphisms that explain in
which context a (breaking) bLSP morphism can map a (fragile) infinite LSP word on a non-LSP
word.

Definition 8. Let a, b, c be three pairwise distinct letters. An infinite word w is (a, b, c)-fragile
if there exist a word u and distinct letters α and β such that the word ua is a prefix of w and
the words αub and βuc are factors of w. We will also say that w is (a, b, c, α, β)-fragile when
we need letters α and β. The word u is also called an (a, b, c, β, γ)-fragility of w.

For instance, the empty word ε is an (a, b, c, c, a)-fragility of g(F): εa is a prefix of g(F) =
aacb · · · while cεb and aεc are factors of g(F). More generally any factor abc or acb in an infinite
word starting with the letter a (and with a 6= b 6= c 6= a) produces an (a, b, c)-fragility. One can
also observe that, by symmetry of the definition, any (a, b, c)-fragile word is also (a, c, b)-fragile.
Finally let us note that no fragility exists in words over two letters (as the definition needs three
pairwise distinct letters).

The main idea of introducing the previous notion is that for any (a, b, c)-fragile LSP word
w, there exists a bLSP morphism such that f(w) is not LSP. For instance, if u, α, β,w are as
in Definition 8, the word g(u)aa is a prefix of g(w) whereas words αg(u)acb and βg(u)ac are
factors of g(w), so that g(w) is not LSP since g(u)ac is left special but not a prefix of g(w).

Definition 9. Let a, b, c be three pairwise distinct letters. A morphism f is LSP (a, b, c)-
breaking, if for all (a, b, c)-fragile infinite LSP word w, f(w) is not LSP.

For instance, the morphism g = [a, acb, ac] is (a, b, c)-breaking.

Lemma 10. Let w be an infinite LSP word and let f be a bLSP morphism. The following
assertions are equivalent:

1. The word f(w) is not LSP;
2. There exist some pairwise distinct letters a, b, c such that w is (a, b, c)-fragile and the longest

common prefix of f(b) and f(c) is strictly longer than the longest common prefix of f(a)
and f(b);

3. There exist some pairwise distinct letters a, b, c, such that w is (a, b, c)-fragile and f is LSP
(a, b, c)-breaking.

Proof. 1 ⇒ 2. Assume first that f(w) is not LSP. There exists a left special factor V of f(w)
which is not a prefix of f(w). Let v be the longest common prefix of V and f(w). Let a′, b′ be
the letters such that va′ is a prefix of f(w) and vb′ is a prefix of V : by construction a′ 6= b′. Let
also β, γ be distinct letters such that βV and γV are factors of f(w) (also βvb′ and γvb′ are
factors of f(w)).

By Property 2, the letter α = first(f) is the unique letter that can be left special in f(w).
This implies v 6= ε and first(v) = first(f). As α occurs exactly at the first position in all images
of letters, occurrences of α mark the beginning of images of letters in f(w). Considering the
last occurrence of α in v, we can write v = f(u)αx with |x|α = 0. Let a, b, c be letters such
that:

– ua is a prefix of w, and, va′ = f(u)αxa′ is a prefix of f(ua) when a′ 6= α or v = f(ua) when
a′ = α;
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– βub is a factor of w, and, βvb′ is a prefix of βf(ub) when b′ 6= α or v = f(ub) when b′ = α;

– γuc is a factor of w, and, γvb′ is a prefix of γf(uc) when b′ 6= α or v = f(uc) when b′ = α.

As a′ 6= b′, we have a 6= b and a 6= c. Observe that until now we did not use the fact that w
is LSP. This implies b 6= c (and so b′ 6= α). Indeed otherwise ub would be a left special factor of
w without being one of its prefixes: a contradiction with the fact that w is an LSP word. Thus
w is (a, b, c)-fragile.

This ends the proof of Part 1 ⇒ 2 as αxb′ is a common prefix of f(b) and f(c) and αx is
the longest common prefix of f(a) and f(b).

2 ⇒ 3. By hypothesis, f(a) = vδw1, f(b) = vγw2 and f(c) = vγw3 for letters δ, γ and words
w1, w2 and w3 with δ 6= γ. Let w′ be any LSP (a, b, c)-fragile infinite word. Let u′, α′, β′ be
the word and letters such that u′a is a prefix of w′ while α′u′b and β′u′c are factors of w′ with
α′ 6= β′. The word f(w′) has f(u′)vδ as a prefix and words α′f(u′)vγ and β′f(u′)vγ as factors.
As δ 6= γ, the word f(w′) is not LSP. The morphism f is LSP (a, b, c)-breaking.

3 ⇒ 1. This follows the definition of (a, b, c)-fragile words and LSP (a, b, c)-breaking mor-
phisms. ⊓⊔

Observe that we have also proved the next result.

Corollary 11. A bLSP morphism is LSP (a, b, c)-breaking for pairwise distinct letters a, b and
c if and only if the longest common prefix of f(b) and f(c) is strictly longer than the longest
common prefix of f(a) and f(b).

5 Origin of Fragilities

Before characterizing infinite LSP words, we need to know how fragilities in an LSP word can
appear. This is explained by next result. For a set X of words, we let Fact(X) denote the set
of factors of words in X.

Lemma 12. Assume a word u is an (a, b, c, β, γ)-fragility of f(w) for an infinite word w (not
necessarily LSP) over an alphabet A and f is a bLSP morphism (by definition of fragilities, a,
b, c, β, γ are letters).

– (New fragilities) If u = ε, then a = first(f) and βb, γc ∈ Fact(f(alph(w))).

– (Propagated fragilities) If u 6= ε, there exist letters a′, b′, c′ in alph(w) and an (a′, b′, c′, β, γ)-
fragility v of w such that |v| < |u|, f(v) is a proper prefix of u and words ua, βub, γuc are
respectively prefixes of f(va′)α, βf(vb′)α, γf(vc′)α with α = first(f).

Proof. (New fragilities) If u = ε, it follows from the definition of an (a, b, c, β, γ)-fragility
that a = first(w) and βb, γc are factors of f(w). Now observe that, still by the same defi-
nition, a 6∈ {b, c}. Thus by definition of bLSP morphisms, a = first(f) and βb, γc belong to
Fact(f(alph(w))).

(Propagated fragilities) We assume here that u is not empty. Let α = first(f). Considering
the last occurrence of α in u, observe that the word u can be decomposed in a unique way as
u = f(v)αx with v, x words such that |x|α = 0. As u is an (a, b, c, β, γ)-fragility of f(w), there
exist words w1, w2 and w3 such that:

– |w1|α = |w2|α = |w3|α = 0;

– f(v)αxw1α is a prefix of f(w) and a = first(w1α);

– βf(v)αxw2α and γf(v)αxw3α are factors of f(w) with b = first(w2α) and c = first(w3α).
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By definition of a bLSP morphism, there exist letters a′, b′, c′ such that f(a′) = αxw1, f(b
′) =

αxw2, f(c
′) = αxw3. These letters a′, b′, c′ are pairwise distinct since letters a = first(w1α),

b = first(w2α) and c = first(w3α) are pairwise distinct. Moreover va′ is a prefix of w and words
βvb′ and γvc′ are factors of w (remember that α marks the beginning of letters in f(w) as f is
a bLSP morphism). Hence the word v is an (a′, b′, c′, β, γ)-fragility of w. Finally let us observe
that |v| ≤ |f(v)| < |u|. ⊓⊔

6 An Automaton to Follow Fragilities

In this section, we introduce an automaton that allows to recognize all directive words of LSP
words viewed as SbLSP-adic words. We will prove the converse in next section. Observe that
transitions of the automaton are defined in order to follow fragilities using Lemma 12.

Definition 13. We let AbLSP denote the non-deterministic automaton whose elements are
described below.

– The alphabet of AbLSP is the set bLSP of basic LSP morphisms.
– The set of states Q is the set 2A×bLSP×2A

5

. Hence a state is the data of a sub-alphabet
of A, of a bLSP morphism and of a set of 5-tuples (a, b, c, β, γ) of letters whose aim is to
represent the set of fragilities of a word. For a state q, we let alph(q) denote the sub-alphabet
of A, by bLSP(q) the morphism and by set(q) the set of 5-tuples.

– The set of transitions ∆ is the set of triples (q, f, q′) such that
1. f = bLSP(q);
2. alph(q) = alph(f(alph(q′)));
3. if (a, b, c, β, γ) ∈ set(q′) then f is not LSP (a, b, c)-breaking;
4. set(q) is the set of all 5-tuples (a, b, c, β, γ) such that a, b, c, β, γ are letters of alph(q),

a 6= b 6= c 6= a, β 6= γ and one of the following two conditions holds:
(a) a = first(f), βb, γc in Fact(f(alph(q′))) and β 6= γ;
(b) there exist a′, b′, c′ such that (a′, b′, c′, β, γ) ∈ set(q′) and a word x such that xa ∈

pref(f(a′)α), xb ∈ pref(f(b′)α) and xc ∈ pref(f(c′)α) with α = first(f).
– All states are initial.

Figure 2 shows this automaton when the alphabet is {a, b}. In this figure, τa = [a, ab] and
τb = [ba, b]. States q with set(q) 6= ∅ are not drawn since binary infinite LSP words contain no
fragilities. Moreover states (∅, τa, ∅) and (∅, τb, ∅), ({a}, τb, ∅) and ({b}, τa, ∅) are not drawn as
there are no transition leaving them.

{a}, τa, ∅ {a, b}, τb, ∅ {a, b}, τa, ∅ {b}, τb, ∅
τb

τa

τb

τa

τa τa τbτb

Fig. 2. AbLSP for the binary alphabet

For alphabets with at least three letters, automaton AbLSP is too huge to be drawn even
restricting to states q such that set(q) is a set of fragilities of an LSP word.

An infinite word f over bLSP is said to be recognized by AbLSP if there exists an infinite path
in AbLSP whose label is f . The aim of AbLSP is to recognize bLSP directive words of infinite
LSP words.
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Let w be an LSP word. We associate with w a state of AbLSP that we let denote q(w). This
state is the state q such that:

– alph(q) = alph(w):
– bLSP(q) is any morphism f such that w = f(w′) for some word w′ (such a morphism exists

by Lemma 4).
– set(q) is the set of all 5-tuples (a, b, c, β, γ) such that w is (a, b, c, β, γ)-fragile.

The fact that, for any LSP word w, any of its directive word is recognized by w, is a direct
consequence of next lemma.

Lemma 14. Let w, w′ be LSP words such that w = f(w′) with f = bLSP(q(w)). The transi-
tion (q(w),bLSP(q(w)), q(w′)) exists in AbLSP.

Proof. Let f = bLSP(q(w)). Observe that alph(q(w)) = alph(w), w = f(w′) and alph(q(w′)) =
alph(w′). Whence we have alph(q(w)) = alph(f(alph(q(w′))).

By Lemma 12 and the definition of q(w), a 5-tuple (a, b, c, β, γ) belongs to set q(w) if and
only if one of the following two conditions holds:

– a = first(f), βb, γc belong to Fact(f(alph(w′)))
– there exist a′, b′, c′, β, γ in alph(w′) and an (a, b, c, β, γ)-fragility u ofw and an (a′, b′, c′, β, γ)-

fragility v of w′ such that |v| < |u|, f(v) is a proper prefix of u and words ua, βub, γuc are
respectively prefixes of f(va′)α, βf(vb′)α), γf(vc′)α with α = first(f).

For the second case, u = f(v)x for a word x. The word xa is a prefix of f(a′)α, xb is a prefix of
f(b′)α and xc is a prefix of f(c′)α. As w′ is (a′, b′, c′, β, γ)-fragile, (a′, b′, c′, β, γ) ∈ set(q(w′)).
Thus in both cases, Condition 4 for (q(w), bLSP(q(w), q(w′)) to be a transition of AbLSP is
verified.

To end the proof we have to check Property 3 of transitions of AbLSP. Assume there ex-
ists an (a, b, c, β, γ)-fragility in set(q(w′)). By definition of q(w′), this implies that w′ has an
(a, b, c, β, γ)-fragility. As w = f(w′) is LSP, f = bLSP(q(w)) is not LSP (a, b, c)-breaking. ⊓⊔

7 A Characterization of LSP Words

Theorem 15. A word w is LSP if and only if it is SbLSP-adic and all of its directive word are
recognized by the automaton AbLSP.

Proof. Proposition 3 and Lemma 14 prove the only if part of Theorem 15. Let us prove the if
part of Theorem 15.

Assume, by contradiction, that AbLSP recognizes a directive word f of a word w which is
SbLSP-adic but not LSP. Such a word contains a left special factor u that is not a prefix of w.
Among all possible triples (f ,w, u), choose one such that |u| is minimal.

For n ≥ 1, we let fn denote the nth letter of f and wn the word directed by (fk)k≥n (w1 = w;
w2 is directed by f2f3 · · ·; wn = fn(wn+1) for n ≥ 1).

Step 1: w2 contains a fragility
First observe |u| ≥ 2. Indeed we have |u| 6= 0 as the empty word is a prefix of w. Moreover,

by the structure of images of the bLSP morphism f1, only the letter first(f1) can be left special,
whence |u| 6= 1.

Let α = first(w) = first(f1). Considering the last occurrence of α in u, the word u can be
decomposed in a unique way u = f1(v)αx with v, x words such that |x|α = 0.

As u is left special, there exist distinct letters β and γ such that βu and γu are factors of
w. As the letter α marks the beginning of images of letters in w and as for all letters δ, f1(δ)
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ends with δ, we deduce that βv and γv are factors of w2. As |v| < |u| and by choice of the triple
(f ,w, u), the word v is a prefix of w2. Consequently f1(v)α is a prefix of w and so x 6= ε.

Assume there exists a unique letter b such that βvb is a factor of w and u is a prefix of f(vb).
Assume also that b is the unique letter c such that γvc is a factor of w and u is a prefix of f(vc).
As u is not a prefix of w = f1(w2) and as u is a prefix of f1(vb), the word vb is not a prefix of
w2. By choice of the triple (f ,w, u), |vb| ≥ |u|. As |v| < |u|, we get |vb| = |u| = |f1(v)αx|. As
|f1(v)| ≥ |v|, it follows x = ε: a contradiction.

From what precedes, we deduce the existence of two distinct letters b and c such that βvb and
γvc are factors of w2 with u a prefix of f1(vb) and f1(vc). As u is not a prefix of w = f1(w2),
the letter a that follows the prefix v of w2 is different from b and c. Hence the word w2 is
(a, b, c, β, γ)-fragile and v is such a fragility.

Step 2: f1 is LSP (a, b, c)-breaking
By definition of letters b and c at Step 1, the word αx is a common prefix of f1(b) and f1(c).

Also as u = f1(v)αx is not a prefix of w while f1(v)a is a prefix of w, the word αx is not a
prefix of f1(a). By Corollary 11, f1 is (a, b, c)-breaking.

Step 3: origin of fragilities of w2

Applying iteratively Lemma 12, we deduce the existence of an integer n ≥ 2, a sequence
of triples of pairwise distinct letters (ai, bi, ci)i∈{2,···,n}, a sequence of (ai, bi, ci, β, γ)-fragilities
(vi)i∈{2,···,n} such that:

– vi occurs in wi for all i ∈ {2, · · · , n};
– (a2, b2, c2) = (a, b, c) and v2 = v;
– |vi+1| < |vi| for all i ∈ {2, · · · , n− 1};
– vn = ε.
– words viai, βvibi, γvici are respectively prefixes of the words fi(vi+1ai+1)αi, βfi(vi+1bi+1)αi,

γfi(vi+1ci+1)αi where αi = first(fi) for i ∈ {2, · · · , n− 1};
– an = first(fn);
– βbn, γcn belong to Fact(fn(alph(wn+1))).

Step 4: Conclusion Let (qi)i≥1 be the sequence of states along a path recognizing f : for all
n ≥ 1, (qn, fn, qn+1) is a transition of AbLSP.

At the end of Step 3, we learn that there exists an (an, bn, cn)-fragility in fn(wn+1). Hence
an, bn, cn are pairwise distinct letters. Especially as a = first(fn) 6∈ {bn, cn} by properties of
bLSP morphisms, the words βbn and γcn are factors of images of letters, say b′n and c′n. As
alph(qn) = alph(fn(qn+1)), this implies that b′n and c′n belong to alph(qn+1) and an, bn and cn
belong to alph(qn). Moreover, as βbn, γcn are factors of words in fn(alph(qn+1)), we deduce
that (an, bn, cn, β, γ) ∈ set(qn).

By backward induction, we can show that for all i, 2 ≤ i ≤ n, (ai, bi, ci, β, γ) ∈ set(qn).
Especially (a2, b2, c2, β, γ) ∈ set(q2). As, by Step 2, f1 is LSP (a2, b2, c2)-breaking and (q1, f1, q2)
is a transition of AbLSP, we get our final contradiction. ⊓⊔

8 Conclusion

Recall that G. Fici [8] asked for a characterization of both finite and infinite words. Observe
that it can be proved that any non-empty finite LSP word w is right extendable to a longer LSP
word (That is there exists a letter a occurring in w such that wa is a LSP). As a consequence
one can prove:

Lemma 16. A finite word is LSP if and only if it is a prefix of an infinite LSP word.
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Lemma 16 is a consequence of next result.

Lemma 17. Any non-empty finite LSP word w is right extendable to a longer LSP word. That
is there exists a letter a occurring in w such that wa is a LSP.

Proof. The result is immediate for words of length 1. Let w be a finite LSP word of length at
least two. Let u be its longest border (that is the longest word distinct from w that is both a
prefix and a suffix of w) and let a be the letter such that ua is a prefix of w. From now on we
prove that wa is LSP. Consider a left special factor of wa. If it is a factor of w, as w is LSP, it
is a prefix of w and so of wa. Assume now that va is both a suffix and a left special factor of
wa. As v is then a left special factor of w, v is a prefix of w and so it is a border of w. If v = u

then, by definition, va is a prefix of wa. In the remaining case v 6= u, va is a suffix of ua which
is a prefix of w. Hence va occurs in w, and as a left special factor, it is a prefix of w and so of
wa. Hence wa is LSP. ⊓⊔

Proof of Lemma 16. One can observe that if u is the longest border of a word w and if ua is
a prefix of w, then ua is the longest border of wa. Hence iterating the proof of the previous
lemma, one obtains that: if w = pu with u the longest border of w, then the infinite extension
pω of w is LSP. As any prefix of an LSP word is also LSP, Lemma 16 follows.

By definition, left special factors are prefixes of LSP words. Hence readers can verify that
Lemma 17 can not be stated for left extendability. More precisely, if, for a letter a and a word
x, both a and x are LSP, then ax has no left special factor except the empty word or ax = anu

for a word u whose left special factors are words ai with i ≤ n. ⊓⊔

Lemma 16 shows that any characterization of infinite LSP words provides naturally a char-
acterization of finite LSP words (adding “is a prefix of” before the characterization of infinite
LSP words). For instance in the binary case, this allows to find back M. Sciortino and L.Q. Zam-
boni’s result [15]: “binary words having suffix automaton with the minimal possible numbers
of states are exactly the finite prefixes of standard Sturmian words” (that can be reformulated
after G. Fici’s work : “finite binary LSP words are exactly the finite prefixes of standard Stur-
mian words”). For this purpose, one can first see from Theorem 15 and Figure 2 that directive
words of binary infinite LSP words are ultimately τa or ultimately τb or ultimately contain both
τa and τb. By classical results (see, e.g., [1]) it can be deduced that an infinite LSP word is an
infinite repetition of a finite standard word or is an infinite standard word. As any power of a
finite standard word is a prefix of an infinite standard word (see [14, Chap. 2] for instance), we
get M. Sciortino and L.Q. Zamboni’s result.

We end this paper mentioning natural questions arising from this work. Can a smaller
automaton than AbLSP can be found for recognizing directive words of LSP infinite words? Can
a similar S-adicity system can be found for infinite words having at most one left special factor?
Does there exist a finite or infinite set S of morphisms such that an infinite word is LSP if and
only if it S-adic (as it occurs for infinite balanced binary words)?
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Jules Verne (2012)
10. Leroy, J.: An S-adic characterization of minimal subshifts with first difference of complexity p(n+1)−p(n) ≤

2. Discrete Math. Theor. Comput. Sci. 16(1),(1), 233–286 (2014)
11. Leroy, J., Richomme, G.: A combinatorial proof of S-adicity for sequences with linear complexity. Integers

13(Article #A5) (2013)
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