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SHELLABLE POSETS ARISING FROM EVEN SUBGRAPHS OF A GRAPH

BORAM PARK AND SEONJEONG PARK

Abstract. The concept of a poset of even subgraphs of a graph was firstly considered by S. Choi and
H. Park to compute the rational Betti numbers of a real toric manifold associated with a simple graph.
S. Choi and the authors extended this to a graph allowing multiple edges, motivated by the work on the
pseudograph associahedron of Carr, Devadoss and Forcey. In this paper, we completely characterize the
graphs (allowing multiple edges) whose posets of even subgraphs are always shellable.

1. Introduction

Throughout this paper, a graph permits multiple edges but not a loop, and when a simple graph is
considered, we always mention that it is ‘simple’. We only consider a finite poset and a finite graph.

Shellability is a combinatorial property of simplicial complexes with strong topological and algebraic
consequences, and so it is one of crucial concepts in the theory of poset topology, which provides a deep
and fundamental link between combinatorics and other branches of mathematics, see [16]. It has been
an important research issue to study shellable simplicial complexes and investigate their topological
properties. Among them, many simplicial complexes arising from graphs are beautiful objects with a
rich topological structure and may hence be considered as interesting in their own right and see [9]. See
also [8, 13,15,17,18] for results on some simplicial complexes arising from graphs.

The main purpose of the paper is to characterize graphs G always having shellable posets of even
subgraphs. Here, we consider shellability for a nonpure poset developed by Björner and Wachs [3, 4].

A maximal set of multiple edges which have the same pair of endpoints is called a bundle. A graph
H is an induced (respectively, semi-induced) subgraph of G if H is a subgraph that includes all edges
(respectively, at least one edge) between every pair of vertices in H, if such edges exist in G. A graph
H is a partial underlying induced graph of a graph G if H can be obtained from an induced subgraph
of G by replacing some bundles with simple edges. Let A∗(G) be the set of all pairs (H,C) of a partial
underlying induced graph H of G and an admissible collection C of H, where an admissible collection C

of H is defined to be a set consisting of an even number of vertices of H and an even positive number of
multiple edges in each bundle of H with a certain property, see Definition 3.1. For each (H,C) ∈ A∗(G),
Peven
H,C is a poset whose elements are all semi-induced subgraphs of H such that each component of I has

an even number of elements in C, including both ∅ and H, ordered by subgraph containment.
In [6], the notion of Peven

H,C for a simple graph H was firstly introduced to study the topology of a real
toric manifold associated with a simple graph, and it was shown that Peven

H,C is CL-shellable for every

simple graph H. The work of [6] was generalized to a graph (allowing multiple edges) in [7], motivated
by the work on the pseudograph associahedron in [5]. It was shown in [7] that the shellability of the
poset Peven

H,C gives a direct consequence of the rational Betti numbers of a real toric manifold associated
with a graph, and also asked to characterize all graphs G such that Peven

H,C is shellable for each pair

(H,C) in A∗(G). Our main result is the following:
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2 B. PARK AND S. PARK

Theorem 1.1 (Main result). Let G be a graph. Then Peven
H,C is shellable for every (H,C) ∈ A∗(G) if

and only if each component of G is either a simple graph or one of the graphs in the following figure.

P̃n,m

(n ≥ 2)

...
S̃n,m

(n ≥ 5, odd)

... T̃n,m

(n ≥ 5, odd)

...

P̃ ′
n,m

(n ≥ 3)

...
S̃′
n,m

(n ≥ 5, odd)

... T̃ ′
n,m

(n ≥ 5, odd)

...

Non-simple connected graphs with n vertices and m multiple edges (m ≥ 2)

The proof of the ‘if’ part of our main result relies on finding a recursive atom ordering of a poset.
We also provide some applications of the main result to the topology of a real toric manifold associated
with a graph. We believe that this paper has a contribution to studying combinatorial and topological
properties of a poset arising from a graph.

This paper is organized as follows. Section 2 collects some basic definitions and important facts about
a poset and its shellability. Section 3 gives the definition of the poset Peven

G,C of the C-even subgraphs of
a graph G, and then explains the main theorem of this paper. Section 4 proves a necessary condition
of the main theorem, which gives a possible list of graphs G such that Peven

H,C is shellable for every

(H,C) ∈ A∗(G). Section 5 proves a sufficient condition of the main theorem, which shows the CL-
shellability of each Peven

H,C for a graph G in the list and (H,C) ∈ A∗(G). In Section 6, as an important
application of our result, we explain how to compute the rational Betti numbers of a real toric manifold
associated with a graph using our result, and then study it for the graph P̃n,2 in the figure of the main
result. Section 7 gives some further questions.

2. Preliminaries: A poset and its shellability

In this section, we prepare some notions and basic facts about a poset and its shellability. See [16]
for more detailed explanation about this section.

We only consider a finite poset in this paper. Let P be a poset (partially ordered set). For two
elements x, y ∈ P, we say y covers x, denoted by x⋖ y, if x < y and there is no z such that x < z < y.
We also call it a cover x⋖ y. One represents P as a mathematical diagram, called a Hasse diagram, in
a way that a point in the plane is drawn for each element of P, and a line segment or curve is drawn
upward from x to y whenever y covers x. A chain of P is a totally ordered subset σ of P, and we say
the length ℓ(σ) of σ is |σ| − 1. We say P is pure if all maximal chains have the same length. The length
ℓ(P) of P is the length of a longest chain of P. For x ≤ y in P, let [x, y] denote the (closed) interval
{z ∈ P : x ≤ z ≤ y}. We say P is semimodular if for all x, y ∈ P that cover a ∈ P, there is an element
b ∈ P that covers both x and y. If every closed interval of P is semimodular, then P is said to be
totally semimodular. If P has a unique minimum element, it is usually denoted by 0̂ and referred to as
the bottom element. Similarly, the unique maximum element, if it exists, is denoted by 1̂ and referred
to as the top element. An element of P that covers the bottom element, if it exists, is called an atom.
We say P is bounded if it has the elements 0̂ and 1̂. The order complex of P, denoted by ∆(P), is an

abstract simplicial complex whose faces are the chains of P. Note that if P has either 0̂ or 1̂, then ∆(P)
is contractible, hence we usually remove the top and bottom elements, and then study the topology of
the remaining part. The proper part of a bounded poset P with length at least one is defined to be
P := P − {0̂, 1̂}.

The notion of shellability was firstly appeared in the middle of the nineteenth century in the compu-
tation of the Euler characteristic of a convex polytope [11], and in this paper shellability refers to the
general notion of nonpure shellability introduced in [3]. A simplicial complex K is shellable if its facets
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can be arranged in linear order F1, F2, . . . , Ft in such a way that the subcomplex (
∑k−1

i=1 Fi)∩Fk is pure
and (dimFk − 1)-dimensional for all k = 2, . . . , t. Such an ordering of the facets is called a shelling. A
poset P is said to be shellable if its order complex ∆(P) is shellable.

A chain-lexicographic shellability (CL-shellability for short) was introduced by Björner and Wachs
to establish the shellability of Bruhat order on a Coxeter group [2]. It is known that CL-shellability is
stronger than shellability, that is, if a bounded poset is CL-shellable, then it is shellable, but the converse
is not true, see [14]. Let P be a bounded poset. We denote byME(P) the set of pairs (σ, x⋖y) consisting
of a maximal chain σ and a cover x⋖ y along that chain. For x, y ∈ P and a maximal chain r of [0̂, x],
the closed rooted interval [x, y]r of P is a subposet of P obtained from [x, y] adding the chain r. A
chain-edge labeling of P is a map λ : ME(P) → Λ, where Λ is some poset satisfying; if two maximal
chains coincide along their bottom d covers, then their labels also coincide along these covers. A chain-
lexicographic labeling (CL-labeling for short) of a bounded poset P is a chain-edge labeling such that
for each closed rooted interval [x, y]r of P, there is a unique strictly increasing maximal chain, which
lexicographically precedes all other maximal chains of [x, y]r. A poset that admits a CL-labeling is said
to be CL-shellable. Figure 1 shows an example of a CL-shellable poset.

a

b c

d e

f

3 (2)

1© (3)

2© 1

3©

(1)
2 Labeling of the covers in chain a < b < d < f is 1, 2, 3 (marked as 1©, 2©, 3©).

Labeling of the covers in chain a < c < d < f is 3, 2, 1 (marked as (3), (2), (1)).

Labeling of the covers in chain a < b < e < f is 1, 3, 2 (marked as 1©, 3, 2).

Labeling of the covers in chain a < c < e < f is 3, 1, 2 (marked as (3), 1, 2).

Figure 1. A chain-edge labeling of a poset with four maximal chains (same example in [16])

We recall well-known properties on shellability and CL-shellability which we will use. The product
P × Q of two posets P and Q is the new poset with partial order given by (a, b) ≤ (c, d) if and only if
a ≤ c (in P) and b ≤ d (in Q).

Theorem 2.1 ( [1, 3, 4]). The following hold:

(1) Every (closed) interval of a shellable (respectively, CL-shellable) poset is shellable (respectively,
CL-shellable).

(2) The product of bounded posets is shellable (respectively, CL-shellable) if and only if each of the
posets is shellable (respectively, CL-shellable).

(3) A bounded poset is pure and totally semimodular, then it is CL-shellable.

It is worthy to note that the homotopy type of ∆(P) is known when a bounded poset P has a CL-
labeling λ : ME(P) → Λ. A falling chain σ : x0 ⋖ x1 ⋖ · · · ⋖ xℓ of P is a maximal chain such that
λ(σ, xi−1 ⋖ xi) ≥Λ λ(σ, xi ⋖ xi+1) in Λ for every 1 ≤ i < ℓ(σ).

Theorem 2.2 ( [3]). If a bounded poset P is CL-shellable, then ∆(P) has the homotopy type of a wedge
of spheres. Furthermore, for any fixed CL-labeling, the reduced ith Betti number of ∆(P) is equal to the
number of falling chains of length i+ 2.

The poset in Figure 1 has exactly one falling chain a < c < d < f , and ∆(P ) is homotopy equivalent
to S1.

A recursive atom ordering is an alternative approach to lexicographic shellability, which is known to
be an equivalent concept of CL-shellability.

Definition 2.3. A bounded poset P is said to admit a recursive atom ordering if its length ℓ(P) is 1,
or ℓ(P) > 1 and there is an ordering α1, . . . , αt of the atoms P that satisfying the following:
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(1) For all j = 1, . . . , t, the interval [αj , 1̂] admits a recursive atom ordering in which the atoms of

[αj , 1̂] that belong to [αi, 1̂] for some i < j come first.

(2) For all i, j with 1 ≤ i < j ≤ t, if αi, αj < y then there exist an integer k and an atom z of [αj , 1̂]
such that 1 ≤ k < j and αk < z ≤ y.

For example, for the poset in Figure 1, if we order the atoms of each interval by an alphabetical order
(for the atoms of [a, f ], the ordering is b ≺ c, for the atoms of [b, f ], the ordering is d ≺ e, and for the
atoms of [c, f ], the ordering is d ≺ e), then it is a recursive atom ordering.

We note that any atom ordering of a pure totally semimodular bounded poset is a recursive atom
ordering, which implies (3) of Theorem 2.1. We finish the section by introducing a sketch of the proof
shown in [3] that the existence of a recursive atom ordering implies CL-shellability.

Theorem 2.4 ( [3]). A bounded poset admits a recursive atom ordering if and only if it is CL-shellable.

Sketch of proof of the ‘only if ’ part. Let us give an integer labeling λ of the bottom covers of P such
that λ(0̂, αi) < λ(0̂, αj) for all i < j. For each j, let F (αj) be the set of all atoms of [αj , 1̂] that cover

some αi where i < j. We label the bottom covers of [αj , 1̂] consistently with the atom ordering of [αj , 1̂]
and satisfying

x ∈ F (αj) ⇒ λ(αj , x) < λ(0̂, αj) and x 6∈ F (αj) ⇒ λ(αj , x) > λ(0̂, αj),

where λ denotes the labeling of the bottom covers of [αj , 1̂] as well as the original labeling of the bottom

covers of P. This labeling inductively extends to an integer CL-labeling of [αj , 1̂]. Choosing such an

extension at each αj, we obtain a chain-edge labeling λ of P which is a CL-labeling of [αj , 1̂] for all

j = 1, . . . , t, and hence for every rooted interval whose bottom element is not 0̂, and which extends the
original labeling of the bottom covers of P. Then one can show that the unique lexicographically first
maximal chain of each interval [0, y] is the only increasing maximal chain of that interval. Hence the
labeling λ is an integer CL-labeling on P. �

3. A poset Peven
G,C of C-even subgraphs of a graph G and the main result

In this section, we give basic definitions related to graphs and then define the poset Peven
G,C . Here,

the poset Peven
G,C arose from the computation of the rational Betti numbers of a real toric manifold

associated with a graph G in [7]1, which gives a strong motivation for the main question of this paper.
At this moment, we do not review the definition of pseudograph associahedron or its corresponding real
toric manifold (see [7, Sections 2 and 3], for readers to find a much more detailed account of results of
pseudograph associahedra). In Section 6, we simply explain how the main result of this paper is useful
in computing the rational Betti numbers of a real toric manifold.

For a graph G = (V,E), an element of V and an element of E are called a vertex and an edge
respectively, and we only consider a finite graph not allowing a loop, an edge whose endpoints are the
same. An edge e is said to be multiple if there exists another edge e′ which has the same endpoints as
e. An edge which is not a multiple edge is said to be simple. A bundle is a maximal set of multiple
edges which have the same endpoints. A simple graph is a graph having neither bundles nor loops.

Let G be a graph. A subgraph H of G is an induced (respectively, semi-induced) subgraph of G if H
includes all edges (respectively, at least one edge) between every pair of vertices in H if such edges exist
in G. A graph H is a partial underlying graph of G if H can be obtained from G by replacing some
bundles with simple edges, that is, the set of all the bundles of H is a subset of that of G. A graph H

is a partial underlying induced graph (PI -graph for short) of G if H is an induced subgraph of some
partial underlying graph of G. For example, see the graph G with two bundles {a, b} and {c, d, e} in

1In [5,7], a graph allowing multiple edges is called a pseudograph.
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2

I1

1 3 4

I2

1 2 3 4ca

I3

1 2 3 4
a

b

c

d

e

G

1 2 3 4

H1

1 2 3 4a

b

H2

1 2 3 4
d

c

e

H3

1 2 3

H4

1 2 3a

b

H5

1 2 3c

d
e

H6

H1

∅

23 3412

Peven
H1,1234

Peven
H2,1234ab

Peven
H3,1234cd

H2

∅

23

3412ab
123a 123b

H2

∅

12 34

123c 123d 23e 23cd 234c 234d

23cde 234ce 234de123ce 123de 1234cd

Figure 2. Examples for PI-graphs of G and the posets Peven
H,C

Figure 2, where I1, I2, and I3 are semi-induced subgraphs of G, H1, H2, and H3 are partial underlying
graphs of G, and all Hi’s and the subgraph I1 are PI-graphs of G.

Before stating the definitions of the main notions of the paper, we need to explain a way to denote
a subgraph of a graph by a set. For a graph G, we label the vertices and the multiple edges of a
graph G and we set CG = V (G) ∪ B1 ∪ · · · ∪ Bk, where B1, . . . , Bk are the bundles of G. For instance,
CG = {1, 2, 3, 4, a, b, c, d, e} and CH3 = {1, 2, 3, 4, c, d, e} for the graphs G and H3 in Figure 2. A
subgraph I of G will be written as the set of the vertices of I and the edges of I in a bundle of G. For
instance, the three subgraphs I1 ∼ I3 of G in Figure 2 are expressed as I1 = {2}, I2 = {1, 3, 4}, and
I3 = {1, 2, 3, 4, a, c}. It should be noted that for a semi-induced subgraph I, this set expression makes
sense because I is distinguishable by the corresponding set. In the same sense, for a semi-induced
subgraph I, we say α ∈ I if α is a vertex of I or an edge of I which is a multiple edge of G. For
simplicity, we omit the braces and commas to denote a subset of CG and we always denote it in a way
that the vertices precede the multiple edges. For the semi-induced subgraphs Ii’s in Figure 2,

I1 = 2, I2 = 134, I3 = 1234ac.

We remark that when we consider a subgraph I of a graph G, the labels of I are inherited from the
labels of G. Thus if a graph I is considered as a subgraph of a graph G, then I may have a labeled
simple edge, which is not in a bundle of I (actually, it is in a bundle of G).

Definition 3.1. For a connected graph H, a subset C of CH is admissible to H if the following hold:

(1) |C ∩ V (H)| ≡ 0 (mod 2) and each vertex incident to only simple edges of H is contained in C,
(2) B ∩ C 6= ∅ and |B ∩ C| ≡ 0 (mod 2), for each bundle B of H.

For a disconnected graphH, C ⊂ CH is admissible toH if CH′∩C is admissible toH ′ for each component
H ′ of H.
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We denote by A(H) the set of all the admissible collections of H. For each C ∈ A(H), a semi-induced
subgraph I of H is said to be C-even if |I ′ ∩ C| is even for each component I ′ of I. Now we define the
poset Peven

H,C by the poset consisting of all C-even semi-induced subgraphs of H ordered by subgraph

containment, including both ∅ and H. Note that if A(H) = ∅ then Peven
H,C is defined to be the null poset,

and if A(H) 6= ∅ then Peven
H,C is a bounded poset. For the graphs Hi’s in Figure 2,

A(H1) = {1234}, A(H2) = {34ab, 1234ab}, A(H3) = {14cd, 14ce, 14de, 1234cd, 1234ce, 1234de},
A(H4) = ∅, A(H5) = {12ab, 23ab}, A(H6) = {12cd, 12ce, 12de, 13cd, 13ce, 13de}.

Figure 2 shows the posets Peven
H1,1234

, Peven
H2,1234ab

and Peven
H3,1234cd

. Note that the first two posets are shellable
but the last one is not. For more examples of Peven

H,C , see also Figure 10.

Let H be a simple graph. Then A(H) = {H} if each component of H has an even number of vertices,
and A(H) = ∅ otherwise. Thus we write Peven

H instead of Peven
H,H . In [6], it is shown that Peven

H is always
shellable.

Theorem 3.2 ( [6]). Let H be a simple graph such that each component has an even number of vertices.
Then Peven

H is pure and totally semimodular, and so it is shellable.

Since a pure and totally semimodular poset is CL-shellable by (3) of Theorem 2.1, Peven
H is CL-

shellable when H is a simple graph such that each component has an even number of vertices. Thus
Theorem 3.2 says that for any induced subgraph H of a simple graph G such that A(H) 6= ∅, the poset
Peven
H is CL-shellable.

Remark 3.3. In [6], Theorem 3.2 is used to determine the homotopy type of the order complex
∆(Peven

H ). Finally, ∆(Peven
H ) is homotopy equivalent to a wedge of the same dimensional spheres, and

the Möbius invariant µ(Peven
H )2 is equal to the (ℓ−2)th Betti number of ∆(Peven

H ), where ℓ is the length of
the poset Peven

H . For example, whenH is a simple path graph P2n with 2n vertices, µ(Peven
H ) = (−1)nCn,

where Cn is the nth Catalan number 1
n+1

(2n
n

)

, and hence ∆(Peven
H ) is homotopy equivalent to

∨

Cn

Sn−2.

In [7], there was an effort to extend results of [6] for a simple graph to a graph allowing multiple
edges. Almost all results of [6] except for Theorem 3.2 were well-extended by using Peven

H,C where H

is a PI-graph of G and C ∈ A(H). As the poset Peven
H3,1234cd

in Figure 2 is not shellable, Theorem 3.2
cannot be generalized to Peven

H,C . Hence it is natural to ask which Peven
H,C is shellable. From an interest

of the topology of a real toric manifold associated with a graph, the following Question 3.4 was asked
in [7], instead of asking the conditions on (H,C) to give a shelling of Peven

H,C . For a graph G, let

A∗(G) = {(H,C) | H is a PI-graph of G and C ∈ A(H)}.

Question 3.4 ( [7]). Find all graphs G such that Peven
H,C is shellable for every (H,C) ∈ A∗(G).

For simplicity, throughout the paper, let G∗ be the family of all graphs G such that Peven
H,C is shellable

for every (H,C) ∈ A∗(G). We will give some remark that G∗ is distinct from the set of all graphs G

such that Peven
G,C is shellable for each C ∈ A(G) in Section 7. Clearly, the family G∗ contains all simple

graphs by Theorem 3.2. The answer to Question 3.4 is the following, which restates Theorem 1.1.

2The Möbius function µ, introduced by Rota in [10], is inductively defined as follows: for a poset P , for elements x and
y in P ,

µP (x, y) =























1 if x = y

−
∑

z : x≤z<y

µP (x, z) if x < y

0 otherwise.

For a bounded poset P , the Möbius invariant is defined as µ(P) = µP (0̂, 1̂). See [12] for various techniques for computing
the Möbius function of a poset.
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Theorem 1.1 (Main result) A graph G is in G∗ if and only if each component of G is either a simple
graph or one of the graphs in Figure 3.

P̃n,m

(n ≥ 2)

...
S̃n,m

(n ≥ 5, odd)

... T̃n,m

(n ≥ 5, odd)

...

P̃ ′
n,m

(n ≥ 3)

...
S̃′
n,m

(n ≥ 5, odd)

... T̃ ′
n,m

(n ≥ 5, odd)

...

Figure 3. Non-simple connected graphs in G∗ with n vertices and m multiple edges (m ≥ 2)

As an immediate consequence of Section 5, we also get a generalization of Theorem 3.2 as follows.

Theorem 3.5. For every G ∈ G∗, each Peven
H,C is CL-shellable for every (H,C) ∈ A∗(G).

We finish the section by giving a remark that it is sufficient to consider a connected graph to prove
Theorem 1.1 and Theorem 3.5. To see why, let G1, . . . , Gk be the components of a graph G. Note
that for a subgraph H of G and C ∈ CH , (H,C) ∈ A∗(G) if and only if (H ∩Gi, C ∩ CGi

) ∈ A∗(Gi) for
each i. Thus for each (H,C) ∈ A∗(G), Peven

H,C is isomorphic to the product Peven
H1,C1

× · · · × Peven
Hk,Ck

, where

Hi = H ∩Gi and Ci = C ∩CGi
for each i. By (2) of Theorem 2.1, Peven

H,C is shellable if and only if Peven
Hi,Ci

is shellable for each i. Thus G ∈ G∗ if and only if Gi ∈ G∗ for each i.

4. Graphs which admit a non-shellable poset Peven
H,C

In this section, we give the ‘only if’ part of Theorem 1.1. We will see that almost all graphs do not
belong to the family G∗. The results of this section are obtained from the following basic observation.

Lemma 4.1. Let P0 be a poset in Figure 4 and Q be its subposet which has two chains of length 3, one
contains a or b, and the other contains a′ or b′. Then Q is not shellable.

0̂

1̂

a b

c d

b′a′

d′c′
e e′

Figure 4. The poset P0

Theorem 4.2. Let G be a connected non-simple graph in G∗. Then G is one of the graphs in Figure 3.

Before starting the proof, recall that we often drop the braces and commas to denote a subset of CG.

Proof. Suppose that G is a connected non-simple graph in G∗. If |V (G)| = 2, then G = P̃2,m in Figure 3
for some m. Assume that |V (G)| ≥ 3 and G has a bundle B whose endpoints are 1 and 2.

Claim 4.3. The graph G has exactly one bundle B.

Proof of Claim 4.3. Suppose that G has a bundle B′ other than B. Take a shortest path Q in G whose
starting vertex is an endpoint of B and whose terminal vertex is an endpoint of B′. Let Q := (v1, . . . , vk),
where k ≥ 1, and let v1 = 2 without loss of generality. Let H be a PI-graph of G such that V (H) =
V (Q)∪{1, 2}∪{endpoints of B′} and H has exactly two bundles B and B′. Let a, b ∈ B and a′, b′ ∈ B′.
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(Case 1) Suppose that k = 1. Then |V (H)| = 3, so we set V (H) = {1, 2, 3}. Then C := 23aba′b′

belongs to A(H). Setting I = 123aba′b′ (the dotted edge in Figure 5 is a simple edge or does not exist),
we see I ∩ C = C and hence I is an element of Peven

H,C . Let I ′ = 1 and consider the interval I = [I ′, I]
of Peven

H,C . Then I is a subposet of P0 in Figure 4 as in Figure 5. By Lemma 4.1, I is not shellable, a

contradiction to (1) of Theorem 2.1.

I = 1
2

3
a

b

a′

b′

1

12a 12b

123aa′ 123ab′ 123ba′ 123bb′

I

Figure 5. A graph I and the interval I

(Case 2) Suppose that k ≥ 2. Let the endpoints of B′ be labeled by 3 and 4, and vk = 3. Let

C =

{

(V (H) \ {1}) ∪ aba′b′ if k is odd;

(V (H) \ {1, 2}) ∪ aba′b′ if k is even.

Note that C ∈ A(H). Let I ′ = V (Q) \ {vk}, and I = I ′ ∪ 134aba′b′. Then I ′ ∩ C = {v1, . . . , vk−1} (if
k is odd) or I ′ ∩ C = {v2, . . . , vk−1} (if k is even). Then they have the form in Figure 6 (the dotted
edges are simple edges or do not exist), and both I ′ and I are elements of Peven

H,C . Consider the interval

I = [I ′, I] in Peven
H,C . Thus I is a subposet of P0 in Figure 4 as in Figure 6. Note that I ′ ∪ 134aa′,

I ′ ∪ 134ab′, I ′ ∪ 134ba′, I ′ ∪ 134ba′ are elements in I, and both I ′ ∪ 13a and I ′ ∪ 13b are also elements
in I. By Lemma 4.1, I is not shellable, a contradiction to (1) of Theorem 2.1. �

I =
1 2 3 4

b

a

b′

a′

I′

I′

I′ ∪ 13a I′ ∪ 14a I′ ∪ 13b I′ ∪ 14b

I′ ∪ 1ab

I′ ∪ 134aa′ I′ ∪ 134ab′ I′ ∪ 134ba′ I′ ∪ 134bb′

I′ ∪ 34a′b′

I

Figure 6. A graph I and the interval I where the dotted boxes may be in I

Hence G has the only one bundle B. If |V (G)| = 3, then clearly G is one of the graphs in Figure 3.
Now assume that |V (G)| ≥ 4. For each vertex i, we let N∗(i) = NG(i) \ {1, 2}, where NG(i) is the set
of vertices which are adjacent to i in G.

Claim 4.4. |N∗(1) ∪N∗(2)| = 1.

Proof of Claim 4.4. Since |V (G)| ≥ 3 and G is connected, |N∗(1) ∪N∗(2)| ≥ 1. Suppose that |N∗(1) ∪
N∗(2)| ≥ 2, and 3, 4 ∈ N∗(1) ∪ N∗(2). Let H be a PI-graph of G such that V (H) = {1, 2, 3, 4} and
H has the bundle B. Let C = 1234ab for some a, b ∈ B. Note that C ∈ A(H). Let I = 1234ab, and
consider the interval I = [∅, I] in Peven

H,C . Then I is a subgraph of a complete graph of four vertices with
exactly one bundle of size two, and I is a subposet of P0 as in Figure 7. Note 123a, 123b, 124a, 124b
are elements of I. Since the vertex 3 is a neighbor of 1 or 2, at least one of 13 and 23 is an element of
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I. Similarly, since the vertex 4 is also a neighbor of 1 or 2, at least one of 14 and 24 is an element of
I. By Lemma 4.1, I is not shellable, a contradiction to (1) of Theorem 2.1. �

I ⊂

3 4

1 2

a

b

∅

13 23 14 24

34

123a 123b 124a 124b

12ab

I

Figure 7. A graph containing I and the interval I where at least one of the elements in each dotted
box is in I

From now on, we set N∗(1) ∪N∗(2) = N∗(2) = {3}.

Claim 4.5. For each vertex i other than 1 or 2, let Qi be a shortest path of G from 3 to i. Then

|N∗(i) \ V (Qi)| ≤ 2,

where the equality holds if and only if |V (Qi)| is odd and V (G) = V (Qi) ∪ {1, 2} ∪N∗(i).

Proof of Claim 4.5. Suppose that there is a vertex i ∈ V (G) \ {1, 2} satisfying one of the following:

(1) |N∗(i) \ V (Qi)| ≥ 3;
(2) |N∗(i) \ V (Qi)| = 2 and |V (Qi)| is even;
(3) |N∗(i) \ V (Qi)| = 2, |V (Qi)| is odd, and V (G) 6= V (Qi) ∪ {1, 2} ∪N∗(i).

If |V (Qi)| is even then we set I ′ = Qi, and if |V (Qi)| is odd then we set I ′ = Qi ∪ {w} by taking some
vertex w ∈ N∗(i) \V (Qi). Then 3 ∈ I ′, I ′ ∩{1, 2} = ∅, |I ′| is even, and I ′ is a connected subgraph of G.
Furthermore, there are two vertices x and y in V (G) \ (I ′ ∪ {1, 2}) such that both I ′ ∪ x and I ′ ∪ y are
connected. More precisely, for the cases of (1) and (2), x and y are selected from N∗(i) \V (I ′). For the
case of (3), x is selected from N∗(i)\V (I ′) and y is a vertex in V (G)\ (V (Qi) ∪ {1, 2} ∪N∗(i)) which is
closest to the vertex 1 or 2. Let H be a PI-graph such that V (H) = I ′∪12xy and B is the bundle of H.
Let C = V (H)∪ ab and I = C for some a, b ∈ B. Note that C ∈ A(H) and I is the graph in the left of
Figure 8 (the dotted edges are simple edges or do not exist). Consider the interval I = [I ′, I] in Peven

H,C ,

and then I is a subposet of P0 as in Figure 8. Note that I ′ ∪ 12xa, I ′ ∪ 12xb, I ′ ∪ 12ya, and I ′ ∪ 12yb
are elements in I. Moreover, both I ′ ∪ 2x and I ′ ∪ 2y are in I. By Lemma 4.1, I is not shellable, a
contradiction to (1) of Theorem 2.1. �

1 2 3 x

y

b

a

I′

I′

I′ ∪ 1x I′ ∪ 2x I′ ∪ 1y I′ ∪ 2y

I′ ∪ xy

I′ ∪ 12xa I′ ∪ 12xb I′ ∪ 12ya I′ ∪ 12yb

I′ ∪ 12ab

I

Figure 8. A graph containing I and the poset containing I where the dotted boxes may be in I
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Since |V (G)| ≥ 4, we have |N∗(3)| ≥ 1. Since N∗(3) \ V (Q3) = N∗(3), we see |N∗(3)| ≤ 2 by

Claim 4.5. If |N∗(3)| = 2, then the equality part of Claim 4.5 says that G is one of S̃5,m, S̃′
5,m,

T̃5,m, and T̃ ′
5,m in Figure 3 for some m. Suppose that |N∗(3)| = 1, and let N∗(3) = {4}. Since

N∗(4) \V (Q4) = N∗(4) \ {3}, we see |N∗(4) \ {3}| ≤ 1 by Claim 4.5. If |N∗(4) \ {3}| = 0, then G is one

of P̃4,m, and P̃ ′
4,m in Figure 3 for some m. Suppose that |N∗(4) \ {3}| = 1, and let N∗(4) \ {3} = {5}.

Then consider N∗(5) \ V (Q5). Repeating the argument through the vertices one by one completes the
proof. �

5. Shellability of Peven
G,C

In this section, we show that the poset Peven
H,C is shellable for every (H,C) ∈ A∗(G) if G is a graph in

Figure 3. Note that a connected PI-graph of G in Figure 3 is a simple graph or a graph in Figure 3.
Thus it is sufficient to show that when G is a graph in Figure 3, Peven

G,C is shellable for every C ∈ A(G).

5.1. Definition of an ordering ≺I
atm for the atoms of [I,G]. Let G be a graph in Figure 3, and

C ∈ A(G). We let V = {1, 2, . . . , n} (n ≥ 2) be the set of vertices of G, and 1 and 2 be the endpoints
of the bundle B. By the definition of an admissible collection, note that C ∩B 6= ∅ and |C ∩B| is even,
and so we let B ∩C = {a1, . . . , a2m} (m ≥ 1), and B \C = {b1, . . . , bℓ}. Here, B \C may be the empty
set. In addition, there are three cases:

• |V | is odd and V ∩C = V \ {w} for some w ∈ {1, 2};
• |V | is even and V ∩ C = V \ {1, 2};
• |V | is even and V ∩ C = V .

We label the vertices not the endpoints of B in a way that each i ∈ {3, . . . , n} is closest to the vertex
i − 1. We relabel the endpoints of B so that 1 6∈ C if |V | is odd, and so that 13 is an edge if |V | is
even. See (A) of Figure 9 for all the possible labelings when |V | is odd. We illustrate all the possible
labelings when |V | is even in (B) of Figure 9. See Figure 10 for examples of Peven

G,C under this labeling.
We also assume that there is a total ordering between the vertices: 1 ≺ 2 ≺ · · · ≺ n. Thus for I ⊂ V ,
the minimum of I, denoted by min(I), means the frontmost one in the ordering.

We define the type of a cover I ⋖ J in Peven
G,C according to the size of J \ I and the intersection with

B \ C. A cover I ⋖ J has type (Ei) if |J \ I| = i for 1 ≤ i ≤ 4 and J \ I has no element of B \ C; and
I ⋖ J has type (Ei′) if |J \ I| = i for 1 ≤ i ≤ 3 and J \ I contains some elements of B \C. See Table 1.
Note that (E1′)∼(E3′) occurs when B \C 6= ∅. It should be noted that there is no cover I ⋖ J of Peven

G,C

...2 1 3 4 n−2

n−1

n

...2 1 3 4 n−3

n−2

n

n−1

...2 1 3 4 n−2

n−1

n

...2 1 3 4 n−3

n−2

n

n−1

...1 2 3 4 n−2

n−1

n

...1 2 3 4 n−3

n−2

n

n−1

...1 2 3 4 n−2

n−1

n

...1 2 3 4 n−3

n−2

n

n−1

(A) Labeling of the vertices, where the hollow vertex does not belong to C, when n is odd.

...2 1 3 4 n−2

n−1

n

...2 1 3 4 n−2

n−1

n

...2 1 3 4 n−2

n−1

n

...2 1 3 4 n−2

n−1

n

(B) Labeling of the vertices, where the hollow vertices do not belong to C, when n is even.

Figure 9. Labeling of the vertices
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1 2 3 4 5

a1

a2

b1

G

∅

1 23 34 45

12a1 12a2 134 145 2345

123a1a2 1234a1 1234a2 1245a1 1245a2 12a1b1 12a2b1 123b1

12345b112345a1a2 123a1a2b1 1234a1b1 1234a2b1 1245a1b1 1245a2b1

G

(a) A poset Peven
G,C when C = 2345a1a2 (|V | is odd and 1 is not in C.)

2 1 3 4

a1

a2

b1
b2

G

∅

1 2 34

12a1a2 123a1 123a2 12b1 12b2 134 234

1234a1a2 12a1a2b1 12a1a2b2 123a1b1 123a1b2 123a2b1 123a2b2 12b1b2 1234b1 1234b2

1234a1a2b1 1234a1a2b2 123a1b1b2 123a2b1b2 12a1a2b1b2 1234b1b2

G

(b) A poset Peven
G,C when C = 34a1a2 (|V | is even, and 1 and 2 are not in C.)

2 1 3 4

a1

a2

b1
b2

G

∅

13 34

123a1 123a2 12a1a2 12b1 12b2

1234a1a2 12a1a2b1 12a1a2b2 123a1b1 123a1b2 123a2b1 123a2b2 1234b1 1234b212b1b2

1234a1a2b1 1234a1a2b2 12a1a2b1b2 123a1b1b2 123a2b1b2 1234b1b2

G

(c) A poset Peven
G,C when C = 1234a1a2 (|V | is even)

Figure 10. Examples of posets Peven
G,C
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Type

J \ I

When |V | is odd When |V | is even

C ∩ {1, 2} = {2} C ∩ {1, 2} = ∅ {1, 2} ⊂ C

(E1 ) 1 1 or 2 -

(E2 ) cc′ cc′ cc′

(E3 ) 1ac 1ac or 2ac -

(E4 ) - - 12aa′

(E1′) b b b

(E2′) 1b 1b or 2b -

(E3′)
(E3′-1) 2vb - 1vb or 2vb

(E3′-2) - - 12b

Table 1. Types of I⋖J in Peven
G,C , where a, a′ ∈ B ∩C, b ∈ (B \C), c, c′ ∈ C, v = min(V \ (I ∪{1, 2}))

such that J \ I contains both a multiple edge in B∩C and a multiple edge in B \C. Moreover, for each
cover I ⋖ J , the elements in J \ I belong to a same component of J .

Let I ⋖ J have type (E3′). Since J \ I has a multiple edge in B \C and |J \ I| > 1, J \ I contains at
least one vertex in {1, 2}, and so we divide the type (E3′) into two subtypes:

• I ⋖ J has type (E3′-1) if I ⋖ J has type (E3′) and |(J \ I) ∩ {1, 2}| = 1;
• I ⋖ J has type (E3′-2) if I ⋖ J has type (E3′) and |(J \ I) ∩ {1, 2}| = 2.

When I⋖J is of (E3′-1), J \I contains the vertex min(V \(I∪{1, 2})). To see why, let J \I = wcb for
some w ∈ {1, 2} ∩C, c ∈ V \ {1, 2}, and b ∈ B \C. From the structure of G, it is sufficient to check the

case where I ∪wb = 123 · · · (n− 2)b and G is none of P̃n,m and P̃ ′
n,m. In this case, I = V \ {w,n− 1, n},

|V | is odd, and 1 6∈ C. Hence |I ∩C| = |V | − 4 is odd, a contradiction. Therefore, if I ⋖ J is of (E3′-1),
then the vertex min(V \ (I ∪ {1, 2})) lies in J \ I.

Proposition 5.1. Let G be a graph in Figure 3 and C be an admissible collection of G. Then the
lengths of maximal chains of Peven

G,C are











|C|
2 + |B \ C|+ 1 or |C|

2 + |B \ C| if |V | is odd,
|C|
2 + |B \ C|+ 1 if |V | is even and C ∩ V 6= V,
|C|
2 + |B \ C| or |C|

2 + |B \ C| − 1 if |V | is even and C ∩ V = V.

Proof. Recall that |V | = n, |B ∩ C| = 2m, and |B \ C| = ℓ. Note that 2m + n ≥ 4. For a maximal
chain σ : I0 ⋖ I1 ⋖ · · ·⋖ Ip of Peven

G,C , let Ik be the first element of σ containing a multiple edge. Suppose

that |V | is odd. Note that if σ contains a cover of (E1), then it can contain a cover of neither (E3) nor
(E2′). As Ik−1 ⋖ Ik is of (E2), (E3), (E2′), or (E3′-1), we have the following table for the length of σ:

Ik−1 ⋖ Ik The types of the covers in σ Length of σ

(E2) one (E1), ℓ (E1′)s, 2m+n−1
2 (E2)s 2m+n+1

2 + ℓ

(E3) one (E3), ℓ (E1′)s, 2m+n−3
2 (E2)s

2m+n−1
2 + ℓ(E2′) one (E2′), (ℓ−1) (E1′)s, 2m+n−1

2 (E2)s

(E3′-1) one (E1), one (E3′-1), (ℓ−1) (E1′)s, 2m+n−3
2 (E2)s

Since |C| = 2m + n − 1, every maximal chain has the length either |C|
2 + ℓ+ 1 or |C|

2 + ℓ, and hence
the poset Peven

G,C is nonpure. Note that if 2 and 3 are not adjacent in G then there is no cover of (E3),
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and if B \ C = ∅ then there is no cover of (E2′) or (E3′). Hence if 2 and 3 are not adjacent in G and

B \ C = ∅, then Peven
G,C is a pure poset of length |C|

2 + 1.

Suppose that |V | is even. When C ∩{1, 2} = ∅, Ik−1⋖ Ik is of (E3) or (E2′). When C contains {1, 2},
Ik−1 ⋖ Ik is one of (E2), (E4), and (E3′). Thus we have the following table for the length of σ:

C ∩ {1, 2} Ik−1⋖Ik The types of the covers in σ Length of σ

∅
(E3) one (E1), one (E3), ℓ (E1′)s, 2m+n−4

2 (E2)s 2m+n
2 + ℓ

(E2′) one (E1), one (E2′), (ℓ−1) (E1′)s, 2m+n−2
2 (E2)s

{1, 2}

(E2) 2m+n
2 (E2)s, ℓ (E1′)s 2m+n

2 + ℓ

(E4) one (E4), ℓ (E1′), 2m+n−4
2 (E2)s 2m+n−2

2 + ℓ
(E3′) one (E3′), (ℓ−1) (E1′)s, 2m+n−2

2 (E2)s

If C ∩ {1, 2} = ∅, then |C| = 2m + n − 2, and so every maximal chain has the length |C|
2 + ℓ + 1. If

{1, 2} ⊂ C, then |C| = 2m+n, and so every maximal chain has the length either |C|
2 +ℓ or |C|

2 +ℓ−1. �

We shall show that Peven
G,C admits a recursive atom ordering. We first define the lexicographic order

≺I
lex on V ∩B for each I ∈ Peven

G,C and then define the atom ordering ≺I
atm for [I,G].

Definition 5.2. Let I ∈ Peven
G,C . We define the lexicographic order ≺I

lex on V ∪B as follows:

• If B ∩ I = ∅, then

≺I
lex: 1, 2, 3, . . . , n, a1, . . . , a2m, b1, . . . , bℓ.

• If B ∩ I 6= ∅ and (B \ C) ∩ I = ∅, then let k := max{i | ai ∈ B ∩C ∩ I} and

≺I
lex: 1, 2, a1, . . . , ak, 3, . . . , n, ak+1, . . . , a2m, b1, . . . , bℓ.

• If (B \ C) ∩ I 6= ∅, then let k := max{i | bi ∈ (B \ C) ∩ I} and

≺I
lex: 1, 2, a1, . . . , a2m, b1, . . . , bk, 3, . . . , n, bk+1, . . . , bℓ.

Then for two atoms J and J ′ of [I,G], we define J ≺I
atm J ′ if one of the following holds:

(A1) |(J \ I) ∩ {1, 2}| = 1 and |(J ′ \ I) ∩ {1, 2}| = 2; or
(A2) J \I ≺I

lex J ′\I, where the elements of J \I and J ′\I are arranged in the lexicographic order ≺I
lex,

respectively.

Note that (A1) is considered only when Peven
G,C admits a cover of (E4) or (E3′-2), that is, |V | is even and

C contains {1, 2}.

Here is an example. Let G be the graph P̃6,5 in Figure 3. Suppose that C = V ∪ {a1, a2, a3, a4}.
Then the atoms of Peven

G,C are ordered as follows:

≺∅
atm: 13, 12a1a2, 12a1a3, 12a1a4, 12a2a3, 12a2a4, 12a3a4, 12b1, 34, 45, 56.

For I = 12a1a3, ≺
I
lex: 1, 2, a1,a2, a3,3,4,5,6,a4, b1, and the atoms of [I,G] are ordered as follows:

≺I
atm: 123a1a2a3, 12a1a2a3a4, 1234a1a3, 123a1a3a4, 1245a1a3, 1256a1a3, 12a1a3b1

because a23 ≺I
lex a2a4 ≺I

lex 34 ≺I
lex 3a4 ≺I

lex 45 ≺I
lex 56 ≺I

lex b1, where the bold letters indicate the
elements not in I.

The following is the main theorem of this section, whose proof is given in Subsection 5.2.

Theorem 5.3. Let G be a connected graph in Figure 3 and C be an admissible collection of G. Then
Peven
G,C admits a recursive atom ordering, and hence Peven

G,C is CL-shellable.
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Remark 5.4. We insist that the ordering ≺I
atm is essential. Suppose that we consider a lexicographic

order ≺∗ (it may be natural) given by 1, 2, a1, a2, . . . , a2m, 3, 4, . . . , n, b1, . . . , bℓ, and define ≺∗
atm by

replacing (A2) of Definition 5.2 with the fixed ordering ≺∗. For the posets in Figure 10, ≺∗
atm gives

a recursive atom ordering. However, it fails to be a recursive atom ordering in general. For example,
let G be a graph in Figure 3 with |V | = 4 and |B| = 6, and let C = V ∪ B. Then C ∈ A(G). Let
I = 12a1a3, and consider the atoms J1 = 12a1a3a5a6 and J2 = 123a1a3a5 of [I,G], where the bold
letters indicate the elements not in I. Then the atoms of [∅, G] preceding I in ≺∗

atm are 13 and 12a1a2.
However, J1 ≺

∗
atm J2, J2 contains the atom 13, and J1 does not contain any atom of [∅, G] preceding I,

and so (2) of Definition 2.3 fails.

5.2. Proof of Theorem 5.3. For a subset X ⊂ V ∪ B, minI(X) and maxI(X) denote the minimum
and the maximum of X with respect to ≺I

lex, respectively. The proof of the following will be given later.

Lemma 5.5. Let Ij be an atom of [I,G], not the first in ≺I
atm. There is an element x(I⋖Ij) ∈ V ∪B such

that an atom J of [Ij , G] belongs to [Ik, G] for some Ik ≺I
atm Ij if and only if minIj (J \Ij) ≺

Ij
lex x(I ⋖ Ij).

We first prove Theorem 5.3 by using Lemma 5.5.

Proof of Theorem 5.3. We will show that the ordering ≺I
atm (I ∈ Peven

G,C ) is a recursive atom ordering.

Lemma 5.5 inserts that ≺I
atm satisfies (1) of Definition 2.3. Let us check (2) of Definition 2.3. Let

Ii and Ij be atoms of [I,G] such that Ii ≺
I
atm Ij . Suppose that there is an element K of [I,G] such

that Ii, Ij < K. We need to find an atom K∗ of [Ij, G] and an atom I∗ of [I,G] such that K∗ ≤ K,
K∗ ∈ [I∗, G], and I∗ ≺

I
atm Ij . Let K0 = Ii ∪ Ij for simplicity. Note that K0 ⊂ K.

Suppose that K0 is not a semi-induced subgraph of G. Then Ii \ I and Ij \ I contain exactly one of
the endpoints of B, not the same. More precisely, letting v = min(V \ (I ∪ {1, 2})), the following hold:

Ii \ I = 1 and Ij \ I = 2v if C ∩ {1, 2} = {2},

Ii \ I = 1 and Ij \ I = 2 if C ∩ {1, 2} = ∅, and

Ii \ I = 1v and Ij \ I = 2v if C ∩ {1, 2} = {1, 2}.

Note that Ij \ I = 2v occurs only when 2 and 3 are adjacent in G. In addition, 1 6∈ C if and only if
|K0∩C| ≡ |(K0 \ I)∩C| ≡ 0 (mod 2). Since K contains {1, 2}, K contains a multiple edge e. Let H be
the component of K containing e and so e ∈ H \K0. If |C ∩{1, e}| ≡ 0 (mod 2), then K∗ = K0 ∪ e and
I∗ = Ii. Now assume that |C ∩ {1, e}| = 1. Then |K0 ∩ C| ≡ |H ∩K0 ∩ C| ≡ |(H \K0) ∩ C| (mod 2),
where the first equivalence is from the definition of H and the second equivalence is from |H ∩ C| ≡ 0
(mod 2). Hence 1 6∈ C if and only if |(H \K0)∩C| is even. For simplicity, let X = (H \K0)∩C. If |X|
is even, then 1 6∈ C and e ∈ C and therefore, |X \ {e}| ≥ 1. If |X| is odd, then 1 ∈ C and e 6∈ C and
therefore, |X \ {e}| = |X| ≥ 1. Hence we can take an element c ∈ X \ {e} so that K∗ = K0 ∪ ce and
I∗ = Ii. More precisely, either c is the vertex min(V \ (Ij ∪ {1, 2})) or belongs to (B ∩ C) \ e.

Assume that K0 is a semi-induced subgraph of G. Note that |(Ii \ I) ∩ (Ij \ I) ∩ C| is possible from
zero to three. If |(Ii \ I)∩ (Ij \ I)∩C| is even, then |K0 ∩C| is even and so K∗ = K0 and I∗ = Ii. Now
we assume that |(Ii \ I)∩ (Ij \ I)∩C| is odd. Then |(Ii \ I)∩ (Ij \ I)∩C| is one or three. Since |K0 ∩C|
is odd, K0 has exactly one component H0 such that |H0 ∩ C| is odd. Let H be the component of K
containing H0. Note that since |H ∩ C| is even, it holds that |(H \H0) ∩C| ≥ 1.

If H0 contains a multiple edge, then there exists an element c ∈ (H \H0) ∩ C such that K∗ = K0∪c
and I∗ = Ii; more precisely, if (H \ H0) ∩ B ∩ C 6= ∅, then c ∈ B ∩ C; otherwise, c is the vertex
min(V \H0).

Suppose that H0 has no multiple edge. Then both Ii \ I and Ij \ I consist of two vertices in C, and
|(Ii\I)∩(Ij \I)∩C| = 1. SinceH0 is a semi-induced subgraph of G and |H0∩C| is odd, (H\H0)∩V 6= ∅.
If (H \H0) ∩ V has a vertex in {3, ..., n}, then by the structure of G, it is easy to see that there is a
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vertex v in (H \H0)∩{3, ..., n} such that K∗ = K0 ∪ v and I∗ = Ii. Hence we only need to consider the
case in which (H \H0) ∩ V ⊂ {1, 2}. If (H \H0) ∩ V = {1, 2}, then

{

K∗ = Ij ∪ 1 and I∗ = I ∪ 1 if 1 6∈ C

K∗ = K0 ∪ 1 and I∗ = Ii if 1 ∈ C.

It remains to consider the case where (H \H0)∩ V = {1} or {2}. Let (H \H0)∩ V = {w1}, and let w2

be the other vertex in {1, 2}. If H0 does not contain w2, then H = H0 ∪w1 and w1 ∈ C (and therefore,
w1 must be a neighbor of 3 since H is an element of Peven

G,C ) and hence K∗ = K0 ∪ w1 and I∗ = Ii.

Suppose that H0 contains w2. Then H contains a multiple edge, that is, H ∩ B = (H \H0) ∩ B 6= ∅.
Moreover, since |(H \H0)∩C| is odd and (H \H0)∩V = {w1}, if w1 6∈ C, then |H ∩B ∩C| ≥ 1; and if
w1 ∈ C and H ∩ (B \C) = ∅, then |H ∩B ∩C| ≥ 2. Hence if w1 6∈ C, then K∗ = K0 ∪w1a and I∗ = Ii
for some a ∈ H ∩ B ∩ C. Now assume that w1 ∈ C, and we prove the remaining part by dividing two
subcases whether w2 ∈ I or not. If w2 ∈ I, then

{

K∗ = K0 ∪ w1b and I∗ = Ii for some b ∈ H ∩ (B \ C) if H ∩ (B \ C) 6= ∅,

K∗ = Ij ∪ w1aa
′ and I∗ = I ∪ w1a for some a, a′ ∈ H ∩B ∩ C if H ∩ (B \ C) = ∅.

Suppose that w2 6∈ I. Then w2 ∈ (Ii \ I)∪ (Ij \ I). Since Ii ≺
I
atm Ij, w2 ∈ Ii. Moreover, by the structure

of G, Ii \ I = w2v and Ij \ I = vv′ for v = min(V \ (I ∪ {1, 2})) and v′ = min(V \ (I ∪ {1, 2, v})). Hence
{

K∗ = Ij ∪ 12b and I∗ = I ∪ 12b for some b ∈ H ∩ (B \ C) if H ∩ (B \ C) 6= ∅,

K∗ = Ij ∪ 12aa′ and I∗ = I ∪ 12aa′ for some a, a′ ∈ H ∩B ∩ C if H ∩ (B \ C) = ∅.

This completes the proof. �

For an element I of Peven
G,C , a multiple edge e is called a big (respectively, small) edge of I if n ≺I

lex e

(respectively, e ≺I
lex 3). Now we prove Lemma 5.5.

Proof of Lemma 5.5. Let Ij be an atom of [I,G], not the first in ≺I
atm. We will show that an atom J

of [Ij , G] belongs to [I∗, G] for some atom I∗ of [I,G] with I∗ ≺
I
atm Ij if and only if the following hold:

(1) minIj(J \ Ij) ≺
Ij
lex 2, if Ij \ I ⊂ V and (Ij \ I) ∩ {1, 2} 6= ∅;

(2) minIj(J \ Ij) ≺
Ij
lex minIj{v, b1}, if Ij \ I = va for v ∈ V , a ∈ B ∩C, and a ≺I

lex n;

(3) minIj(J \ Ij) �
Ij
lex n, if Ij \ I consists of only big edges of I;

(4) minIj(J \ Ij) �
Ij
lex min(V \ Ij), if V \ Ij 6= ∅, Ij \ I has an element c �I

lex n and a big edge of I,
and |(Ij \ I) ∩ {1, 2}| ≡ 0 (mod 2),

(5) minIj(J \ Ij) ≺
Ij
lex maxIj (Ij \ I), otherwise.

Whenever we show the ‘if’ part of each case, we finish the proof when we find a proper atom I∗ of [I,G],
that is, I∗ is an atom of [I,G] such that J ∈ [I∗, G] and I∗ ≺

I
atm Ij.

(1) Suppose that Ij \ I ⊂ V and (Ij \ I)∩ {1, 2} 6= ∅. Note that ≺I
lex: 1, 2, . . . , n, a1, . . . , a2m, b1, . . . , bℓ.

From the assumption, if 1 ∈ Ij \I, then Ij is the first atom of [I,G]. Thus 2 ∈ Ij \I. Suppose 1 ∈ J \Ij .
Then for some a ∈ B ∩ C, c ∈ C, b ∈ B \ C, and v = min(V \ (Ij ∪ {1})),

J \ Ij =

{

1ac or 1b, if 1 6∈ C,

1a or 1vb if 1 ∈ C.

Then I∗ is either I ∪ 1 or I ∪ 1v in each case, which proves the ‘if’ part. If 1 6∈ J \ Ij , then J \ Ij cannot
have a multiple edge and so it consists of vertices greater than maxI(Ij \ I). Therefore, Ij is the first
atom of [I,G], which proves the ‘only if’ part.
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(2) Suppose that Ij \ I = va for v ∈ V , a ∈ B ∩ C and a �I
lex n. The existence of a small edge of I

implies {1, 2} ⊂ I and v = min(V \ I). Then ≺I
lex=≺

Ij
lex and they are either

≺I
lex=≺

Ij
lex: 1, 2, a1, a2, . . . , ak, 3, . . . , n, ak+1, . . . , a2m, b1, . . . , bℓ, or

≺I
lex=≺

Ij
lex: 1, 2, a1, a2, . . . , a2m, b1, . . . , bk, 3, . . . , n, bk+1, . . . , bℓ.

If J \ Ij has an element a′ ≺
Ij
lex minIj{v, b1}, then a′ ∈ B ∩ C, and I∗ = I ∪ aa′, which proves the ‘if’

part. Suppose that minIj{v, b1} �
Ij
lex minIj (J \ Ij). If J \ Ij = b for some b ∈ B \C, then [I, J ] has only

two atoms Ij and I ∪ b, and Ij is the first. If J \ Ij = cc′ ⊂ C for some c, c′ �
Ij
lex v, then Ij \ I consists

of the first two smallest elements of J \ I and so Ij is the first atom of [I, J ]. This proves the ‘only if’
part.

(3) Suppose that Ij \ I consists of only big edges of I. From the hypothesis, I ∩ B 6= ∅ and either
Ij \ I = aa′ or Ij \ I = b, where a, a′ ∈ B ∩ C and b ∈ B \ C.
(Case 1) Ij \ I = aa′. Note that the existence of a big edge of I in B ∩ C implies that I ∩ (B \ C) = ∅,

and the lexicographic orders ≺I
lex and ≺

Ij
lex are as follows:

≺I
lex: 1, 2, a1, . . . , ak, 3, . . . , n, ak+1, . . . , a, . . . , a

′(= at), . . . , a2m, b1, . . . , bℓ

≺
Ij
lex: 1, 2, a1, . . . , ak, . . . , a, . . . , a

′(= at), 3, . . . , n, at+1, . . . , a2m, b1, . . . , bℓ.

Set x := minIj(J \ Ij). Suppose that x �
Ij
lex n. Then Ij ⋖ J is of (E2), and we can set J \ Ij = xx′,

where x ≺
Ij
lex x′. Note that x ≺I

lex a′ since x �
Ij
lex n. If x �

Ij
lex min(V \ I), then I∗ = I ∪ ax. If

min(V \ I) ≺
Ij
lex x �

Ij
lex n, that is, x is a vertex different from min(V \ I), then x′ is also a vertex and

I∗ = I ∪ xx′. This proves the ‘if’ part. To prove the ‘only if’ part, suppose that n ≺
Ij
lex x. Then either

J \ Ij = xx′ ⊂ B ∩C or J \ Ij = x ∈ B \C. Since a ≺I
lex a′ ≺I

lex x, Ij is the first atom of [I, J ] in ≺I
atm.

(Case 2) Ij \ I = b. Note that ≺
Ij
lex: 1, 2, a1, a2, . . . , a2m, b1, . . . , b(= bk), 3, 4, . . . , n, bk+1, . . . , bℓ. Suppose

that J \ Ij contains an element e with e �
Ij
lex n. Note that e ≺I

lex b. If e ∈ B \ C, then I∗ = Ij ∪ e. If

e ∈ B ∩C, then J \ Ij = ec for some c ∈ C, which implies that I∗ = I ∪ ec. If minIj(J \ Ij) is a vertex,

then J \Ij consists of two vertices, and I∗ = I∪(J \Ij). This proves the ‘if’ part. If n ≺
Ij
lex minIj(J \Ij),

then J \ Ij = {b′} for some b′ ∈ B \ C with b ≺
Ij
lex b′, and hence [I, J ] has only two atoms Ij and I ∪ b′,

where Ij is the first atom in ≺I
atm.

Now, to show (4) and (5), we need the following claim.

Claim 5.6. Suppose that I ∩ (B \ C) = ∅, Ij \ I has both an element c �I
lex n and a big edge of I, and

|(Ij \ I) ∩ {1, 2}|≡ 0 (mod 2). Then an atom J of [Ij , G] belongs to [I∗, G] for some atom I∗ of [I,G]

with I∗ ≺
I
atm Ij if and only if one of the following holds:

(i) minIj(J \ Ij) �
Ij
lex min(V \ Ij) if V \ Ij 6= ∅

(ii) minIj(J \ Ij) ≺
Ij
lex maxIj (Ij \ I) if V \ Ij = ∅.

Proof of Claim 5.6. From the hypotheses, one of 1©∼ 4© holds in the following table, where a, a′ ∈ B∩C

with a′ ≺I
lex a, b ∈ B \ C, v = min(V \ I):
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Ij \ I The lexicographic orders

1© 12a′a
≺I

lex: 1, 2, . . . , n, a1, . . . , a
′, . . . , a(= ak), . . . , a2m, b1, . . . , bℓ

≺
Ij
lex: 1, 2, a1, . . . , a

′, . . . , a(= ak), 3, . . . , n, ak+1, . . . , a2m, b1, . . . , bℓ

2© 12b
≺I

lex: 1, 2, . . . , n, a1, . . . , a2m, b1, . . . , b(= bk), . . . , bℓ

≺
Ij
lex: 1, 2, a1, . . . , a2m, b1, . . . , b(= bk), 3, . . . , n, bk+1, . . . , bℓ

3© va
≺I

lex: 1, 2, a1, . . . , aj , 3, . . . , v, . . . , n, aj+1, . . . , a(= ak), . . . , a2m, b1, . . . , bℓ

≺
Ij
lex: 1, 2, a1, . . . , a

′(= ak), 3, . . . , v, . . . , n, ak+1, . . . , a2m, b1, . . . , bℓ

4© a′a
≺I

lex: 1, 2, a1, . . . , a
′, . . . , aj , 3, . . . , n, aj+1, . . . , a(= ak), . . . , a2m, b1, . . . , bℓ

≺
Ij
lex: 1, 2, a1, . . . , a

′, . . . , a(= ak), 3, . . . , n, ak+1, . . . , a2m, b1, . . . , bℓ

Note that the cases of 1© and 2© can occur only when {1, 2} ⊂ C. Let v∗ := min(V \ Ij), provided
V \ Ij 6= ∅. In the cases of 1©∼ 4©, if v∗ ∈ J \ Ij , then I∗’s are I ∪ 1v∗, I ∪ 1v∗, I ∪ vv∗, and I ∪ a′v∗,

respectively. Now assume that v∗ 6∈ J \ Ij and minIj(J \ Ij) ≺
Ij
lex maxIj (Ij \ I). Set x := minIj (J \ Ij).

Since maxIj(Ij \ I) is a small edge of Ij, x is also a multiple edge and hence J \ Ij consists of multiple

edges. In the case of 2©, I∗ = I ∪ 12 ∪ (J \ Ij). For the other cases, x ≺I
lex a and x, a ∈ B ∩ C. Hence

I∗ is obtained from Ij by replacing a with x. This proves the ‘if’ part.

To prove the ‘only if’ part, first suppose that V \ Ij 6= ∅ and minIj(J \ Ij) ≻
Ij
lex v∗. Then minIj(J \ Ij)

is either a vertex greater than v∗ or a big edge of Ij. Hence J \ Ij consists of either two vertices greater
than v∗ or only big edges of Ij . Note that a big edge of Ij is a big edge of I. Hence Ij is the first atom

of [I, J ] in ≺I
atm. If V \ Ij = ∅ and minIj (J \ Ij) ≻

Ij
lex maxIj(Ij \ I), then minIj(J \ Ij) is a big edge of

Ij and hence Ij \ I consists of only big edges of Ij, and so Ij is the first atom of [I, J ] in ≺I
atm. �

By Claim 5.6, (4) follows and (5) partially follows. We exclude the cases of (1)∼(4) and the case
shown by Claim 5.6. We divide the remaining part into two cases according to the existence of a big
edge of I in Ij \ I.

(Case 1) Ij \ I has no big edge of I. By excluding (1) and (2), we get one of the following:

1© Ij \ I = b where b ∈ B \ C and b is a small edge of I;
2© Ij \ I = aa′ where both a, a′ ∈ B ∩ C are small edges of I; or
3© Ij \ I = vv′ where v, v′ ∈ V \ {1, 2}.

In each case, the ‘only if’ part follows easily, that is, if maxIj(Ij \ I) ≺
Ij
lex minIj (J \ Ij), then Ij \ I has

the first |Ij \ I| smallest elements of J \ I (in ≺I
lex), and so Ij is the first atom of [I, J ] in ≺I

atm. Let us

prove the ‘if’ part of each case. We note that ≺I
lex=≺

Ij
lex.

1© From the existence of a small edge in B \ C, it follows that I ∩ (B \ C) 6= ∅ and

≺I
lex=≺

Ij
lex: 1, 2, a1, a2, . . . , a2m, b1, . . . , b, . . . , bk, 3, . . . , n, bk+1, . . . , bℓ.

If minIj (J \ Ij) ≺
Ij
lex b, then I∗ = I ∪ (J \ Ij).

2© Let a ≺
Ij
lex a′, and hence a′ = maxIj(J \ Ij). If minIj(J \ Ij) ≺

Ij
lex a′, then J \ I contains a multiple

edge a′′ with a′′ ≺I
lex a′, and so I∗ = I ∪ aa′′.

3© Let v ≺
Ij
lex v′, and hence v′ = maxIj (Ij \ I). Suppose that minIj (J \ Ij) ≺

Ij
lex v′. If J \ Ij has an

element b ∈ B \ C, then for some w ∈ {1, 2} and for the vertex v′′ = min(V \ (Ij ∪ {1, 2})),










J \ Ij = b if {1, 2} ⊂ I,

J \ Ij = 12b if {1, 2} ∩ I = ∅, or

J \ Ij = wb or wv′′b if |{1, 2} ∩ I| = 1.

Then I∗’s are I ∪ b, I ∪ 12b, I ∪ wb, and I ∪ wv∗b in the order, where v∗ = min{v, v′′}.
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If J \ Ij contains a multiple edge in B ∩ C, then J \ Ij is either aa′, 12aa′, v′′a, or wac, where
a, a′ ∈ B∩C, w ∈ {1, 2}, c ∈ C and v′′ = min(V \Ij). If J \Ij is either aa

′ or 12aa′, then I∗ = I∪(J \Ij).
If J \ Ij = v′′a and v′′ 6∈ {1, 2}, then I∗ = I ∪ v∗a where v∗ = min{v, v′′}. If J \ Ij = v′′a and v′′ ∈ {1, 2},
then I∗ = I ∪ (J \ Ij). If J \ Ij = wac, then I∗ = I ∪ wac∗, where c∗ = minIj{v, c}. If J \ Ij consists
of only vertices, then J \ I consists of only vertices and I∗ = I ∪ xy, where x and y are the first two
smallest elements of J \ I. This completes the proof of the ‘if’ part.

(Case 2) Ij \ I has a big edge of I. By excluding (3) and (4), we get one of 1©∼ 5© in the following

table, where w ∈ {1, 2}, a, a′ ∈ B ∩ C with a′ ≺
Ij
lex a, b ∈ B \ C, and v = min(V \ (I ∪ {1, 2})):

Ij \ I The lexicographic order ≺
Ij
lex maxIj (Ij \ I)

w 6∈ C

1© wa′a ≺
Ij
lex: 1, 2, a1, . . . , a

′, . . . , a(= ak), 3, . . . , n, ak+1, . . . , a2m, b1, . . . , bℓ a

2© wva ≺
Ij
lex: 1, 2, a1, . . . , a(= ak), 3, . . . , v, . . . , n, ak+1, . . . , a2m, b1, . . . , bℓ v

3© wb ≺
Ij
lex: 1, 2, a1, . . . , a2m, b1, . . . , b(= bk), 3, . . . , n, bk+1, . . . , bℓ b

w ∈ C
4© wa ≺

Ij
lex: 1, 2, a1, . . . , a(= ak), 3, . . . , n, ak+1, . . . , a2m, b1, . . . , bℓ a

5© wvb ≺
Ij
lex: 1, 2, a1, . . . , a2m, b1, . . . , b(= bk), 3, . . . , v, . . . , n, bk+1, . . . , bℓ v

Note that, in any case, the lexicographic ordering ≺I
lex on V ∪B is given by

≺I
lex: 1, 2, 3, . . . , n, a1, . . . , . . . , a2m, b1, . . . , bℓ,

and any atom of [I, J ] containing the element w has a multiple edge. If maxIj (Ij \ I) ≺
Ij
lex minIj(J \ Ij),

then J \ Ij cannot have a multiple edge less than maxI(B ∩ (Ij \ I)) in ≺I
lex, and hence Ij is the first

atom of [I, J ] in ≺I
atm. This proves the ‘only if’ part. To see the ‘if’ part, suppose that minIj (J \Ij) ≺

Ij
lex

maxIj(Ij \ I). In the cases of 1©, 2©, and 4©, J \ Ij contains a multiple edge a′′ with a′′ ≺
Ij
lex a, which

impliles that I∗ can be obtained from Ij by replacing a with a′′. In the cases of 3© and 5©, Ij \I contains

a multiple edge e ≺
Ij
lex b. If e ∈ C, then J \ Ij is ec for some c ∈ C, and hence I∗’s are I ∪ wec and

I ∪ we, repsectively. If e 6∈ C, then I∗’s are I ∪ we and I ∪ wve, repsectively. �

We remark that (1)∼(5) of the proof above are useful to figure out a falling chain of Peven
G,C , which

will be discussed in the next section.

6. Applications of shellable posets of even subgraphs

6.1. Falling chains and the order complex of a poset. Throughout this subsection, for a graph
H in Figure 3 and its admissible collection C, the labeling of the vertices follows the way shown in
Figure 9, and so the labels of the endpoints of the bundle are changed according to C.

Recall that if a bounded poset P admits a recursive atom ordering, then we can find the CL-labeling
λ as in the sketch of the proof of Theorem 2.4. Furthermore the ith reduced Betti number of the order
complex ∆(P) equals the number of falling chains of length i+2 from Theorem 2.2. For a graph G ∈ G∗,
if G is simple, then the homotopy type of ∆(Peven

G ) is already known as noted in Remark 3.3. If G is

a graph in Figure 3, then as we seen in Section 5, the order ≺I
atm in Definition 5.2 gives a recursive

atom ordering of Peven
G,C for every C ∈ A(G), and so we can determine the homotopy type of ∆(Peven

G,C )
by considering the CL-labeling λ obtained from the recursive atom order on Peven

G,C .

Corollary 6.1. Let G be a graph in Figure 3, and let V and B be the set of vertices and the bundle
of G, respectively. For each C ∈ A(G), the order complex ∆(Peven

G,C ) has the homotopy type of a wedge
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of spheres of dimensions






















|C|
2 + |B \ C| − 2, if |V | is odd;
|C|
2 + |B \ C| − 1, if |V | is even and C ∩ V 6= V ;
|C|
2 − 2 or |C|

2 − 3, if C = V ∪B, and the vertices 2 and 3 are adjacent; or
|C|
2 + |B \ C| − 3, otherwise.

Proof. Let σ be a longest maximal chain of Peven
G,C . By Proposition 5.1, we only need to show that σ

cannot be a falling chain if one of the following holds: (i) |V | is odd, (ii) C ∩ V = V and the vertices 2
and 3 are not adjacent, (iii) C ∩ V = V and B \ C 6= ∅.

If |V | is odd, then σ has the cover I ⋖ I ∪ 1. Since I ∪ 1 is the first atom of [I,G], σ cannot be a

falling chain. Hence every falling chain has the length |C|
2 + |B \ C|. This proves case (i).

Now assume that |V | is even and C ∩ V = V . Then σ has the covers

I ⋖ I ∪ 1v and J ⋖ J ∪ 2a, or I ⋖ I ∪ 2v and J ⋖ J ∪ 1a,

where I < J , v = min(V \ (I ∪ {1, 2})), and a ∈ B ∩ C. If σ has the covers I ⋖ I ∪ 1v and J ⋖ J ∪ 2a,
then I ⋖ I ∪ 1v is the first atom of [I,G]. Hence σ cannot be a falling chain, which proves case (ii).
Now assume that B \C 6= ∅ and σ has the covers I ⋖ I ∪ 2v and J ⋖ J ∪ 1a. Note that this occurs only
when the vertices 2 and 3 are adjacent. Then J = I ∪ 2v by (1) in the proof of Lemma 5.5. Then σ

must have the cover K ⋖K ∪ b for some b ∈ B \ C such that K ∩ (B \ C) = ∅. Hence σ cannot be a
falling chain. This proves case (iii). �

Example 6.2. Let us go back to the posets Peven
G,C in Figure 10. The posets in (A) and (C) are nonpure

but none of the longest maximal chains of (A) and (C) are falling chains. In (A), (B), and (C), there
are four, three, and four falling chains, respectively:

(A) ∅ < 23 < 123b1 < 1234a1b1 < 12345a1a2b1 ∅ < 23 < 123b1 < 1234a2b1 < 12345a1a2b1

∅ < 34 < 2345 < 12345b1 < 12345a1a2b1 ∅ < 45 < 2345 < 12345b1 < 12345a1a2b1

(B) ∅ < 2 < 12b2 < 12b1b2 < 123a1b1b2 < 1234a1a2b1b2 ∅ < 2 < 12b2 < 12b1b2 < 123a2b1b2 < 1234a1a2b1b2

∅ < 34 < 234 < 1234b2 < 1234b1b2 < 1234a1a2b1b2

(C) ∅ < 12b2 < 12a1a2b2 < 12a1a2b1b2 < 1234a1a2b1b2 ∅ < 34 < 1234b2 < 1234b1b2 < 1234a1a2b1b2

∅ < 12b2 < 12b1b2 < 123a1b1b2 < 1234a1a2b1b2 ∅ < 12b2 < 12b1b2 < 123a2b1b2 < 1234a1a2b1b2

Hence the order complexes ∆(Peven
G,C ) of the proper parts of the posets Peven

G,C in Figure 10 are homotopy

equivalent to
∨

4

S2,
∨

3

S3, and
∨

4

S2, respecively.

In the rest of this subsection, we consider the graph H = P̃n,m in Figure 3. Let V = {1, 2, . . . , n} be
the set of vertices and B = {a1, . . . , am} be the unique bundle of H. Recall that we follow the labeling
of the vertices shown in Figure 9.

Let C ∈ A(H) such that B ⊂ C. Note that from the proof of Corollary 6.1, if σ : I0 ⋖ I1 ⋖ · · ·⋖ Ip+1

is a falling chain of Peven
H,C , then there exists i such that |Ii \ Ii−1| ≥ 3. More precisely, if V ∩ C = V ,

then 12 ⊂ Ii \ Ii−1, and if V ∩ C 6= V , then Ii \ Ii−1 is 1ac, where 1 6∈ C, a ∈ B, and c ∈ C. Then the
number of falling chains of Peven

H,C for C = V ∪B is equal to
∑

I⊂V \{1,2}

(# falling chains of [I ∪ 12aa′,H] for some a, a′ ∈ B)× (# falling chains of [∅, I]).
(6.1)

If V ∩ C 6= V , then the number of falling chains of Peven
H,C is equal to

∑

I⊂V \{1}
2∈I

(# falling chains of [I ∪ 1ac,H] for some a ∈ B, c ∈ C)× (# falling chains of [∅, I]).
(6.2)
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Proposition 6.3. Let H = P̃n,2 in Figure 3. For C ∈ A(H), the number of falling chains of Peven
H,C is











Ck if n = 2k for some k ≥ 1

Ck+1 − Ck if n = 2k + 1 for some k ≥ 1 and C ∩ V itself induces a connected graph,

0 otherwise.

Proof. Let V be the set of vertices and B = {a1, a2} be the bundle of H. First, suppose that C∩V = V .
Then C = V ∪B and |V | = 2k for some k ≥ 1. If k = 1, then it is clear. Suppose that k ≥ 2. Since we
have only two multiple edges, from (6.1) the number of falling chains of Peven

H,C is

2
∑

q=1

(# falling chains of P2q starting with 12a1a2)×
∑

|I|=2k−2q

I⊂{3,4,...,2k}

(# falling chains of [∅, I])

= Ck−1+(# falling chains of P4 starting with 12a1a2)×
∑

|I|=2k−4

I⊂V \{1,2}

(# falling chains of [∅, I]),

where P2q means the poset Peven
H′,H′ for H ′ = P̃2q,2, and the second summation is over the vertices I of

Peven
H,C . Since the number of falling chains of P4 starting with 12a1a2 is only one (see the second poset

of Figure 2), the number of falling chains is Ck−1 + s, where

s =
∑

|I|=2k−4
I⊂V \{1,2}

(# falling chains of [∅, I]).

Let I ⊂ {3, 4, . . . , 2k} be an element of Peven
H,C with 2k − 4 vertices. Then V \ I = {1, 2, v1, v2} where

v1 < v2. Since each component of I has an even number of vertices, v1 is odd and v2 is even, and so
the number of falling chains of [∅, I] is C v1−3

2

C v2−v1−1
2

C 2n−v2
2

. By a recursion of the Catalan numbers,

(6.3) s =

2k−1
∑

v1=3
v1: odd

2k
∑

v2=v1+1
v2: even

C v1−3
2

C v2−v1−1
2

C 2k−v2
2

=

2k−1
∑

v1=3
v1: odd

C v1−3
2

C 2k−v1+1
2

= Ck − Ck−1.

Hence the number of falling chains is Ck−1 + s = Ck when n = 2k (k ≥ 1) and C contains V .
Now we suppose that C ∩ V 6= V . Note that it follows from (6.2) that there is no falling chain of

Peven
H,C if |V | is odd and C ∩ V does not induce a connected graph. Hence we need to consider the case

where |V | is even or C ∩ V induces a connected graph. In (6.2), a falling chain of [I ∪ 1aic,H] for some
ai ∈ B and c ∈ C is either I ⋖ I ∪ 1a2v ⋖H (v ∈ V ), or I ⋖ I ∪ 1a1a2 = H. In each of the cases, it is
uniquely determined. Hence the number of falling chains is equal to s1 + s2, where

s1 = (# falling chains of [∅,H \ (1 ∪B)]), s2 =
∑

|I|=|V (H)|−3
I⊂V \{1}, 2∈I

(# falling chains of [∅, I]).

First, suppose |V (H)| = 2k and k ≥ 1. Then s1 is equal to Ck−1, the number of falling chains
of Peven

P2k−2
. If k = 1, then s2 = 0 and so the number of falling chains is C1 (since C0 = C1 = 1).

Suppose that k ≥ 2. Let I ⊂ {2, 3, . . . , 2k} be an element of Peven
H,C with 2k − 3 vertices containing

the vertex 2. Then V \ I = {1, v1, v2} where 2 < v1 < v2. Since each component of I has an even
number of vertices and 2 6∈ C, v1 is odd and v2 is even. Since s2 has the same equation in (6.3),
s1 + s2 = Ck−1 + (Ck − Ck−1) = Ck. Hence the number of falling chains is Ck if n = 2k.

We suppose |V (H)| = 2k + 1 and k ≥ 1. Then s1 is equal to Ck, the number of falling chains of
Peven
P2k

. If k = 1, then s2 = 1 and so the number of falling chains is C2 − C1 (note C2 = 2 and C1 = 1).

Suppose k ≥ 2. Let I ⊂ {2, 3, . . . , 2k + 1} be an element of Peven
H,C with 2k − 3 vertices containing the
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vertex 2. Then V \ I = {1, v1, v2}, where 2 < v1 < v2. Since each component of I has an even number
of vertices and 2 ∈ C, v1 is even and v2 is odd. Thus s1 + s2 = Ck + (Ck+1 − 2Ck) = Ck+1 − Ck, since

s2 =

2k
∑

v1=4
v1: even

2k+1
∑

v2=v1+1
v2: odd

C v1−2
2

C v2−v1−1
2

C 2k+1−v2
2

=

2k
∑

v1=4
v1: even

C v1−2
2

C 2k−v1+2
2

= Ck+1 − 2Ck.

Thus the number of falling chains is Ck+1 − Ck. It completes the proof. �

Finally, for the homotopy types of ∆(Peven
H,C ) for H = P̃n,2 and C is an admissible collection of H,

we have Table 2 by Corollary 6.1 and Proposition 6.3. One may formulate the number of falling chains
of Peven

G,C , when G = P̃n,m, in terms of the Catalan numbers (or the secant numbers), and it would be
interesting to explain the formula by using other combinatorial objects.

H C ∈ A(H)
∆(Peven

H,C )

Dimension Homotopy Type

H = P̃2k,2
V (H) \ C = ∅ |C|

2
− 3 = k − 2

∨

Ck

Sk−2

V (H) \ C 6= ∅ |C|
2

− 1 = k − 1
∨

Ck

Sk−1

H = P̃2k+1,2 V (H) \ C 6= ∅ |C|
2

− 2 = k − 1
∨

Ck+1−Ck

Sk−1

Table 2. The homotopy types of Peven
H,C for C ∈ A∗(H) and H = P̃n,2. The last row of the table is true

only when C ∩ V induces a connected graph.

6.2. Topology of real toric manifolds arising from graphs. As it was noticed, the posets Peven
G,C are

appeared in [7] to compute the rational Betti numbers of real toric manifolds arising from pseudograph
associahedron. First, we summarize a main result in [7], and then discuss how to compute the rational

Betti numbers of the real toric manifold associated with the graph P̃n,2.
A polytope coming from a graph G, called the pseudograph associahedron and denoted by PG, is

firstly introduced in [5]; for a connected graph G, the facets of the polytope PG are bijectively identified
with the proper semi-induced connected subgraphs of G, and two facets intersect if and only if the
corresponding semi-induced subgraphs are disjoint and cannot be connected by an edge of G, or one

contains the other. The dimension of PG is equal to |V (G)| − 1+
∑ℓ

i=1(|Bi| − 1), where Bi’s are all the
bundles of G. If G has the components G1, . . . , Gk, then PG is defined to be the product PG1×· · ·×PGk

.
Moreover, PG can be realized as a Delzant polytope3 canonically. It is well-known in toric geometry that
there is a one-to-one correspondence between projective smooth toric varieties and Delzant polytopes.
Hence under the canonical Delzant realization, there is the projective smooth toric variety associated
with a graph G. Then the real toric manifold MG is defined as the subset consisting of points with real
coordinates of the projective smooth toric variety associated with G. For example, it is known that if G
is the simple path graph P3, then the polytope PG is a pentagon and MG is #3RP 2, the connected sum
of three copies of the real projective plane RP 2. See [7, Sections 2 and 3], where the reader may find
examples, definitions, and a much more detailed account of results for pseudograph associahedra. For
C ⊂ CG, let P

odd
G,C (respectively, P even

G,C ) be the set of facets of PG corresponding semi-induced connected

subgraphs are C-odd (respectively, C-even), and Kodd
G,C (respectively, Keven

G,C ) its dual simplicial complex.

Then the ith rational Betti number βi(MG) of the real toric manifold MG is computed as follows. The

ith reduced Betti number of a topological space X is denoted by β̃i(X).

3An n-dimensional convex polytope is said to be a Delzant polytope if the (outward) normal vectors to the facets
(codimension-1 faces) meeting at each vertex (dimension-0 faces) form an integral basis of Zn.
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Proposition 6.4 ( [7]). For a connected graph G, the ith rational Betti number of the real toric manifold
MG is

βi(MG) =
∑

H: PI-graph
of G

∑

C∈A(H)

β̃i−1(Kodd
H,C).

Note that a real toric manifold MG is connected, and hence β0(MG) = 1. We can also check it

by using Proposition 6.4. For a graph H, if V (H) = ∅, then Kodd
H,C is empty and β̃−1(Kodd

H,C) = 1; if

V (H) 6= ∅, then Kodd
H,C is not empty, and so β̃−1(Kodd

H,C) = 0. Thus we get β0(MG) = 1. In addition,

from [7, Lemma 4.5], for a connected graph G and (H,C) ∈ A∗(G), if H1 is a component of H and
C1 = C ∩ CH1 for C ∈ A(H), then Kodd

H,C is isomorphic to the join Kodd
H1,C1

∗Kodd
H2,C2

, where H2 = H \H1

and C2 = C \ C1. Note that the join X ∗ Y is homotopy equivalent to the reduced suspension of the
smash product X ∧ Y , and Σ(X ∧ Y ) = S1 ∧X ∧ Y . Hence we get the following:

β̃i−1(Kodd
H,C) =

∑

ℓ

β̃ℓ(Kodd
H1,C1

)× β̃i−ℓ−2(Kodd
H2,C2

).(6.4)

Remark 6.5. Note that Kodd
G,C and Keven

G,C have the same homotopy type with P odd
G,C and P even

G,C , respec-

tively. For a connected graph H, it was also noted in [7] that ∆(Peven
H,C ) is a geometric subdivision of

Keven
H,C for C ∈ A(H), and hence ∆(Peven

H,C ) is homotopy equivalent to Keven
H,C . Since P odd

H,C ∪P even
H,C = ∂PH ,

it follows from the Alexander duality that β̃i(Kodd
H,C) = β̃dim(PH )−i−2(∆(Peven

H,C )).

We finish the section by explaining how to compute βi(MG) when G = P̃n,2 in Figure 3. It was shown

in [6, Theorem 2.5] that, for the simple path graph Pn with n vertices, ∆(Peven
Pn

) is homotopy equivalent

to
∨

Ck

Sk−1 for n = 2k and it is contractible for odd n. In addition, for any integer n ≥ 2,

βi(MPn) =

{

(

n
i

)

−
(

n
i−1

)

if 0 ≤ i ≤ ⌊n2 ⌋

0 otherwise.
(6.5)

For a non-simple connected graph H = P̃k,2 (k > 0) in Table 2, dim(PH) = |V (H)| and by Remark 6.5,

(6.6) bik :=
∑

C∈A(H)

β̃i(Kodd
P̃k,2,C

) =















C k
2

if i = k
2 or k

2 − 1 for even k

C k+1
2

− C k−1
2

if i = k−1
2 for odd k

0 otherwise.

Now we are ready to explain how to compute βi(MG) from (6.4)∼(6.6), when G = P̃n,2. Assume that
i > 0. Let H1 be the set of all simple PI-graphs of G and H2 the set of all non-simple PI-graphs of G.
By Proposition 6.4, βi(MG) = si1 + si2 where

si1 =
∑

H∈H1

∑

C∈A(H)

β̃i−1(Kodd
C,H), si2 =

∑

H∈H2

∑

C∈A(H)

β̃i−1(Kodd
C,H).

As H1 is the set of PI-graphs of the simple graph Pn, s
i
1 = βi(MPn). By Proposition 6.4 and (6.4),

si2 =
n−2
∑

m=2

∑

C∈A(P̃m,2)

⌊m
2
⌋

∑

ℓ=0

β̃ℓ(Kodd
P̃m,2,C

)× βi−ℓ−1(MPn−m−1) +
n
∑

m=n−1

∑

C∈A(P̃m,2)

β̃i−1(Kodd
P̃m,2,C

)

=

i−1
∑

ℓ=0

n−2
∑

m=2

bℓmβi−ℓ−1(MPn−m−1) + bi−1
n−1 + bi−1

n ,
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and we note the second summation above is valid when n ≥ 4. Hence

βi(MG) = βi(MPn) +

i−1
∑

ℓ=0

n−2
∑

m=2

bℓmβi−ℓ−1(MPn−m−1) + bi−1
n−1 + bi−1

n .(6.7)

Combining (6.7) with (6.5) and (6.6), one can completely compute βi(MG) when G = P̃n,2. Table 3
shows the rational Betti numbers of MP̃n,2

for some small integers n. We observe a more simple

formula for βi(MG) for some i. For example, β1(MG) = n and β2(MG) =
(

n
2

)

. We also see that

βk(MP̃2k,2
) = βk+1(MP̃2k+1,2

) = 6k
k+2Ck, which is known as the total number of nonempty subtrees over

all binary trees having k+1 internal vertices, see [19, A071721]. It would be interesting if one finds the
exact formula of βi(MG) and figures out that βi(MG) counts other combinatorial objects for every i.

❛
❛
❛
❛❛

i n 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 1 2 6 10 15 21 28 36 45 55 66 78 91 105

3 0 0 0 6 18 33 54 82 118 163 218 284 362 453

4 0 0 0 0 0 18 56 110 192 310 473 691 975 1337

5 0 0 0 0 0 0 0 56 180 372 682 1155 1846 2821

6 0 0 0 0 0 0 0 0 0 180 594 1276 2431 4277

7 0 0 0 0 0 0 0 0 0 0 0 594 2002 4433

8 0 0 0 0 0 0 0 0 0 0 0 0 0 2002

Table 3. The rational Betti numbers βi(MP̃n,2
) for small n

7. Further Discussions

In this paper, we characterize the family G∗, that is, we find all graphs G such that Peven
H,C is shellable

for every (H,C) ∈ A∗(G). As the problem was motivated by the topology of a real toric manifold

associated with a graph, we could compute the rational Betti numbers of the one associated with P̃n,2.
As a further research, it would be also interesting to see the family G∗

1 of graphs G such that Peven
G,C

is shellable for every C ∈ A(G). Since G is a PI-graph of itself, it is clear that G∗ ⊂ G∗
1 . Here is an

example to show that G∗ is a proper subset of G∗
1 . Consider a graph G with five vertices and one bundle

B = {a, b} of size two in Figure 11. Then A(G) = {1345ab, 2345ab}, and both posets Peven
G,1345ab and

G
3 1 2 4 5a

b

∅

1 2

123a 123b 234a 234b 12ab

G′ = 1234ab

Peven
G′,34ab

∅

2 13 45

12a 12b
1345

245

123ab124ab 1234a 1234b 1245a 1245b

G

Peven
G,1345ab

∅

1 24 45

12a 12b 145

123ab 124ab 1234a 1234b 1245a 1245b

G

Peven
G,2345ab

Figure 11. A graph G ∈ G∗
1 , and three shellable posets Peven

G,1345ab, P
even
G,2345ab, and Peven

1234ab,34ab
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Peven
G,2345ab are shellable, see Figure 11. However, H 6∈ G∗ by Theorem 1.1 (For a specific reason, refer the

proof of Claim 4.4 in Section 4.). One may find infinitely many such graphs.
Going one step further, we ask to completely characterize all pairs (G,C) supporting a shellable poset

Peven
G,C . It would be the first step to find such pairs (G,C) when G has exactly one bundle. For example,

for a subgraph G′ = 1234ab of the graph G in Figure 11, A(G′) = {34ab, 1234ab}, Peven
G′,34ab is shellable

as in Figure 11 and Peven
G′,1234ab is not by the proof of Claim 4.4.
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