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We show a surprising link between experimental setups to realize high-dimensional multipartite
quantum states and Graph Theory. In these setups, the paths of photons are identified such that
the photon-source information is never created. We find that each of these setups correspond to an
undirected graph, and every undirected graph corresponds to an experimental setup. Every term in
the emerging quantum superposition corresponds to a perfect matching in the grpah. Calculating
the final quantum state is in the complexity class #P-complete, thus cannot be done efficiently.
To strengthen the link further, theorems from Graph Theory – such as Hall’s marriage problem –
are rephrased in the language of pair creation in quantum experiments. This link allows to answer
questions about quantum experiments (such as which classes of entangled states can be created)
with graph theoretical methods, and potentially simulate problems in Graph Theory with quantum
experiments.

When a pair of photons is created, and one can-
not – even in principle – determine what its origin
is, the resulting quantum state is a coherent super-
position of all possibilities. Twenty-five years ago,
Wang, Zou and Mandel (originally suggested by Zhe-
Yu Ou) have used that idea in a remarkable way
[1, 2]: They coherently overlapped one of the out-
put modes from each crystal (|b〉 = |d〉 in Fig. 1A),
such that the which-crystal information for the pho-
ton in d never exists in the first place. That leads to
|ψ〉 = 1/

√
2 (|a〉+ |c〉) |d〉, where one photon is in d

and the second photon is in a coherent superposition
of being in a and in c. This phenomenon has found
a manifold of applications such as in spectroscopy [3],
in quantum imaging [4], for the investigation of com-
plementarity [5], in superconducting cavities [6] and
for investigating quantum correlations [7].

In a variation of that idea, both output modes from
the two crystals are overlapped such that the paths of
the photons are identical (Fig. 1B). By adding phases
between the two crystals, one obtains |ψ〉 = (|a, b〉 +
exp(iφ)|a, b〉) = (1 + exp(iφ))|a, b〉, which means that
by changing the phase φ, one can enhance or surpress
the creation of photons – a phenomenon denoted as
frustrated generation of photon pairs [8]. If instead of
phase shifters one would add mode shifters between
the crystals (for instance, the crystal produces two
horizontal polarized photons, and the mode-shifter
changes horizontal to vertical), one creates an entan-
gled two-photon state |ψ〉 = 1/

√
2(|Ha, Hb〉+ |Va, Vb〉)

[9]. By exploiting these ideas, the creation of a large
number of high-dimensional multipartite entangled
states has been proposed recently [10] (inspired by
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Figure 1. A: The experiment introduced in [1] consists of
two crystals, pumped by a laser (depicted in black) which
create one pair of photons (either in crystal I or in crys-
tal II), and one of the paths is overlapped. If the two
possibilities are prepared such that one cannot distinguish
in which crystal the photons have been created, the final
state consists of a photon in d and a coherent superposi-
tion of the second photon being in a or in c. B: In this
experiment, both arms are overlapped. If the grey ele-
ments between the two crystals are phase-shifters, the two
crystals can either constructivly or destructivly interfere,
leadering to larger or smaller numbers of photons in the
output a and b [8]. If the grey elements are mode-shifters,
one creates an entangled state [9]. In can be chosen by
the experimentalist whether the photons emerge colinear
or at an angle from the crystal. For simplicity, the laser is
not drawn anymore in the following examples.

computer-designed quantum experiments [11]).

Here we show that such experimental configura-
tions can be systematically described with Graph The-
ory: Every experiment corresponds to an undirected
Graph, and every undirected Graph is associated with
an experiment. On the one hand, it allows to trans-
late questions from quantum experiments and answer
them with graph theoretical methods. On the other
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Figure 2. A: An optical setup which can create a 3-
dimensional 4-photon GHZ-state with the method of Path
Identity. It consists of three layers of crystals, in between
there are variable mode- and phase-shifters (depicted in
grey). B: The corresponding graph with four vertices (one
for each path), six edges (one for each crystal). Every layer
of crystals leads to a four-fold coincidence count. C: That
corresponds to a perfect matching or 1-factor in the graph.

hand, theorems in Graph Theory can be rephrased
and understood with quantum experiments.

An important example for this link is the num-
ber of terms in the resulting quantum state for a
given quantum experiment. It is the number of per-
fect matchings that exists in the corresponding graph
– a problem that lies in the complexity class #P-
complete. Futhermore, the link between quantum
experiments and graph theory helps to understand
which high-dimensional multipartite quantum states
is experimentally accessible.

A link between quantum physics and graph theory
has been drawn before, but for different reasons. For
example, in Graph states [12, 13], which are related to
the resources for measurement-based quantum com-
putation [14], the vertices of the Graph correspond to
qubits in a quantum state, and the edges correspond
to correlations between two qubits. In different works,
the Laplacian of a graph has been interpreted as the
density matrix of a quantum state, which allowed to
investigate new entanglement criteria [15].
Experiments and Graph – The optical setup for

Quantum Experiment Graph Theory

Optical Setup with Crystals undirected Graph G(V,E)

Crystals Edges E

Optical Paths Vertices V

n-fold coincidence perfect matching

layers of crystals disjoint perfect matchings

#(terms in quantum state) #(perfect matchings)

maximal dimension of photon degree of vertex

Table I. The analogies between Quantum Experiments in-
volving multiple crystals and Graph Theory.

creating a 3-dimensional generalization of a 4-photon
Greenberger-Horne-Zeilinger state [16, 17] is shown
in Fig. 2A. The experiment consists of three layers
of two down-conversion crystals each. Each crystal
can create a pair of photons in the state |0, 0〉, where
the mode number could correspond to the orbital
angular momentum (OAM) of photons [18–20] or
some other (high-dimensional) degree-of-freedom. A
laser pumps all of the six crystals coherently, such
that two pairs of photons are created in parallel.
One photon in each of the four paths, i.e. a four-fold
coincidence, can only happen if the two photon pairs
are created in crystals I and II, or in crystals III
and IV or in crystals V and VI. In every other case,
there is at least one path without a photon, which is
neglected in post-selection. For example, if a photon
pair is created in crystal I and one in III, there will
be two photons in path a, but no photon in path b.
Between each layer, the photons can be manipulated.
For example if the modes are shifted by +1 between
every layer (in the case of OAM, this can be done
with holograms), photons from the green layer are
shifted twice, photons from the blue layer are shifted
once and photons in the red layer stay in their initial
state. This example leads to the final state |ψ〉 =
1/
√

3 (|0a, 0b, 0c, 0d〉+ |1a, 1b, 1c, 1d〉+ |2a, 2b, 2c, 2d〉)
(where the subscript correspond to the path of the
photon).

The corresponding graph is shown in Fig. 2B. Every
optical path a, b, c, d in the experiment corresponds
to a vertex in the graph, every crystal forms an edge
between the vertices. A four-fold coincidence count
happens when a subset of the edges are incident to
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Figure 3. A: An optical setup for creating 3-dimensional
entanglement with 6 photons. B: The corresponding graph
consists of 6 vertices and 9 edges, and each layer of crys-
tals corresponds to a 1-factor (depicted in green, blue and
red). C: This graph has four perfect matchings, thus the
corresponding quantum state has four terms. One terms
comes from each of the three layers (the GHZ terms), and
one additional term comes from different layers (the Mav-
erick -term, with red background). For that reason, the
resulting quantum state has not the form of a GHZ state.
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Figure 4. A: Two experiments which each create a 3-
dimensional 4-photon entangled GHZ state can be com-
bined with a 3-dimensional Bell-State measurement. B: In
the corresponding graph, the vertices d and e are merged.
Merging the two graphs can be understood as a generalized
multi-photon high-dimensional entanglement swapping.

each of the four vertices exactly once. Such a subset
is called perfect matching of the graph. In the above
example, there are three perfect matchings (two green
edges, two blue edges and two red edges), thus there
are three terms in the quantum state. We can there-
fore think of our quantum state as a coherent super-
position of the perfect matchings in the corresponding
graph. The correspondence between quantum optical
setups and graph theoretical concepts are listed in Ta-
ble I.

Now, what will happen when we add more crystals
in each layer? As an example, in Fig. 3A, three crys-
tals in each layer produce 6 photons, there are three
layers which make the photons 3-dimensionally entan-
gled. Surprisingly however, in contrast to the natural
generalisation of the 4-photon case in Fig. 2 (and in
contrast to what some of us wrote in [10]), the re-
sulting state is not a high-dimensional GHZ state. In
contrast to the previous case, there are four perfect
matchings, thus the resulting quantum state has four
terms (Fig. 3C). One perfect matching comes from
each of the layers (which are the terms expected for
the GHZ state), and one additional arises due to a
combination of one crystal from each layer (which we
call Maverick -term). If the mode shifter between the
layers is +1 as before, the Maverick term has |1a, 1c〉
from the blue layer, |2b, 2d〉 from the green layer and
|0e, 0f 〉 from the red layer. This leads to the final state

|ψ〉 =
1

2

(
|0, 0, 0, 0, 0, 0〉+ |1, 1, 1, 1, 1, 1〉

+ |2, 2, 2, 2, 2, 2〉+ |1, 2, 1, 2, 0, 0〉
)
. (1)

When the number of layers of crystals is increased
to four, there are eight terms in the resulting quan-
tum state. For five crystals, the resulting 6-photon
quantum state consists of 15 terms, entangled in 5
dimensions (see Appendix). In general, n crystals in
one layer produce 2n photons. One can design setups
with d = (2n−1) independent layers of crystals which
can be arbitrarily controlled by the experimentalist.
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a 
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b 

Figure 5. A: An optical setup, where two crys-
tals emit into the same path, can be used to real-
ize many entangled states, such as the W-state |ψ〉 =
1/2 (|0, 0, 0, 1〉+ |0, 0, 1, 0〉+ |0, 1, 0, 0〉+ |1, 0, 0, 0〉) or a
high-dimensional asymmetrically entangled state |ψ〉 =
1/2|0〉 (|0, 0, 0〉+ |1, 0, 1〉+ |2, 1, 0〉+ |3, 1, 1〉), where one
photon acts as trigger. By changing the mode- and phase-
shifters between the crystals, one arrives at different states.
B: Such experiments can be consistently described with
multiple edges that are incident to the same two verices.
By looking at the perfect matchings, it is easy to under-
stand what modes the individual crystals have to produce
to obtain the desired state (for example, shown in [10]).

Such a complete set of layers correspond to complete
graphs K2n (in a complete graph, every vertex is con-
nected with every other one exactly once), and the
structure of the layers is called 1-Factorization. A 1-
Factorization of the graph G(V,E) is a partitioning
of the graph’s edges into disjoined subgraphs (called
1-factors), where each 1-factor has the same number
of vertices as G(V,E) – and in contrast to the fac-
torization of natural numbers, it doesn’t need to be
unique [21]. Every 1-Factor of the 1-Factorization can
be controlled independently in the quantum exper-
iment (such as the GHZ terms in Fig. 3C), while
additional perfect matchings lead to additional terms
(such as the Maverick term in Fig. 3C).

In order to build 3-dimensional GHZ-type experi-
ments with 6 photons (without extra terms), one can
use two copies of the 3-dimensional 4-photon GHZ
state (presented in Fig. 2A), and combined them
with a 3-dimensional Bell-state measurement [22, 23]
as shown in Fig. 4A and B. Triggering on one of the
9 Bell states leads to

|ψ〉 =
1√
3

(
|0, 0, 0, 0, 0, 0〉+ |1, 1, 1, 1, 1, 1〉

+ |2, 2, 2, 2, 2, 2〉
)
, (2)

which is a 6-photon, 3-dimensional GHZ state.
This can be generalized to multi-photon 3-dimensional
GHZ states with more copies chained together. The
operation is a generalisation of entanglement swap-
ping [24, 25] to multi-photonic systems [26] with more
than two dimensions. In the graph it can be repre-
sented by two graphs that are merged.
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Figure 6. A theorem from Graph theory: Hall’s marriage
theorem A: For a bipartite graph with equal number of el-
ements in X and Y , Hall’s theorem gives a necessary and
sufficient condition for the existence of a perfect match-
ing. That happens when for every subset in W ∈ X, the
number of neighbors in Y is larger or equal than |W |. In
the example graph, the subset of X consisting of the ver-
tices (c, e, g – indicated in red) have only two neighbors
in Y (d, f – indicated in green), thus there can not be a
perfect matching. B: For quantum experiments, the ana-
log question is whether there can be 2n-fold coincidences,
given that n crystals emit photon pairs. When the two
photons are distinguishable (which corresponds to a bi-
partite graph), 2n-folds can only happen when for every
subset W of signal photon paths the number of connected
idler paths is larger or equal than |W |. In the example,
the subset of signal photon paths (c, e, g – depicted in red)
has only two corresponding idler paths (d, f – depicted in
green), thus there can not be a 10-fold coincidence count.

Many other classes of entangled states, such as two-
dimensional W-state [27, 28] or asymmetrically en-
tangled Schmidt-Rank Vector (SRV) [29, 30] can be
created by exploiting asymmetry in the experimental
setups, as shown in Fig. 5A. Here, two crystals con-
nect the photons in the same path. The corresponding
graph has more then one edge between two vertices –
a so-called multigraph (Fig. 5B).

An important result is that calculating the final
quantum state can not be done efficiently: Count-
ing the number of perfect matchings in a bipartite
graph (i.e. calculating the number of terms in the
resulting quantum state) is in the complexity class
#P-complete, as it is equivalent to computing the
permanent of the graph’s biadjacency matrix [31] (see
Appendix for such an experimental setup). Further-
more, for general graphs, counting the number of per-
fect matchings corresponds to calculating the Hafnian
(a generalisation of the permanent) of the graph’s ad-
jacency matrix. Even for approximating the Hafnian
there is no known deterministic algorithm which runs
in polynomial time [32, 33].

While the information about the number of terms
is encoded in every n-photon quantum state emerging
from the setup, the question is how one can obtain this
information (or approximate it) efficiently. Measure-
ments in the computation basis are not sufficient, oth-
erwise it could be calculated classically as well. One

direction would be to investigate frustrated generation
of multiple qubits [8] (for instance, by using phase
shifters instead of mode shifters between each crys-
tal), or by analysing multi-photon high-dimensional
entanglement detections [34]. A detailed investigation
of the link between the outcome of such experiments
and complexity classes would be valueable, but is out-
side the scope of this article.

Finally, to strenghen the link between quantum ex-
periments and graph theory, we show that theorems
from Graph theory can be translated and reinter-
preted in the realm of quantum experiments. In Fig.
6A and B, we show Hall’s marriage theorem, which
gives a necessary and sufficient condition in a bipartite
graph for the existence of at least one perfect matching
[35]. A generalisation to general graphs, Tutte’s theo-
rem [36, 37], is shown in the Appendix. Both Graph
theory theorems can be understood in the language of
quantum experiments.

To conclude, we have shown a strong link between
quantum experiments and Graph Theory. It allows to
systematically analyse the emerging quantum states
with methods from graph theory. The new link im-
mediatly opens up many new directions for future re-
search. For example, the analysation of the number of
maximal matchings and matchings in a graph (called
Hosoya index and often used in chemistry [38, 39]).

A detailed investigation of links between these ex-
periments and computation complexity classes, in par-
ticular the relation to computation complexity with
linear optics would be interesting [40–42].

Furthermore it would be interesting how the merg-
ing of graphs (as done with a Bell-state measurement
in Fig. 4A) can be generalized, and whether a com-
bination with non-destructive measurements [43], can
lead to larger classes of accessible states and how that
can be described in the Graph theoretical framework.
It would be interesting whether related techniques
could be investigated in terms of Graph Theory as
well, such as generating entanglement by propagation,
detection and post selection [44], by using the indis-
tinguishability [45–47] or by using linear optics [48].

The generation to other graph theoretical methods
would be interesting, such as weighted graphs (which
could correspond to variable down-conversion rates
via modulating the laser power), hypergraphs (which
would correspond to creation of tuples of photons,
for instance via cascaded down-conversion [49, 50])
or 2-Factoriations (or general n-Factorizations, which
would lead to n photons in one single arm).

We suggest that recent developments of inte-
grated optics implementations of quantum experi-
ments, where the photons are generated on a photonic
chip [51–53], could be particularly useful to realize se-
tups of the type proposed here.
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Supplemental Materials

APPENDIX I. ENTANGLEMENT OF 6 PHOTONS IN 5 DIMENSIONS - COMPLETE GRAPH K6

An experiment with five layers and three crystals in each layer is shown in Fig. 7A. It corresponds to the
complete graph K6, which has one edge between each of its six vertices Fig. 7B. It has 15 perfect matchings,
which are shown in Fig. 7C. For complete graphs K2n with 2n vertices, the number of perfect matchings is

#(PM) = (2n)!
n!2n .
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Figure 7. A: An experimental setup with five layers with three crystals each, which creates a 6-photon entangled state
in five dimensions. B: It is represented by the complete graph K6, and each of the five layers corresponds to one perfect
matching (indicated by the edges with the same colors). C: A complete graph with six vertices has 15 perfect matchings.
Five of them (first line) correspond to the five different layers which can be arbitrarily controlled in the experiment. The
remaining ten perfect matchings (second and third line) correspond to combinations from different layers of crystals.
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APPENDIX II. BIPARTITE GRAPHS

Counting the number of perfect matchings in a bipartite graph is in the complexity class #P-complete.
In Fig. 8A, an experimental setup is shown which corresponds to the bipartite graph in Fig. 8B. The perfect
matchings for this case can be found in Fig. 8C. They correspond to the number of terms in the resulting
quantum state. The mode number of the different terms can be set for each crystal individually, thus one can
simply see which states are possible.

A B a b c d e f g h i j 

a b 

c d 

e f 

g h 

i j 

a b 

c d 

e f 

g h 

i j 

a b 

c d 

e f 

g h 

i j 

a b 

c d 

e f 

g h 

i j 

a b 

c d 

e f 

g h 

i j 

a b 

c d 

e f 

g h 

i j 

a b 

c d 

e f 

g h 

i j 

a b 

c d 

e f 

g h 

i j 

a b 

c d 

e f 

g h 

i j 

C 

Figure 8. A: An optical setup which corresponds to a bipartite graph. It has ten paths and 15 crystals. B: The
corresponding bipartite graph. The question how many terms the resulting quantum state will have is asking how many
perfect matchings there are in the bipartite graph. C: In this example, there are eight perfect matchings, which are
represented with red coloured edges.

APPENDIX III. PERFECT MATCHINGS IN GENERAL GRAPHS: TUTTE’S THEOREM

A different important result in Graph theory about perfect matchings is Tutte’s theorem. It gives a necessary
and sufficient condition for general graphs, when one can find perfect matchings (but not talking about how
many). It is a generalisation of Hall’s marriage theorem, which answers the same question for bipartite graphs.
In Fig. 9A, the theorem is explained based on an example. That theorem can be understood with quantum
experiments, as shown in Fig. 9B.
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A a b c d e f g h i j 
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B Tutte‘s theorem 

Figure 9. A: Tutte’s theorem is a generalisation for arbitrary graphs. It says that in a graph G(V,E) a perfect matching
exists if and only if for every subset U ∈ V , the remaining subgraph V − U has at most U connected components
with an odd number of vertices. In the above example, if we chose U = d, the remaining subgraph has three connected
components (abc, efg, hij), and each of them has an odd number of vertices. U has only one vertex, thus there is no perfect
matching in this graph. B: The analog criterion for a general setup where each crystal produces indistinguishable photon
pairs can be states as follows: For every combination of paths U , removing the paths and all connected crystals leads
to several independent remaining setups Sr. Coincident counts can only occure if the number of Sr with odd numbers
of paths is smaller than the number of paths in U . In the example, the subset U = d does not fulfill the condition: By
removing the path d and every connected crystal (depicted in red), Sr contains three independent subsetups (with paths
abc, efg, hij), each of them have an odd number (three) of paths. It can be easily understood that subsetups with an odd
number of crystals require one photon from the removed subset. If the number of subsetups, which require one photon,
is larger than the number of paths removed, not every subsetup will receive a photon, thus there can not be an 2n-fold
coincidence count.
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