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Abstract. In this paper, we compute the number of z-classes (conjugacy classes of

centralizers of elements) in the symmetric group Sn, when n ≥ 3 and alternating group

An when n ≥ 4. It turns out that the difference between the number of conjugacy

classes and the number of z-classes for Sn is determined by those restricted partitions

of n − 2 in which 1 and 2 do not appear as its part. And, in the case of alternating

groups, it is determined by those restricted partitions of n − 3 which has all its parts

distinct, odd and in which 1 (and 2) does not appear as its part, along with an error

term. The error term is given by those partitions of n which have each of its part

distinct, odd and perfect square. Further, we prove that the number of rational-valued

irreducible complex characters for An is same as the number of conjugacy classes which

are rational.

1. Introduction

Let G be a group. Two elements x, y ∈ G are said to be z-conjugate if their centralizers

ZG(x) and ZG(y) are conjugate in G. This defines an equivalence relation on G and the

equivalence classes are called z-classes. Clearly if x and y are conjugate then they are

also z-conjugate. Thus, in general, z-conjugacy is a weaker relation than conjugacy on

G. In the theory of groups of Lie type, this is also called “types” (see [Gr]) and the

number of z-classes of semisimple elements is called the genus number (see [Ca1, Ca2]).

This has been studied explicitly for various groups of Lie type in several papers, see for

example, [BS, Go, GK, Ku, Si]. In this work, we want to classify and count the number

of z-classes for symmetric and alternating groups. For convenience we deal with these

groups when they are non-commutative (the commutative cases can be easily calculated),

i.e., we assume n ≥ 3 while dealing with symmetric groups and n ≥ 4 while dealing with

alternating groups.
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2 Z-CLASSES AND RATIONAL CONJUGACY CLASSES IN ALTERNATING GROUPS

Let σ ∈ Sn. The conjugacy classes of elements in Sn are determined by their cycle

structure which, in turn, is determined by a partition of n. Let λ = λe1
1 λe2

2 · · · λer
r be a

partition of n, i.e., we have 1 ≤ λ1 < λ2 < . . . < λr ≤ n, each ei > 0 and n =
∑r

i=1 λiei.

We may represent an element of Sn corresponding to a partition λ in cycle notation. We

prove the following,

Theorem 1.1. Suppose n ≥ 3. Let ν be a restricted partition of n − 2 in which 1 and

2 do not appear as its part. Let λ = 12ν and µ = 21ν be partitions of n obtained by

extending ν. Then the conjugacy classes of λ and µ belong to the same z-class in Sn.

Further, the converse is also true.

Corollary 1.2. The number of z-classes in Sn is p(n) − p̃(n − 2), where p(n) is the

number of partitions of n and p̃(n − 2) is the number of those restricted partitions of

n− 2 in which 1 and 2 do not appear as its part. Thus, the number of z-classes in Sn is

equal to p(n)− p(n− 2) + p(n− 3) + p(n− 4)− p(n− 5).

To prove this theorem, we need to understand the centralizers better which involves the

generalised symmetric group. A group S(a, b) = Ca ≀Sb
∼= Cb

a⋊Sb is called a generalised

symmetric group. We will briefly introduce this group in the following section.

Next we look at the problem of classifying z-classes in alternating groups An. Usually

the conjugacy classes in An are studied as a restriction of that of Sn. First, it is easy

to determine for what partitions λ = λe1
1 · · ·λer

r of n the corresponding element σλ is in

An. This is precisely when n −
∑

ei is even. We call such partitions even. Further,

when σλ ∈ An, the conjugacy class of σλ in Sn splits in two conjugacy classes in An if

and only if ZSn(σλ) = ZAn(σλ), which is, if and only if the partition λ has all its parts

distinct and odd, i.e., ei = 1 and λi odd for all i. With this notation we have,

Theorem 1.3. Suppose n ≥ 4. Let λ = λe1
1 · · ·λer

r be an even partition of n. Then the

following determines z-classes in An.

(1) Suppose ei = 1 for all i and all λi are odd, i.e., λ corresponds to two distinct

conjugacy classes in An. Then, λ corresponds to two distinct z-classes (corre-

sponding to the two distinct conjugacy classes) if and only if all λi are square.

Else, the two split conjugacy classes form a single z-class.

(2) Suppose either one of the ei ≥ 2 or at least one of the λi is even, i.e., λ cor-

responds to a unique conjugacy class in An. Then, λ is z-equivalent to another

conjugacy class if and only if λ = 13ν, where ν is a restricted partition of n− 3,

with all its parts distinct and odd, and in which 1 (and 2) does not appear as its

part. Further the other equivalent class is 31ν.

We remark that 31ν could be of the first kind. For example, in A8 the partitions 1
351 and

3151 give same z-class. Further, the conjugacy class 3151 splits into two but both fall in
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a single z-class. We list few more examples (using GAP) in a table in Section 9. We also

note that ν could have its first part 3, in that case while writing 31ν we appropriately

absorb the power of 3. We denote by ǫ(n), the number of partitions of n with all of its

parts distinct, odd and square. We list the values of ǫ(n) for small values in a table in

Section 9.

Corollary 1.4. The number of z-classes in An is

cl(An)− (q(n) + q̃(n − 3)) + ǫ(n),

where cl(An) =
p(n)+3q(n)

2 is the number of conjugacy classes in An, q(n) is the number

of partitions of n which has all parts distinct and odd, q̃(m) is the number of restricted

partitions of m, with all parts distinct, odd and which do not have 1 (and 2) as its part.

Let G be a finite group. An element g ∈ G is called rational if g is conjugate to

gm for all m with property (m, o(g)) = 1 where o(g) is the order of g. Clearly if g is

rational then all of its conjugates are rational. Thus a conjugacy class of G is said to be

rational if it is a conjugacy class of a rational element. It is believed that, for a finite

group G, the number of conjugacy classes which are rational is related to the number of

rational-valued complex irreducible characters of the group G (for example, see Theorem

A in [NT]). A group of which all elements are rational (and in that case, all complex

irreducible characters are rational-valued) is called a rational group or Q-group (see [Kl]).

The alternating groups An play an important role in determining simple groups which

are rational (see Theorem A [FS]). There is a related notion of rational class in a group

which comes from an equivalence relation. For a finite group G, a rational class of

an element g is a subset containing all elements of G that are conjugate to gm, where

(m, o(g)) = 1. Thus the rational class of g can be thought of as the conjugacy class of

cyclic subgroup 〈g〉 of G. A conjugacy class which is rational is a rational class. However

the converse need not be true. It is well known that, for a finite group G, the number

of isomorphism classes of irreducible representations of G over Q is equal to the number

of rational classes of G (see Corollary 1, Section 13.1 [Se]). The symmetric group Sn

is rational. Alternating groups are not rational (see Corollary B.1 [FS]). The rational-

valued complex irreducible characters for An are discussed in [Br] and [Pr]. In this paper

we determine conjugacy classes which are rational and the rational classes in alternating

group. With notation as above,

Theorem 1.5. Suppose n ≥ 4. Let C̃ be a conjugacy class in An and corresponding

partition be λ = λe1
1 · · ·λer

r of n.

(1) Then the conjugacy class C̃ is rational in An if and only if one of the following

happens:

(a) either one of the ei ≥ 2 or one of the λi is even, or,
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(b) when all λi are distinct (i.e., ei = 1 for all i) and odd, the product
r∏

i=1

λi is

a perfect square. In this case, λ corresponds to two conjugacy classes in An

and both are simultaneously rational (or non-rational).

(2) All conjugacy classes which are rational are rational classes. When C̃ is not a

rational conjugacy class in An, the conjugacy class C in Sn containing C̃ is a

rational class in An.

We denote by δ(n), the number of partitions of n with all parts distinct, odd and the

product of parts is a perfect square. We list the values of δ(n) for small values in a table

in Section 9 which is also there in [Br].

Corollary 1.6. For the alternating group An with n ≥ 4,

(1) the number of conjugacy classes which are rational is cl(An)−2q(n)+2δ(n), and

(2) the number of rational classes is cl(An)− q(n) + δ(n).

The character theory of An is well understood. We use the notation and results from [Pr]

and conclude the following,

Theorem 1.7. Suppose n ≥ 4. Then, the number of conjugacy classes in An which are

rational is same as the number of rational-valued complex irreducible characters.

This theorem is proved in Section 8. We also acknowledge that we have used GAP [GAP]

on several occasions to verify our computations and results.

Acknowledgement : The authors would like to thank Gerhard Hiss and Alexan-

der Hulpke for wonderful discussion on GAP during the workshop “Group theory and

computational methods” held at ICTS Bangalore, India in November 2016.

2. Restricted partitions

We require certain kind of restricted partitions which we introduce in this section.

We denote by p(m), the number of partitions of positive integer m. To set the notation

clearly, a partition of m is λ = me1
1 · · ·mer

r where 1 ≤ m1 < . . . < mr ≤ m, ei ≥ 1∀i

and m =
∑r

i=1 eimi. Sometimes this is also denoted as λ ⊢ m or me1
1 · · ·mer

r ⊢ m. We

clarify that the partition written as 1121 is same as 1.2 but, in this case, latter notation

is confusing if written without a dot. For us the significance of partitions is due to its

one-one correspondence with conjugacy classes of the symmetric group Sm. Let p̃(m) be

the number of those partitions of m in which 1 and 2 do not appear as its part, i.e.,

p̃(m) = |{λ = me1
1 · · ·mer

r ⊢ m | m1 ≥ 3}| .

Here we list down values of p̃(m) for some small values.
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m p̃(m) m p̃(m) m p̃(m) m p̃(m)

1 0 6 2 11 6 16 21

2 0 7 2 12 9 17 25

3 1 8 3 13 10 18 33

4 1 9 4 14 13 19 39

5 1 10 5 15 17 20 49

The generating function for p̃(m) is

∏

i≥3

1

1− xi

and a formula to compute p̃(m) in terms of partition function is

p̃(m) = p(m)− p(m− 1)− p(m− 2) + p(m− 3).

This is a well known sequence in OEIS database (see [OEIS]). This will be used in the

study of z-classes of symmetric groups later.

Now we introduce the function q(m). For a given integer m, the value of q(m) is the

number of those partitions of m which have all of its parts distinct and odd, i.e.,

q(m) = |{λ = m1
1 · · ·m

1
r ⊢ m | mi odd ∀i}|.

This number is same as the number of self-conjugate partitions. For us this would

correspond to those partitions which give split conjugacy classes in An. Now we introduce

q̃(m) which is the number of those restricted partitions of m which have all its parts

distinct, odd and 1 (and 2) does not appear as its part. The following table gives values

of q̃(m) for some values of m.

m q(m) q̃(m) m q(m) q̃(m) m q(m) q̃(m) m q(m) q̃(m)

1 1 0 6 1 0 11 2 1 16 5 3

2 0 0 7 1 1 12 3 2 17 5 2

3 1 1 8 2 1 13 3 1 18 5 3

4 1 0 9 2 1 14 3 2 19 6 3

5 1 1 10 2 1 15 4 2 20 7 4

The generating function for q(m) is
∏

i≥0(1+x2i+1) and the generating function for q̃(m)

is
∏

i≥1(1 + x2i+1).

3. Symmetric groups

In this section we classify z-classes in Sn. Since the centralizers are a product of

generalised symmetric groups, we begin with a brief introduction to them.
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3.1. Generalised Symmetric Groups. The group S(a, b) = Ca ≀ Sb, where Ca is a

cyclic group and Sb is a symmetric group, is called a generalised symmetric group. This

group is an example of wreath product and has been studied well in literature. Since

the centralizer subgroups in the symmetric group are a product of generalised symmetric

groups, we need to have more information about this group. For the sake of clarity, let

us begin with defining this group. Consider the action of symmetric group Sb on the

direct product Cb
a = Ca × · · · × Ca given by permuting the components:

σ(x1, . . . , xb) = (xσ(1), . . . , xσ(b)).

Then the generalised symmetric group is S(a, b) = Ca ≀ Sb := Cb
a ⋊ Sb. Hence the

multiplication in this group is given as follows:

(x1, · · · , xb, σ)(y1, · · · , yb, τ) = (x1yσ−1(1), · · · , xbyσ−1(b), στ).

This group has a monomial matrix (each row and each column has exactly one non-zero

entry) representation and it can be thought of as a subgroup of GLb(C), in particular as

a subgroup of monomial group. Monomial group is well known in the study of GLb(C)

as an algebraic group. This gives rise to the Weyl group and Bruhat decomposition. Let

T be the diagonal maximal torus (set of all diagonal matrices), then the monomial group

is the normaliser NGLb(C)(T ). The Weyl group is defined as W = NGLb(C)(T )/T
∼= Sb.

Let D be the set of those diagonal matrices in GLb(C) of which each diagonal entry is

an ath roots of unity, i.e., each diagonal entry is from the set {ζ i | 0 ≤ i ≤ a−1} where ζ

is an ath primitive root of unity. Clearly, D ∼= Cb
a and the group S(a, b) ∼= NGLb(C)(D).

Thus, S(a, b) is the set of those monomial matrices which have non-zero entries coming

from ath roots of unity. The following can be easily verified:

(1) the center Z(S(a, b)) = {λ.Id | λa = 1} ∼= Ca if a ≥ 2 or b ≥ 3.

(2) NGLb(C)(D)/D ∼= Sb.

Representation theory of the generalised symmetric group has been studied by Os-

ima [Os], Can [Ca], Mishra and Srinivasan [MS], just to mention a few.

3.2. z-classes in Sn. In this section we aim to prove Theorem 1.1. For n = 3 and

4 the conjugacy classes and z-classes are same. Thus, if necessary, we may assume

n ≥ 5 in this section. Let λ = λe1
1 λe2

2 · · ·λer
r be a partition of n. Let us denote the

partial sums as ni =
∑i

j=1 λjej and n0 = 0. We may represent an element of Sn

corresponding to λ as a product of cycles and we choose a representative of class denoted

as σλ = σλ1
· · · σλi

· · · σλr
where

σλi
= (ni−1 + 1, · · · , ni−1 + λi) · · · (ni−1 + (ei − 1)λi + 1, · · · , ni−1 + eiλi)

︸ ︷︷ ︸

ei
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is a product of ei many disjoint cycles, each of length λi. Then the centralizer of this

element is (see [JK] Equation 4.1.19)

ZSn(λ) := ZSn(σλ)
∼=

r∏

i=1

Cλi
≀ Sei ,

where Cλi
is a cyclic group of size λi and the size of the centralizer is given by the

formula |ZSn(λ)| =
∏r

i=1(λ
ei
i .ei!). Further, with the above chosen representative element

the center of ZSn(σλ) is,

Zλ = Z(ZSn(σλ)) =







∏r
i=1〈σλi

〉 if λe1
1 6= 12

〈(1, 2)〉 ×
∏r

i=2〈σλi
〉 when λe1

1 = 12.

Note that if λ1 = 1 then the element σλ1
= 1.

Lemma 3.1. Let λ = λe1
1 λe2

2 · · · λer
r be a partition of n. Then ZSn(λ) determines r

uniquely.

Proof. Consider the natural action of G = ZSn(λ) on the set {1, 2, . . . , n} as a subgroup

of Sn. Since G ∼=
∏r

i=1 Cλi
≀ Sei , the orbits are {{1, . . . , n1}, {n1 + 1, . . . , n2}, . . .}. The

number of orbits is exactly r. �

Lemma 3.2. Let λ = λe1
1 λe2

2 · · ·λer
r be a partition of n and λe1

1 6= 12. Let Zλ be the

center of ZSn(λ). Then Zλ determines the partition λ uniquely.

Proof. Let us make Zλ act on the set {1, 2, . . . , n}. Then the orbits are of size λi and

each of them occur ei many times. This determines the partition λ. �

Proposition 3.3. Let λ = λe1
1 λe2

2 · · ·λer
r and µ = µf1

1 µf2
2 · · · µfs

s be partitions of n. Then

ZSn(λ) is conjugate to ZSn(µ) if and only if

(1) r = s,

(2) for all i ≥ 2, λi and µi are ≥ 3 and λei
i = µfi

i ,

(3) λe1
1 = 12 and µf1

1 = 21 or vice versa.

Proof. Clearly if the three conditions are given we have λ = 12ν and µ = 21ν where

ν = νl11 · · · νlkk is a partition of n − 2 with ν1 > 2. Thus the representative elements of

the conjugacy classes are σµ = (12)σλ and σλ, where σλ has cycles each of length > 2.

Thus centralizers of these two elements are same.

For the converse, we choose representative elements σλ and σµ and we are given that

ZSn(σλ) and ZSn(σµ) are conjugate. The Lemma 3.1 implies that r = s. Now we take

the center of both of these groups Zλ and Zµ and make it act on the set {1, 2, . . . , n}. If

λe1
1 and µf1

1 both are not 12 then from Lemma 3.2 we get the required result. �

This proves Theorem 1.1.
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4. Rational conjugacy classes in An

The group An is of index 2 in Sn. Thus, we usually think of conjugacy classes in

An in terms of that of Sn. We have two kinds of conjugacy classes in An. Let σλ be

a representative of a conjugacy class, corresponding to a partition λ, of Sn. Suppose

σλ ∈ An, that is to say, λ is an even partition. Then the two kinds of conjugacy classes

are,

a. Split: The conjugacy class of σλ in Sn splits into two conjugacy classes in An

if and only if all parts of λ are distinct and odd, which happens, if and only if

ZSn(σλ) = ZAn(σλ).

b. Non-split: The conjugacy class of σλ remains a single conjugacy class in An if

and only if either one of the ei ≥ 2 for some i or at least one of the λi is even,

which is, if and only if ZAn(σλ) ( ZSn(σλ).

While writing proofs in this section and later sections, we consider these two cases

separately.

Let G be a finite group and g ∈ G. The Weyl group of an element g in G, denoted

as, WG(g) := NG(〈g〉)/ZG(〈g〉) where 〈g〉 is the subgroup generated by g. Using the

map ι : NG(〈g〉) → Aut(〈g〉) given by ι(x)(gr) = xgrx−1, one can show that, the element

g in G is rational if and only if WG(g) ∼= Aut(〈g〉). We need to understand Weyl

group of elements σ in An. Since Sn is a rational group, we have, the Weyl group

WSn(σ)
∼= Aut(〈σ〉). Thus, to understand if σ is rational in An, we need to understand

NAn(〈σ〉). This is determined by Brison (see Theorem 4.3 [Br]) as follows,

Theorem 4.1. Let σ ∈ An and corresponding partition be λ = λe1
1 · · · λer

r . Then,

NSn(〈σ〉) = NAn(〈σ〉) if and only if λ satisfies the following,

(1) all parts of λ are distinct, i.e., ei = 1 for all i,

(2) λi is odd for all i, and

(3) the product of parts

r∏

i=1

λi ∈ Z is a perfect square.

Corollary 4.2. Suppose n is odd and w = (1, 2, . . . , n) is in An. Then, w is rational in

An if and only if n is a perfect square (of odd number).

Proof. We know w is rational in Sn. Thus WSn(w)
∼= Aut(〈w〉). Since n is odd the

conjugacy class of w in Sn splits in An and ZAn(w) = ZSn(w). Thus w is rational in An

if and only if NSn(〈w〉) = NAn(〈w〉) which is if and only if n is a perfect square (from

Theorem 4.1 above). �

Now we determine which conjugacy classes are rational in An.

When the conjugacy class does not split, C = σSn

λ = σAn

λ and ZAn(σλ) ( ZSn(σλ) is

of index 2. Then,



z-CLASSES AND RATIONAL CONJUGACY CLASSES IN ALTERNATING GROUPS 9

Proposition 4.3. Let C be a non-split conjugacy class in An. Then, C is rational in

An.

Proof. For this, we need to prove σλ is conjugate to σm
λ for all m which is coprime to

the order of σλ. Since Sn is rational we have g ∈ Sn such that gσλg
−1 = σm

λ . If g is

in An we are done. Else take h ∈ ZSn(σλ) which is not in ZAn(σλ). Now gh ∈ An and

ghσλh
−1g−1 = σm

λ , and we are done. �

When the conjugacy class splits, let C be the conjugacy class of σλ in Sn where λ =

λ1
1 · · ·λ

1
r with all λi odd (and distinct). Let C1 and C2 be the conjugacy classes in An,

which are obtained by splitting C. Then,

Proposition 4.4. With the notation as above, both An conjugacy classes C1 and C2 are

rational if and only if

r∏

i=1

λi is a perfect square.

Proof. In this case, we have ZAn(σλ) = ZSn(σλ). ThusWAn(σλ) = WSn(σλ)
∼= Aut(〈σλ〉)

if and only if NAn(〈σλ〉) = NSn(〈σλ〉). Which is determined by Theorem 4.1. �

We remark that either both conjugacy classes C1 and C2 are rational or not rational

simultaneously.

Proposition 4.5. With the notation as above, suppose both conjugacy classes C1 and

C2 are not rational. Then the subset C = C1 ∪C2 is a rational class in An.

Proof. This follows easily because C is a rational conjugacy class in Sn. �

Proof of Theorem 1.5. Let C̃ be a conjugacy class in An. Consider the conjugacy

class C in Sn containing C̃. Let λ = λe1
1 · · ·λer

r be the corresponding partition of C.

Then either C̃ = C or C = C1 ∪C2, where C̃ is one of the C1 or C2. If C̃ = C it follows

from Proposition 4.3 that it is always rational and this corresponds to the partitions

where either ei ≥ 2 for some i or one of the λi is even.

Now suppose C = C1 ∪ C2, where C̃ is one of the components. Then from Proposi-

tion 4.4, it follows that both C1 and C2, and hence C̃, are rational if and only if
∏r

i=1 λi

is a square. That is, in this case the partition λ has all parts distinct, odd and the

product of parts is a square.

When C̃ is not a rational conjugacy class, Proposition 4.5 implies C is a rational class

in An. This completes the proof. �

5. z-classes in An - when the conjugacy class splits

Since the z-equivalence is a relation on conjugacy classes we deal with split and non-

split classes separately. We begin with a few Lemmas.
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Lemma 5.1. Let x, y be elements in An such that x and y are conjugate in Sn. If there

exists g ∈ An such that g is conjugate to y in An and ZAn(g) = ZAn(x) then centralizers

ZAn(x) and ZAn(y) are conjugate in An.

Proof. Since g and y are conjugate in An, their centralizers ZAn(g) and ZAn(y) are

conjugate in An. Hence centralizers ZAn(x) and ZAn(y) are conjugate in An. �

The following Lemma establishes partial converse to the above.

Lemma 5.2. Let λ = λ1 · · ·λr be a partition with all parts (distinct and) odd. Let x and

y be elements in An representing the two distinct conjugacy classes corresponding to λ.

Suppose x = x1x2 · · · xr and y = y1y2 · · · yr ∈ An, where xi and yi are cycles of length

λi and centralizers ZAn(x) and ZAn(y) are conjugate in An. Then, y is conjugate to

xi11 x
i2
2 · · · xirr in An for some positive integers i1, . . . , ir, where ij is coprime to λj (which

is the order of xj) for all j.

Proof. Since x and y are z-conjugate in An, i.e., there exist g ∈ An such that ZAn(x) =

gZAn(y)g
−1 = ZAn(gyg

−1). Now, we know that ZAn(x) = ZSn(x) = 〈x1, x2, . . . , xr〉 ∼=

Cλ1
×· · ·×Cλr

. Hence gyg−1 = xi11 x
i2
2 · · · xirr for some i1, . . . , ir. Therefore, y is conjugate

to xi11 x
i2
2 · · · xirr in An. �

Now we prove the main proposition of this section.

Proposition 5.3. Let λ = λ1 · · ·λr be a partition with all parts (distinct and) odd. Let

x and y be elements in An representing the two distinct conjugacy classes corresponding

to λ. Suppose x = x1x2 · · · xr and y = y1y2 · · · yr written as a product of disjoint cycles

where xi and yi are of length λi. Then, x and y are not z-conjugate in An if and only if

each λi is a perfect square (of odd number) ∀i = 1, . . . , r.

Proof. First, suppose there exists a k such that λk is not a perfect square of odd number.

We define Aλk
and Sλk

to be the subgroups of An and Sn respectively, on the symbols

involved in the cycle xk. Corollary 4.2 implies that the element xk is not a rational

element of Aλk
. Hence, there exists m with (m,λk) = 1 such that xk is not conjugate to

xmk in Aλk
. In any case xk is conjugate to xmk in Sλk

, say, there exists s ∈ Sλk
\Aλk

such

that sxks
−1 = xmk . Thus, sxs−1 = sx1x2 · · · xk · · · xrs

−1 = x1x2 · · · xk−1x
m
k xk+1 · · · xr.

We claim that x is not conjugate to sxs−1 in An. Because any two such elements will

differ by an element of ZAn(x) which, in this case, is equal to ZSn(x) thus all such

elements would be even. This implies that x and sxs−1 are representatives of the two

distinct conjugacy classes obtained by splitting that of x hence sxs−1 is conjugate to

y. But ZAn(x) = 〈x1, x2, . . . , xr〉 = 〈x1, x2, . . . , xk−1, x
m
k , xk+1, . . . , xr〉 = ZAn(sxs

−1),

because of the structure of sxs−1. Lemma 5.1 implies that ZAn(x) and ZAn(y) are

conjugate in An.
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Now, assume that each λi is a perfect square (of odd number), for all i. We define the

subgroups Aλi
of An on the symbols appearing in the cycle xi for all i. Corollary 4.2

implies that xi is rational in Aλi
, hence xi is conjugate to xmi

i in Aλi
for all mi with

(mi, λi) = 1. Let (j1, . . . , jr) be a tuple where (ji, λi) = 1. Then we can find sji ∈ Aλi

such that sjixis
−1
ji

= xjii . Thus sj1sj2 · · · sjr is in An and conjugates x to xj11 xj22 · · · xjrr .

Hence, y can not be conjugate to xj11 xj22 · · · xjrr for any tuple (j1, . . . , jr) where (ji, λi) = 1.

Lemma 5.2, implies that x and y can not be z-conjugate in An. �

6. The center of centralizers in An

In Lemma 3.2 we showed that, for the group Sn, the center of centralizers Zλ deter-

mines the partition λ uniquely via its action on the set {1, 2, . . . , n} except in one case

when λe1
1 = 12. For the alternating groups we employ similar strategy.

Let us begin with the case when the partition λ has only one part, say, λ = ab. The

representative element can be chosen as follows,

σλ = (1, 2, · · · , a)(a+ 1, a+ 2, · · · , 2a) · · · ((b− 1)a+ 1, (b− 1)a+ 2, · · · , ba)

which for convenience will be written as σλ = σλ,1σλ,2 · · · σλ,b where σλ,i are cycles of

length a. And the centralizer is

ZSn(σλ) = (〈(1, 2, · · · , a)〉 × · · · × 〈((b− 1)a+ 1, (b− 1)a+ 2, · · · , ba)〉)⋊ Sb

where Sb permutes the various cyclic subgroups. To avoid confusion, we write the el-

ements of Sb using roman numerals. For example, the element (I, II) in Sb would be

actually (1, a + 1)(2, a + 2) · · · (a, 2a) in ZSn(σλ), similarly, the element (I, II, · · · , b) in

Sb would be (1, a + 1, · · · , (b − 1)a + 1)(2, a + 2, · · · , (b − 1)a + 2) · · · (a, 2a, · · · , ba). In

general, the cycle (I, II, · · · , i) in Sb would be (1, a+1, · · · , (i−1)a+1)(2, a+2, · · · , (i−

1)a + 2) · · · (a, 2a, · · · , ia) which is a product of a many disjoint cycles, each of length

i. We can also compute sgn((I, II · · · , i)) = sgn((1, 2, · · · , i))a which will be useful to

determine if (I, II · · · , i) belongs to An, when needed. We begin with,

Lemma 6.1. If λ = ab is a partition of n and b ≥ 2 then ZSn(σλ) contains at least one

odd permutation.

Proof. If a is even then the cycle (1, 2, · · · , a) ∈ ZSn(σλ) is odd and we are done. Thus

we may assume a is odd. From the computation above, sgn((I, II)) = (−1)a = −1 hence

(I, II) is odd. �

Lemma 6.2. (1) If τ = (I, II, · · · , b) ∈ ZSn(σλ) then ZZSn(σλ)(τ) =< τ, σλ >,

(2) If τ = (I, II, · · · , b− 1) ∈ ZSn(σλ) then ZZSn(σλ)(τ) =< τ, σλ,b,
∏b−1

i=1 σλ,i >,

Proof. The proof is simple and follows from the multiplication defined on S(a, b) in

Section 3.1. �
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We need to understand the center of centralizers of elements in An. Suppose λ =

λe1
1 λe2

2 · · ·λer
r is a partition of even type, i.e., σλ ∈ An. Recall the notation, σλ =

σλ1
· · · σλr

, the centralizer is ZSn(σλ)
∼=

r∏

i=1

ZSeiλi
(σλi

) and its center is denoted as Zλ.

Lemma 6.3. Let x ∈ An. Then, Zλ ∩An = Z(ZSn(x)) ∩An ⊆ Z(ZAn(x)).

Proof. Let g ∈ Z(ZSn(x)) ∩ An then g ∈ ZAn(x). Now ZAn(x) = ZSn(x) ∩ An thus we

get g ∈ Z(ZAn(x)). �

Now we need to decide when Z(ZAn(σλ)) ) Zλ ∩ An. For the convenience of reader

we draw a diagram of the subgroups involved in the proofs. We call the elements of Zλ

“diagonal elements” and the elements of ZSn(σλ) which are not central “non-diagonal

elements”.

Zλ1
× · · · × Zλr

ZSe1λ1
(σλ1

)× · · · × ZSerλr
(σλr

)

Zλ
=

Z(ZSn(σλ)) ZSn(σλ) Sn

Zλ ∩An
⊂

Z(ZAn(σλ)) ZAn(σλ) An

The main theorem is as follows,

Theorem 6.4. Let λ be a partition of n and σλ ∈ An. Then Z(ZAn(σλ)) ) Zλ ∩An if

and only if λ is one of the following:

(1) 13ν; 22ν; 1122ν where ν = λ3 · · ·λr with all λi ≥ 3 and odd.

(2) 11ν; ν where ν = λ3 · · ·λj−1λ
2
jλj+1 · · · λr where λi ≥ 3 and odd for all i.

The rest of this section is devoted to the proof of this theorem.

Lemma 6.5. Let λ = λe1
1 · · ·λer

r where at least two distinct ei and ej are ≥ 2. Then,

Z(ZAn(σλ)) = Zλ ∩An.

Proof. Let us first take the case when λ1 = 1, e1 ≥ 2 and some other ei is ≥ 2. We

have ZSn(σλ) = Se1 × ZSe2λ2
(σλ2

) × · · · × ZSerλr
(σλr

). We note that when e1 = 2 the

subgroup S2 is central. Let g = (g1, . . . , gr) ∈ Z(ZAn(σλ)) but g /∈ Zλ. That is, there

exists some j such that gj is non-diagonal element in ZSejλj
(σλj

).

Suppose j 6= 1. Since gj is non-diagonal there exists hj ∈ ZSejλj
(σλj

) such that hjgj 6=

gjhj . Now define h = (1, . . . , 1, hj , 1, . . . , 1) if hj is even else h = ((1, 2), 1, . . . , 1, hj , 1, . . . , 1).

Then h ∈ An ∩ ZSn(σλ) = ZAn(σλ) but gh 6= hg, a contradiction.

Now if j = 1 the element g1 is non-diagonal in Se1 , that is, g1 6= 1. We may also assume

that all other gi, other than the first one, are diagonal. However if e1 = 2 the element

g = ((1, 2), g2, . . . gr) is already in Zλ, so we couldn’t have assumed otherwise. Now if

e1 ≥ 3, pick h1 ∈ Se1 which does not commute with g1. Now define h = (h1, 1, . . . , 1)
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if h1 is even. Else define h = (h1, 1, . . . , 1, w, 1, . . . , 1) where w ∈ ZSeiλi
(σλi

) is an odd

permutation guaranteed by Lemma 6.1. Then h ∈ An but gh 6= hg, a contradiction.

The proof when e1 = 1 and λ1 = 1 or λ1 > 1 follows similarly. Now two components

i and j will have odd elements because of Lemma 6.1 which can be used to change the

sign to get an appropriate h. �

This reduces drastically the number of cases we need to look at. Thus we may assume

that at most one ei is greater than 2 or none, i.e., λ = λ1 · · ·λi−1λ
ei
i λi+1 · · ·λr with

ei ≥ 1. Let us deal with the case when i = 1 and λ1 = 1.

Lemma 6.6. Let λ = 1e1λ2 · · ·λr be a partition of n. Then, Z(ZAn(σλ)) ) Zλ ∩ An if

and only if λ = 13λ2 · · ·λr where λi > 1 and odd for all i.

Proof. Suppose λ is not of the form 13λ2 · · · λr where λi > 1 and odd for all i. So,

if e1 = 0, 1 or 2 then ZSn(σλ) is Abelian and its subgroup ZAn(σλ) is also Abelian.

Therefore,

Z(ZAn(σλ)) = ZAn(σλ) = ZSn(σλ) ∩An = Zλ ∩An.

Thus, we assume e1 ≥ 3. Suppose at least one λj is even. Now σλ has e1 fixed points.

Hence, ZSn(σλ) = Se1 × 〈σλ2
〉 × · · · × 〈σλr

〉 and Zλ = Z(ZSn(σλ)) = 〈σλ2
〉 × · · · × 〈σλr

〉

since λi are distinct. Now let g ∈ Z(ZAn(σλ)) ⊂ ZSn(σλ). Write g = (g1, g2, . . . , gr). If

g 6∈ Zλ ∩ An then g1 6= 1. But we can find h1 ∈ Se1 such that g1h1 6= h1g1. Define h =

(h1, 1, . . . , 1) if h1 is even else h = (h1, 1, . . . , 1, σλj
, 1, . . . , 1). Clearly h ∈ An∩ZSn(σλ) =

ZAn(σλ) and gh 6= hg. This contradicts that g ∈ Z(ZAn(σλ)), thus Z(ZAn(σλ)) =

Zλ ∩An.

Now suppose e1 ≥ 4 and all λi are odd. In this case, ZAn(σλ) = Ae1×〈σλ2
〉×· · ·×〈σλr

〉

since all σλi
are even. And Z(ZAn(σλ)) = 〈σλ2

〉 × · · · × 〈σλr
〉 which is equal to Zλ ∩An.

For the converse, λ = 13λ2 · · ·λr with all λi odd. Then ZSn(σλ) = S3 × 〈σλ2
〉 × · · · ×

〈σλr
〉 and Zλ = Z(ZSn(σλ)) = 〈σλ2

〉 × · · · × 〈σλr
〉 ⊂ An. Also ZAn(σλ) = A3 × 〈σλ2

〉 ×

· · · × 〈σλr
〉 = Z(ZAn(σλ)). Hence Z(ZAn(σλ)) ) Zλ ∩An. �

This also takes care of the case when all parts are distinct so we may assume ei ≥ 2.

Thus, assume either i ≥ 2 or λ1 ≥ 2. That is we can have at most one fixed point, if

at all. If σλ has one fixed point, say, σλ(n) = n then we may consider σλ ∈ An−1 with

no fixed points. Further ZAn(σλ) = ZAn−1
(σλ). Therefore, it is enough to study the

partitions which do not have 1 as its part, i.e., we have λ1 > 1.

Lemma 6.7. Let λ = λ1 · · ·λi−1λ
ei
i λi+1 · · ·λr be a partition with λ1 > 1. Further

suppose λ satisfies one of the followings,

(1) ei ≥ 3, or,

(2) λi > 2 and is even.

Then, Z(ZAn(σλ)) = Zλ ∩An.
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Proof. We prove (1) first. Let g = (g1, . . . , gr) ∈ Z(ZAn(σλ)) but g /∈ Zλ. All gj are

diagonal except gi which is non-diagonal. The element gi ∈ ZSeiλi
(σλi

) where σλi
=

σλi,1
. . . σλi,ei

. Recall the notation that σλi,j
are cycles of length λi as introduced in

the beginning of Section 6. Now consider τ = (I, II, . . . , ei) as in Lemma 6.2. Then

ZZSeiλi
(σλi

)(τ) = 〈σλi
, τ〉. If gi = τ then it does not commute with hi = σλi,1

σλi,2

(remember that ei ≥ 3). Since all σλi,j
are of same length λi this is an element in An.

Thus we get h = (1, . . . , 1, hi, 1 . . . , 1) in ZAn(σλ) which does not commute with g, a

contradiction.

On other hand if gi 6= τ then gi does not commute with τ . We observe that τ is a

product of λi many cycles, each of length ei. If ei is odd then τ is an even permutation.

Further, if both ei and λi are even then, also, τ is an even permutation. And in these

cases we may take hi = τ and get a contradiction as above.

Now let us assume that λi is odd and ei is even and thus τ is an odd permutation.

In this case instead of τ we make use of two elements τ1, τ2 ∈ ZSeiλi
(σλi

) as follows.

The element τ1 = (II, III, . . . , ei) and τ2 = (I, II, . . . , ei − 1). Each of the τ1 and

τ2 are product of λi many cycles, each of length ei − 1 and hence even. Now we note

that ZZSeiλi
(σλi

)(τ1) = 〈σλi,1
,

ei∏

j=2

σλi,j
, τ1〉 and ZZSeiλi

(σλi
)(τ2) = 〈σλi,ei

,

ei−1∏

j=1

σλi,j
, τ2〉 (see

Lemma 6.2). This gives us that ZZSeiλi
(σλi

)(τ1) ∩ ZZSeiλi
(σλi

)(τ2) = 〈σλi
〉. Since gi is

non-diagonal it does not commute with either τ1 or τ2 else it would be in the intersection

of centralizers which is diagonal. Thus we may take hi to be τ1 or τ2 as required, and

get a contradiction.

For the proof of (2), let g = (g1, . . . , gr) ∈ Z(ZAn(σλ)) but g /∈ Zλ. The component

gi is non-diagonal element in ZSeiλi
(σλi

). In this case σλi
= σλi,1

σλi,2
. Take τ = (I, II)

then τ is an even permutation as λi is even. If τ 6= gi take hi = τ and we are done. Else

if gi = τ then we take σ2
λi,1

. Since λi > 2, σ2
λi,1

6= 1 and it is even permutation. And now

taking hi = σ2
λi,1

would lead to a contradiction. �

This leaves us with the following case now. The partition is λ = λ1 · · ·λi−1λ
2
iλi+1 · · ·λr

with λ1 > 1 and either λi = 2 or λi is odd. And this is where all complication lies.

Lemma 6.8. Let λ with λ1 > 1 be one of the followings,

(1) λ1 · · · λi−1λ
2
iλi+1 · · ·λr, and suppose, λi is odd and λm even for some m 6= i, or,

(2) 22λ2 · · ·λr with some λm even.

Then, Z(ZAn(σλ)) = Zλ ∩An.

Proof. For the proof of (1), let g = (g1, . . . , gr) ∈ Z(ZAn(σλ)) but g /∈ Zλ. Then

gi is non-diagonal. Pick hi ∈ ZSeiλi
(σλi

) such that higi 6= gihi. If hi is even then

h = (1, . . . , hi, . . . , 1) would do the job. Else take h = (1, . . . , hi, 1, . . . , σλm
, 1 . . . , 1)

which is an even permutation, and does the job.
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In the second case, we have σλ = (1, 2)(3, 4)σλ2
· · · σλr

andZSn(σλ) = ZS4
((1, 2)(3, 4))×

〈σλ2
〉 × · · · × 〈σλr

〉. Let g = (g1, . . . , gr) ∈ Z(ZAn(σλ)) but g /∈ Zλ. In this case g1 has

to be non-diagonal. Now we can do the same thing as above to get a contradiction. �

At this step we are left with the λ of following kinds, and its variant (see the discussion

following Lemma 6.6) with exactly one fixed point,

(1) λ1 · · · λi−1λ
2
iλi+1 · · ·λr, where all λj are odd, and,

(2) 22λ2 · · ·λr, where all λj are odd.

Now we are ready to prove the main theorem of this section,

Proof of Theorem 6.4. Lemma 6.5, 6.6, 6.7 and 6.8 prove that if the partition λ is

not of the type listed in the theorem then Z(ZAn(σλ)) = Zλ ∩ An. Thus it remains to

prove if λ is of one the kinds listed in the theorem then we do not get equality. Which

we prove now case-by-case.

In case λ = 13λ3 · · ·λr and λi are odd for all i then the result follows from Lemma 6.6.

Now, take λ = 22λ3λ4 · · · λr and λ3 ≥ 2 and odd for all i. Write σλ = (1, 2)(3, 4)σλ3
. . . σλr

then ZSn(σλ) = {1, (1, 2), (3, 4), (1, 2)(3, 4), (1, 3)(2, 4), (1, 3, 2, 4), (1, 4, 2, 3), (1, 4)(2, 3)}×

〈σλ3
〉 · · ·×〈σλr

〉. And ZAn(σλ) = {1, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}×〈σλ3
〉 · · ·×〈σλr

〉

which is equal to its own center, being commutative. However the element (1, 3)(2, 4) /∈

Zλ. Thus we get strict inequality in this case. The argument is similar when λ =

1122λ3 · · · λr.

Now suppose λ = λ3 · · ·λi−1λ
2
i λi+1 · · · λr with λ3 ≥ 3 and all odd. In this case,

σλ = σλ3
· · · σλi

· · · σλr
where σλj

is a cycle of length λj for j 6= i and σλi
= σλi,1

σλi,2
is a

product of two cycles, each of length λi. Then σλi,1 and σλi,2 both belong to Z(ZAn(σλ))

but none of them belong to Zλ instead their product belongs. A similar argument works

for the case when λ = 11λ3 · · ·λi−1λ
2
iλi+1 · · ·λr. �

7. z-classes in An - when the conjugacy class does not split

Our strategy for the proof is similar to that of Sn case. That is, we look at the action

of Z(ZAn(σλ)) on {1, 2, . . . , n} and decide when it determines the partition. This works

in almost all cases. We continue to use notation from previous sections.

Proposition 7.1. The action of Zλ∩An on the set {1, 2, . . . , n} determines the partition

λ uniquely except when λe1
1 = 12.

Proof. We know that the action of Zλ on the set {1, 2, . . . , n} determines the partition

uniquely except when λe1
1 = 12 (see Lemma 3.2). We need to prove that if two points

in {1, 2, . . . , n} are related under the action of Zλ then they are so under the action of

Zλ ∩An.

Since σλ = σλ1
· · · σλr

, we reorder σλk
’s, if required, so that σλk

for 1 ≤ k ≤ l are

even permutations and σλk
for l < k ≤ r are odd permutations. Since σλ is an even
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permutation, the number of odd permutations r − l is even (including 0). If r = l then

Zλ = Zλ ∩An and we are done. Else suppose i 6= j are related under Zλ. That is, there

exists t such that σm
λt
(i) = j for some power m. If σm

λt
is even, we are done. So we may

assume σm
λt

is odd. But since the number of odd permutations is assumed to be even

we have another odd permutation σλs
disjoint from this one. Thus, σλs

σm
λt

will do the

job. �

We record the following example of the exception case. Take λ = 1241 ⊢ 6 then

ZS6
(3, 4, 5, 6) = 〈(1, 2)〉 × 〈(3, 4, 5, 6)〉 = Z1241 . And Z1241 ∩A5 = 〈(1, 2)(3, 4, 5, 6)〉 which

would determine the partition 2141. Now let us look at the case when Z(ZAn(σλ)) 6=

Zλ ∩An. In this case we have the following,

Proposition 7.2. If λ is one of the following with σλ in An,

(1) 12λe2
2 · · ·λer

r , where λ2 ≥ 2, or,

(2) 11ν, ν where ν = λ2 · · ·λi−1λ
2
iλi+1 · · ·λr, where λj ≥ 3 and odd for all j,

then, the action of Z(ZAn(σλ)) on the set {1, 2, . . . , n} determines the partition λ uniquely.

Proof. The first case appears in Sn, where ZSn(σλ) determines all λi > 2 except for

the first orbit which is {1, 2}. Thus there are two possibilities either 12 or 21. Since

σλ = σλ2
· · · σλr

∈ An we note that the partition 21λe2
2 · · · λer

r is not even because this

would correspond to the element (1, 2)σλ = (1, 2)σλ2
· · · σλr

which is odd. Thus this

leaves a unique choice for λ where the first part must be 12.

For the part (2), from the proof of Theorem 6.4, we see that

Z(ZAn(σλ)) = 〈σλ1
, . . . , σλi−1

, σλi,1
, σλi,2

, σλi+1
, . . . , σλr

〉.

Clearly this determines the partition λ uniquely. �

Now, we prove the main proposition as follows.

Proposition 7.3. Let n ≥ 4. Let ν be a restricted partition of n− 3, with distinct and

odd parts, in which 1 (and 2) does not appear as its part. Let λ = 13ν and µ = 31ν be

partitions of n obtained by extending ν. Then λ and µ belong to the same z-class in An.

Conversely, if λ corresponds to a non-split class in An then it can be z-equivalent to at

most one more class (possibly split), provided λ is of the form 13ν.

Proof. When the partition λ = 13ν then ZSn(σλ) = S3 × ZSn−3
(σν) and its center is

Zλ = {1} × Zν . However ZAn(σλ) = A3 × ZAn−3
(σν) is Abelian and its action would

give the partition 31ν. In this case, if we take partition λ′ = 31ν then ZAn(σλ′) =

〈(1, 2, 3)〉 × ZAn−3
(σν) and ZAn(σλ′) = ZAn(σλ) (in case λ′ corresponds to a split class

they are z-conjugate thus we may choose this representative). And thus σλ and σλ′

would be z-conjugate.
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For the converse, if Z(ZAn(σλ)) = Zλ ∩ An, then from Proposition 7.1, the action

of Z(ZAn(σλ)) determines the partition λ of n uniquely, and we are done. Otherwise,

we use Proposition 7.2 which implies that ZAn(σλ) determines the partition λ uniquely

except in two cases. One of the cases is 13ν where the centralizer is conjugate to that

of 31ν as required in the proposition. Thus we need to rule out the possibility when

λ = 22ν and 1122ν where ν = λ3λ4 · · ·λr, λi ≥ 3 and are odd for all i.

Let us deal with the case when λ = 22ν, the other case is similar. The element

σλ = (1, 2)(3, 4)σλ2
· · · σλr

and

ZAn(σλ) = 〈(1, 2)(3, 4), (1, 3)(2, 4)〉 × 〈σλ2
〉 × · · · × 〈σλr

〉

which has size 4.λ2. · · · .λr. Since this is Abelian its center is itself which determines the

partition λ except for the first orbit which is {1, 2, 3, 4}. Considering that λ is even, we

have the possibilities of the first part being 14, 1131, 22. We claim that if λ = 14ν, 1131ν

or 22ν the size of centralizers is different and hence they can not be z-equivalent. We

note that, ZAn(σ14ν) = 〈A4〉 × 〈σλ2
〉 × · · · × 〈σλr

〉 which has size 12.λ2. · · · .λr. And if

λ2 > 3, ZAn(σ1131ν) = 〈(1, 2, 3)〉 × 〈σλ2
〉 × · · · × 〈σλr

〉 of size 3.λ2. · · · .λr and if λ2 = 3,

ZAn(σ1132λ3···λr
) = 〈(2, 3, 4), (5, 6, 7)〉 × 〈σλ3

〉 × · · · × 〈σλr
〉 of size 32.λ3. · · · .λr. �

7.1. Proof of Theorem 1.3. Let C be a conjugacy class of Sn corresponding to the

partition λ1λ2 · · ·λr of n with all λi distinct and odd. Then the conjugacy class C splits

in two conjugacy classes, say, C1 and C2 in An. From Proposition 5.3 if each λi is a

perfect square for all 1 ≤ i ≤ r, then both the conjugacy classes C1 and C2 are distinct

z-classes in An. Else C1 ∪ C2 form a single z-class in An.

Now, when C does not split, it follows from Proposition 7.3, that except the partition

13ν where ν is a partition of n− 3, with all parts odd and distinct without 1 as its part,

all conjugacy classes remain distinct z-classes. And in the case when λ = 13ν its z-class

can coincide with that of 31ν.

8. Rational-valued Characters of An

We begin with recalling characters of the alternating group from [Pr]. First we note

that, the number of partitions of n with distinct and odd parts is equal to the number

of self-conjugate partitions of n (see Lemma 4.6.16 in [Pr]). In fact, these are in one-

one correspondence via folding. This corresponds to the split conjugacy classes. The

complex irreducible characters of An are given as follows (see Theorem 4.6.7 and 5.12.5

in [Pr]). For every partition µ of n which is not self-conjugate (this corresponds to

non-split conjugacy classes), the irreducible character χµ of Sn restricts to an irreducible

character of An. Since all characters of Sn are integer-valued, these characters of An

are rational-valued too. Now, for all partitions µ of n which are self-conjugate (these

correspond to split conjugacy classes), there exists a pair of irreducible characters χ+
µ
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and χ−
µ . The character values are given by the following formula. When g ∈ An of cycle

type λ with all parts distinct and odd, say, λ = (2m1 + 1, · · · , 2ml + 1), and the folding

corresponding to λ is the partition µ then

χ±
µ (g

+
λ ) =

1

2

(

eλ ±
√

eλ|Zλ|
)

and χ±
µ (g

−
λ ) = χ∓

µ (g
+
λ ). Here g

+
λ and g−λ denote the two split conjugacy classes in An and

eλ = (−1)
∑l

i=1
mi . Else χ+

µ (g) = χ−
µ (g) =

χµ(g)
2 . Clearly the characters χ∓

µ are rational

valued if and only if eλ = 1 and |Zλ| is a perfect square.

Lemma 8.1. For λ = (2m1 + 1, · · · , 2ml + 1), if |Zλ| is a square then eλ = 1.

Proof. In this case, |Zλ| =
∏l

i=1(2mi + 1) = (2a + 1)2 for some a. Then
∑l

i=1mi must

be even. �

Proof of Theorem 1.7. From the discussion above, all characters of An corresponding

to non-split conjugacy classes are rational-valued. And, both characters corresponding

to split conjugacy classes are simultaneously rational-valued if and only if the partition

λ has all its parts distinct and odd and the product of parts is a perfect square. Clearly

this is same as the criteria determining conjugacy classes which are rational. �

9. Some GAP calculations

In this work, we have come across two functions on natural numbers. The first one is

ǫ defined as

ǫ(n) =
∣
∣{n = m2

1 +m2
2 + · · ·+m2

r | 1 ≤ m1 < m2 < . . . < mr ≤ n,mi odd ∀i}
∣
∣

and its generating function is

∞∏

i=0

(

1 + x(2i+1)2
)

. And another one is δ defined as,

δ(n) =

∣
∣
∣
∣
∣

{

n = n1 + · · · + nr | 1 ≤ n1 < . . . < nr ≤ n, ni odd ∀i,

r∏

i=1

ni ∈ N2

}∣
∣
∣
∣
∣
.

Writing a natural number as a sum of squares is well studied problem in number theory.

However, we could not find references to these functions. Clearly ǫ(n) ≤ δ(n). The

inequality could be strict, for example, n = 78 = 3 + 75 where 3.75 = 152 but none of

the components are square. This happens infinitely often. For example, let p1 and p2 be

odd and distinct primes. Consider, n = p1 + p2 + p1p2 and the partition of n given by

p11p
1
2(p1p2)

1. Then ǫ(n) < δ(n). We may also consider, for example, m = p1 + p1p
2
2, i.e.,

we have the partition of m given as p11(p1p
2
2)

1. Then ǫ(m) < δ(m). We make a table for

the values of ǫ and δ for small values of n and also note down the partitions giving rise

to the function δ. Some values of δ(n) are also given in [Br].
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n ǫ(n) δ(n) partitions n ǫ(n) δ(n) partitions

9 1 1 91 34 1 1 91251

10 1 1 1191 35 1 1 1191251

23 0 1 3151151 39 0 1 3191271

24 0 1 113151151 40 0 2 113191271, 317191211

25 1 1 251 41 0 1 11317191211

26 1 1 11251 47 0 3 31111331, 5171351, 51151271

30 0 1 31271 48 0 5 1131111331, 115171351,

1151151271,5171151211,

3151151251

31 0 2 1131271, 3171211 49 1 3 491, 113151151251,

115171151211

32 0 2 113171211, 315191151 50 1 2 11491, 51451

33 0 1 11315191151 51 0 1 1151451

Next, we used GAP [GAP] to compute z-classes, rational conjugacy classes etc. Here we

have some examples for An which verifies our theorem.

n number of number of partitions

conj. classes z-classes

20 324 315 {13315191, 325191}, {11317191, 11317191}

{113151111, 113151111}, {91111, 91111}, {11191, 11191}

{71131, 71131}, {51151, 51151}, {13171, 31171, 31171}

27 1526 1506 {1331517191, 32517191}, {11315171111, 11315171111}

{7191111, 7191111}, {5191131, 5191131}

{13111131, 31111131, 31111131}, {5171151, 5171151}

{1391151, 3191151, 3191151}, {11111151, 11111151}

{1371171, 3171171, 3171171}, {1351191, 3151191, 3151191}

{1171191, 1171191}, {1191171, 1191171}

{1331211, 32211}, {1151211, 1151211}

{1131231, 1131231}, {271, 271}

The last column combines together the partitions which give same z-class and the repe-

tition of a partition indicates a split conjugacy class.
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