
Asymmetry-Induced Synchronization in Oscillator Networks

Yuanzhao Zhang,1 Takashi Nishikawa,1, 2 and Adilson E. Motter1, 2

1Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
2Northwestern Institute on Complex Systems, Northwestern University, Evanston, Illinois 60208, USA

A scenario has recently been reported in which in order to stabilize complete synchronization of
an oscillator network—a symmetric state—the symmetry of the system itself has to be broken by
making the oscillators nonidentical. But how often does such behavior—which we term asymmetry-
induced synchronization (AISync)—occur in oscillator networks? Here we present the first general
scheme for constructing AISync systems and demonstrate that this behavior is the norm rather than
the exception in a wide class of physical systems that can be seen as multilayer networks. Since
a symmetric network in complete synchrony is the basic building block of cluster synchronization
in more general networks, AISync should be common also in facilitating cluster synchronization by
breaking the symmetry of the cluster subnetworks.

PACS numbers: 05.45.Xt, 89.75.Fb

I. INTRODUCTION

A common assumption in the field of network dy-
namics is that homogeneity in the local dynamics [1, 2]
and interaction network [3–5]—or in the combination of
both [6, 7]—can facilitate complete synchronization. It
has been recently shown, however, that structural hetero-
geneity in networks of identical oscillators [8] or oscillator
heterogeneity in structurally symmetric networks [9] can
stabilize otherwise unstable synchronous states, thus ef-
fectively breaking the symmetry of a system to stabilize
a symmetric state. These scenarios, which we refer to
as asymmetry-induced synchronization (AISync), can be
interpreted as the converse of symmetry breaking, and
hence as a converse of chimera states [10, 11]. Perhaps
the most striking and the strongest form of AISync is the
one in which oscillators coupled in a symmetric network
(i.e., each oscillator plays exactly the same structural
role) can converge to identical dynamics only when they
themselves are nonidentical; this has been demonstrated,
however, exclusively for rotationally symmetric networks
and one type of periodic oscillators [9]. Whether such
AISync behavior can be shown to be common among sys-
tems with other symmetric network structures and oscil-
lator dynamics, including experimentally testable ones,
has been an open question.

In this article we introduce and analyze a broad class of
AISync systems that can have general symmetric network
structure with multiple link types and general oscillator
dynamics (which can be chaotic, periodic, continuous-
time, discrete-time, etc.). This in particular includes
physical systems previously used in network synchro-
nization experiments, thus providing a recipe for future
empirical studies. For this class, we demonstrate that
AISync is indeed common and provide a full characteri-
zation of those networks that support AISync behavior,
showing that the fraction of such networks is significant
over a range of network sizes and link densities.

II. DEFINITION OF AISync

To formulate a precise definition of AISync, we con-
sider networks of N (not necessarily identical) oscillators
coupled through K different types of interactions. The
network dynamics is described by

Ẋi = Fi(Xi) +

K∑

α=1

N∑

i′=1
i′ 6=i

A
(α)
ii′ H

(α)(Xi,Xi′), (1)

where Xi = Xi(t) is the M -dimensional state vector of
node i, the function Fi governs the intrinsic dynamics of

node i, the adjacency matrix A(α) = (A
(α)
ii′ ) represents

the topology of interactions through links of type α, and
H(α) is the coupling function associated with the link
type α. A completely synchronous state of the network
is defined by X1(t) = X2(t) = · · · = XN (t).

To isolate the effect of breaking the homogeneity of
oscillators, we consider adjacency matrices A(α) that to-
gether represent a symmetric network, defined as a net-
work in which every node can be mapped to any other
node by some permutation of nodes without changing
any A(α). Thus, the set of links of any given type must
couple every node identically (see Fig. 1(a) for an exam-
ple). The rationale for using symmetric network struc-
tures here is to ensure that any stabilization of complete
synchronization by oscillator heterogeneity is due to the
reduced system symmetry (as required for AISync) and
not due to having network heterogeneity and oscillator
heterogeneity compensating each other, which may not
break the system symmetry.

When restricted to undirected networks with a single
link type, our definition of symmetric networks yields the
class of vertex-transitive graphs from graph theory [12].
This rich class encompasses Cayley graphs (defined as a
network of relations between elements of a finite group;
Appendix A) and circulant graphs (defined as a network
whose nodes can be arranged in a ring so that the net-
work is invariant under rotations), which have previously
been used to study chimera states [13]. Enumerating
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FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators

and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix eA for the monolayer network in
(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

ing the MSF framework to the flattened representation
of the system.

In our multilayer construction, each node represents
a set of L identical subnodes, belonging to L di↵erent
layers and connected by a set of internal sublinks. The
pattern of these internal sublinks is thus considered part
of the node’s properties and can be used to represent
node heterogeneity. For a pair of connected nodes, the
type of the connecting link is determined by the pattern
of external sublinks between the subnodes of these two
nodes. This construction yields a multilayer network [18–
23] of subnodes and sublinks with L layers; see Fig. 1(b)
for an L = 2 example. Note that in general there is
more than one possible multilayer network for a given
symmetric network. Coupling the dynamics of subnodes
di↵usively in this network, Eq. (1) can be written at the
subnode level as

ẋ
(i)
` = f(x

(i)
` ) +

NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x

(i0)
`0 ) � h(x

(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the matrix

F (i) := ( eA(ii)
``0 ). Note that the node-to-node interactions

are not necessarily di↵usive, but the subnode-to-subnode
interactions are di↵usive. This guarantees the existence

of a synchronous state of Eq. (2) given by x
(i)
` (t) = s(t),

8i, ` with ṡ = f (s), which corresponds to a synchronous
state of Eq. (1). Thus, we have a general class of multi-
layer models of symmetric networks that admit complete
synchronization (see SM [24], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). By defining a single index

for all the n := LN subnodes, in which node i has subn-
odes j = ki1, . . . , kiL with ki` := (i � 1)L + `, we can
rewrite Eq. (2) in the standard form for a (single-layer)
di↵usively coupled network of oscillators:

ẋj = f(xj) +
nX

j0=1

eAjj0 [h(xj0) � h(xj)], (3)

where xj = x
(i)
` and eAjj0 := eA(ii0)

``0 for j = ki` and

j0 = ki0`0 . The weighted adjacency matrix eA = ( eAjj0)
thus encodes the structure of the monolayer network in
this representation (see Fig. 1(d) for an example). This
matrix has a block structure in which the matrices F (i)

appearing on the diagonal blocks characterize node prop-

erties, while eA(ii0) appearing on the o↵-diagonal blocks
reflect the link types. Since subnodes and sublinks are
identical, we can directly apply the MSF analysis [26]
to Eq. (3) and obtain the stability function  (�). The
maximum Lyapunov exponent (MLE) of the synchronous
state is then computed as  := max2jn  (�j), where
�1, . . . ,�n are the eigenvalues of the Laplacian matrix
eL := (eLjj0) of the monolayer network, defined as eLjj0 :=

�jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the Kronecker delta

function. Here, �1 is the identically zero eigenvalue,
which is excluded in the definition of  for corresponding
to a mode of perturbation that does not a↵ect synchro-
nization stability. Thus, the synchronous state is asymp-
totically stable if  < 0 and unstable if  > 0. Using this
MSF analysis, we have developed a systematic method
for verifying the AISync conditions (C1) and (C2) for
our multilayer model (see SM [24], Sec. S3).

An example system exhibiting AISync is shown in
Fig. 2. The network structure is symmetric and has
N = 3 nodes and K = 2 types of links corresponding
to links in the clockwise and counterclockwise directions
in Fig. 2(a). Each node consists of L = 2 subnodes, each
of which is a chaotic Lorenz oscillator. The two subnodes
are connected by a sublink, the direction of which deter-
mines the node type. The system has two parameters, a
and b, representing the coupling strength of internal and

FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators

and K = 3 types of (directed) links with associated coupling functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix Ã for the monolayer network in

(c). Colors indicate different types of nodes (F (i), diagonal blocks) and links (Ã(ii′), off-diagonal blocks).

all vertex-transitive graphs of a given size N becomes
challenging as N grows and has so far been completed
only for N < 32 [14]. The symmetric networks we con-
sider here generalizes vertex-transitive graphs to the even
richer class of networks that can be directed and include
multiple link types.

Given a symmetric network structure, the system in
Eq. (1) exhibits AISync if it satisfies the following two
conditions: (C1) there are no asymptotically stable syn-
chronous states for any homogeneous system (i.e., with
F1 = · · · = FN ), and (C2) there is an asymptotically het-
erogeneous system (i.e., with Fi 6= Fi′ , for some i 6= i′)
for which a stable synchronous state exists. A challenge
in establishing AISync is that the form of Eq. (1) does
not guarantee the existence of a completely synchronous
state. Another challenge concerns the stability analy-
sis of such a state, since Eq. (1) is beyond the framework
normally used in the master stability function (MSF) ap-
proach and its generalizations currently available [2, 15–
17]: oscillators can be nonidentical (different Fi), and the
network can host K > 1 types of directed interactions.

III. MULTILAYER SYSTEMS CONSIDERED

To overcome these challenges, below we propose a mul-
tilayer construction that defines a large, general subclass
of systems within the class given by Eq. (1). We show
that any system in this subclass is guaranteed to have
a synchronous state, and the stability of that state can
be analyzed by applying the MSF framework to the flat-
tened representation of the system. The MSF approach
decouples the oscillator dynamics from the network struc-
ture, which enables us to draw conclusions about AISync
for general oscillator dynamics.

In our multilayer system, each node is composed of L
identical subnodes, belonging to L different layers and
connected by a set of internal sublinks. The pattern of
these internal sublinks is thus part of the node’s proper-
ties and determines the heterogeneity across nodes. For

a pair of connected nodes, the type of the connecting link
is determined by the pattern of external sublinks between
the subnodes of these two nodes. This construction yields
a multilayer network [18–22] of subnodes and sublinks
with L layers; see Fig. 1(b) for an L = 2 example. Note
that in general there is more than one possible multilayer
network for a given symmetric network. Networks with
such layered structure have been used extensively as re-
alistic models of various natural and man-made systems.
The class of systems just defined is broader than most
classes of systems used in previous studies of synchro-
nization on multilayer networks [23, 24], since the links
between two different layers are not constrained to be
one-to-one. The underlying hierarchical organization, in
which each node decomposes into interacting subnodes,
is shared by many physical systems, such as the multi-
processor nodes in modern supercomputers.

Coupling the dynamics of subnodes diffusively in this
network, the multilayer system can be described at the
subnode level as

ẋ
(i)
` = f(x

(i)
` ) +

N∑

i′=1

L∑

`′=1

Ã
(ii′)
``′
[
h(x

(i′)
`′ )− h(x

(i)
` )
]
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector

for subnode ` (i.e., in layer `) of node i, the function f
determines the dynamics of every isolated subnode, and
h is the coupling function common to all sublinks. Here,
for all links of a given type between different nodes, the

corresponding coupling matrix Ã(ii′) := (Ã
(ii′)
``′ ), i 6= i′,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the ma-

trix F (i) := (Ã
(ii)
``′ ). Since the subnode-to-subnode in-

teractions are diffusive, the synchronous state given by

x
(i)
` (t) = s(t), ∀i, ` with ṡ = f (s) is guaranteed to ex-

ist. Note that the diffusive coupling among subnodes
do not necessarily imply that the node-to-node interac-
tions are diffusive, as intralayer synchronization of the

form x
(i)
` = s` among subnodes is also valid as a state
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of complete synchronization among all nodes. The inter-
actions among nodes do not vanish in this case due to
the existence of external sublink connections among dif-
ferent layers. To summarize, Eq. (2) describes a general
class of multilayer models of symmetric networks that ad-
mit a state corresponding to complete synchronization,
Xi(t) = S(t), ∀i, when written in the form of Eq. (1)
(see Appendix B for details).

IV. ESTABLISHING AISync

To facilitate the stability analysis required to establish
AISync, we flatten the multilayer network representation
into a single layer (see Fig. 1(c) for an example). We use

Ã = (Ãjj′) to denote the adjacency matrix that encodes
the structure of the resulting monolayer network (see
Fig. 1(d) for an example). This matrix has a block struc-
ture in which the matrices F (i) appearing on the diagonal

blocks characterize node properties, while Ã(ii′) appear-
ing on the off-diagonal blocks reflect the link types. Since
subnodes and sublinks are identical, we can directly ap-
ply the MSF analysis [25] to the monolayer network and
obtain the stability function ψ(λ) (see Appendix C for
details). The maximum transverse Lyapunov exponent
(MTLE) of the synchronous state is then computed as
Ψ := max2≤j≤n ψ(λj), where λ1, . . . , λn are the eigenval-

ues of the corresponding Laplacian matrix L̃ := (L̃jj′),

defined as L̃jj′ := δjj′
∑n
k=1 Ãjk − Ãjj′ , where δjj′ is the

Kronecker delta function. Here, λ1 is the identically zero
eigenvalue, which is excluded in the definition of Ψ for
corresponding to a mode of perturbation that does not
affect synchronization. Thus, the synchronous state is
asymptotically stable if Ψ < 0 and unstable if Ψ > 0.

To establish AISync for our multilayer system, we first
verify that all homogeneous systems have Ψ > 0 (i.e.,

synchronous state x
(i)
` = s, ∀i, `, is unstable), and check

numerically that all other synchronous states x
(i)
` = s`,

∀i, `, are also unstable. This establishes condition (C1).
We then find a heterogeneous system with Ψ < 0, which
establishes condition (C2). This procedure is detailed in
Appendix D.

In the case of linear f and h, which is widely used to
study consensus dynamics and encompasses a variety of
nontrivial stability regions [26], the problem of verifying
AISync is fully solvable. To see this, we first note that
in this case the stability function ψ(λ) determines the
(common) stability of all completely synchronous states

of the form x
(i)
` = s`, ∀i, `, where the subnode states

s` can in general be different for different `. Next, for
a given (homogeneous or heterogeneous) system, we sort
its Laplacian eigenvalues into two groups: λ1, . . . , λj∗ ,
corresponding only to those perturbations parallel to
the synchronization manifold, and λj∗+1, . . . , λn, corre-
sponding to perturbations that are transverse to the man-
ifold and thus destroy synchronization. The stability (of
all completely synchronous states) is then determined by

Ψ′ := maxj∗<j≤n ψ(λj), noting that both j∗ and λj gen-
erally depend on the network structure. This leads to
the following solution for the AISync conditions: Ψ′ ≥ 0
for all homogeneous systems and Ψ′ < 0 for some het-
erogeneous system (where we include Ψ′ = 0 in the first
condition because Ψ′ = 0 for linear system would exclude
asymptotically stable synchronization).

V. EXAMPLES OF AISync

A. Consensus dynamics

Here we establish AISync for the system with the sym-
metric network structure shown in Fig. 2, in which the
subnodes follow the consensus dynamics used in Ref. [26]:

ẋi = Df xi −
∑

j

L̃ij Dhxj , (3)

where

Df =



−2 2 −1 2
−1 1 0 0
0 0 −3 4
0 0 −1 1


 Dh =




0 0 0 0
0 0 0 0
0 1 0 −1
−1 0 1 0


 . (4)

This leads to the stability region ψ(λ) < 0 shown in
Fig. 2(c), defined by

x(x+ 3)− y2 − (2x+ 3)2y2 > 0, (5)

where x and y denote the real and imaginary parts of λ,
respectively.

For L = 2 there are only two possible homogeneous sys-
tems, associated with the two possible directions of the
internal sublink in each node. The homogeneous system
in Fig. 2(a) has Laplacian eigenvalues λ1 = 0, λ2 = 2,
λ3,4 ≈ 0.5±0.866i, and λ5,6 ≈ 1.5±0.866i, where λ1 and
λ2 correspond to the perturbations parallel to the syn-
chronization manifold and λ3, . . . , λ6 correspond to those
in the transverse directions (i.e., j∗ = 2). Since ψ(λj) > 0
for j = 3, 4, 5, 6 [i.e., all these λj ’s fall outside the stability
region defined by Eq. (5), as indicated by the red squares
in Fig. 2(c)], we have Ψ′ = max2<j≤6 ψ(λj) > 0. The
other homogeneous system is not synchronizable since all
the single-prime subnodes have no incoming sublink. In
contrast, for the heterogeneous system in Fig. 2(b), the
Laplacian eigenvalues are λ1 = 0, λj = 1 for 1 < j ≤ 5,
and λ6 = 2 (i.e., j∗ = 1 in this case). As shown by the
blue dots in Fig. 2(c), we have Ψ′ = max1<j≤6 ψ(λj) < 0
for this heterogeneous system. We thus see that Ψ′ ≥ 0
(i.e., the synchronous state is not asymptotically stable)
for both homogeneous systems and Ψ′ < 0 (i.e., the syn-
chronous state is asymptotically stable) for a heteroge-
neous system, establishing AISync: the agents can reach
consensus only when some of them are different from the
others.
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FIG. 2. Example of consensus system showing AISync. (a)
Symmetric network of N = 3 homogeneous nodes, each with
L = 2 subnodes coupled by a directed link (from subnode i′′

to i′). (b) The same network but with heterogeneous nodes,
in which the direction of the internal sublink in the (light)
cyan node is the opposite of that in the (dark) green nodes.
In both (a) and (b) we show the corresponding node-level vi-
sualization of the network at the top right. (c) Stability region
(shaded gray) for the consensus dynamics. All the transverse
modes for the homogeneous system in (a) are unstable (red
squares), while those for the heterogeneous system in (b) are
stable (blue dots).

B. Coupled Lorenz oscillators

An example of nonlinear system exhibiting AISync is
shown in Fig. 3. The network structure is symmetric and
has N = 3 nodes and K = 2 types of links representing
sublink patterns in the clockwise and counterclockwise
directions in Fig. 3(a). Each node consists of L = 2
subnodes, each of which is a chaotic Lorenz oscillator.
The two subnodes are connected by a sublink, the direc-
tion of which determines the node type. This gives rise
to two node types, and there are four possible distinct
combinations of node types for the network—two homo-
geneous and two heterogeneous. The system has two pa-
rameters, a and b, representing the coupling strength of
internal and external sublinks, respectively. We seek to
determine for which values of a and b the system exhibits
AISync.

In Fig. 3(b), we show Ψ= (red) and Ψ 6= (blue) as func-
tions of a and b, where Ψ= (Ψ6=) are defined to be the
smaller value of Ψ between the two possible homogeneous
(heterogeneous) systems. In the region shaded purple
(where Ψ 6= > 0 and Ψ= < 0), the synchronous state

x
(i)
` (t) = s(t), ∀i, ` is stable for at least one of the hetero-

geneous systems, but unstable for both homogeneous sys-
tems. We further verify in this region that the other pos-

sible forms of synchronous states, x
(i)
` (t) = s`(t), ∀i, `,

are unstable for both homogeneous systems (through ex-
tensive numerical simulation—see Appendix E for de-
tails). This establishes conditions (C1) and (C2), thus
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FIG. 2. Example of AISync system. (a) Symmetric network of
N = 3 nodes, each with L = 2 directionally coupled subnodes
of Lorenz oscillators. The sublink direction in one node (cyan)
is di↵erent from the other two (green). (b) Contour plots of
 = (red) for the case of homogeneous nodes (all green or all-
cyan nodes) and  6= (blue) for heterogeneous nodes (one or
two green nodes). The shaded region corresponds to AISync
systems, for which = > 0 and  6= < 0. (c) Sample trajectory
of the system for a = 8 and b = 6 [cross symbol in (b)],
exhibiting AISync. The first component x1 of the Lorenz
oscillator state vector is shown for all n = 6 subnodes.

(common) stability of all completely synchronous states

of the form x
(i)
` = s`, 8i, `, where the subnode states

s` can in general be di↵erent for di↵erent `. Next, for
a given (homogeneous or heterogeneous) system, we sort
its Laplacian eigenvalues into two groups: �1, . . . ,�j⇤ ,
corresponding only to those perturbations parallel to
the synchronization manifold, and �j⇤+1, . . . ,�n, corre-
sponding to perturbations that are transverse to the man-
ifold and thus destroys synchronization. The stability (of
all completely synchronous states) is then determined by
 0 := maxj⇤<jn  (�j), noting that both j⇤ and �j gen-
erally depend on the network structure. This leads to
the following solution for the AISync conditions:  0 > 0
for all homogeneous systems and  0 < 0 for some het-
erogeneous system (see SM [26], Sec. S3 for an example
satisfying these conditions).

An example system exhibiting AISync is shown in
Fig. 2. The network structure is symmetric and has
N = 3 nodes and K = 2 types of links representing
sublink patterns in the clockwise and counterclockwise
directions in Fig. 2(a). Each node consists of L = 2
subnodes, each of which is a chaotic Lorenz oscillator.
The two subnodes are connected by a sublink, the di-
rection of which determines the node type. The system
has two parameters, a and b, representing the coupling
strength of internal and external sublinks, respectively.
In Fig. 2(b), we show  = (red) and  6= (blue) as func-
tions of these parameters, where  = ( 6=) are defined
to be the smaller value of  between the two possible

homogeneous (heterogeneous) systems. We verify condi-
tions (C1) and (C2) as described in SM [26] (Sec. S4)
in the region for which  = > 0 and  6= < 0 [shaded
purple in Fig. 2(b)], thus establishing that the system
exhibits AISync in that region. This is illustrated for
a sample trajectory in Fig. 2(c), which diverges from
synchrony while the nodes are kept homogeneous, but
re-synchronizes spontaneously after the nodes are made
heterogeneous (see SM [26], Sec. S5 for details). While
this provides an AISync example with a directed net-
work structure and a bounded stability region, we also
demonstrate AISync for experimentally testable systems
(coupled electro-optic oscillators [28]; SM [26], Sec. S6),
for systems with unbounded stability region (SM [26],
Sec. S7), and for systems with undirected network struc-
ture (SM [26], Sec. S8). These examples include both lin-
ear and nonlinear coupling functions, as well as discrete-
and continuous-time dynamics.

But how often does a network structure support
AISync? To systematically address this question, we
use the spread � of the eigenvalues of the Laplacian ma-

trix eL for the monolayer network representation, which
is a measure of synchronizability [8] defined by �2 :=Pn

j=2 |�j � �|2/[d2(n � 1)], where d :=
Pn

j=1
eLjj/n and

� :=
Pn

j=2 �j/(n � 1). A smaller � indicates higher
synchronizability. Given an external sublink structure
corresponding to a symmetric network, we compare the
minimum spread �= among all systems with homoge-
neous F (i) to the corresponding minimum � 6= among all

systems with strictly heterogeneous F (i). We call the
structure AISync-favoring if � 6= < �=, which indicates

that heterogeneous F (i) can make the system easier to
synchronize than any homogeneous F (i). As a measure
of how strongly the structure supports AISync, we define
r := 1 � � 6=/�=  1, where r > 0 indicates an AISync-
favoring structure, and r = 1 implies � 6= = 0 (i.e., there
is a heterogeneous system with optimal synchronizabil-
ity). For example, the structure in Fig. 2 has �= ⇡ 0.56
and � 6= ⇡ 0.33, and r ⇡ 0.41.

Using this AISync strength r, we first enumerate all
networks of a given size supporting AISync (Table I). For
each N , we generate one or more diagrams representing
all N -node symmetric networks, which are shown in the
first row of Table I for N = 3, 4, 5 (see SM [26], Sec. S9 for
larger N). In these diagrams, each color indicates a set of
links that, in any given symmetric network, must all exist
together and be of the same type or not exist at all (not-
ing that links from di↵erent sets can be of the same type).
For example, there are three distinct symmetric networks
for N = 3: a directed ring (cyan or black links), an undi-
rected ring (cyan and black links of the same type), and
the superposition of two directed rings in opposite direc-
tions (cyan and black links of di↵erent types; as in Fig. 2).
For a given symmetric network derived from these dia-
grams, we choose the external sublink pattern for each
link type from all possible ways of connecting a subnode
pair to another. For the internal sublink patterns, we

FIG. 3. Example of coupled Lorenz systems showing AISync.
(a) Symmetric network of N = 3 nodes, each with L = 2
directionally coupled subnodes of Lorenz oscillators. Here we
show an instance of a heterogeneous system in which the sub-
link direction in one node (cyan) is different from the other
two (green). (b) Contour plots of Ψ= (red) for the case of ho-
mogeneous nodes (all-green or all-cyan nodes) and Ψ 6= (blue)
for heterogeneous nodes (one or two green nodes). The shaded
region corresponds to AISync systems, for which Ψ= > 0 and
Ψ6= < 0. (c) Sample trajectory of the system for a = 8 and
b = 6 [cross symbol in (b)], exhibiting AISync. The first com-
ponent x1 of the Lorenz oscillator state vector is shown for
all n = 6 subnodes.

confirming that the system exhibits AISync in the purple
region. The AISync behavior of the system for a specific
combination of a and b is illustrated by the sample trajec-
tory in Fig. 3(c), which diverges from synchrony while the
nodes are kept homogeneous, but re-synchronizes spon-
taneously after the nodes are made heterogeneous.

C. Coupled electro-optic systems

We now present an experimentally testable AISync sys-
tem based on the discrete-time model of the electro-optic
system implemented in Refs. [16, 27] and given by

xt+1
i =

[
f(xti)−

∑

j

L̃ijf(xtj) + δ

]
mod 2π, (6)

where f(x) = βI(x) determines the isolated subnode dy-
namics and also serves as the coupling function. Here,
I(x) = (1 − cosx)/2 is the normalized optical intensity,
β = 1.7π is the self-feedback strength, δ = 0.2 is the off-
set introduced to suppress the trivial solution xi = 0, and

L̃ij is the weighted graph Laplacian [weights controlled
by parameters a and b, as shown in Fig. 4(a–c)].

Figure 4 shows an example of AISync using these
electro-optic maps as subnodes. The internal connections
are chosen from the quaternary set (no sublink, one di-
rected sublink in either direction, and directed sublinks
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(e–g) numerical results indicating where each system in (a–c) is synchronizable in the parameter space. Each pixel is categorized
into three classes according to 24 independent simulations from random initial conditions (see text for details). (h) The AISync
region (shaded purple), which is the union of yellow and green regions in (a) minus the analogous unions in (b) and (c). The
red contours encode the MLE for the heterogeneous system.

FIG. 4. Example of coupled electro-optic systems showing AISync. (a–c) Networks with heterogeneous (a) and homogeneous
nodes (b,c). (d) Stability function ψ(λ) for the electro-optic system. (e–g) Numerical results indicating where each system
in (a–c) is synchronizable in the parameter space. Each pixel is categorized into three classes according to 24 independent
simulations from random initial conditions (see text for details). (h) The AISync region (shaded purple), which is the union
of yellow and green regions in (e) minus the analogous unions in (f) and (g). The red contours encode the MTLE for the
heterogeneous system.

in both directions). When the same choice is made for
all internal connections, this leads to four different ho-
mogeneous systems, but two of them have λ2 = 0 (not
synchronizable), leaving only two homogeneous systems
to consider [Figs. 4(b) and (c)]. For comparison, we take
the heterogeneous system in Fig. 4(a), which forms a
directed chain network in its monolayer representation.
Each of the three systems [Figs. 4(a–c)] has a compan-
ion plot showing under what parameters the nodes are
synchronizable [Figs. 4(e–g)]. In the latter panels, each
pixel is generated from 24 independent simulations run
from random initial conditions. The pixels are then color-
coded according to how many times a fully synchronized
state was reached after 2500 iterations (“sync-only”: 24
times; “desync-only”: 0 times; “multistability”: all other
cases). Here we consider a trajectory to be fully synchro-
nized if the synchronization error e defined in Eq. (D1)
and averaged over the last 100 iterations falls below 10−3.
It is worth noting that, in this example, when a homo-
geneous system is synchronizable the synchronous state
is always in the form of cluster synchronization among
subnodes (those indexed with prime and double prime
form two separate synchronized clusters), since complete
synchronization among subnodes is always unstable for
both homogeneous systems.

Figure 4(d) shows the stability function ψ(λ) for the
electro-optic subnode dynamics and coupling function,
which has a bounded stable region. The lines are quite
dense inside the stable region, meaning that the stability
landscape is steep there and the function reaches very
deep negative values. This is confirmed in Fig. 4(h),

where the AISync regions are shaded purple, with the
MTLE of the synchronous state for the heterogeneous
system shown as red contour lines.

D. Other examples

The three AISync systems considered in this section
include both linear and nonlinear coupling functions, as
well as discrete- and continuous-time dynamics. While
they provide AISync examples with directed network
structures and bounded stability regions, we also demon-
strate AISync for systems with unbounded stability re-
gion (Supplemental Material Sec. S1), and for systems
with undirected network structure (Supplemental Mate-
rial Sec. S2).

VI. PROPENSITY FOR AISync

But how often does a network structure support
AISync? To systematically address this question, we
use the spread σ of the eigenvalues of the Laplacian ma-

trix L̃ for the monolayer network representation, which
is a measure of synchronizability [8] defined by σ2 :=∑n
j=2 |λj − λ|2/[d2(n − 1)], where d :=

∑n
j=1 L̃jj/n and

λ :=
∑n
j=2 λj/(n − 1). A smaller σ indicates higher

synchronizability. Given an external sublink structure
corresponding to a symmetric network, we compare the
minimum spread σ= among all systems with homoge-
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N = 3 N = 4 N = 5

symmetric
networks

Q (optimal) 9 14 21

Q (r > 0.2) 11 81 254
Q (r > 0.05) 29 318 2154
B (r > 0.2) 11 101 204
B (r > 0.05) 31 400 2406

TABLE I. Number of isomorphically distinct AISync-favoring
networks, listed for N = 3, 4, 5 nodes and L = 2 layers (with
a = b = 1 to enable counting). The numbers are given for
both binary (B) and quaternary (Q) choices of internal sub-
link configurations, as well as for different AISync strength
(as measured by r defined in the text). The network dia-
grams encode all possible symmetric networks of a given size.

neous F (i) to the corresponding minimum σ 6= among all

systems with strictly heterogeneous F (i). We call the
structure AISync-favoring if σ 6= < σ=, which indicates

that heterogeneous F (i) can make the system easier to
synchronize than any homogeneous F (i). As a measure
of how strongly the structure supports AISync, we define
r := 1 − σ6=/σ= ≤ 1, where r > 0 indicates an AISync-
favoring structure, and r = 1 implies σ6= = 0 (i.e., there
is a heterogeneous system with optimal synchronizabil-
ity). For example, the structure in Fig. 3 has σ= ≈ 0.56
and σ 6= ≈ 0.33, and r ≈ 0.41.

Using this AISync strength r, we first enumerate all
networks of a given size supporting AISync (Table I).
For each N , we generate one or more diagrams repre-
senting all N -node symmetric networks, which are shown
in the first row of Table I for N = 3, 4, 5. In these di-
agrams, each color indicates a set of links that, in any
given symmetric network, must all exist together and be
of the same type or not exist at all (noting that links
from different sets can be of the same type). For ex-
ample, there are three distinct symmetric networks for
N = 3: a directed ring (cyan or black links), an undi-
rected ring (cyan and black links of the same type), and
the superposition of two directed rings in opposite direc-
tions (cyan and black links of different types; as in Fig. 3).
For a given symmetric network derived from these dia-
grams, we choose the external sublink pattern for each
link type from all possible ways of connecting a subnode
pair to another. For the internal sublink patterns, we
use either the binary or quaternary choices, where each
node has one directed sublink (in either direction) in the
binary case, while all four possibilities are allowed in the
quaternary case. The rest of Table I lists the total num-
bers of isomorphically distinct external sublink structures
with r > 0.05, r > 0.2, and (optimal) r = 1; see Supple-
mentary Tables S1 and S2 for all optimal networks with
N = 3 and 4, respectively.

Table II extends the first row in Table I, showing the
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N = 3 N = 4 N = 5

symmetric
networks

Q (optimal) 9 14 21

Q (r > 0.2) 11 81 254
Q (r > 0.05) 29 318 2154
B (r > 0.2) 11 101 204
B (r > 0.05) 31 400 2406

TABLE I. Number of isomorphically distinct AISync-favoring
networks with N = 3, 4, 5 nodes and L = 2 layers (with
a = b = 1 to enable counting). The numbers are given for
both binary (B) and quaternary (Q) choices of internal sub-
link configurations, as well as for di↵erent AISync strength
[as measured by r defined in the text]. The network diagrams
encode all possible symmetric networks of a given size. See
SM [26], Sec. S9 for details and network diagrams for larger N .

link type from all possible ways of connecting a subnode
pair to another. For the internal sublink patterns, we
use either the binary or quaternary choices, where each
node has one directed sublink (in either direction) in the
binary case, while all four possibilities are allowed in the
quaternary case: no sublink, one directed sublink, and
both directed sublinks. The rest of Table I lists the to-
tal numbers of isomorphically distinct external sublink

structures eA with r > 0.05, r > 0.2, and (optimal) r = 1;
see SM [26], Sec. S9 for all optimal networks with N = 3
and 4.

Figure 3 shows the statistics of AISync-favoring net-
works. For numerical feasibility, we focus on those sys-
tems whose network structure is a directed, multi-link
type, circulant graph (which covers all symmetric net-
works if N is prime). Sampling uniformly within this
class (see SM [26], Sec. S10, for details [30]), we ob-
serve that significant fraction of external sublink struc-
tures are AISync-favoring over a range of sublink densi-
ties [Fig. 3(a)] and network sizes [Fig. 3(b)]. We also ob-
serve that sparse and dense structures favor AISync more
often than medium-density ones, despite the expectation
that the e↵ect of internal sublink heterogeneity would be
smaller with higher external sublink density.

Given a symmetric network of identical oscillators, it
is instructive to compare our results above in which the
symmetry is broken by making the oscillators nonidenti-
cal with the alternative scenario in which the symmetry
is broken by making the network structure asymmetric.
For directed unweighted networks of di↵usively-coupled
identical oscillators, it can be shown that: 1) with the
exception of the complete graphs, all topologies that op-
timize synchronizability (i.e., those with � = 0) are asym-
metric [31]; 2) any network topology that can be spanned
from a node (i.e., mini�2 Re(�i) > 0) embeds optimally
synchronizable subnetworks generated by deleting a sub-
set of links [8, 32]. For example, a synchronous state

(a)

(b)

FIG. 3. Statistics on the prevalence of AISync-favoring net-
works as functions of (a) external sublink density and (b)
network size N . Both panels show the fraction of systems
with AISync strength r > 0.05 among those with circulant-
graph network structures, where the external sublink density
is given by D/[L2(N � 1)], and D is the external sublink
in-degree. For further analysis of these results, see SM [26],
Sec. S11.

that is not stable for a directed ring network may be-
come stable for a directed chain formed by removing a
link. More generally, introducing structural heterogene-
ity (breaking the symmetry of the network) can stabilize
otherwise unstable homogeneous (symmetric) states.

Finally, we note that the defining characteristic of
AISync considered here—that preserving the symmetry
of a stable state requires breaking the symmetry of the
system—can bear analogs in oscillator networks whose
structure is not necessarily symmetric. Such a network
can always be partitioned into symmetric subnetwork
clusters (structurally equivalent subsets of nodes) that
are candidates for cluster synchronization [16, 33, 34].
Synchronization of one of these clusters plays the role of
complete synchronization in a symmetric network, which
opens the possibility of exploiting AISync to tune cluster
synchronization patterns through oscillator heterogene-
ity in arbitrary complex networks. We hope that our
findings, and future theoretical and experimental stud-
ies they will stimulate, will significantly advance under-

FIG. 5. Statistics on the prevalence of AISync-favoring net-
works. Shown as functions of (a) external sublink density
and (b) network size N . Both panels show the fraction of
systems with AISync strength r > 0.05 among those with cir-
culant network structures, where the external sublink density
is given by D/[L2(N − 1)], and D is the number of external
sublinks received by a node (which is the same for all nodes).

symmetric network diagrams for N = 6, 7, and 8. In each
row, the leftmost diagram is the full representation as in
Table I, which is decomposed into multiple components
(the partial diagrams in the same row) to make them
more clearly visible. The partial diagrams with the same
background color indicate identical components appear-
ing in multiple rows. Thus, for N = 6, we have four
different diagrams (rows), each with a different combi-
nation of components. There is only one diagram for
N = 7, while we show one representative diagram out of
twelve in the case of N = 8.

Figure 5 shows the statistics of AISync-favoring net-
works. For numerical feasibility, we focus on those sys-
tems whose network structure is a directed circulant
graph with multiple link types (which covers all sym-
metric networks if N is a prime number). Sampling
uniformly within this class (Appendix F), we observe
that significant fraction of external sublink structures are
AISync-favoring over a range of external sublink densities
[Fig. 5(a)] and network sizes [Fig. 5(b)]. We also observe
that sparse and dense structures favor AISync more of-
ten than medium-density ones, despite the expectation
that the effect of internal sublink heterogeneity would be
smaller with higher external sublink density. This phe-
nomenon is further explored in Appendix G by establish-
ing the approximate left-right symmetry in Fig. 5(a).
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TABLE II. Diagrams of symmetric networks with N = 6, 7, and 8 nodes.

N = 6

=

=

=

=

+ +

+ +

+ +

+ +

N = 7 = + +

N = 8
=

and 11 others

+ + +

VII. DISCUSSION

Given a symmetric network of identical oscillators, it
is instructive to compare our results above in which the
symmetry is broken by making the oscillators nonidenti-
cal with the alternative scenario in which the symmetry is

broken by making the network structure asymmetric. For
directed unweighted networks of diffusively-coupled iden-
tical oscillators, it can be shown that: 1) with the excep-
tion of the complete graphs, all topologies that optimize
synchronizability (i.e., those with σ = 0) are asymmet-
ric; 2) any network topology that can be spanned from
a node (i.e., mini≥2 Re(λi) > 0) embeds optimally syn-
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chronizable subnetworks generated by deleting a subset
of links [8, 28]. For example, a synchronous state that is
not stable for a directed ring network may become stable
for a directed chain formed by removing a link. More
generally, introducing structural heterogeneity (breaking
the symmetry of the network) can stabilize otherwise un-
stable homogeneous (symmetric) states.

Finally, we note that the defining characteristic of
AISync considered here—that preserving the symmetry
of a stable state requires breaking the symmetry of the
system—can bear analogs in oscillator networks whose
structure is not necessarily symmetric. Such a network
can always be partitioned into symmetric subnetwork
clusters (structurally equivalent subsets of nodes) that
are candidates for cluster synchronization [16, 29, 30].
Synchronization of one of these clusters plays the role of
complete synchronization in a symmetric network, which
opens the possibility of exploiting AISync to tune cluster
synchronization patterns through oscillator heterogene-
ity in arbitrary complex networks. We hope that our
findings, and future theoretical and experimental stud-
ies they will stimulate, will significantly advance under-
standing of the interplay between symmetry and network
dynamics.
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Appendix A: Definition of Cayley graphs

Given a generating set S of a finite group G, the Cay-
ley graph associated with S and G is defined as the net-
work in which a node represents an element of G and a
directed link from one node g ∈ G to another g′ ∈ G
represents the composition of some element s ∈ S with
g that gives g′ (i.e., gs = g′). While such a network is
generally directed, it will be undirected if the inverse of
every element of S belongs to S. Choosing S to be a
generating set guarantees that the resulting network is
(strongly) connected. A generalization to multiple link
types can be obtained if we assign different elements of
S to different link types.

Appendix B: Details on multilayer models

Since Eq. (2) defines a subclass of systems governed by
Eq. (1), it can always be written in the form of Eq. (1)
for a given network structure specified by A(α). This can
be seen by stacking the m-dimensional vectors in Eq. (2)

and defining appropriate functions as follows:

Xi :=



x
(i)
1
...

x
(i)
L


 , Fi :=



F

(i)
1
...

F
(i)
L


 , H(α) :=



H

(α)
1
...

H
(α)
L


 ,

(B1)

F
(i)
` (Xi) := f(x

(i)
` ) +

L∑

`′=1

Ã
(ii)
``′ [h(x

(i)
`′ )− h(x

(i)
` )],

(B2)

H
(α)
` (Xi,Xi′) :=

L∑

`′=1

B
(α)
``′ [h(x

(i′)
`′ )− h(x

(i)
` )], (B3)

where B
(α)
``′ is defined to be the value of Ã

(ii′)
``′ when node

i′ is connected to node i by a link of type α. Note that
these node-to-node interactions are not necessarily dif-
fusive, since we can have H(α)(Xi,Xi′) 6= 0 even for

Xi = Xi′ , if x
(i)
` 6= x

(i′)
`′ for some ` 6= `′ [which in partic-

ular means that the coupling term cannot be written in

the form H(α)(Xi,Xi′) = H̃(α)(Xi′) − H̃(α)(Xi)]. For
example, even when nodes 1 and 4 are synchronized in
the network of Fig. 1, i.e., X1 = X4 = (s1(t), s2(t))T ,
the coupling term corresponding to the link of type α = 3
between them is in general not identically zero:

H(3)(X1,X4) =

(
h(s2)− h(s1)

0

)
6≡ 0. (B4)

However, since we assume identical dynamics for subn-
odes and diffusive coupling between subnodes, a syn-

chronous state of Eq. (2) given by x
(i)
` (t) = s(t), ∀i, `

with ṡ = f (s) is guaranteed to exist even if F (i)’s are
heterogeneous. This corresponds to a global synchronous
state of Eq. (1) defined by Xi = S := (s, . . . , s)T , ∀i,
which can be verified by noting that H(α)(S,S) = 0

and F
(i)
` (S) := f(s), ∀i, `.

Appendix C: Details on MSF analysis

Equation (2) can be rewritten as a monolayer network
by defining a single index for all the n := LN subn-
odes, in which node i has subnodes j = ki1, . . . , kiL with
ki` := (i− 1)L+ `. This leads to the standard form for a
(monolayer) diffusively coupled network of oscillators:

ẋj = f(xj) +

n∑

j′=1

Ãjj′ [h(xj′)− h(xj)], (C1)

where xj = x
(i)
` and Ãjj′ := Ã

(ii′)
``′ for j = ki` and j′ =

ki′`′ . In the monolayer adjacency matrix Ã = (Ãjj′), the

matrix B(α) = (B
(α)
``′ ) appears as multiple off-diagonal

blocks of size L, and the arrangement of those blocks

within Ã matches with the structure of the corresponding
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adjacency matrix A(α), reflecting the topology of node-
to-node interactions through links of type α [see Fig. 1(d)
for an example]. This equation allows application of the
MSF analysis [25] because subnodes and sublinks (and
the associated coupling functions) are identical. The sta-
bility function ψ(λ) is defined as the maximum Lyapunov
exponent of the reduced variational equation,

ξ̇ = [Df(s)− λDh(s)]ξ, (C2)

where ξ is an m-dimensional perturbation vector, Df(s)
and Dh(s) are the Jacobian of f and h, respectively, at
the synchronous state, xj = s(t), ∀j, and λ is a complex-
valued parameter.

Appendix D: Verifying the AISync conditions

Here we describe our scheme for verifying AISync con-
ditions (C1) and (C2) given a symmetric network struc-
ture (adjacency matrices A(α)), external sublink configu-
rations (matrices B(α)), a set F of possible internal sub-
link configurations (from which matrices F (i) are chosen),
isolated subnode dynamics f , and sublink coupling func-
tion h. We first obtain the stability function ψ(λ):

1. Compute a trajectory s(t) of an isolated subnode
by integrating ṡ = f (s), which determines the syn-

chronous state, x
(i)
` (t) = s(t), ∀i, `.

2. Integrate Eq. (C2) and calculate its maximum Lya-
punov exponent (MLE), which defines ψ(λ) for a
range of λ in the complex plane.

Note that ψ(λ) depends only on f , h, and s(t). For a
given symmetric network structure and external sublink
configurations, we can compute the stability Ψ of the
synchronous state for any combination of F (i) ∈ F by
calculating and substituting the Laplacian eigenvalues λj
into the formula Ψ = max2≤j≤n ψ(λj). To establish the
AISync property, we verify the following conditions:

• (C1)′: For each matrix F ∈ F , set F (1) = · · · =
F (N) = F (leading to a homogeneous system) and
verify Ψ > 0.

• (C2)′: Identify a combination of (heterogeneous)
F (i) ∈ F for which Ψ < 0 (e.g., by checking ex-
haustively or by using a numerical optimization al-
gorithm to minimize Ψ over F (i)).

The verification of condition (C1)′ provides strong sup-
port for (C1), since the only other possibility for a sta-
ble synchronization of all nodes is a state of the form

x
(i)
` = s`(t), ∀i, `, with at least one s`(t) different from

the others (which we find does not exist in many cases,
such as the examples in Fig. 3 and in Supplemental Ma-
terial Sec. S1). To provide additional support for (C1),
we directly simulate Eq. (2) from a set of initial con-
ditions and verify that the synchronization error e does

not approach zero whenever F (1) = · · · = F (N), where
e is defined as the standard deviation of the node state
vectors, or equivalently,

e2 :=
1

N

N∑

i=1

L∑

`=1

||x(i)
` − x`||2, x` :=

1

N

N∑

i=1

x
(i)
` . (D1)

Here || · || denotes the 2-norm in the state space of the
subnode dynamics, and e = 0 is achieved if and only if the

system is in a synchronous state of the form x
(i)
` = s`(t).

To complete our procedure, we verify condition (C2)′,
which rigorously establishes (C2).

Appendix E: Details on example in Fig. 2

In the example system from Fig. 3, the coupling ma-
trices for the two link types are B(1) = ( b b0 0 ) and

B(2) = ( 0 0
0 b ), where the constant b represents the cou-

pling strength common to all external sublinks. The
coupling matrix F (i) for internal sublinks is chosen from
the binary set F = {( 0 a

0 0 ), ( 0 0
a 0 )}, corresponding to the

two possible sublink directions [and thus to two types of
nodes indicated by green and cyan color, respectively, in
Fig. 3(a)], where the constant a represents the coupling
strength common to all internal sublinks. The Lorenz
dynamics of the subnodes and the coupling represented
by sublinks are given by

f(x) =




γ(x2 − x1)
x1(ρ− x3)− x2
x1x2 − βx3


 ,

h(x) =



x2
0
0


 , x =



x1
x2
x3




(E1)

with the standard parameters, γ = 10, ρ = 28, and β =
8/3.

The stability function ψ(λ) is determined by Eq. (C2),
which for this system reads



ξ̇1
ξ̇2
ξ̇3


 =



−γ γ − λ 0

ρ− s3 −1 −s1
s2 s1 −β





ξ1
ξ2
ξ3


 , (E2)

where ξ := (ξ1, ξ2, ξ3)T is the variation of the state vector
x and the synchronous state s := (s1, s2, s3)T satisfies
the equation for a single isolated Lorenz oscillator:

ṡ1 = γ(s2 − s1),

ṡ2 = s1(ρ− s3)− s2,
ṡ3 = s1s2 − βs3.

(E3)

For a given λ in the complex plane, we compute ψ(λ) by
numerically integrating Eqs. (E2) and (E3) for 2 × 104

time units and estimating the MLE [31] associated with
the variable ξ. Figure 6 shows the resulting estimate
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FIG. 6. Stability function ψ(λ) for the AISync system in
Fig. 3.

of ψ(λ), which has a bounded stability region {λ ∈
C |ψ(λ) < 0}.

For a given combination of a and b, we obtain Ψ= and
Ψ 6=, which are shown in Fig. 3(b). Note that for this ex-
ample there are only two distinct homogeneous systems
and two distinct heterogeneous systems. One of these
heterogeneous systems is shown in Fig. 3(a). We also
note that Ψ= > 0 and Ψ6= < 0 are equivalent to the con-
ditions (C1)′ and (C2)′ in Appendix D, respectively. For
each combination of a and b satisfying both conditions
[on a grid covering Fig. 3(b) with a resolution of 0.2], we
additionally run 24 direct simulations of Eq. (2) for 200

time units. The initial condition x
(i)
` (0) for each subnode

is chosen randomly and independently from the uniform
distribution in the region [0, 10] × [0, 10] × [0, 10] of its
state space. The results confirm that the synchroniza-
tion error e defined in Eq. (D1) and averaged over the
last 100 time units does not fall below 10−3 in all 24 runs
for both homogeneous systems, providing solid evidence
that the system satisfies the AISync condition (C1) for
these combinations of a and b. Since Ψ6= < 0 implies
(C2)′ and thus (C2), this confirms AISync in the region
shaded purple in Fig. 3(b).

The initial condition for the sample trajectory in
Fig. 3(c) is chosen randomly within a distance of 10−3

from the synchronous state. The trajectory is then com-
puted by integrating the system with all nodes green for
t ≤ 25, instantaneously switching the direction of the
sublink between subnodes 2′ and 2′′, and then continu-
ing to integrate for 25 ≤ t ≤ 50.

Appendix F: Sampling protocol used in Fig. 4

We randomly sample systems whose network structure
A(α) is a circulant graph (with directed links of possibly
multiple types) of given size N and external sublink in-
degree D (i.e., the total number of sublinks received by
the subnodes of a given node). Each of the D sublinks
coming into node 1 is chosen randomly; it connects a
random subnode chosen uniformly from the other N − 1
nodes to a random subnode chosen uniformly from node
1. The incoming sublinks into nodes 2 to N are then cho-
sen to precisely match those coming into node 1, which
ensures that the network structure is a circulant graph.

This simultaneously specifies A(α) and B(α) defining the
system. To determine σ 6=, σ=, and r for this system, we
calculate the eigenspread σ of the monolayer network rep-
resentation for all the possible internal sublink configura-
tions F (i), chosen here from the binary set {( 0 1

0 0 ), ( 0 0
1 0 )}.

For each combination of N and D, we generate a sample
of 4,000 such systems to compute the fraction of AISync-
favoring networks.

Appendix G: Approximate symmetry in Fig. 4(a)

The approximate symmetry with respect to the verti-
cal line at density 0.5 observed in Fig. 4(a) can be ex-
plained using the notion of network complement. The
complement of a given (unweighted) network with adja-

cency matrix Ã = (Ãjj′) is defined as the network having

the adjacency matrix Ãc = (Ãcjj′) given by

Ãcjj′ := (1− Ãjj′)(1− δjj′). (G1)

The external sublink density of a network and its comple-
ment add up to one, placing them symmetrically about
the vertical line at density 0.5 in Fig. 4(a). When the
nontrivial Laplacian eigenvalues of the network and its
complement, which we denote λ2, . . . , λn and λc2, . . . , λ

c
n,

respectively, are both indexed in the order of increasing
real part, they are related by λj + λcn+2−j = n [8]. This
implies that, if σ is the eigenvalue spread for a monolayer
network with given internal sublink configurations F (i),
then the spread for its complement is given by

σc =
m̃σ

n(n− 1)− m̃ , (G2)

where m̃ :=
∑
j

∑
j′ 6=j Ãjj′ is the number of directed

links in the network Ã. Now consider two systems with

n subnodes and adjacency matrices Ã1 and Ã2, whose σ
values are σ1 and σ2, respectively. If we denote the σ
values of the complement of these systems by σc1 and σc2,
respectively, we have

σ1
σ2

=
σc1
σc2

(G3)

when Ã1 and Ã2 have the same number of directed links,

i.e., m̃1 = m̃2. It follows from Eq. (G2) that if Ã1 is

the best homogeneous system and Ã2 the best heteroge-
neous system for a given external connection pattern with
density x, then their complements are the best homo-
geneous and heterogeneous system for an external con-
nection pattern with density 1 − x. Thus, the value of
AISync strength r is the same at density x and 1 − x.
The symmetry, however, is not perfect between sparse
and dense parts of the plot, since we exclude the cases in
which the network is not synchronizable (i.e., we require
minj≥2 Re(λj) > 0), the effect of which is not symmetric
between sparse and dense cases.
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Supplemental Material

Asymmetry-Induced Synchronization in Oscillator Networks

Yuanzhao Zhang, Takashi Nishikawa, and Adilson E. Motter

Appendix S1: Example of AISync with unbounded stability region

Figure S1 shows another example of AISync using systems in which subnode dynamics is the same Lorenz oscillator
as in Fig. 2, but with a different coupling function [leading to a different stability function ψ(λ)] and a different symmet-
ric network. We use a three-node symmetric network with a single link type [with the corresponding coupling matrix
B(1) = ( 0 b

0 0 )], as can be seen in Fig. S1(a), where the monolayer representation of an example heterogenous system is

shown. The coupling matrix F (i) for internal sublinks are chosen from the quaternary set {( 0 0
0 0 ), ( 0 a

0 0 ), ( 0 0
a 0 ), ( 0 a

a 0 )},
so there are four distinct homogeneous systems. Two of them have λ2 = 0 (and thus are not synchronizable), and
one of the remaining ones is always more stable (i.e., smaller Ψ) than the other in the range of a and b considered in
Fig. S1.
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FIG. S3. Example of AISync system that has unbounded stability region. The subnodes are identical Lorenz oscillators, coupled
to each other through the first component of their state vectors. (a) Symmetric network of N = 3 nodes, with L = 2 subnodes
per node, shown in the monolayer network representation for a specific heterogeneous system (when the dashed sublink does
not exist). If we add the dashed sublink, the system becomes homogeneous. (b) Contour curves for the stability function  (�)
in the complex plane. The stability region consists of all points to the right of the red curve (corresponding to  = 0) and
thus is unbounded. (c) Contour curves for the MLE for the homogeneous (red) and heterogeneous (blue) systems as a function
of parameters a and b. The region of AISync is shaded light purple. (d, e) Synchronization error e after 200 time units for
the heterogeneous (d) and the homogeneous (e) system. (f) Time evolution of the synchronization error e for the system at
a = b = 9 [the cross symbol in (c)] undergoing a switch from being homogeneous to being heterogeneous at t = 150 [through
the removal of the internal sublink in node 3].

FIG. S1. Example of AISync systems that has unbounded stability region. The subnodes are identical Lorenz oscillators,
coupled to each other through the first component of their state vectors. (a) Symmetric network of N = 3 nodes, with L = 2
subnodes per node, shown in the monolayer network representation for a specific heterogeneous system (when the dashed
sublink does not exist). If we add the dashed sublink, the system becomes homogeneous. (b) Contour curves for the stability
function ψ(λ) in the complex plane. The stability region consists of all points to the right of the red curve (corresponding to
ψ = 0) and thus is unbounded. (c) Contour curves for the MTLE for the homogeneous (red) and heterogeneous (blue) systems
as a function of parameters a and b. The region of AISync is shaded light purple. (d, e) Synchronization error e after 200 time
units for the heterogeneous (d) and the homogeneous (e) system. (f) Time evolution of the synchronization error e for the
system at a = b = 9 [the cross symbol in (c)] undergoing a switch from being homogeneous to being heterogeneous at t = 150
[through the removal of the internal sublink in node 3].

The more stable homogeneous system is the one with the dashed sublink in Fig. S1(a). Among the heterogeneous
systems, the one with the smallest value of σ is the one without the dashed sublink in Fig. S1(a), which is optimal
(i.e., σ = 0). We thus have just one homogeneous system and one heterogeneous system to compare. For the coupling
function, we use h(x) = (x1, 0, 0)T , which leads to the stability function ψ(λ) shown in Fig. S1(b). Unlike the
example in Fig. 2, the stable region for this example (the region to the right of the red curve) is unbounded. Using
this ψ(λ), we calculate the MTLEs for the homogeneous and heterogeneous systems, which are shown in Fig. S1(c) as
functions of parameters a and b. We confirm that the global stability also follows the same trend by integrating Eq. (2)
directly for 200 time units from a random initial condition and then computing the synchronization error e defined in
Eq. (D1). The result is shown in Fig. S1(d), where we see that e behaves similarly as the MTLE. Figure S1(e) shows
the synchronization error e for a typical trajectory of the system with a = b = 9 [marked by black cross in Fig. S1(c)],
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which switches from homogeneous to heterogeneous at t = 150 with the removal the sublink inside the pink node in
Fig. S1(a).

Appendix S2: Example of AISync in undirected networks

The simplest example of undirected network exhibiting AISync is the network of two nodes, coupled bidirectionally.
Consider a system with this network structure in which node 1 has subnodes 1′ and 1′′, and node 2 has subnodes 2′

and 2′′, and the network of sublinks (all with weight equal to one) forms a directed chain connecting the four subnodes
as 2′′ → 1′ → 1′′ → 2′. This network, when described at the node level, is indeed undirected because the pattern
of sublink connections from node 1 to 2 is identical to the pattern of connections from node 2 to 1. The nodes are
heterogeneous because subnode 1′ is connected to 1′′, while subnode 2′ is not connected to 2′′. Since the directed
chain is an optimal network with λ2 = λ3 = λ4 = 1, this heterogeneous system is more synchronizable than any
combination of internal sublink configurations that leads to a homogeneous system. Thus, this undirected network
exhibits AISync.

Appendix S3: Supplementary Tables

For each of the symmetric networks that can be derived from the network diagrams in Table I for N = 3 and 4, we
identify all possible two-layer optimal heterogeneous systems with that symmetric network structure. Tables S1 and
S2 show all these systems in the monolayer representation for N = 3 and N = 4, respectively

TABLE S1. The 9 optimal heterogeneous systems with N = 3 and L = 2.

symmetric network optimal heterogeneous systems
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TABLE S2. The 14 optimal heterogeneous systems with N = 4 and L = 2.

symmetric network optimal heterogeneous systems
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