Counting Subwords Occurrences in Base-b Expansions

Julien Leroy, Michel Rigo and Manon Stipulanti
University of Liège
Department of Mathematics
Allée de la Découverte 12 (B37)
4000 Liège, Belgium
J.Leroy@ulg.ac.be
M.Rigo@ulg.ac.be
M.Stipulanti@ulg.ac.be

Abstract

We count the number of distinct (scattered) subwords occurring in the base- b expansion of the nonnegative integers. More precisely, we consider the sequence $\left(S_{b}(n)\right)_{n \geq 0}$ counting the number of positive entries on each row of a generalization of the Pascal triangle to binomial coefficients of base-b expansions. By using a convenient tree structure, we provide recurrence relations for $\left(S_{b}(n)\right)_{n \geq 0}$ leading to the b regularity of the latter sequence. Then we deduce the asymptotics of the summatory function of the sequence $\left(S_{b}(n)\right)_{n \geq 0}$.

1 Introduction

A finite word is a finite sequence of letters belonging to a finite set called the alphabet. The binomial coefficient $\binom{u}{v}$ of two finite words u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword). All along the paper, we let b denote an integer greater than 1 . We let rep $b(n)$ denote the (greedy) base-b expansion of $n \in \mathbb{N} \backslash\{0\}$ starting with a non-zero digit. We set rep (0) to be the empty word denoted by ε. We let

$$
L_{b}=\{1, \ldots, b-1\}\{0, \ldots, b-1\}^{*} \cup\{\varepsilon\}
$$

be the set of base- b expansions of the non-negative integers. For all $w \in\{0, \ldots, b-1\}^{*}$, we also define $\operatorname{val}_{b}(w)$ to be the value of w in base b, i.e., if $w=w_{n} \cdots w_{0}$ with $w_{i} \in\{0, \ldots, b-1\}$ for all i, then $\operatorname{val}_{b}(w)=\sum_{i=0}^{n} w_{i} b^{i}$.

Several generalizations and variations of the Pascal triangle exist and lead to interesting combinatorial, geometrical or dynamical properties [5, 6, 13, 14, 15]. Ordering the words of L_{b} by increasing genealogical order, we introduced Pascal-like triangles P_{b} [15] where the entry $\mathrm{P}_{b}(m, n)$ is $\binom{\mathrm{rep}_{b}(m)}{\operatorname{rep}_{b}(n)}$. Clearly P_{b} contains $(b-1)$ copies of the usual Pascal triangle when only considering words of the form a^{m} with $a \in\{1, \ldots, b-1\}$ and $m \geq 0$. In Figure 1, we depict the first few elements of P_{3} A284441 and its compressed version highlighting the number of positive elements on each line. The data provided by this compressed version is summed up in Definition 1 .

Definition 1. For $n \geq 0$, we define the sequence $\left(S_{b}(n)\right)_{n \geq 0}$ by setting

$$
\begin{equation*}
S_{b}(n):=\#\left\{v \in L_{b} \left\lvert\,\binom{\operatorname{rep}_{b}(n)}{v}>0\right.\right\} . \tag{1}
\end{equation*}
$$

We also consider the summatory function $\left(A_{b}(n)\right)_{n \geq 0}$ of the sequence $\left(S_{b}(n)\right)_{n \geq 0}$ defined by $A_{b}(0)=0$ and for all $n \geq 1$,

$$
A_{b}(n):=\sum_{j=0}^{n-1} S_{b}(j)
$$

Figure 1: On the left, the first few rows of the generalized Pascal triangle P_{3} (a white (resp., gray; resp., black) square corresponds to 0 (resp., 1 ; resp., 2)) and on the right, its compressed version.

The quantity $A_{b}(n)$ can be thought of as the total number of base- b expansions occurring as subwords in the base- b expansion of integers less than n (the same subword is counted k times if it occurs in the base- b expansion of k distinct integers).

In some sense, the sequences $\left(S_{b}(n)\right)_{n \geq 0}$ and $\left(A_{b}(n)\right)_{n \geq 0}$ measure the sparseness of P_{b}.
Example 2. If $b=3$, then the first few terms of the sequence $\left(S_{3}(n)\right)_{n \geq 0}$ A282715 are

$$
1,2,2,3,3,4,3,4,3,4,5,6,5,4,6,7,7,6,4,6,5,7,6,7,5,6,4,5,7,8,8,7,10, \ldots
$$

For instance, the subwords of the word 121 are $\varepsilon, 1,2,11,12,21,121$. Thus, $S_{3}\left(\operatorname{val}_{3}(121)\right)=S_{3}(16)=7$. The first few terms of $\left(A_{3}(n)\right)_{n \geq 0}$ A284442 are

$$
0,1,3,5,8,11,15,18,22,25,29,34,40,45,49,55, \ldots
$$

We studied [16] the triangle P_{2} A282714 and the sequence $\left(S_{2}(n)\right)_{n \geq 0}$ A007306, which turns out to be the subsequence with odd indices of the Stern-Brocot sequence. The sequence $\left(S_{2}(n)\right)_{n \geq 0}$ is 2-regular in the sense of Allouche and Shallit [1]. We studied [17] the behavior of $\left(A_{2}(n)\right)_{n \geq 0}$ A282720. To this aim, we exploited a particular decomposition of $A_{2}\left(2^{\ell}+r\right)$, for all $\ell \geq 1$ and all $0 \leq r<2^{\ell}$, using powers of 3 .

1.1 Our contribution

We conjectured six recurrence relations for $\left(S_{3}(n)\right)_{n \geq 0}$ depending on the position of n between two consecutive powers of 3 ; see [16]. Using the heuristic from [3] suggesting recurrence relations, the sequence $\left(S_{3}(n)\right)_{n \geq 0}$ was expected to be 3 -regular. It was not obvious that we could derive general recurrence relations for $\left(S_{b}(n)\right)_{n \geq 0}$ from the form of those satisfied by $\left(S_{2}(n)\right)_{n \geq 0}$. We thought that $(b-1) b$ recurrence relations should be needed in the general case, leading to a cumbersome statement. Moreover it was computationally challenging to obtain many terms of $\left(S_{b}(n)\right)_{n \geq 0}$ for large b because the number of words of length n in L_{b} grows like b^{n}. Therefore we lack data to conjecture the b-regularity of $\left(S_{b}(n)\right)_{n \geq 0}$.

When studying $\left(A_{2}(n)\right)_{n \geq 0}$, a possible extension seemed to emerge [17]. In particular, we prove that $A_{2}(2 n)=3 A_{2}(n)$ and, sustained by computer experiments, we conjectured that $A_{b}(n b)=(2 b-1) A_{b}(n)$.

Surprisingly, for all $b \geq 2$, we show in Section 2 that the recurrence relations satisfied by $\left(S_{b}(n)\right)_{n \geq 0}$ reduce to three forms; see Proposition 3. In particular, this proves the conjecture stated in [16]. Therefore, in Section 3, we deduce the b-regularity of $\left(S_{b}(n)\right)_{n \geq 0}$; see Theorem 16. Moreover we obtain a linear representation of the sequence with $b \times b$ matrices. We also show that $\left(S_{b}(n)\right)_{n \geq 0}$ is palindromic over $\left[(b-1) b^{\ell}, b^{\ell+1}\right]$.

The key to study the asymptotics of $\left(A_{b}(n)\right)_{n \geq 0}$ is to obtain specific recurrence relations for this sequence. In Proposition 26 , we show that theses relations involve powers of $(2 b-1)$. Therefore, we prove the conjecture

$\operatorname{rep}_{b}(n)$	ε	x	$x 0$	$x x$	$x y$	$x 00$	$x 0 x$	$x 0 y$	$x x 0$	$x x x$	$x x y$	$x y 0$	$x y x$	$x y y$	$x y z$
$S_{b}(n)$	1	2	3	3	4	4	5	6	5	4	6	7	7	6	8

Table 1: The first few values of $S_{b}(n)$ for $0 \leq n<b^{3}$, with pairwise distinct $x, y, z \in\{1, \ldots, b-1\}$.
about $A_{b}(n b)$. In Section 4, using the so-called ($2 b-1$)-decompositions, we may apply the method introduced in [17.

We think that this paper motivates the quest for generalized Stern-Brocot sequences and analogues of the Farey tree [4, 7, 8, 11, 12, 18. Namely can one reasonably define a tree structure, or some other combinatorial structure, in which the sequence $\left(S_{b}(n)\right)_{n \geq 0}$ naturally appears?

Most of the results are proved by induction and the base case usually takes into account the values of $S_{b}(n)$ for $0 \leq n<b^{2}$. These values are easily obtained from Definition 1 and summarized in Table 1

2 General recurrence relations in base b

The aim of this section is to prove the following result exhibiting recurrence relations satisfied by the sequence $\left(S_{b}(n)\right)_{n \geq 0}$. This result is useful to prove that the summatory function of the latter sequence also satisfies recurrence relations; see Section 4
Proposition 3. The sequence $\left(S_{b}(n)\right)_{n \geq 0}$ satisfies $S_{b}(0)=1, S_{b}(1)=\cdots=S_{b}(b-1)=2$, and, for all $x, y \in\{1, \ldots, b-1\}$ with $x \neq y$, all $\ell \geq 1$ and all $r \in\left\{0, \ldots, b^{\ell-1}-1\right\}$,

$$
\begin{align*}
S_{b}\left(x b^{\ell}+r\right) & =S_{b}\left(x b^{\ell-1}+r\right)+S_{b}(r) ; \tag{2}\\
S_{b}\left(x b^{\ell}+x b^{\ell-1}+r\right) & =2 S_{b}\left(x b^{\ell-1}+r\right)-S_{b}(r) ; \tag{3}\\
S_{b}\left(x b^{\ell}+y b^{\ell-1}+r\right) & =S_{b}\left(x b^{\ell-1}+r\right)+2 S_{b}\left(y b^{\ell-1}+r\right)-2 S_{b}(r) . \tag{4}
\end{align*}
$$

For the sake of completeness, we recall the definition of a particularly useful tool called the trie of subwords to prove Proposition 3. This tool is also useful to prove the b-regularity of the sequence $\left(S_{b}(n)\right)_{n \geq 0}$; see Section 3
Definition 4. Let w be a finite word over $\{0, \ldots, b-1\}$. The language of its subwords is factorial, i.e., if $x y z$ is a subword of w, then y is also a subword of w. Thus we may associate with w, the tri \ddagger of its subwords. The root is ε and if u and $u a$ are two subwords of w with $a \in\{0, \ldots, b-1\}$, then $u a$ is a child of u. We let $\mathcal{T}(w)$ denote the subtree in which we only consider the children $1, \ldots, b-1$ of the root ε and their successors, if they exist.
Remark 5. The number of nodes on level $\ell \geq 0$ in $\mathcal{T}(w)$ counts the number of subwords of length ℓ in L_{b} occurring in w. In particular, the number of nodes of the trie $\mathcal{T}\left(\operatorname{rep}_{b}(n)\right)$ is exactly $S_{b}(n)$ for all $n \geq 0$.
Definition 6. For each non-empty word $w \in L_{b}$, we consider a factorization of w into maximal blocks of consecutively distinct letters (i.e., $a_{i} \neq a_{i+1}$ for all i) of the form

$$
w=a_{1}^{n_{1}} \cdots a_{M}^{n_{M}},
$$

with $n_{\ell} \geq 1$ for all ℓ. For each $\ell \in\{0, \ldots, M-1\}$, we consider the subtree T_{ℓ} of $\mathcal{T}(w)$ whose root is the node $a_{1}^{n_{1}} \cdots a_{\ell}^{n_{\ell}} a_{\ell+1}$. For convenience, we set T_{M} to be an empty tree with no node. Roughly speaking, we have a root of a new subtree T_{ℓ} for each new variation of digits in w. For each $\ell \in\{0, \ldots, M-1\}$, we also let $\# T_{\ell}$ denote the number of nodes of the tree T_{ℓ}.

Note that for $k-i \geq 2$, one could possibly have $a_{k}=a_{i}$. For each $\ell \in\{0, \ldots, M-1\}$, we let $\operatorname{Alph}(\ell)$ denote the set of letters occurring in $a_{\ell+1} \cdots a_{M}$. Then for each letter $a \in \operatorname{Alph}(\ell)$, we let $j(a, \ell)$ denote the smallest index in $\{\ell+1, \ldots, M\}$ such that $a_{j(a, \ell)}=a$.

[^0]Example 7. In this example, we set $b=3$ and $w=22000112 \in L_{3}$. Using the previous notation, we have $M=4, a_{1}=2, a_{2}=0, a_{3}=1$ and $a_{4}=2$. For instance, $\operatorname{Alph}(0)=\{0,1,2\}, \operatorname{Alph}(2)=\{1,2\}$ and $j(0,0)=2, j(1,0)=3, j(2,0)=1$ and $j(2,1)=4$.

The following result describes the structure of the tree $\mathcal{T}(w)$. It directly follows from the definition.
Proposition 8 ([16, Proposition 27]). Let w be a finite word in L_{b}. With the above notation about M and the subtrees T_{ℓ}, the tree $\mathcal{T}(w)$ has the following properties.

1. The node of label ε has $\#(\operatorname{Alph}(0) \backslash\{0\})$ children that are a for $a \in \operatorname{Alph}(0) \backslash\{0\}$. Each child a is the root of a tree isomorphic $T_{j(a, 0)-1}$.
2. For each $\ell \in\{0, \ldots, M-1\}$ and each $i \in\left\{0, \ldots, n_{\ell+1}-1\right\}$ with $(\ell, i) \neq(0,0)$, the node of label $x=a_{1}^{n_{1}} \cdots a_{\ell}^{n_{\ell}} a_{\ell+1}^{i}$ has $\#(\operatorname{Alph}(\ell))$ children that are xa for $a \in \operatorname{Alph}(\ell)$. Each child xa with $a \neq a_{\ell+1}$ is the root of a tree isomorphic to $T_{j(a, \ell)-1}$.

Example 9. Let us continue Example 7. The tree $\mathcal{T}(22000112)$ is depicted in Figure 2 We use three different colors to represent the letters $0,1,2$. The tree T_{0} (resp., T_{1}; resp., T_{2}; resp., T_{3}) is the subtree of

Figure 2: The trie \mathcal{T} (22000112).
$\mathcal{T}(w)$ with root 2 (resp., $2^{2} 0$; resp., $2^{2} 0^{3} 1$; resp., $2^{2} 0^{3} 1^{2} 2$). These subtrees are represented in Figure 2 using dashed lines. The tree T_{3} is limited to a single node since the number of nodes of T_{M-1} is n_{M}, which is equal to 1 in this example.

Using tries of subwords, we prove the following five lemmas. Their proofs are essentially the same, so we only prove two of them.

Lemma 10. For each letter $x \in\{1, \ldots, b-1\}$ and each word $u \in\{0, \ldots, b-1\}^{*}$, we have

$$
\#\left\{v \in L_{b} \left\lvert\,\binom{ x 00 u}{v}>0\right.\right\}=2 \cdot \#\left\{v \in L_{b} \left\lvert\,\binom{ x 0 u}{v}>0\right.\right\}-\#\left\{v \in L_{b} \left\lvert\,\binom{ x u}{v}>0\right.\right\}
$$

Proof. Recall that from Remark 5, we need to prove that $\# \mathcal{T}(x 00 u)=2 \# \mathcal{T}(x 0 u)-\# \mathcal{T}(x u)$.
Assume first that u is of the form $u=0^{n}, n \geq 0$. The tree $\mathcal{T}(x u)$ is linear and has $n+2$ nodes, $\mathcal{T}(x 0 u)$ has $n+3$ nodes and $\mathcal{T}(x 00 u)$ has $n+4$ nodes. The formula holds.

Now suppose that u contains other letters than 0 . We let a_{1}, \ldots, a_{m} denote all the pairwise distinct letters of u different from 0 . They are implicitly ordered with respect to their first appearance in u. If

Figure 3: Schematic structure of the trees $\mathcal{T}(x 0 u), \mathcal{T}(x u)$ and $\mathcal{T}(x 00 u)$.
$x \in\left\{a_{1}, \ldots, a_{m}\right\}$, we let $i_{x} \in\{1, \ldots, m\}$ denote the index such that $a_{i_{x}}=x$. For all $i \in\{1, \ldots, m\}$, we let $u_{i} a_{i}$ denote the prefix of u that ends with the first occurrence of the letter a_{i} in u, and we let R_{i} denote the subtree of $\mathcal{T}(x u)$ with root $x u_{i} a_{i}$.

First, observe that the subtree T of $\mathcal{T}(x u)$ with root x is equal to the subtree of $\mathcal{T}(x 0 u)$ with root $x 0$ and also to the subtree of $\mathcal{T}(x 00 u)$ with root $x 00$.

Secondly, for all $i \in\{1, \ldots, m\}$, the subtree of $\mathcal{T}(x 0 u)$ with root $x a_{i}$ is R_{i}. Similarly, $\mathcal{T}(x 00 u)$ contains two copies of R_{i} : the subtrees of root $x a_{i}$ and $x 0 a_{i}$.

Finally, for all $i \in\{1, \ldots, m\}$ with $i \neq i_{x}$, the subtree of $\mathcal{T}(x 0 u)$ with root a_{i} is R_{i} and the subtree of $\mathcal{T}(x 00 u)$ with root a_{i} is R_{i}.

The situation is depicted in Figure 3 where we put a unique edge for several indices when necessary, e.g., the edge labeled by a_{i} stands for m edges labeled by a_{1}, \ldots, a_{m}. The claimed formula holds since

$$
2 \cdot\left(2+\# T+2 \sum_{\substack{1 \leq i \leq m \\ i \neq i_{x}}} \# R_{i}+\# R_{i_{x}}\right)-\left(1+\# T+\sum_{\substack{1 \leq i \leq m \\ i \neq i_{x}}} \# R_{i}\right)=3+\# T+3 \sum_{\substack{1 \leq i \leq m \\ i \neq i_{x}}} \# R_{i}+2 \# R_{i_{x}}
$$

Lemma 11. For each letter $x \in\{1, \ldots, b-1\}$ and each word $u \in\{0, \ldots, b-1\}^{*}$, we have

$$
\#\left\{v \in L_{b} \left\lvert\,\binom{ x x 0 u}{v}>0\right.\right\}=\#\left\{v \in L_{b} \left\lvert\,\binom{ x 0 u}{v}>0\right.\right\}+\#\left\{v \in L_{b} \left\lvert\,\binom{ x u}{v}>0\right.\right\}
$$

Proof. The proof is similar to the proof of Lemma 10 .
Lemma 12. For all letters $x, y \in\{1, \ldots, b-1\}$ and each word $u \in\{0, \ldots, b-1\}^{*}$, we have

$$
\#\left\{v \in L_{b} \left\lvert\,\binom{ x 0 y u}{v}>0\right.\right\}=\#\left\{v \in L_{b} \left\lvert\,\binom{ x y u}{v}>0\right.\right\}+\#\left\{v \in L_{b} \left\lvert\,\binom{ y u}{v}>0\right.\right\}
$$

Proof. The proof is similar to the proof of Lemma 10 . Observe that one needs to divide the proof into two cases according to whether x is equal to y or not. As a first case, also consider $u=y^{n}$ with $n \geq 0$ instead of $u=0^{n}$ with $n \geq 0$.

Lemma 13. For all letters $x, y \in\{1, \ldots, b-1\}$ and each word $u \in\{0, \ldots, b-1\}^{*}$, we have

$$
\#\left\{v \in L_{b} \left\lvert\,\binom{ x x y u}{v}>0\right.\right\}=2 \cdot \#\left\{v \in L_{b} \left\lvert\,\binom{ x y u}{v}>0\right.\right\}-\#\left\{v \in L_{b} \left\lvert\,\binom{ y u}{v}>0\right.\right\} .
$$

Proof. The proof is similar to the proof of Lemma 12 .
The next lemma having a slightly more technical proof, we present it.
Lemma 14. For all letters $x, y \in\{1, \ldots, b-1\}$ with $x \neq y, z \in\{0, \ldots, b-1\}$ and each word $u \in$ $\{0, \ldots, b-1\}^{*}$, we have

$$
\begin{aligned}
\#\left\{v \in L_{b} \left\lvert\,\binom{ x y z u}{v}>0\right.\right\}= & \#\left\{v \in L_{b} \left\lvert\,\binom{ x z u}{v}>0\right.\right\}+2 \cdot \#\left\{v \in L_{b} \left\lvert\,\binom{ y z u}{v}>0\right.\right\} \\
& -2 \cdot \#\left\{v \in L_{b} \left\lvert\,\binom{ z u}{v}>0\right.\right\}
\end{aligned}
$$

Proof. Let $x, y \in\{1, \ldots, b-1\}$ with $x \neq y, z \in\{0, \ldots, b-1\}$, and let $u \in\{0, \ldots, b-1\}^{*}$. Our reasoning is again based on the structure of the associated trees. The proof is divided into two cases depending on the fact that $z=0$ or not.

- As a first case, suppose that $z \neq 0$. Now assume that u is of the form $u=z^{n}, n \geq 0$. If $x \neq z$ and $y \neq z$, the tree $\mathcal{T}(z u)$ is linear and has $n+2$ nodes, $\mathcal{T}(x z u)$ and $\mathcal{T}(y z u)$ have $2(n+2)$ nodes and $\mathcal{T}(x y z u)$ has $4(n+2)$ nodes and the claimed formula holds. If $x \neq z$ and $y=z$, the tree $\mathcal{T}(z u)$ is linear and has $n+2$ nodes, $\mathcal{T}(x z u)$ has $2(n+2)$ nodes, $\mathcal{T}(y z u)$ has $n+3$ nodes and $\mathcal{T}(x y z u)$ has $2(n+3)$ nodes and the claimed formula holds. If $x=z$ and $y \neq z$, the tree $\mathcal{T}(z u)$ is linear and has $n+2$ nodes, $\mathcal{T}(x z u)$ has $n+3$ nodes, $\mathcal{T}(y z u)$ has $2(n+2)$ nodes and $\mathcal{T}(x y z u)$ has $3(n+2)+1$ nodes and the claimed formula holds.

Now suppose that u contains other letters than z. We let a_{1}, \ldots, a_{m} denote all the pairwise distinct letters of u different from z. They are implicitly ordered with respect to their first appearance in u. If $x, y, 0 \in\left\{a_{1}, \ldots, a_{m}\right\}$, we let $i_{x}, i_{y}, i_{0} \in\{1, \ldots, m\}$ respectively denote the indices such that $a_{i_{x}}=x, a_{i_{y}}=y$ and $a_{i_{0}}=0$. For all $i \in\{1, \ldots, m\}$, we let $u_{i} a_{i}$ denote the prefix of u that ends with the first occurrence of the letter a_{i} in u, and we let R_{i} denote the subtree of $\mathcal{T}(z u)$ with root $z u_{i} a_{i}$.

First, observe that the subtree T of $\mathcal{T}(z u)$ with root z is equal to the subtree of $\mathcal{T}(x z u)$ with root $x z$, to the subtree of $\mathcal{T}(y z u)$ with root $y z$ and also to the subtree of $\mathcal{T}(x y z u)$ with root $x y z$.

Suppose that $x \neq z$ and $y \neq z$. Using the same reasoning as in the proof of Lemma 10 , the situation is depicted in Figure 4. The claimed formula holds since

$$
\begin{aligned}
& \left(2+2 \# T+2 \sum_{\substack{1 \leq i \leq m \\
i \neq i_{x}, i_{y}, i_{0}}} \# R_{i}+\# R_{i_{x}}+2 \# R_{i_{y}}+\# R_{i_{0}}\right) \\
& +2 \cdot\left(2+2 \# T+2 \sum_{\substack{1 \leq i \leq m \\
i \neq i_{x}, i_{y}, i_{0}}} \# R_{i}+2 \# R_{i_{x}}+\# R_{i_{y}}+\# R_{i_{0}}\right) \\
& -2 \cdot\left(1+\# T+\sum_{\substack{1 \leq i \leq m \\
i \neq i_{x}, i_{y}, i_{0}}} \# R_{i}+\# R_{i_{x}}+\# R_{i_{y}}\right) \\
& =4+4 \# T+4 \sum_{\substack{1 \leq i \leq m \\
i \neq i_{x}, i_{y}, i_{0}}} \# R_{i}+3 \# R_{i_{x}}+2 \# R_{i_{y}}+3 \# R_{i_{0}}
\end{aligned}
$$

Figure 4: Schematic structure of the trees $\mathcal{T}(x z u), \mathcal{T}(y z u), \mathcal{T}(z u)$ and $\mathcal{T}(x y z u)$ when $x \neq z, y \neq z$ and $z \neq 0$.

Figure 5: Schematic structure of the trees $\mathcal{T}(x z u), \mathcal{T}(y z u), \mathcal{T}(z u)$ and $\mathcal{T}(x y z u)$ when $x \neq z, y=z$ and $z \neq 0$.

Figure 6: Schematic structure of the trees $\mathcal{T}(x z u), \mathcal{T}(y z u), \mathcal{T}(z u)$ and $\mathcal{T}(x y z u)$ when $x=z, y \neq z$ and $z \neq 0$.

Suppose that $x \neq z$ and $y=z$. The situation is depicted in Figure 5. The claimed formula holds since

$$
\begin{aligned}
& \left(2+2 \# T+2 \sum_{\substack{1 \leq i \leq m \\
i \neq i_{x}, i_{0}}} \# R_{i}+\# R_{i_{x}}+\# R_{i_{0}}\right) \\
& +2 \cdot\left(2+\# T+2 \sum_{\substack{1 \leq i \leq m \\
i \neq i_{x}, i_{0}}} \# R_{i}+2 \# R_{i_{x}}+\# R_{i_{0}}\right) \\
& -2 \cdot\left(1+\# T+\sum_{\substack{1 \leq i \leq m \\
i \neq i_{x}, i_{0}}} \# R_{i}+\# R_{i_{x}}\right) \\
& =4+2 \# T+4 \sum_{\substack{1 \leq i \leq m \\
i \neq i_{x}, i_{0}}} \# R_{i}+3 \# R_{i_{x}}+3 \# R_{i_{0}} .
\end{aligned}
$$

Suppose that $x=z$ and $y \neq z$. The situation is depicted in Figure 6. The claimed formula holds since

Figure 7: Schematic structure of the trees $\mathcal{T}(x 0 u), \mathcal{T}(y 0 u), \mathcal{T}\left(\operatorname{rep}_{b}\left(\operatorname{val}_{b}(u)\right)\right)$ and $\mathcal{T}(x y 0 u)$.

$$
\begin{aligned}
& \left(2+\# T+2 \sum_{\substack{1 \leq i \leq m \\
i \neq i_{y}, i_{0}}} \# R_{i}+2 \# R_{i_{y}}+\# R_{i_{0}}\right) \\
& +2 \cdot\left(2+2 \# T+2 \sum_{\substack{1 \leq i \leq m \\
i \neq i_{y}, i_{0}}} \# R_{i}+\# R_{i_{y}}+\# R_{i_{0}}\right) \\
& -2 \cdot\left(1+\# T+\sum_{\substack{1 \leq i \leq m \\
i \neq i_{y}, i_{0}}} \# R_{i}+\# R_{i_{y}}\right) \\
& =4+3 \# T+4 \sum_{\substack{1 \leq i \leq m \\
i \neq i_{y}, i_{0}}} \# R_{i}+2 \# R_{i_{y}}+3 \# R_{i_{0}}
\end{aligned}
$$

- As a second case, suppose that $z=0$. Then, by convention, leading zeroes are not allowed in base- b expansions and we must prove that the following formula holds

$$
\begin{aligned}
\#\left\{v \in L_{b} \left\lvert\,\binom{ x y 0 u}{v}>0\right.\right\}= & \#\left\{v \in L_{b} \left\lvert\,\binom{ x 0 u}{v}>0\right.\right\}+2 \cdot \#\left\{v \in L_{b} \left\lvert\,\binom{ y 0 u}{v}>0\right.\right\} \\
& -2 \cdot \#\left\{v \in L_{b} \left\lvert\,\binom{\operatorname{rep}_{b}\left(\operatorname{val}_{b}(u)\right)}{v}>0\right.\right\}
\end{aligned}
$$

It is useful to note that $\operatorname{rep}_{b}\left(\operatorname{val}_{b}(\cdot)\right):\{0, \ldots, b-1\}^{*} \mapsto L_{b}$ plays a normalization role. It removes leading zeroes.

If $u=0^{n}$, with $n \geq 0$, then $\operatorname{rep}_{b}\left(\operatorname{val}_{b}(u)\right)=\varepsilon$ and the tree $\mathcal{T}\left(\operatorname{rep}_{b}\left(\operatorname{val}_{b}(u)\right)\right)$ has only one node. The trees $\mathcal{T}(x 0 u)$ and $\mathcal{T}(y 0 u)$ both have $n+3$ nodes and the tree $\mathcal{T}(x y 0 u)$ has $3(n+2)+1$ nodes and the claimed formula holds.

Now suppose that u contains other letters than 0 . We let a_{1}, \ldots, a_{m} denote all the pairwise distinct letters of u different from 0 . They are implicitly ordered with respect to their first appearance in u. If $x, y \in\left\{a_{1}, \ldots, a_{m}\right\}$, we let $i_{x}, i_{y} \in\{1, \ldots, m\}$ respectively denote the indices such that $a_{i_{x}}=x$ and $a_{i_{y}}=y$. For all $i \in\{1, \ldots, m\}$, we let $u_{i}^{\prime} a_{i}$ denote the prefix of $\operatorname{rep}_{b}\left(\operatorname{val}_{b}(u)\right)$ that ends with the first occurrence of the letter a_{i} in $\operatorname{rep}_{b}\left(\operatorname{val}_{b}(u)\right)$, and we let R_{i} denote the subtree of $\mathcal{T}\left(\operatorname{rep}_{b}\left(\operatorname{val}_{b}(u)\right)\right)$ with root $u_{i}^{\prime} a_{i}$.

The situation is depicted in Figure 7. Observe that the subtree T of $\mathcal{T}(y 0 u)$ with root $y 0$ is equal to the subtree of $\mathcal{T}(x 0 u)$ with root $x 0$ and to the subtree of $\mathcal{T}(x y 0 u)$ with root $x y 0$. The claimed formula holds since

$$
\begin{aligned}
& \left(2+\# T+2 \sum_{\substack{1 \leq i \leq m \\
i \neq i_{x}, i_{y}}} \# R_{i}+\# R_{i_{x}}+2 \# R_{i_{y}}\right) \\
& +2 \cdot\left(2+\# T+2 \sum_{\substack{1 \leq i \leq m \\
i \neq i_{x}, i_{y}}} \# R_{i}+2 \# R_{i_{x}}+\# R_{i_{y}}\right) \\
& -2 \cdot\left(1+\sum_{\substack{1 \leq i \leq m \\
i \neq i_{x}, i_{y}}} \# R_{i}+\# R_{i_{x}}+\# R_{i_{y}}\right) \\
& =4+3 \# T+4 \sum_{\substack{1 \leq i \leq m \\
i \neq i_{x}, i_{y}}} \# R_{i}+3 \# R_{i_{x}}+2 \# R_{i_{y}}
\end{aligned}
$$

Those five lemmas can be translated into recurrence relations satisfied by the sequence $\left(S_{b}(n)\right)_{n \geq 0}$ using Definition 1 ,

Proof of Proposition 3. The first part is clear using Table 1 Let $x, y \in\{1, \ldots, b-1\}$ with $x \neq y$. Proceed by induction on $\ell \geq 1$.

Let us first prove (22). If $\ell=1$, then $r=0$ and (2) follows from Table 1 Now suppose that $\ell \geq 2$ and assume that 2 holds for all $\ell^{\prime}<\ell$. Let $r \in\left\{0, \ldots, b^{\ell-1}-1\right\}$, and let u be a word in $\{0, \ldots, b-1\}^{*}$ such that $|u| \geq 1$ and $\operatorname{rep}_{b}\left(x b^{\ell}+r\right)=x 0 u$. The proof is divided into two parts according to the first letter of u. If $u=0 u^{\prime}$ with $u^{\prime} \in\{0, \ldots, b-1\}^{*}$, then

$$
\begin{array}{rlrl}
S_{b}\left(x b^{\ell}+r\right) & =2 S_{b}\left(x b^{\ell-1}+r\right)-S_{b}\left(x b^{\ell-2}+r\right) & & \text { (by Lemma } 10 \text {) } \\
& =2\left(S_{b}\left(x b^{\ell-2}+r\right)+S_{b}(r)\right)-S_{b}\left(x b^{\ell-2}+r\right) & & \text { (by induction hypothesis) } \\
& =S_{b}\left(x b^{\ell-2}+r\right)+S_{b}(r)+S_{b}(r) & & \\
& =S_{b}\left(x b^{\ell-1}+r\right)+S_{b}(r), & \text { (by induction hypothesis) }
\end{array}
$$

which proves (2). Now if $u=z u^{\prime}$ with $z \in\{1, \ldots, b-1\}$ and $u^{\prime} \in\{0, \ldots, b-1\}^{*}$, then (2) directly follows from Definition 1 and Lemma 12 .

Let us prove (3). If $\ell=1$, then $r=0$ and (2) follows from Table 1. Now suppose that $\ell \geq 2$ and assume that (3) holds for all $\ell^{\prime}<\ell$. Let $r \in\left\{0, \ldots, b^{\ell-1}-1\right\}$, and let u be a word in $\{0, \ldots, b-1\}^{*}$ such that $|u| \geq 1$ and $\operatorname{rep}_{b}\left(x b^{\ell}+x b^{\ell-1}+r\right)=x x u$. The proof is divided into two parts according to the first letter of u. If $u=0 u^{\prime}$ with $u^{\prime} \in\{0, \ldots, b-1\}^{*}$, then

$$
\begin{array}{rlr}
S_{b}\left(x b^{\ell}+x b^{\ell-1}+r\right) & =S_{b}\left(x b^{\ell-1}+r\right)+S_{b}\left(x b^{\ell-2}+r\right) & \text { (by Lemma 11) } \\
& \left.=S_{b}\left(x b^{\ell-2}+r\right)+S_{b}(r)\right)+S_{b}\left(x b^{\ell-2}+r\right) & \text { (using (2)) } \\
& =2\left(S_{b}\left(x b^{\ell-2}+r\right)+S_{b}(r)\right)-S_{b}(r) & \\
& =2 S_{b}\left(x b^{\ell-1}+r\right)-S_{b}(r) & \text { (using (2)) }
\end{array}
$$

which proves (3). Now if $u=z u^{\prime}$ with $z \in\{1, \ldots, b-1\}$ and $u^{\prime} \in\{0, \ldots, b-1\}^{*}$, then (3) directly follows from Definition 1 and Lemma 13 .

Let us finally prove (4). If $\ell=1$, then $r=0$ and (2) follows from Table 1. Now suppose that $\ell \geq 2$ and assume that (4) holds for all $\ell^{\prime}<\ell$. Let $r \in\left\{0, \ldots, b^{\ell-1}-1\right\}$, let z be a letter of $\{1, \ldots, b-1\}$ and let u be a word in $\{0, \ldots, b-1\}^{*}$ such that $\operatorname{rep}_{b}\left(x b^{\ell}+y b^{\ell-1}+r\right)=x y z u$. Using Definition 1 and Lemma 14 we directly have that

$$
S_{b}\left(x b^{\ell}+y b^{\ell-1}+r\right)=S_{b}\left(x b^{\ell-1}+r\right)+S_{b}\left(y b^{\ell-1}+r\right)-2 S_{b}(r)
$$

which proves (4).

3 Regularity of the sequence $\left(S_{b}(n)\right)_{n \geq 0}$

The sequence $\left(S_{2}(n)\right)_{n \geq 0}$ is shown to be 2-regular; see [16]. We recall that the b-kernel of a sequence $s=(s(n))_{n \geq 0}$ is the set

$$
\mathcal{K}_{b}(s)=\left\{\left(s\left(b^{i} n+j\right)\right)_{n \geq 0} \mid i \geq 0 \text { and } 0 \leq j<b^{i}\right\} .
$$

A sequence $s=(s(n))_{n \geq 0} \in \mathbb{Z}^{\mathbb{N}}$ is b-regular if there exists a finite number of sequences $\left(t_{1}(n)\right)_{n \geq 0}, \ldots$, $\left(t_{\ell}(n)\right)_{n \geq 0}$ such that every sequence in the \mathbb{Z}-module $\left\langle\mathcal{K}_{b}(s)\right\rangle$ generated by the b-kernel $\mathcal{K}_{b}(s)$ is a \mathbb{Z}-linear combination of the t_{r} 's. In this section, we prove that the sequence $\left(S_{b}(n)\right)_{n \geq 0}$ is b-regular. As a consequence, one can get matrices to compute $S_{b}(n)$ in a number of matrix multiplications proportional to $\log _{b}(n)$. To prove the b-regularity of the sequence $\left(S_{b}(n)\right)_{n \geq 0}$ for any base b, we first need a lemma involving some matrix manipulations.

Lemma 15. Let I and 0 respectively be the identity matrix of size $b^{2} \times b^{2}$ and the zero matrix of size $b^{2} \times b^{2}$. Let M_{b} be the block-matrix of size $b^{3} \times b^{3}$

$$
M_{b}:=\left(\begin{array}{ccccccc}
I & I & 2 I & \ldots & \cdots & \cdots & 2 I \\
2 I & 3 I & 3 I & 4 I & \cdots & \cdots & 4 I \\
\vdots & \vdots & 4 I & \ddots & \ddots & & \vdots \\
\vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \vdots & \vdots & & \ddots & \ddots & 4 I \\
\vdots & \vdots & \vdots & & & \ddots & 3 I \\
2 I & 3 I & 4 I & \ldots & \cdots & \cdots & 4 I
\end{array}\right)
$$

This matrix is invertible and its inverse is given by

$$
M_{b}^{-1}:=\left(\begin{array}{cccccc}
3 I & 2 I & \cdots & \cdots & 2 I & -(2 b-3) I \\
-2 I & 0 & \cdots & \cdots & 0 & I \\
0 & -I & \ddots & & \vdots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\
\vdots & & \ddots & \ddots & 0 & \vdots \\
0 & \cdots & \cdots & 0 & -I & I
\end{array}\right)
$$

For the proof of the previous lemma, simply proceed to the multiplication of the two matrices. Using this lemma, we prove that the sequence $\left(S_{b}(n)\right)_{n \geq 0}$ is b-regular.

Theorem 16. For all $r \in\left\{0, \ldots, b^{2}-1\right\}$, we have

$$
\begin{equation*}
S_{b}\left(n b^{2}+r\right)=a_{r} S_{b}(n)+\sum_{s=0}^{b-2} c_{r, s} S_{b}(n b+s) \quad \forall n \geq 0 \tag{5}
\end{equation*}
$$

where the coefficients a_{r} and $c_{r, s}$ are unambiguously determined by the first few values $S_{b}(0), S_{b}(1), \ldots$, $S_{b}\left(b^{3}-1\right)$ and given in Table 2, Table 3 and Table 4 . In particular, the sequence $\left(S_{b}(n)\right)_{n \geq 0}$ is b-regular. Moreover, a choice of generators for $\left\langle\mathcal{K}_{b}(s)\right\rangle$ is given by the b sequences $\left(S_{b}(n)\right)_{n \geq 0},\left(S_{b}(b n)\right)_{n \geq 0},\left(S_{b}(b n+\right.$ 1) $)_{n \geq 0}, \ldots,\left(S_{b}(b n+b-2)\right)_{n \geq 0}$.

Proof. We proceed by induction on $n \geq 0$. For the base case $n \in\left\{0,1, \ldots, b^{2}-1\right\}$, we first compute the coefficients a_{r} and $c_{r, s}$ using the values of $S_{b}\left(n b^{2}+r\right)$ for $n \in\{0, \ldots, b-1\}$ and $r \in\left\{0, \ldots, b^{2}-1\right\}$. Then we show that 5 also holds with these coefficients for $n \in\left\{b, \ldots, b^{2}-1\right\}$.

$\operatorname{rep}_{b}(r)$	ε	x	$b-1$	$x 0$	$(b-1) 0$	$x x$	$(b-1)(b-1)$	$x y$	$(b-1) x$	$x(b-1)$
a_{r}	-1	-2	$2 b-3$	-2	$4 b-4$	-1	$4 b-3$	-2	$4 b-4$	$2 b-3$

Table 2: Values of a_{r} for $0 \leq r<b^{2}$ with $x, y \in\{1, \ldots, b-2\}$ and $x \neq y$.

$\operatorname{rep}_{b}(r)$	ε	x	$b-1$	$x 0$	$(b-1) 0$	$x x$	$(b-1)(b-1)$	$x y$	$(b-1) x$	$x(b-1)$
$c_{r, 0}$	2	2	1	1	-1	0	-2	0	-2	-1

Table 3: Values of $c_{r, 0}$ for $0 \leq r<b^{2}$ with $x, y \in\{1, \ldots, b-2\}$ and $x \neq y$.

Base case. Let I denote the identity matrix of size $b^{2} \times b^{2}$. The system of b^{3} equations (5) when $n \in\{0, \ldots, b-1\}$ and $r \in\left\{0, \ldots, b^{2}-1\right\}$ can be written as $M X=V$ where the matrix $M \in \mathbb{Z}_{b^{3}}^{b^{3}}$ is equal to

$$
\left(\begin{array}{cccccc}
S_{b}(0) I & S_{b}(0) I & S_{b}(1) I & S_{b}(2) I & \cdots & S_{b}(b-2) I \\
S_{b}(1) I & S_{b}(b) I & S_{b}(b+1) I & S_{b}(b+2) I & \cdots & S_{b}(2 b-2) I \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
S_{b}(b-1) I & S_{b}(b(b-1)) I & S_{b}(b(b-1)+1) I & S_{b}(b(b-1)+2) I & \cdots & S_{b}(b(b-1)+b-2) I
\end{array}\right)
$$

and the vectors $X, V \in \mathbb{Z}^{b^{3}}$ are respectively given by

$$
\left.\begin{array}{rl}
X^{\top} & =\left(\begin{array}{llllllllll}
a_{0} & \cdots & a_{b^{2}-1} & c_{0,0} & c_{1,0} & \cdots & c_{b^{2}-1,0} & \cdots & c_{0, b-2} & c_{1, b-2}
\end{array} \cdots\right. \\
c_{b^{2}-1, b-2}
\end{array}\right), ~\left(\begin{array}{llllll}
S_{b}(0) & S_{b}(1) & \cdots & S_{b}\left(b^{3}-1\right) & .
\end{array}\right)
$$

Observe that in the vector X, the coefficients $c_{r, s}$ are first sorted by s then by r. Using Table 1, the matrix M is equal to the matrix M_{b} of Lemma 15. By this lemma, the previous system has a unique solution given by $X=M_{b}^{-1} V$. Consequently, using Lemma 15, we have, for all $r \in\left\{0, \ldots, b^{2}-1\right\}$ and all $s \in\{1, \ldots, b-2\}$,

$$
\begin{aligned}
a_{r} & =3 S_{b}(r)+2 \sum_{j=1}^{b-2} S_{b}\left(j b^{2}+r\right)-(2 b-3) S_{b}\left((b-1) b^{2}+r\right), \\
c_{r, 0} & =-2 S_{b}(r)+S_{b}\left((b-1) b^{2}+r\right) \\
c_{r, s} & =-S_{b}\left(s b^{2}+r\right)+S_{b}\left((b-1) b^{2}+r\right)
\end{aligned}
$$

The values of the coefficients can then be computed using Table 1 and are stored in Table 2 , Table 3 and Table 4

For $n \in\left\{b, \ldots, b^{2}-1\right\}$, the values of $S_{b}\left(n b^{2}+r\right)$ are given in Table 5. Table 6 and Table 7 according to whether $\operatorname{rep}_{b}(n)$ is of the form $x 0, x x$ or $x y$ with $x \neq y$. The proof that (5) holds for each $n \in\left\{b, \ldots, b^{2}-1\right\}$ only requires easy computations that are left to the reader.

$\operatorname{rep}_{b}(r)$	ε	x		$b-1$	$x 0$		$(b-1) 0$	$x x$	
s	z	x	z	z	x	z	z	x	z
$c_{r, s}$	0	1	0	-1	2	0	-2	2	0

$\operatorname{rep}_{b}(r)$	$(b-1)(b-1)$	$x y$			$x(b-1)$		$(b-1) x$	
s	z	x	y	z	x	z	x	z
$c_{r, s}$	-2	2	1	0	1	-1	-1	-2

Table 4: Values of $c_{r, s}$ for $0 \leq r<b^{2}$ and $1 \leq s \leq b-2$ with $x, y, z \in\{1, \ldots, b-2\}$ pairwise distinct.

$\operatorname{rep}_{b}(r)$	ε	x	y	$x 0$	$y 0$	$x x$	$y y$	$x y$	$y x$	$y z$
$S_{b}\left(n b^{2}+r\right)$	5	7	8	8	10	7	9	10	11	12

Table 5: Values of $S_{b}\left(n b^{2}+r\right)$ for $b \leq n<b^{2}$ with $^{\operatorname{rep}}(n)=x 0$ and $x, y, z \in\{1, \ldots, b-1\}$ pairwise distinct.

$\mathrm{rep}_{b}(r)$	ε	x	y	$x 0$	$y 0$	$x x$	$y y$	$x y$	$y x$	$y z$
$S_{b}\left(n b^{2}+r\right)$	7	8	10	7	11	5	9	8	10	12

Table 6: Values of $S_{b}\left(n b^{2}+r\right)$ for $b \leq n<b^{2}$ with $\operatorname{rep}_{b}(n)=x x$ and $x, y, z \in\{1, \ldots, b-1\}$ pairwise distinct.

Inductive step. Consider $n \geq b^{2}$ and suppose that the relation (5) holds for all $m<n$. Then $\left|\operatorname{rep}_{b}(n)\right| \geq 3$. Like for the base case, we need to consider several cases according to the form of the base- b expansion of n. More precisely, we need to consider the following five forms, where $u \in\{0, \ldots, b-1\}^{*}$, $x, y, z \in\{1, \ldots, b-1\}, x \neq z$, and $t \in\{0, \ldots, b-1\}:$

$$
x 00 u \text { or } x x 0 u \text { or } x 0 y u \text { or } x x y u \text { or } x z t u \text {. }
$$

Let us focus on the first form of $\operatorname{rep}_{b}(n)$ since the same reasoning can be applied for the other ones. Assume that $\operatorname{rep}_{b}(n)=x 00 u$ where $x \in\{1, \ldots, b-1\}$ and $u \in\{0, \ldots, b-1\}^{*}$. For all $r \in\left\{0, \ldots, b^{2}-1\right\}$, there exist $r_{1}, r_{2} \in\{0, \ldots, b-1\}$ such that $\operatorname{val}_{b}\left(r_{1} r_{2}\right)=r$. We have

$$
\begin{array}{rlr}
S_{b}\left(n b^{2}+r\right)= & S_{b}\left(\operatorname{val}_{b}\left(x 00 u r_{1} r_{2}\right)\right) & \\
= & 2 S_{b}\left(\operatorname{val}_{b}\left(x 0 u r_{1} r_{2}\right)\right)-S_{b}\left(\operatorname{val}_{b}\left(x \operatorname{var}_{1} r_{2}\right)\right) & \\
= & a_{r} 2 S_{b}\left(\operatorname{val}_{b}(x 0 u)\right)+\sum_{s-2}^{b-2} c_{r, s} 2 S_{b}\left(\operatorname{val}_{b}(x 0 u s)\right) & \text { (by Lemma } 10) \\
& -a_{r} S_{b}\left(\operatorname{val}_{b}(x u)\right)-\sum_{s=0}^{b=0} c_{r, s} S_{b}\left(\operatorname{val}_{b}(x u s)\right) & \\
= & a_{r} S_{b}\left(\operatorname{val}_{b}(x 00 u)\right)+\sum_{s=0}^{b-2} c_{r, s} S_{b}\left(\operatorname{val}_{b}(x 00 u s)\right) & \text { (by induction hypothesis) } \\
= & a_{r} S_{b}(n)+\sum_{s=0}^{b-2} c_{r, s} S_{b}(n b+s), & \text { (by Lemma 10) }) \\
\text { (by Lemma 10) }
\end{array}
$$

which proves (5).
b-regularity. From the first part of the proof, we directly deduce that the \mathbb{Z}-module $\left\langle\mathcal{K}_{b}\left(S_{b}\right)\right\rangle$ is generated by the $(b+1)$ sequences

$$
\left(S_{b}(n)\right)_{n \geq 0},\left(S_{b}(b n)\right)_{n \geq 0},\left(S_{b}(b n+1)\right)_{n \geq 0}, \ldots,\left(S_{b}(b n+b-1)\right)_{n \geq 0}
$$

We now show that we can reduce the number of generators. To that aim, we prove that

$$
\begin{equation*}
S_{b}(n b+b-1)=(2 b-1) S_{b}(n)-\sum_{s=0}^{b-2} S_{b}(n b+s) \quad \forall n \geq 0 \tag{6}
\end{equation*}
$$

We proceed by induction on $n \geq 0$. As a base case, the proof that (6) holds for each $n \in\left\{b, \ldots, b^{2}-1\right\}$ only requires easy computations that are left to the reader (using Table 11). Now consider $n \geq b^{2}$ and suppose that the relation (6) holds for all $m<n$. Then $\left|\operatorname{rep}_{b}(n)\right| \geq 3$. Mimicking the first induction step of this proof, we need to consider several cases according to the form of the base- b expansion of n. More precisely, we need to consider the following five forms, where $u \in\{0, \ldots, b-1\}^{*}, x, y, z \in\{1, \ldots, b-1\}, x \neq z$, and $t \in\{0, \ldots, b-1\}:$

$$
x 00 u \text { or } x x 0 u \text { or } x 0 y u \text { or } x x y u \text { or } x z t u \text {. }
$$

$\operatorname{rep}_{b}(r)$	ε	x	y	z	$x 0$	$y 0$	$z 0$	$x x$	$y y$	$z z$	$x y$	$x z$	$y x$	$y z$	$z x$	$z y$	$z t$
$S_{b}\left(n b^{2}+r\right)$	10	13	12	14	13	11	15	10	8	12	12	14	11	12	15	14	16

Table 7: Values of $S_{b}\left(n b^{2}+r\right)$ for $b \leq n<b^{2}$ with $\operatorname{rep}_{b}(n)=x y$ and $x, y, z, t \in\{1, \ldots, b-1\}$ pairwise distinct.

Let us focus on the first form of $\operatorname{rep}_{b}(n)$ since the same reasoning can be applied for the other ones. Assume that $\operatorname{rep}_{b}(n)=x 00 u$ where $x \in\{1, \ldots, b-1\}$ and $u \in\{0, \ldots, b-1\}^{*}$. We have

$$
\begin{array}{rlr}
S_{b}(n b+b-1)= & S_{b}\left(\operatorname{val}_{b}(x 00 u(b-1))\right) & \\
= & 2 S_{b}\left(\operatorname{val}_{b}(x 0 u(b-1))\right)-S_{b}\left(\operatorname{val}_{b}(x u(b-1))\right) & \text { (by Lemma } 10 \text {) } \\
= & (2 b-1) 2 S_{b}\left(\operatorname{val}_{b}(x 0 u)\right)-\sum_{s-2}^{b-2} 2 S_{b}\left(\operatorname{val}_{b}(x 0 u s)\right) & \\
& -(2 b-1) S_{b}\left(\operatorname{val}_{b}(x u)\right)+\sum_{s=0}^{b-2} S_{b}\left(\operatorname{val}_{b}(x u s)\right) & \text { (by induction hypothesis) } \\
= & (2 b-1) S_{b}\left(\operatorname{val}_{b}(x 00 u)\right)-\sum_{s=0}^{b-2} S_{b}\left(\operatorname{val}_{b}(x 00 u s)\right) & \text { (by Lemma 10) } \\
= & (2 b-1) S_{b}(n)-\sum_{s=0}^{b-2} S_{b}(n b+s), & \text { (by Lemma } 10 \text {) }
\end{array}
$$

which proves (5).
The \mathbb{Z}-module $\left\langle\mathcal{K}_{b}\left(S_{b}\right)\right\rangle$ is thus generated by the b sequences

$$
\left(S_{b}(n)\right)_{n \geq 0},\left(S_{b}(b n)\right)_{n \geq 0},\left(S_{b}(b n+1)\right)_{n \geq 0}, \ldots,\left(S_{b}(b n+b-2)\right)_{n \geq 0}
$$

Example 17. Let $b=2$. Using Table 2, Table 3 and Table 4, we find that $a_{0}=-1, a_{1}=1, a_{2}=4, a_{3}=5$, $c_{0,0}=2, c_{1,0}=1, c_{2,0}=-1$ and $c_{3,0}=-2$. In this case, there are no $c_{r, s}$ with $s>0$. Applying Theorem 16 and from (6), we get

$$
\begin{aligned}
S_{2}(2 n+1) & =3 S_{2}(n)-S_{2}(2 n) \\
S_{2}(4 n) & =-S_{2}(n)+2 S_{2}(2 n) \\
S_{2}(4 n+1) & =S_{2}(n)+S_{2}(2 n) \\
S_{2}(4 n+2) & =4 S_{2}(n)-S_{2}(2 n) \\
S_{2}(4 n+3) & =5 S_{2}(n)-2 S_{2}(2 n)
\end{aligned}
$$

for all $n \geq 0$. This result is a rewriting of [16, Theorem 21]. Observe that the third and the fifth identities are redundant: they follow from the other ones.
Example 18. Let $b=3$. Using Table 2, Table 3 and Table 4, the values of the coefficients $a_{r}, c_{r, 0}$ and $c_{r, 1}$ can be found in Table 8 . Applying Theorem 16 and from (6), we get

r	0	1	2	3	4	5	6	7	8
a_{r}	-1	-2	3	-2	-1	3	8	8	9
$c_{r, 0}$	2	2	1	1	0	-1	-1	-2	-2
$c_{r, 1}$	0	1	-1	2	2	1	-2	-1	-2

Table 8: The values of $a_{r}, c_{r, 0}, c_{r, 1}$ when $b=3$ and $r \in\{0, \ldots, 8\}$.

$$
\begin{aligned}
S_{3}(3 n+2) & =5 S_{3}(n)-S_{3}(3 n)-S_{3}(3 n+1) \\
S_{3}(9 n) & =-S_{3}(n)+2 S_{3}(3 n) \\
S_{3}(9 n+1) & =-2 S_{3}(n)+2 S_{3}(3 n)+S_{3}(3 n+1) \\
S_{3}(9 n+2) & =3 S_{3}(n)+S_{3}(3 n)-S_{3}(3 n+1) \\
S_{3}(9 n+3) & =-2 S_{3}(n)+S_{3}(3 n)+2 S_{3}(3 n+1) \\
S_{3}(9 n+4) & =-S_{3}(n)+2 S_{3}(3 n+1) \\
S_{3}(9 n+5) & =3 S_{3}(n)-S_{3}(3 n)+S_{3}(3 n+1) \\
S_{3}(9 n+6) & =8 S_{3}(n)-S_{3}(3 n)-2 S_{3}(3 n+1) \\
S_{3}(9 n+7) & =8 S_{3}(n)-2 S_{3}(3 n)-S_{3}(3 n+1) \\
S_{3}(9 n+8) & =9 S_{3}(n)-2 S_{3}(3 n)-2 S_{3}(3 n+1)
\end{aligned}
$$

for all $n \geq 0$. This result is a proof of [16, Conjecture 26]. Observe that the fourth, the seventh and the tenth identities are redundant.

Remark 19. Combining (5) and (6) yield $b^{2}+1$ identities to generate the \mathbb{Z}-module $\left\langle\mathcal{K}_{b}\left(S_{b}\right)\right\rangle$. However, as illustrated in Example 17 and Example 18, only $b^{2}-b+1$ identities are useful: the relations established for the sequences $\left(S_{b}\left(b^{2} n+b r+b-1\right)\right)_{n \geq 0}$, with $r \in\{0, \ldots, b-1\}$, can be deduced from the other identities.
Remark 20. Using Theorem 16 and (6) and the set of b generators of the \mathbb{Z}-module $\left\langle\mathcal{K}_{b}\left(S_{b}\right)\right\rangle$ being

$$
\left\{\left(S_{b}(n)\right)_{n \geq 0},\left(S_{b}(b n)\right)_{n \geq 0},\left(S_{b}(b n+1)\right)_{n \geq 0}, \ldots,\left(S_{b}(b n+b-2)\right)_{n \geq 0}\right\},
$$

we get matrices to compute $S_{b}(n)$ in a number of steps proportional to $\log _{b}(n)$. For all $n \geq 0$, let

$$
V_{b}(n)=\left(\begin{array}{c}
S_{b}(n) \\
S_{b}(b n) \\
S_{b}(b n+1) \\
\vdots \\
S_{b}(b n+b-2)
\end{array}\right) \in \mathbb{Z}^{b} .
$$

Consider the matrix-valued morphism $\mu_{b}:\{0,1, \ldots, b-1\}^{*} \rightarrow \mathbb{Z}_{b}^{b}$ defined, for all $s \in\{0, \ldots, b-2\}$, by

$$
\mu_{b}(s)=\left(\begin{array}{cccccccc}
0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\
a_{b s} & c_{b s, 0} & \cdots & c_{b s, s-1} & c_{b s, s} & c_{b s, s+1} & \cdots & c_{b s, b-2} \\
a_{b s+1} & c_{b s+1,0} & \cdots & c_{b s+1, s-1} & c_{b s+1, s} & c_{b s+1, s+1} & \cdots & c_{b s+1, b-2} \\
\vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\
a_{b s+b-2} & c_{b s+b-2,0} & \cdots & c_{b s+b-2, s-1} & c_{b s+b-2, s} & c_{b s+b-2, s+1} & \cdots & c_{b s+b-2, b-2}
\end{array}\right)
$$

and

$$
\mu_{b}(b-1)=\left(\begin{array}{ccccc}
(2 b-1) & -1 & -1 & \cdots & -1 \\
a_{b(b-1)} & c_{b(b-1), 0} & c_{b(b-1), 1} & \cdots & c_{b(b-1), b-2} \\
a_{b(b-1)+1} & c_{b(b-1)+1,0} & c_{b(b-1)+1,1} & \cdots & c_{b(b-1)+1, b-2} \\
\vdots & \vdots & \vdots & & \vdots \\
a_{b(b-1)+b-2} & c_{b(b-1)+b-2,0} & c_{b(b-1)+b-2,1} & \cdots & c_{b(b-1)+b-2, b-2}
\end{array}\right)
$$

Observe that the number of generators explains the size of the matrices above. For each $s \in\{0, \ldots, b-2\}$, exactly $b-1$ identities from Theorem 16 are used to define the matrix $\mu_{b}(s)$. If $s, s^{\prime} \in\{0, \ldots, b-2\}$ are such that $s \neq s^{\prime}$, then the relations used to define the matrices $\mu_{b}(s)$ and $\mu_{b}\left(s^{\prime}\right)$ are pairwise distinct. Finally, the first row of the matrix $\mu_{b}(b-1)$ is (6) and the other rows are $b-1$ identities from Theorem 16, which are distinct from the previous relations. Consequently, $(b-1)(b-1)+b$ identities are used, which corroborates Remark 19 .

Using the definition of the morphism μ, we can show that $V_{b}(b n+s)=\mu_{b}(s) V_{b}(n)$ for all $s \in\{0, \ldots, b-1\}$ and $n \geq 0$. Consequently, if $\operatorname{rep}_{b}(n)=n_{k} \cdots n_{0}$, then

$$
S_{b}(n)=\left(\begin{array}{llll}
1 & 0 & \cdots & 0
\end{array}\right) \mu_{b}\left(n_{0}\right) \cdots \mu_{b}\left(n_{k}\right) V_{b}(0)
$$

For example, when $b=2$, the matrices $\mu_{2}(0)$ and $\mu_{2}(1)$ are those given in [16, Corollary 22]. When $b=3$, we get

$$
\mu_{3}(0)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 2 & 0 \\
-2 & 2 & 1
\end{array}\right), \quad \mu_{3}(1)=\left(\begin{array}{ccc}
0 & 0 & 1 \\
-2 & 1 & 2 \\
-1 & 0 & 2
\end{array}\right), \quad \mu_{3}(2)=\left(\begin{array}{ccc}
5 & -1 & -1 \\
8 & -1 & -2 \\
8 & -2 & -1
\end{array}\right) .
$$

The class of b-synchronized sequences is intermediate between the classes of b-automatic sequences and b-regular sequences. These sequences were first introduced in 99 .

Proposition 21. The sequence $\left(S_{b}(n)\right)_{n \geq 0}$ is not b-synchronized.
Proof. The proof is exactly the same as [16, Proposition 24].
To conclude this section, the following result proves that the sequence $\left(S_{b}(n)\right)_{n \geq 0}$ has a partial palindromic structure as the sequence $\left(S_{2}(n)\right)_{n \geq 0}$; see [16]. For instance, the sequence $\left(S_{3}(n)\right)_{n \geq 0}$ is depicted in Figure 8 inside the interval $\left[2 \cdot 3^{4}, 3^{5}\right]$.

Figure 8: The sequence $\left(S_{3}(n)\right)_{n \geq 0}$ inside the interval $\left[2 \cdot 3^{4}, 3^{5}\right]$.
Proposition 22. Let u be a word in $\{0,1, \ldots, b-1\}^{*}$. Define \bar{u} by replacing in u every letter $a \in\{0,1, \ldots, b-$ $1\}$ by the letter $(b-1)-a \in\{0,1, \ldots, b-1\}$. Then

$$
\#\left\{v \in L_{b} \left\lvert\,\binom{(b-1) u}{v}>0\right.\right\}=\#\left\{v \in L_{b} \left\lvert\,\binom{(b-1) \bar{u}}{v}>0\right.\right\} .
$$

In particular, there exists a palindromic substructure inside of the sequence $\left(S_{b}(n)\right)_{n \geq 0}$, i.e., for all $\ell \geq 1$ and $0 \leq r<b^{\ell}$,

$$
S_{b}\left((b-1) \cdot b^{\ell}+r\right)=S_{b}\left((b-1) \cdot b^{\ell}+b^{\ell}-r-1\right) .
$$

Proof. The trees $\mathcal{T}((b-1) u)$ and $\mathcal{T}((b-1) \bar{u})$ are isomorphic. Indeed, on the one hand, each node of the form $(b-1) x$ in the first tree corresponds to the node $(b-1) \bar{x}$ in the second one and conversely. On the other hand, if there exist letters $a \in\{1, \ldots, b-2\}$ in the word $(b-1) u$, the position of the first letter a in the word $(b-1) u$ is equal to the position of the first letter $(b-1)-a$ in the word $(b-1) \bar{u}$ and conversely. Consequently, the node of the form $a x$ in the first tree corresponds to the node of the form $((b-1)-a) \bar{x}$ in the second tree and conversely.

For the special case, note that for every word z of length ℓ, there exists $r \in\left\{0, \ldots, b^{\ell}-1\right\}$ such that $\operatorname{rep}_{b}\left((b-1) \cdot b^{\ell}+r\right)=(b-1) z$ and

$$
\operatorname{val}_{b}(\bar{z})=b^{\ell}-1-r \in\left\{0 \ldots, b^{\ell}-1\right\} .
$$

Hence, $(b-1) \bar{z}=\operatorname{rep}_{b}\left((b-1) \cdot b^{\ell}+b^{\ell}-1-r\right)$. Using (1), we obtain the desired result.

4 Asymptotics of the summatory function $\left(A_{b}(n)\right)_{n \geq 0}$

In this section, we consider the summatory function $\left(A_{b}(n)\right)_{n \geq 0}$ of the sequence $\left(S_{b}(n)\right)_{n \geq 0}$; see Definition 1 The aim of this section is to apply the method introduced in [17] to obtain the asymptotic behavior of $\left(A_{b}(n)\right)_{n \geq 0}$. As an easy consequence of the b-regularity of $\left(S_{b}(n)\right)_{n \geq 0}$, we have the following result.
Proposition 23. For all $b \geq 2$, the sequence $\left(A_{b}(n)\right)_{n \geq 0}$ is b-regular.

Proof. This is a direct consequence of Theorem 16 and of the fact that the summatory function of a b-regular sequence is also b-regular; see [2, Theorem 16.4.1].

From a linear representation with matrices of size $d \times d$ associated with a b-regular sequence, one can derive a linear representation with matrices of size $2 d \times 2 d$ associated with its summatory function; see [10, Lemma 1]. Consequently, using Remark 20, one can obtain a linear representation with matrices of size $2 b \times 2 b$ for the summatory function $\left(A_{b}(n)\right)_{n \geq 0}$. The goal is to decompose $\left(A_{b}(n)\right)_{n \geq 0}$ into linear combinations of powers of $(2 b-1)$. We need the following two lemmas.

Lemma 24. For all $\ell \geq 0$ and all $x \in\{1, \ldots, b-1\}$, we have

$$
A_{b}\left(x b^{\ell}\right)=(2 x-1) \cdot(2 b-1)^{\ell}
$$

Proof. We proceed by induction on $\ell \geq 0$. If $\ell=0$ and $x \in\{1, \ldots, b-1\}$, then using Table 1 , we have

$$
A_{b}(x)=S_{b}(0)+\sum_{j=1}^{x-1} S_{b}(j)=2 x-1
$$

If $\ell=1$ and $x \in\{1, \ldots, b-1\}$, then we have

$$
A_{b}(x b)=A_{b}(b)+\sum_{y=1}^{x-1} \sum_{j=0}^{b-1} S_{b}(y b+j)
$$

Using Table 1. we get $A_{b}(x b)=(2 x-1)(2 b-1)$.
Now suppose that $\ell \geq 1$ and assume that the result holds for all $\ell^{\prime} \leq \ell$. To prove the result, we again proceed by induction on $x \in\{1, \ldots, b-1\}$. When $x=1$, we must show that $A_{b}\left(b^{\ell+1}\right)=(2 b-1)^{\ell+1}$. We have

$$
A_{b}\left(b^{\ell+1}\right)=A_{b}\left(b^{\ell}\right)+\sum_{y=1}^{b-1} \sum_{j=0}^{b^{\ell}-1} S_{b}\left(y b^{\ell}+j\right)
$$

By decomposing the sum into three parts accordingly to Proposition 3, we get

$$
\begin{aligned}
A_{b}\left(b^{\ell+1}\right) & =A_{b}\left(b^{\ell}\right)+\sum_{y=1}^{b-1} \sum_{j=0}^{b^{\ell-1}-1} S_{b}\left(y b^{\ell}+j\right)+\sum_{y=1}^{b-1} \sum_{j=0}^{b^{\ell-1}-1} S_{b}\left(y b^{\ell}+y b^{\ell-1}+j\right) \\
& +\sum_{y=1}^{b-1} \sum_{\substack{1 \leq z \leq b-1 \\
z \neq y}} \sum_{j=0}^{b^{\ell-1}-1} S_{b}\left(y b^{\ell}+z b^{\ell-1}+j\right)
\end{aligned}
$$

and, using Proposition 3 ,

$$
\begin{align*}
A_{b}\left(b^{\ell+1}\right) & =A_{b}\left(b^{\ell}\right) \\
& +\sum_{y=1}^{b-1} \sum_{j=0}^{b^{\ell-1}-1}\left(S_{b}\left(y b^{\ell-1}+j\right)+S_{b}(j)\right) \tag{7}\\
& +\sum_{y=1}^{b-1} \sum_{j=0}^{b^{\ell-1}-1}\left(2 S_{b}\left(y b^{\ell-1}+j\right)-S_{b}(j)\right) \tag{8}\\
& +\sum_{y=1}^{b-1} \sum_{\substack{1 \leq z \leq b-1 \\
z \neq y}} \sum_{j=0}^{b^{\ell-1}-1}\left(S_{b}\left(y b^{\ell-1}+j\right)+2 S_{b}\left(z b^{\ell-1}+j\right)-2 S_{b}(j)\right) \tag{9}
\end{align*}
$$

By observing that for all y,

$$
\begin{equation*}
\left.\sum_{j=0}^{b^{\ell-1}-1} S_{b}\left(y b^{\ell-1}+j\right)=A_{b}\left((y+1) b^{\ell-1}\right)-A_{b}\left(y b^{\ell-1}\right) \quad \text { and } \quad \sum_{j=0}^{b^{\ell-1}-1} S_{b}(j)\right)=A_{b}\left(b^{\ell-1}\right) \tag{10}
\end{equation*}
$$

and that

$$
\begin{equation*}
\sum_{y=1}^{b-1}\left(A_{b}\left((y+1) b^{\ell-1}\right)-A_{b}\left(y b^{\ell-1}\right)\right)=A_{b}\left(b^{\ell}\right)-A_{b}\left(b^{\ell-1}\right) \tag{11}
\end{equation*}
$$

we obtain

$$
\begin{aligned}
7 & =A_{b}\left(b^{\ell}\right)+(b-2) A_{b}\left(b^{\ell-1}\right) \\
& =2 A_{b}\left(b^{\ell}\right)-(b+1) A_{b}\left(b^{\ell-1}\right) \\
9 & =3(b-2)\left(A_{b}\left(b^{\ell}\right)-A_{b}\left(b^{\ell-1}\right)\right)-2(b-1)(b-2) A_{b}\left(b^{\ell-1}\right)=3(b-2) A_{b}\left(b^{\ell}\right)-(b-2)(2 b+1) A_{b}\left(b^{\ell-1}\right),
\end{aligned}
$$

and finally

$$
A_{b}\left(b^{\ell+1}\right)=(3 b-2) A_{b}\left(b^{\ell}\right)-\left(2 b^{2}-3 b+1\right) A_{b}\left(b^{\ell-1}\right)
$$

Using the induction hypothesis, we obtain

$$
A_{b}\left(b^{\ell+1}\right)=(3 b-2)(2 b-1)^{\ell}-\left(2 b^{2}-3 b+1\right)(2 b-1)^{\ell-1}=(2 b-1)^{\ell+1}
$$

which ends the case where $x=1$.
Now suppose that $x \in\{2, \ldots, b-1\}$ and assume that the result holds for all $x^{\prime}<x$. The proof follows the same lines as in the case $x=1$ with the difference that we decompose the sum into

$$
\begin{aligned}
A_{b}\left(x b^{\ell+1}\right) & =A_{b}\left((x-1) b^{\ell+1}\right)+\sum_{j=0}^{b^{\ell+1}-1} S_{b}\left((x-1) b^{\ell+1}+j\right) \\
& =A_{b}\left((x-1) b^{\ell+1}\right)+\sum_{j=0}^{b^{\ell}-1} S_{b}\left((x-1) b^{\ell+1}+j\right)+\sum_{j=0}^{b^{\ell}-1} S_{b}\left((x-1) b^{\ell+1}+(x-1) b^{\ell}+j\right) \\
& +\sum_{\substack{1 \leq y \leq b-1 \\
y \neq x-1}} \sum_{j=0}^{b^{\ell}-1} S_{b}\left((x-1) b^{\ell+1}+y b^{\ell}+j\right) .
\end{aligned}
$$

Applying Proposition 3 and using (10) and 11 leads to the equality

$$
A_{b}\left(x b^{\ell+1}\right)=A_{b}\left((x-1) b^{\ell+1}\right)+(b-1) A_{b}\left(x b^{\ell}\right)-(b-1) A_{b}\left((x-1) b^{\ell}\right)+2 A_{b}\left(b^{\ell+1}\right)-2(b-1) A_{b}\left(b^{\ell}\right)
$$

The induction hypothesis ends the computation.
Lemma 25. For all $\ell \geq 1$ and all $x, y \in\{1, \ldots, b-1\}$, we have

$$
A_{b}\left(x b^{\ell}+y b^{\ell-1}\right)= \begin{cases}(4 x b-2 x+4 y-2 b) \cdot(2 b-1)^{\ell-1}, & \text { if } y \leq x \\ (4 x b-2 x+4 y-2 b-1) \cdot(2 b-1)^{\ell-1}, & \text { if } y>x\end{cases}
$$

Proof. The proof of this lemma is similar to the proof of Lemma 24 so we only proof the formula for $A_{b}\left(x b^{\ell}+x b^{\ell-1}\right)$, the other being similarly handled. We proceed by induction on $\ell \geq 1$. If $\ell=1$, the result follows from Table 1. Assume that $\ell \geq 2$ and that the formulas hold for all $\ell^{\prime}<\ell$. We have

$$
A_{b}\left(x b^{\ell}+x b^{\ell-1}\right)=A_{b}\left(x b^{\ell}\right)+\sum_{j=0}^{b^{\ell-1}-1} S_{b}\left(x b^{\ell}+j\right)+\sum_{y=1}^{x-1} \sum_{j=0}^{b^{\ell-1}-1} S_{b}\left(x b^{\ell}+y b^{\ell-1}+j\right)
$$

Applying Proposition 3 and using (10) and (11) leads to the equality

$$
A_{b}\left(x b^{\ell}+x b^{\ell-1}\right)=A_{b}\left(x b^{\ell}\right)+x A_{b}\left((x+1) b^{\ell-1}\right)+(2-x) A_{b}\left(x b^{\ell-1}\right)+(1-2 x) A_{b}\left(b^{\ell-1}\right)
$$

Using Lemma 24 completes the computation.
Lemma 24 and Lemma 25 give rise to recurrence relations satisfied by the summatory function $\left(A_{b}(n)\right)_{n \geq 0}$ as stated below. This is a key result that permits us to introduce $(2 b-1)$-decompositions (Definition 28 below) of the summatory function $\left(A_{b}(n)\right)_{n \geq 0}$ and allows us to easily deduce Theorem 30, see 17 for similar results in base 2 .

Proposition 26. For all $x, y \in\{1, \ldots, b-1\}$ with $x \neq y$, all $\ell \geq 1$ and all $r \in\left\{0, \ldots, b^{\ell-1}\right\}$,

$$
\begin{align*}
A_{b}\left(x b^{\ell}+r\right) & =(2 b-2) \cdot(2 x-1) \cdot(2 b-1)^{\ell-1}+A_{b}\left(x b^{\ell-1}+r\right)+A_{b}(r) \tag{12}\\
A_{b}\left(x b^{\ell}+x b^{\ell-1}+r\right) & =(4 x b-2 x-2 b+2) \cdot(2 b-1)^{\ell-1}+2 A_{b}\left(x b^{\ell-1}+r\right)-A_{b}(r) \tag{13}\\
A_{b}\left(x b^{\ell}+y b^{\ell-1}+r\right) & = \begin{cases}(4 x b-4 x-2 b+3) \cdot(2 b-1)^{\ell-1}+A_{b}\left(x b^{\ell-1}+r\right) \\
+2 A_{b}\left(y b^{\ell-1}+r\right)-2 A_{b}(r), & \text { if } y<x \\
(4 x b-4 x-2 b+2) \cdot(2 b-1)^{\ell-1}+A_{b}\left(x b^{\ell-1}+r\right) \\
+2 A_{b}\left(y b^{\ell-1}+r\right)-2 A_{b}(r), & \text { if } y>x\end{cases} \tag{14}
\end{align*}
$$

Proof. We first prove (12). Let $x \in\{1, \ldots, b-1\}, \ell \geq 1$ and $r \in\left\{0, \ldots, b^{\ell-1}\right\}$. If $r=0$, then 12 holds using Lemma 24 . Now suppose that $r \in\left\{1, \ldots, b^{\ell-1}\right\}$. Applying successively Proposition 3 and Lemma 24 , we have

$$
\begin{aligned}
A_{b}\left(x b^{\ell}+r\right) & =A_{b}\left(x b^{\ell}\right)+\sum_{j=0}^{r-1} S_{b}\left(x b^{\ell}+j\right) \\
& =A_{b}\left(x b^{\ell}\right)+\sum_{j=0}^{r-1}\left(S_{b}\left(x b^{\ell-1}+j\right)+S_{b}(j)\right) \\
& =A_{b}\left(x b^{\ell}\right)+\left(A_{b}\left(x b^{\ell-1}+r\right)-A_{b}\left(x b^{\ell-1}\right)\right)+A_{b}(r) \\
& =(2 b-2)(2 x-1)(2 b-1)^{\ell-1}+A_{b}\left(x b^{\ell-1}+r\right)+A_{b}(r)
\end{aligned}
$$

which proves 12 .
The proof of $\sqrt{13}$ and (14) are similar, thus we only prove 13 . Let $x \in\{1, \ldots, b-1\}, \ell \geq 1$ and $r \in\left\{0, \ldots, b^{\ell-1}\right\}$. If $r=0$, then (13) holds using Lemma 25. Now suppose that $r \in\left\{1, \ldots, b^{\ell-1}\right\}$. Applying Proposition 3, we have

$$
\begin{aligned}
A_{b}\left(x b^{\ell}+x b^{\ell-1}+r\right) & =A_{b}\left(x b^{\ell}+x b^{\ell-1}\right)+\sum_{j=0}^{r-1} S_{b}\left(x b^{\ell}+x b^{\ell-1}+j\right) \\
& =A_{b}\left(x b^{\ell}+x b^{\ell-1}\right)+\sum_{j=0}^{r-1}\left(2 S_{b}\left(x b^{\ell-1}+j\right)-S_{b}(j)\right) \\
& =A_{b}\left(x b^{\ell}+x b^{\ell-1}\right)+2\left(A_{b}\left(x b^{\ell-1}+r\right)-A_{b}\left(x b^{\ell-1}\right)\right)-A_{b}(r)
\end{aligned}
$$

Using Lemma 24 and Lemma 25, we get

$$
\begin{aligned}
A_{b}\left(x b^{\ell}+x b^{\ell-1}+r\right) & =(4 x b+2 x-2 b)(2 b-1)^{\ell-1}-2(2 x-1)(2 b-1)^{\ell-1}+2 A_{b}\left(x b^{\ell-1}+r\right)-A_{b}(r) \\
& =(4 x b-2 x-2 b+2)(2 b-1)^{\ell-1}+2 A_{b}\left(x b^{\ell-1}+r\right)-A_{b}(r)
\end{aligned}
$$

which proves (13).

The following corollary was conjectured in [17.
Corollary 27. For all $n \geq 0$, we have $A_{b}(n b)=(2 b-1) A_{b}(n)$.
Proof. Let us proceed by induction on $n \geq 0$. It is easy to check by hand that the result holds for $n \in$ $\{0, \ldots, b-1\}$. Thus consider $n \geq b$ and suppose that the result holds for all $n^{\prime}<n$. The reasoning is divided into three cases according to the form of the base- b expansion of n. As a first case, we write $n=x b^{\ell}+r$ with $x \in\{1, \ldots, b-1\}, \ell \geq 1$ and $0 \leq r<b^{\ell-1}$. By Proposition 26, we have

$$
\begin{aligned}
A_{b}(n b)-(2 b-1) A_{b}(n) & =(2 b-2) \cdot(2 x-1) \cdot(2 b-1)^{\ell}+A_{b}\left(x b^{\ell}+b r\right)+A_{b}(b r)-(2 b-2) \cdot(2 x-1) \cdot(2 b-1)^{\ell} \\
& -(2 b-1) A_{b}\left(x b^{\ell-1}+r\right)-(2 b-1) A_{b}(r)
\end{aligned}
$$

We conclude this case by using the induction hypothesis. The other cases can be handled using the same technique.

Using Proposition 26, we can define $(2 b-1)$-decompositions as follows.
Definition 28. Let $n \geq b$. Applying iteratively Proposition 26 provides a unique decomposition of the form

$$
A_{b}(n)=\sum_{i=0}^{\ell_{b}(n)} d_{i}(n)(2 b-1)^{\ell_{b}(n)-i}
$$

where $d_{i}(n)$ are integers, $d_{0}(n) \neq 0$ and $\ell_{b}(n)$ stands for $\left\lfloor\log _{b} n\right\rfloor-1$. We say that the word

$$
d_{0}(n) \cdots d_{\ell_{b}(n)}(n)
$$

is the $(2 b-1)$-decomposition of $A_{b}(n)$. For the sake of clarity, we also write $\left(d_{0}(n), \ldots, d_{\ell_{b}(n)}(n)\right)$. Also notice that the notion of $(2 b-1)$-decomposition is only valid for integers in the sequence $\left(A_{b}(n)\right)_{n \geq 0}$.
Example 29. Let $b=3$. Let us compute the 5 -decomposition of $A_{3}(150)=1665$. We have rep $(150)=$ 12120 and $\ell_{3}(150)=3$. Applying once Proposition 26 leads to

$$
\begin{equation*}
A_{3}(150)=A_{3}\left(3^{4}+2 \cdot 3^{3}+15\right)=4 \cdot 5^{3}+A_{3}\left(3^{3}+15\right)+2 A_{3}\left(2 \cdot 3^{3}+15\right)-2 A_{3}(15) \tag{15}
\end{equation*}
$$

Applying again Proposition 26, we get

$$
\begin{aligned}
A_{3}\left(3^{3}+15\right) & =A_{3}\left(3^{3}+3^{2}+6\right)=6 \cdot 3^{2}+2 A_{3}\left(3^{2}+6\right)-A_{3}(6) \\
A_{3}\left(2 \cdot 3^{3}+15\right) & =A_{3}\left(2 \cdot 3^{3}+3^{2}+6\right)=13 \cdot 3^{2}+A_{3}\left(2 \cdot 3^{2}+6\right)+2 A_{3}\left(3^{2}+6\right)-2 A_{3}(6), \\
A_{3}(15) & =A_{3}\left(3^{2}+2 \cdot 3^{1}\right)=4 \cdot 5^{1}+A_{3}\left(3^{1}\right)+2 A_{3}\left(2 \cdot 3^{1}\right)-2 A_{3}(0)
\end{aligned}
$$

Using Proposition 26, we find

$$
\begin{aligned}
A_{3}\left(3^{2}+6\right) & =A_{3}\left(3^{2}+2 \cdot 3^{1}\right)=4 \cdot 5^{1}+A_{3}\left(3^{1}\right)+2 A_{3}\left(2 \cdot 3^{1}\right)-2 A_{3}(0) \\
A_{3}\left(2 \cdot 3^{2}+6\right) & =A_{3}\left(2 \cdot 3^{2}+2 \cdot 3^{1}\right)=16 \cdot 5^{1}+2 A_{3}\left(2 \cdot 3^{1}\right)-A_{3}(0) \\
A_{3}(6) & =A_{3}\left(2 \cdot 3^{1}\right)=12 \cdot 5^{0}+A_{3}\left(2 \cdot 3^{0}\right)+A_{3}(0)=15 \cdot 5^{0}
\end{aligned}
$$

Using Lemma 24, we have $A_{3}\left(3^{1}\right)=5^{1}$ and $A_{3}\left(2 \cdot 3^{1}\right)=3 \cdot 5^{1}$. Plugging all those values together in (15), we finally have

$$
A_{3}(150)=4 \cdot 5^{3}+32 \cdot 5^{2}+82 \cdot 5^{1}-45 \cdot 5^{0}
$$

The 5-decomposition of $A_{3}(150)$ is thus $(4,32,82,-45)$.
The proof of the next result follows the same lines as the proof of [17, Theorem 1]. Therefore we only sketch it.

Figure 9: The function \mathcal{H}_{3} over one period.

Theorem 30. There exists a continuous and periodic function \mathcal{H}_{b} of period 1 such that, for all large enough n,

$$
A_{b}(n)=(2 b-1)^{\log _{b} n} \mathcal{H}_{b}\left(\log _{b} n\right)
$$

As an example, when $b=3$, the function \mathcal{H}_{3} is depicted in Figure 9 over one period.
Sketch of the proof of Theorem [30, Let us start by defining the function \mathcal{H}_{b}. Given any integer $n \geq 1$, we let ϕ_{n} denote the function

$$
\phi_{n}(\alpha)=\frac{A_{b}\left(e_{n}(\alpha)\right)}{(2 b-1)^{\log _{b}\left(e_{n}(\alpha)\right)}}, \quad \alpha \in[0,1)
$$

where $e_{n}(\alpha)=b^{n+1}+b\left\lfloor b^{n} \alpha\right\rfloor+1$. With a proof analogous to the one of [17, Proposition 20], the sequence of functions $\left(\phi_{n}\right)_{n \geq 1}$ uniformly converges to a function Φ_{b}. As in [17, Theorem 5], this function is continuous on $[0,1]$ and such that $\Phi_{b}(0)=\Phi_{b}(1)=1$. Furthermore, it satisfies

$$
A_{b}\left(b^{k}+r\right)=(2 b-1)^{\log _{b}\left(b^{k}+r\right)} \Phi_{b}\left(\frac{r}{b^{k}}\right) \quad k \geq 1,0 \leq r<b^{k}
$$

see [17, Lemma 24]. Using Corollary 27, we get that, for all $n=b^{j}\left(b^{k}+r\right), j, k \geq 0$ and $r \in\left\{0, \ldots, b^{k}-1\right\}$,

$$
A_{b}(n)=(2 b-1)^{\log _{b}(n)} \Phi_{b}\left(\frac{r}{b^{k}}\right)
$$

The function \mathcal{H}_{b} is defined by $\mathcal{H}_{b}(x)=\Phi_{b}\left(b^{\{x\}}-1\right)$ for all real $x(\{\cdot\}$ stands for the fractional part $)$.

References

[1] J.-P. Allouche and J. Shallit, The ring of k-regular sequences, Theoret. Comput. Sci. 98 (1992), 163-197.
[2] J.-P. Allouche and J. Shallit, Automatic sequences. Theory, applications, generalizations, Cambridge University Press, (2003).
[3] J.-P. Allouche and J. Shallit, The ring of k-regular sequences II, Theoret. Comput. Sci. 307 (2003), no. 1, 3-29.
[4] B. Bates, M. Bunder, and K. Tognetti, Locating terms in the Stern-Brocot tree, European J. Combin. 31 (2010), 1020-1033.
[5] H. Belbachir, L. Németh, and L. Szalay, Hyperbolic Pascal triangles, Appl. Math. Comput. 273 (2016), 453-464.
[6] H. Belbachir and L. Szalay, On the arithmetic triangles, Šiauliai Math. Semin. 9 (2014), no. 17, 15-26.
[7] N. J. Calkin and H.S. Wilf, Binary partitions of integers and Stern-Brocot-like trees (1998), unpublished. Updated version August 5, 2009, 19 pages, http://cecas.clemson.edu/~janoski/reu/2010/ latestversion.pdf.
[8] I. Canakci and R. Schiffler, Cluster algebras and continued fractions, unpublished. Updated version September 26, 2016, 28 pages, https://arxiv.org/pdf/1608.06568.pdf.
[9] A. Carpi and C. Maggi, On synchronized sequences and their separators, Theor. Inform. Appl. 35 (2001), 513-524.
[10] P. Dumas, Joint spectral radius, dilation equations, and asymptotic behavior of radix-rational sequences, Linear Algebra Appl. 438 (2013), no. 5, 2107-2126.
[11] T. Garrity, A multidimensional continued fraction generalization of Stern's diatomic sequence, J. Integer Seq. 16 (2013), no. 7, Article 13.7.7, 24.
[12] S. P. Glasby, Enumerating the rationals from left to right, Amer. Math. Monthly 118 (2011), 830-835.
[13] F. von Haeseler, H.-O. Peitgen, and G. Skordev, Pascal's triangle, dynamical systems and attractors, Ergod. Th. © Dynam. Sys. 12 (1992), 479-486.
[14] É Janvresse, T. de la Rue, and Y. Velenik, Self-similar corrections to the ergodic theorem for the Pascal-adic transformation, Stoch. Dyn. 5 (2005), no. 1, 1-25.
[15] J. Leroy, M. Rigo, and M. Stipulanti, Generalized Pascal triangle for binomial coefficients of words, Adv. in Appl. Math. 80 (2016), 24-47.
[16] J. Leroy, M. Rigo, and M. Stipulanti, Counting the number of non-zero coefficients in rows of generalized Pascal triangles, Discrete Math. 340 (2017) 862-881.
[17] J. Leroy, M. Rigo, and M. Stipulanti, Behavior of digital sequences through exotic numeration systems, Electron. J. Combin. 24 (2017), no. 1, Paper 1.44, 36 pp.
[18] S. Morier-Genoud, V. Ovsienko, and S. Tabachnikov, $\mathrm{SL}_{2}(\mathbb{Z})$-tilings of the torus, Coxeter-Conway friezes and Farey triangulations, Enseign. Math. 61 (2015), 71-92.
[19] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences. Published electronically at http: //oeis.org 2017.

2010 Mathematics Subject Classification: 11A63, 11B65, 11B85, 41A60, 68R15.
Keywords: Binomial coefficients, subwords, generalized Pascal triangles, base-b expansions, regular sequences, summatory function, asymptotic behavior

[^0]: ${ }^{1}$ This tree is also called prefix tree or radix tree. All successors of a node have a common prefix and the root is the empty word.

