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Abstract. We use a Dyck path model for unit-interval graphs to study the
chromatic quasisymmetric functions introduced by Shareshian and Wachs, as
well as vertical strip — in particular, unicellular LLT polynomials.

We show that there are parallel phenomena regarding e-positivity of these
two families of polynomials. In particular, we give several examples where the
LLT polynomials behave like a “mirror image” of the chromatic quasisymmetric
counterpart.

The Dyck path model is also extended to circular arc digraphs to obtain
larger families of polynomials. This circular extensions of LLT polynomials
has not been studied before. A lot of the combinatorics regarding unit interval
graphs carries over to this more general setting, and we prove several statements
regarding the e-coefficients of chromatic quasisymmetric functions and LLT
polynomials.

In particular, we believe that certain e-positivity conjectures hold in all
these families above. Furthermore, we study vertical-strip LLT polynomials,
for which there is no natural chromatic quasisymmetric counterpart. These
polynomials are essentially modified Hall–Littlewood polynomials, and are
therefore of special interest.

In this more general framework, we are able to give a natural combinatorial
interpretation for the e-coefficients for the line graph and the cycle graph, in
both the chromatic and the LLT setting.

Contents

1. Introduction 2
2. The setup: Dyck paths, posets and unit interval graphs 4
3. LLT diagrams and LLT polynomials 7
4. Some properties of LLT polynomials 14
5. Expansions in the elementary symmetric functions 15
6. Expansion of unicellular LLT polynomials in power-sum basis 28
7. Discussion on Schur positivity 33
8. Linear relations among chromatic symmetric functions 33
9. Acyclic orientations and rook placements 35

2010 Mathematics Subject Classification. 05E05, 05A19.
Key words and phrases. Chromatic quasisymmetric functions, elementary symmetric functions,

LLT polynomials, orientations, unit interval graphs, positivity, diagonal harmonics.
1

ar
X

iv
:1

70
5.

10
35

3v
2 

 [
m

at
h.

C
O

] 
 1

2 
Ju

n 
20

17



2 PER ALEXANDERSSON AND GRETA PANOVA

References 38

1. Introduction

In [Sta95], Stanley introduced a generalization of the chromatic polynomial for
graphs, called the chromatic symmetric function, given as a sum over all proper
colorings of the graph. Shareshian and Wachs introduced a refinement of chromatic
symmetric functions in [SW14], depending on an extra parameter q, called the
chromatic quasisymmetric functions. For unit interval graphs, the corresponding
functions turn out to be symmetric and related to the representation theory of
Hessenberg varieties.

Without restricting to proper colorings, the chromatic quasisymmetric function
by Stanley is trivially en1 on any graph with n vertices. However, by allowing all
colorings together with the q-parameter keeping track of the ascend statistic, we
recover the unicellular LLT polynomials, a subfamily of the polynomials defined
by Lascoux, Leclerc and Thibon in [LLT97]. LLT polynomials have received a
lot of attention recently due to their close connection with modified Macdonald
polynomials and diagonal harmonics, see e.g. [HHL05a, CM15].

We say that a function f(x; q) in SymQ[q] is e-positive if the coefficients cµ(q) in
the expansion

f(x; q) =
∑
µ

cµ(q)eµ(x)

are polynomials with non-negative coefficients. The main open problem regarding
chromatic symmetric functions is to show that given a (3 + 1)-avoiding poset P ,
the chromatic symmetric function of the incomparability graph of P , is e-positive.
From the works of [GP13], it can be shown that it suffices to prove the conjecture
of e-positivity for (3 + 1)-avoiding posets, with the additional assumption that the
poset is also (2 + 2)-avoiding.

The incomparability graphs of such posets can be realized as natural unit interval
graphs. The number of natural unit interval graphs on n vertices is known to be
enumerated by the Catalan numbers, see [Sta01, Exercise 6.19]. In this paper, we
describe a model indexed by Dyck paths that naturally realizes these incomparability
graphs. Our model is closely related to the model used in [GP16, HMZ12] and we
borrow some terminology from the world of parking functions. We also apply this
model to ribbon LLT polynomials.

Here are the highlights of the paper:

• We extend the family of natural unit interval graphs to circular arc digraphs
and show that many properties of corresponding chromatic quasisymmetric
functions and LLT polynomials can be extended to this setting. Note
that circular arc digraphs are in general not incomparability graphs of
posets, but the related graphs are still claw free. Circular arc digraphs have
independently been considered in [Ell16]. The undericted circular graphs
were considered in [Sta95] as “circular indifference graphs”.
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• We pose an analogue of the Stanley–Stembridge conjecture for LLT poly-
nomials. In particular, for the LLT polynomial Ga(x; q) indexed by the
area sequence of a Dyck path, we prove that the sum of the e-coefficients of
Ga(x; q+1) equals (q+1)|a|. This expression correspond to a q-weighted sum
over orientations of a unit interval graph. Furthermore, we show that the
analogous statements hold for vertical-strip LLT polynomials — this family
of polynomials contain a variant of modified Hall–Littlewood polynomials.

• We prove that the LLT polynomials associated with circular arc digraphs
are symmetric, using a proof that avoids superization. This gives a slightly
simpler proof of LLT symmetry compared to that in [HHL05a].

• We prove several cases of the e-positivity conjecture in the case of path,
cycle and complete graphs, both in the chromatic and the LLT setting.
In particular, we give combinatorial interpretations of the e-coefficients.
The chromatic versions have been independently considered in [Ell16], see
Remark 1.

Note that when we discuss LLT polynomials in this paper, we will mainly treat
the evaluation Ga(x; q + 1), where the q-parameter has been shifted by 1, which
turns out to be the natural setting to work in. In Table 1, we show the mirror
correspondence between chromatic quasisymmetric functions and unicellular LLT
polynomials.

Property Chromatic 1-shifted LLT
Schur-positive Yes∗ Yes∗
Positive e-expansion Conjectured Conjectured
e-coefficients Acyclic orientations q-acyclic orientations
Fixed length e-coefficients Number of sinks Number of half-sinks
ω(f) is p-positive Yes† Yes††

Table 1. The mirror correspondence. ∗Is only known in the unit
interval case. †Recently proved in the unit interval setting for
the chromatic quasisymmetric functions, see [Ath15], and in the
cyclic case in [Ell16]. †We give the p-expansion of unicellular LLT
polynomials in this paper.

The diagram in Figure 1 illustrates the families of polynomials we consider in
this paper.

Another motivation for this work is to try to unify two open problems regarding
LLT polynomials and chromatic quasisymmetric functions: give combinatorial proofs
for Schur positivity of LLT polynomials (which is still open) and e-positivity of
chromatic symmetric functions.

Remark 1. We note that the extension regarding the chromatic quasisymmet-
ric functions to circular arc digraphs has also been considered independently in
[Ell16], and give the same combinatorial e-expansion for the path and the cycle.
Furthermore, the power-sum expansion in the circular arc digraph case of chromatic
quasisymmetric functions appears in [Ell16].
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Unit interval chromatic

Circular arc digraph chromatic

Unicellular LLT

Vertical strip LLT

Circular arc LLT

Circular vertical strip LLT

Figure 1. The thick arrows represent the superset relation, while
the dashed line indicate the “mirror correspondence”. The left hand
side consists of polynomials given as sum over proper colorings,
while in the right hand side, all colorings are allowed, with exception
in the vertical strip cases where certain inequalities are enforced.

2. The setup: Dyck paths, posets and unit interval graphs

We use standard notation: [n] is the set {1, 2, . . . , n} and [n]q is the q-integer
1+q+ · · ·+qn−1. Vectors of numbers or variables, or sequences of partitions, will be
denoted in bold, e.g. x = (x1, . . . , xn) and ν = (ν1, . . . ) is a sequence of partitions.
The quasisymmetric chromatic polynomial for a graph Γa is denoted Xa and the
LLT polynomials is denoted Ga.

We begin by defining our main family of graphs, which generalizes unit-interval
graphs:

Definition 2. A circular unit arc digraph is a directed graph with vertex set [n]
and edges

i→ i+ 1, i→ i+ 2, . . . , i→ i+ ai (1)

for all i = 1, . . . , n, where vertex indices are taken modulo n, and the integers
a1, . . . , an satisfy

• 0 ≤ ai ≤ n− 1 for 1 ≤ i ≤ n,
• ai − 1 ≤ ai+1 for 1 ≤ i ≤ n,

where the index is again taken mod n in the second condition. We denote this
directed graph Γa.

Whenever an = 0, we say that Γa is a unit interval graph. The sequence
a1, a2, . . . , an is called the area sequence of the graph, for reasons that will be
evident shortly. A convenient way to present such unit interval graphs is by using
a Dyck diagram (in the case an = 0), or a circular Dyck diagram for the general
a. We often write circular area sequences to emphasize that an is allowed to be
non-zero.

Example 3. Consider a Dyck path as in (2), where the squares above the path are
shaded. The Ferrers diagram formed by these boxes are referred to as the outer
shape. In Equation (2), the area sequence is given by (2, 2, 3, 2, 1, 0) — the number
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of white boxes in each row. The edges of Γa are
E(Ga) = {12, 13, 23, 24, 34, 35, 36, 45, 46, 56}.

It is straightforward to show that the conditions on a together with an = 0 always
correspond to a Dyck path, and that every Dyck path is obtained from some a. In
this case, we make no difference between a and the Dyck path it represents. We
use standard notation and let |a| denote the sum of the entries in a — the total
number of inner squares, commonly known as the area of the Dyck path.

16 15 14 13 12 1
26 25 24 23 2
36 35 34 3
46 45 4
56 5
6

(2)

Boxes that are not in the outer shape or on the diagonal are referred to as inner
boxes. We also extend the Dyck path model to accommodate for the general area
sequences in a natural manner. For example, a = (3, 3, 2, 3, 2, 3) is illustrated as

14 13 12 1
25 24 23 2
35 34 3

41 46 45 4
51 56 5

63 62 61 6
14 13 12 1

where the bottom row is a repetition of the first row to illustrate the circular nature
of the digraph.

Note that Γa and Γσ(a) are isomorphic as directed graphs when σ is a cyclic
permutation on the area sequence.
Example 4. There are in total 18 circular area sequences of length 3; the following

000, 100, 110, 111, 210, 211, 221, 222
plus all cyclic permutations of these. The ones ending with 0,

000, 100, 010, 110, 210
correspond naturally to Dyck paths.

Evidently, the number of unit interval graphs on n vertices is given by the Catalan
numbers Cn, since they are in bijection with Dyck paths. We now enumerate the
circular area sequences:
Lemma 5. The number g(n) of circular area sequences of length n in Definition 2
is given by

g(n) = (n+ 2)
(

2n− 1
n− 1

)
− 22n−1.
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Proof. This sequence appear in OEIS [Slo16] as A194460. There, g(n) is described
as the number of pairs, (p, q) of Dyck paths of semi-length n such that the first peak
of q has height at least n − hl(p), where hl(p) is the height of the last peak of p,
and the last peak of q has height at least n− hf (p), where hf (p) is the height of
the first peak of p. We give a bijection between circular area sequences and such
pairs of Dyck paths.

p

↘

↖ q

In the figure above, we have drawn two Dyck paths, p, q with the properties above.
The first and last peak of each Dyck path have been marked, with arrows pointing
at the first peak in each path. We have the conditions

hl(p) + hf (q) ≥ n and hf (p) + hl(q) ≥ n
which ensure that the first and the last peak on p lies on the path q, and vice
versa. We now notice that the union of the paths between the first and last peak on
each respective path — dashed blue in the figure — traces out a valid circular area
sequence. Furthermore, the area sequence uniquely determines the pair (p, q). �

We note that the numbers g(n) show up in the study of types of ideals in the
standard Borel subalgebra of an untwisted affine Lie algebra, see [BM12].

Note also that it is clear from the Dyck diagram interpretation that the class of
circular arc digraphs is closed under taking induced subgraphs.

Remark 6. A direct bijective proof of the above formula for counting circular Dyck
paths has been discovered by Svante Linusson, and will appear elsewhere.

2.1. Poset interpretation. For a Dyck path a, we associate a poset Pa as follows:
let Pa be the poset with relations i < j if ij is somewhere in the outer shape. For
example,

16 15 14 13 12 1
26 25 24 23 2
36 35 34 3
46 45 4
56 5
6

Pa =
2

6

1

5 4
(3)

The incomparability graph of Pa is then Γa.

Lemma 7. The poset Pa is (3 + 1)-avoiding and (2 + 2)-avoiding and is a natural
unit interval order. Furthermore, Γa is an unit interval graph.
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Proof. This follows from the characterization given in [SW14, Prop. 4.1]. There
is a straightforward way to go from area sequence to the m-sequence Shareshian
and Wachs define (called the Hessenberg vector), namely by using the relation ai =
mi − i. In particular, we can construct an explicit one as follows by induction. Let
I1, . . . , In−1 be unit intervals, ordered increasingly by midpoints, which respect the
Γa order for the first n−1 points. Let jn = min{j : mj = n}, now let In := In−1 + ε.
We have that In−1 ∩ Ijn = [a, b] for some a < b, so we choose 0 < ε < b − a if
In−1∩Ijn−1 = ∅, otherwise In = Ijn−1 +1+ε for some ε < max Ijn−max Ijn−1. �

2.2. Chromatic quasisymmetric functions. A coloring F of a circular unit arc
digraphs Γa is an assignment of natural numbers to the vertices. The coloring is
proper, or non-attacking if no two vertices connected by an edge have the same
color. An ascent in the coloring is a directed edge i → j such that F (i) < F (j).
Given an orientation θ of Γa, the edges in θ that agree with the orientation of the
corresponding edges in Γa are called ascending edges of θ.

We are now ready to define chromatic quasisymmetric functions associated with
circular unit arc digraphs.

Definition 8. The chromatic quasisymmetric function Xa(x; q) is defined as

Xa(x; q) =
∑

F :Γa→N
F non-attacking

xF qasca(F )

where the sum is taken over all non-attacking colorings of Γa, and asca(F ) is the
number of ascents in the coloring.

In the case of a non-circular a, this definition agrees with the definition in [SW14].
The chromatic quasisymmetric functions are symmetric in the case of unit interval

graphs, as shown in [SW14]. We now extend this result to the circular unit arc
digraph case. This statement is also proved in [Ell16].

Lemma 9. The chromatic quasisymmetric function associated with a circular unit
arc digraph is symmetric.

Proof. Let Γa be a circular unit arc digraph. As in [SW14], consider a coloring
of Γa and the subgraph consisting of vertices colored i and i+ 1. The connected
components consist of either directed chains with alternating color, or directed
cycles of even length.

It is now straightforward to show that interchanging the colors i and i+ 1 on all
chains of odd length preserves the q-weight. Since this is possible for all i, Xa(x; q)
is symmetric. �

3. LLT diagrams and LLT polynomials

LLT polynomials were introduced by Lascoux, Leclerc and Thibon in [LLT97].
The LLT polynomials can in general be seen as a q-deformation of products of
skew Schur functions, and they appear as a central object in the study of modified
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Macdonald polynomials. LLT polynomials are also related to generalized Kostka
coefficients and Kazhdan–Lusztig polynomials, see e.g. [LT00].

A big open problem in the area is to give a combinatorial proof of Schur posi-
tivity for LLT polynomials. A solution of this problem would immediately give a
combinatorial formula for the qt-Kostka coefficients that appear in the expansion of
modified Macdonald polynomials in terms of Schur polynomials.

We now give the definition of LLT polynomials as it appears in [HHL05a]:

Definition 10. Let ν be a k-tuple of skew Young diagrams. Given such a tuple, we
let SSYT(ν) = SSYT(ν1)× SSYT(ν2)× · · · × SSYT(νk) where SSYT(λ) is the set
of skew semi-standard Young tableaux of shape λ. Given T = (T 1, T 2, . . . , T k) ∈
SSYT(ν), let xT denote the product xT 1 · · ·xTk where xT i is the usual weight of
the semi-standard Young tableau T i. Entries T i(u) > T j(v) form an inversion if
either

• i < j and c(u) = c(v), or
• i > j and c(u) = c(v) + 1,

where c(u) denotes the content of u. The content of a cell (i, j) in a skew diagram
is i− j. Finally, we can define the LLT polynomial

Gν(x; q) =
∑

T∈SSYT(ν)

qinv(T )xT

where inv(T ) is the total number of inversions appearing in T .

A convenient way to visualize a tuple of skew shapes is to arrange them in the
first quadrant, such that boxes with the same content appear on the same diagonal
in a non-overlapping fashion. As an example, the LLT diagram associated with the
skew shapes

(3, 2)/(1), (3, 1), (3, 3)/(2, 1)
is presented in (4), with skew boxes marked with ×. Note that the diagrams are
drawn in the French convention, which is traditional for LLT polynomials.

1

2

3

4

5

6

7

8

9

10

11

××
×

×

(4)

Notice the reading order of the boxes indicated in (4). Boxes are read in decreasing
order of content and then in decreasing x-coordinate if contents are equal.

There are a few important subfamilies of LLT polynomials, indexed by certain
shapes: ribbons, vertical strips and unicellular diagrams, related as

unicellular ⊂ vertical strips ⊂ ribbons.
Ribbon skew shapes are skew diagrams without any 2 × 2-subdiagram of boxes.
A vertical strip is a skew shape consisting of a single vertical strip of boxes, and



LLT POLYNOMIALS AND GRAPHS WITH CYCLES 9

unicellular LLT diagrams are diagrams where each skew shape consists of a single
box. As an example, all shapes that appear in (4) are ribbons.

A ribbon LLT diagram can also be represented using a marked variant of Dyck
diagrams, by placing the boxes in the reading order along the main diagonal. Pairs
of boxes that could potentially contribute to inv are white squares in the Dyck
diagram. We note that the white squares indeed describe a region under a Dyck
path, i.e. there are no “holes” in the diagram. This follows because if there are
boxes i < k which could contribute to an inversion then all boxes j ∈ [i, k] can also
contribute one with i and k: either j is below i on the same diagonal and hence in
inversion with i and k, or j is above k on its diagonal above and again forms an
inversion with both.

Example 11. The LLT diagram in (4) is represented as

1

2

3

4

5

6

7

8

9

10

11

∧ 1
≤ 2

≤ 3
≤ 4

≤ 5
∧ 6

7
∧ 8

≤ 9
10

11

(5)

where edges marked with ∧ and ≤ indicate the strict and weak inequalities that must
hold between corresponding entries in order for the filling to consist of semi-standard
Young tableaux.

Due to the nature of the reading order, we note that inversions in T ∈ SSYT(ν)
are mapped to ascending edges in the corresponding coloring of the Dyck diagram.
We emphasize that ascending edges marked with ∧ are not counted as ascents in
the coloring.
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Example 12. Here is an example of this correspondence with vertical strips, and
another with unicellular LLT diagram:

1

2

3

4

5

6

7

8

9

10

11

∧ 1
∧ 2

3
4

∧ 5
∧ 6

∧ 7
8

9
10

11

(6)

7
5

2

6
4

1

3 1
2

3
4

5
6

7

(7)

In Proposition 13 below, we show that this is indeed a bijection — vertical strip
LLT polynomials of degree n are in bijection with Schröder paths and unicellular LLT
polynomials are enumerated by the Catalan numbers. We need some terminology
in order to carry out the bijection.

A corner edge of a (circular) unit interval digraph Γ is an edge i→ j which is
not an edge of Γ, but i→ j − 1 and i+ 1→ j are both edges of Γ. As usual, vertex
indices are taken mod n if necessary.

Given a Dyck diagram as in (8), read the labeled vertices in increasing order,
and greedily partition them into complete subgraphs. In our example, vertices 1,2
and 3 form a complete subgraph, but not {1, 2, 3, 4}. The next two vertices, 4, and
5 form a complete subgraph and finally, 6 and 7 form the third complete subgraph.
We have marked the edges in the complete subgraphs with bullets — the Dyck path
immediately above the edges with bullets is commonly referred to as the bounce
path. This definition is also extended to circular Dyck diagrams, as shown in the
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second diagram in (8).

• • 1
• 2
3

• 4
5

• 6
7

• • • 1
• • 2
• 3
4

• 5
6

7

(8)

Proposition 13. Any ribbon LLT diagram can be put in correspondence with a
Dyck diagram, and then marking some of the corner edges as strict or weak.

Proof. Let ν denote an LLT diagram, consisting of ribbons with n boxes in total.
To construct the corresponding Dyck diagram, put the boxes of the LLT diagram in
their reading order along the diagonal. By the more general argument above, the
potential LLT diagram inversions correspond to the region under a Dyck path — if
i < k could contribute to an inversion and i < j < k, then i < j and j < k are also
in such attacking order and can contribute to an inversion.

The ribbon SSYTs require strict inequalities between boxes i < k, appearing
on top of each other in the Young diagram. Suppose j is another box in the LLT
diagram appearing between i and k in reading order. It is straightforward to see
that both (i, j) and (j, k) are potential inversions in the LLT diagram, and it follows
that corresponding edges in the Dyck diagram are under the Dyck path. It follows
that i→ k is a corner edge, which we then mark as strict, to enforce the inequality
between vertices i and k in the Dyck diagram.

Similarly, we need to enforce weak inequalities between boxes i ≥ k, with i
appearing to the right of k in a ribbon (and i before k in reading order). A similar
analysis to previous case shows that i→ k is a corner edge in the Dyck diagram,
which is then marked as weak.

In the opposite direction, given such a Dyck diagram with some weak and strict
corner edges, we can construct the ribbon strip LLT as follows:

• The box u is placed on LLT diagonal with content −c if corresponding
vertex u is in the cth complete subgraph of the bounce path.
• Boxes placed on the same LLT diagonal are ordered (in reading order)
according to vertex label.

• Entries in adjacent diagonals are riffled according to the Dyck diagram. This
means that a box u is placed below v if u and v are on adjacent diagonals,
and u and v form a potential inversion in the Dyck diagram.

It is clear from the properties of Dyck diagrams that these three conditions can
always be fulfilled. For example, the first property ensures that the edges determined
by the bounce path are present in the LLT diagram as potential inversions among
boxes with same content.
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Finally, boxes in adjacent diagrams are “nudged” immediately adjacent, or on
top of each other, according to the weak and strict corner edges, by sliding them
along the diagonal. �

As an example, the Dyck diagram in (5) is mapped to the corresponding LLT
diagram. Note that we only prove that every ribbon LLT diagram can be represented
as a marked Dyck diagram and vice versa — the maps are not inverses of each other,
since different LLT diagrams (with the same LLT polynomial) might be mapped to
the same Dyck diagram.

Corollary 14. The number of (non-circular) vertical-strip LLT polynomials on n
vertices is given by the small Schröder numbers, A001003: 1, 3, 11, 45, 197, . . .

By allowing circular unit interval digraphs and marking some corner edges, we
obtain a circular extension of vertical-strip LLT diagrams.

Open Problem 15. The number of circular vertical-strip diagrams of size n are
given by 1, 9, 65, 449, 3009, 19721, . . . . Find a closed formula, or a generating function
for these numbers.

The above bijection allow us to give an alternative definition of unicellular
LLT polynomials, as well as ribbon LLT polynomials. Furthermore, we allow the
definitions to extend to the circular setting, thus extending the family of LLT
polynomials:

Definition 16. The (circular) unicellular LLT polynomial Ga(x; q) is defined as

Ga(x; q) =
∑

F :Γa→N
xF qasca F

where the sum is over all colorings of Γa.

The classical unicellular LLT polynomials correspond to the case when Γa is
a non-circular unit interval graphs. These polynomials recently appeared in the
paper [CM15, Section 3], and were defined in the same manner as here. There they
referred to these polynomials as characteristic functions in the Dyck path algebra.

A proof that Ga(x; q) are symmetric functions for unit interval Γa can be found
in [HHL05a], but one needs to translate this definition to the classical definition of
LLT polynomials. We give a modified proof of symmetry below in Section 3.1 that
extends to the circular setting.

Remark 17. Note that in the case when Γa contains a directed cycle, Ga(x; q)
does not belong to the classical family of LLT polynomials. In fact, Ga(x; q) is not
always Schur positive or even positive in the fundamental quasisymmetric basis in
the circular arc digraph setting.

We also extend the definition of ribbon LLT polynomials, where the underlying
graph may contain cycles.

Definition 18. Let ν := (a, s,w) define a circular Dyck diagram a, where some
corner edges s are marked as strict, and some other corner edges w marked weak.
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The circular ribbon LLT polynomial Gν(x; q) is defined as

Gν(x; q) :=
∑

F :Γν→N
xF qascν F

where the sum is over all colorings of Γν , which are strict on s and weak on w. That
is, (u→ v) ∈ s implies F (u) < F (v) and (u→ v) ∈ w implies F (u) ≥ F (v).

As before, this definition coincides with the previous definition of ribbon LLT
polynomials in the non-circular setting.

3.1. Proof of symmetry for LLT polynomials. It is a bit more of a challenge
to show symmetry of the ribbon LLT polynomials in the circular case. The following
proof uses the same techniques as in [HHL05a, Lem. 10.2], however, we avoid the
need for “superization” with a second set of variables.

Proposition 19. Every circular ribbon polynomial Gν(x; q) is symmetric.

Proof. It suffices to prove that Gν(x; q) is symmetric in xi and xi+1, for all i. Given
a coloring F , let T be the entries with color {i, i+ 1} and F \ T be the remaining
entries. We have that

xF qascν F = x(F\T )qascν(F,T )qascν(T )xT (9)

where ascν(F, T ) denote ascents involving at most one of the colors i and i + 1,
and ascν(T ) is the number of ascents where both colors are in {i, i+ 1}. Note that
ascν(F, T ) only depend on F \ T . It follows that it suffices to prove symmetry for
colorings involving only two colors, 1 and 2.

Note that a forced weak inequality can be reproduced by a difference of polyno-
mials involving a strict inequality:

≤ · · · u
...

v

=
· · · u

...

v

−
∧ · · · u
...

v

By repeating this reduction recursively, it suffices to prove symmetry for vertical-
strip LLT polynomials in two variables. Every strict edge fixes the colors of the
endpoints, and since the colors are opposite, an x1x2 can be factored out by using
an argument similar to the one in (9). Therefore, it remains to show symmetry for
the (circular) unicellular LLT polynomials.

Consider a circular Dyck diagram a on n vertices. We do induction over n and
|a|. The cases n = 0 or 1 are trivial and it is straightforward to see that if |a| = 0,
Ga(x1, x2; q) is simply (x1 + x2)n.

Suppose now that |a| > 0 which means that there is an inner square somewhere.
We can pick this inner square ∗ such that the box above it and the box to the left
are not inner. This condition implies that if we let ∗ to part of the outer shape,
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the resulting shape b defines a valid circular unit arc digraph Γb.

· · ·
∗ · · · · · · u

...
...

...
...

v

In other words, ∗ is a corner and it corresponds to an edge u→ v in Γa. By cyclic
relabeling of the graph, we can assume that u < v as vertex labels.

Consider a coloring F of Γa and Γb. It is quite clear that

asca(F ) =
{

ascb(F ) + 1 if F (u) = 1, F (v) = 2
ascb(F ) otherwise.

(10)

A coloring in the first case has the property that every vertex between v and u form
an ascend with either u or v, independent of the coloring F . Furthermore, u and v
cannot form any other ascends with vertices outside this interval.

Let c denote the circular unit arc digraph obtained from a where u and v have
been removed. We now have that

Ga(x1, x2; q) = Gb(x1, x2; q) + qv−u−1(q − 1)x1x2Gc(x1, x2; q), (11)
since every coloring of Γa can be created from a coloring of Γb, but we need to
modify the q-weight of the colorings where u→ v is an ascent in Γa. Such colorings
are obtained from a coloring of Γc, inserting vertices u and v with 1 and 2 and
compensating for the extra ascends, v−u−1 of them. The factor (q−1) corresponds
to choosing if u→ v is included as an edge or not.

By induction hypothesis, Gb(x1, x2; q) is symmetric since |b| + 1 = |a|, and
Gc(x1, x2; q) is symmetric since Γc has fewer vertices than Γa. �

In the following special case, one can produce a simple involution that shows the
statement.

Lemma 20. Suppose a is the unit interval graph with a = (n − 1, n − 2, . . . , 0).
Then Ga(x1, x2; q) is symmetric.

Proof. Consider the subword on the diagonal in the Dyck path filling consisting
of the letters i and i + 1. Reverse this subword, and replace every instance of i
with i+ 1 and vice versa. It is easy to see that this map preserves the number of
ascends. �

4. Some properties of LLT polynomials

We now phrase some properties of LLT polynomials in the Dyck path model,
and relate the LLT polynomials to the multivariate Tutte polynomial of Stanley.
Suppose Γa is a unit interval graph. The transpose of a, denoted aT , is the transposed
diagram of a, as illustrated in (12). Furthermore, we define the transpose of an
edge (i, j), to be the edge (n+ 1− j, n+ 1− i).
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The following is a consequence of [HHL05a, Lemma 10.1]:

Lemma 21. Let (a, s,w) denote a (non-circular) unit interval graph with some
corners marked strict or weak. Then

ωG(a,s,w)(x; q) = q|a|G(aT ,wT ,sT )(x; q−1).
Note that the role of weak and strict edges have been interchanged.

Example 22. The following illustrates the action of ω on the area sequence and
the marked edges: (a, s,w) is sent to (aT ,wT , sT ).

∧ 1
≤ 2

3
≤ 4

5
6

ω−→

∧ 1
∧ 2

≤ 3
4

5
6

(12)

Question 23. Can this be generalized to the circular arc setting?

Remark 24. We should mention that the top degree component (in t) of the
modified Macdonald H̃λ(x; q, t) is given by a vertical-strip LLT polynomial, and the
degree 0 term is a modified Hall–Littlewood polynomial. The latter can be given as
certain horizontal-strip LLT polynomials, see [HHL05a, Hag07] for details.

Recall the definition of the multivariate Tutte polynomial, [Sta98], defined as

Tuttea(x; q) =
∑

F :Γa→N
xF (1 + q)m(F )

where m(F ) is the number of monochromatic edges in the coloring of Γa. These
polynomials have nice properties (positive p-expansion), and it is therefore natural
to consider the LLT polynomials with q shifted by 1:

Gν(x; q + 1) =
∑

F :Γν→N
xF (1 + q)ascν F .

The main conjecture in this paper is the following:

Conjecture 25. Let ν = (a, s) be a circular Dyck diagram with some strict corner
edges. Then Gν(x; q + 1) is e-positive with unimodal coefficients.

Below, we provide several results that supports this conjecture, for example
Proposition 29.

5. Expansions in the elementary symmetric functions

The main open problem regarding chromatic quasisymmetric functions is the
following conjecture, stated in [SW14]:

Conjecture 26. Let Γa be a unit interval graph. Then Xa(x; q) is e-positive, with
unimodal coefficients.
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We strongly suspect the same statement generalizes to circular unit arc digraphs.
This has also been conjectured in [Ell16].

Conjecture 27. Let a be a circular area sequence. Then Xa(x; q) is e-positive,
with unimodal coefficients.

There are some promising steps towards proving this conjecture. A q-adaptation
of a result in [Sta95], appears in [SW11], which deals with unit interval graphs. The
same proof strategy goes through without modification, also noted in [Ell16]:

Proposition 28. Let a be a circular area sequence and consider the expansion

Xa(x; q) =
∑
µ

ca
µ(q)eµ(x). (13)

The coefficients ca
µ(q) satisfy∑

µ

ca
µ(q)t`(µ) =

∑
θ:AO(Γa)

qasca(θ)tsinks(θ). (14)

Here, AO(Γa) is the set of acyclic orientations of Γa, asca(θ) is the number of
ascending edges of A and sinks(θ) denotes the number of sinks in the acyclic orien-
tation.

What now follows is an LLT-analogue of Proposition 28, but we need to some
terminology first in order to state the proposition. Let Γν be a (circular) vertical
strip graph (i.e. the circular graph corresponding to a collection of vertical strips ν
in the LLT representation), and let θ be an orientation of Γν . A half-sink of θ is a
vertex v, such that for all edges v → u in Γν , we have u→ v in θ. Let halfsinks(θ)
denote the number of such half-sinks. In other words, in the diagram representation
of θ, if v is a half-sink in θ, then all boxes to the left of v are pointing towards
v. Similarly, a half-source of θ is a vertex such that for all edges v → u in Γν , we
have v → u in θ. For example, in the following orientation, vertices 3, 5 and 6 are
half-sinks, and 1 and 6 are half-sources.

↓ ↓ 1
↓ ↓ → 2
→ → 3

→ ↓ 4
→ 5
6

We are now ready to state the LLT analogue of Proposition 28. The proof closely
follows the one in [Sta95], but we need to do some modifications:

Proposition 29. Let ν be a circular unit interval graph with some strict corner
edges. Consider the expansion of the circular vertical-strip LLT polynomial Gν(x; q+
1) =

∑
µ d

ν
µ(q)eµ(x). Then∑

µ

dν
µ(q)t`(µ) =

∑
θ:O∗(Γν)

qinv(θ)thalfsources(θ) =
∑

θ:O∗(Γν)

qinv(θ)thalfsinks(θ) (15)



LLT POLYNOMIALS AND GRAPHS WITH CYCLES 17

where O∗(Γν) is the set of orientations of Γν such that the subgraph consisting of the
ascending edges is acyclic when all strict corner edges are oriented in an ascending
fashion.

Proof. We first derive an alternative expression for Gν(x; q + 1):∑
F :Γν→N

(1 + q)ascFxF =
∑

θ:O∗(Γν)

qascν(θ)Xθ (16)

where
Xθ =

∑
F :Γν→N

F is θ-compatible

xF . (17)

Let θ be an orientation of Γν . A coloring F is θ-compatible if for every ascending
edge i → j in θ, we have F (i) < F (j). The number of ascents of the coloring
depends only on θ and is given by ascν(θ). A fixed coloring F might contribute to
several Xθ, and it is clear that it is impossible to have a coloring that is compatible
with a cycle of ascending chain. Hence, colorings can only be compatible with
orientations in O∗(Γν).

The left-hand side of Equation (16) correspond to choosing a coloring, then
choosing a subset of the ascending edges of the coloring that contribute to the
q-weight. The right hand side corresponds to first choosing the contributing edges
(the orientation θ) and then summing over all colorings compatible with this choice.
This establish the identity Equation (16).

Note that Xθ is a quasi-symmetric function. In fact, consider only the ascending
edges in θ. These define an acyclic orientation on Γν , and therefore, the transitive
closure of these ascending edges gives a poset P (θ) on [n].

We now follow R. Stanley, [Sta95]. Let P be a poset on [n] and let

XP =
∑

F :[n]→N

xF (1) · · ·xF (n) (18)

summed over all strict order-preserving1 maps F : P → N, i.e., i <P j implies
F (i) < F (j). Comparing the definitions, we see that Xθ = XP (θ). Define the
following linear transform on quasi-symmetric functions, here defined on the basis
of the fundamental quasi-symmetric functions:

φ(QS(x)) =
{
t(t− 1)i if S = i+ 1, i+ 2, . . . , n,
0 otherwise.

(19)

In [Sta95], Stanley shows that φ(XP ) = tsources(P ) for any poset P . As a special case,
one can show φ(eλ) = t`(λ) by taking P to be the union of chains of length λ1, λ2
and so on. It is now straightforward see that the sources of P (θ) exactly correspond
to vertices contributing to halfsources(θ), so that sources(P (θ)) = halfsources(θ).
Putting it all together, we have

φ(Xθ) = φ(XP (θ)) = tsources(P (θ)) = thalfsources(θ).

1Stanley does order-reversing maps. We have modified the statements accordingly.
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Finally, applying φ on both sides of Equation (16);∑
µ

dν
µ(q)eµ(x) =

∑
θ:O∗(Γν)

qascν(θ)Xθ (20)

establish the first identity in Equation (15). The last identity now follows from the
fact that Gν(x; q + 1) is symmetric — restricting to n variables, and sending color i
to color n+ 1− i turns order-preserving maps to order-reversing maps and sources
to sinks. �

Corollary 30. Let ν be a non-circular unit interval graph with some strict corner
edges, and dν

µ(q) defined as in Proposition 29. Then∑
µ

dν
µ(q) = (1 + q)|ν|. (21)

where |ν| denotes the number of non-strict edges in Γν .

Proof. Every orientation of Γν is free from ascending cycles. There are |ν| edges in
the graph that may contribute to ascents and each such edge can independently be
chosen to be ascending or not. �

Lemma 31. For any a, the polynomial Ga(x1, x2; q+ 1) evaluated in two variables
has non-negative coefficients in the e-basis.

Proof. This is evident from the recursion in Equation (11). �

Corollary 32. The coefficient of e1n(x) in Ga(x; q + 1) is equal to 1 for all a.

Proof. The coefficient we seek is given by the sum over all orientations in O∗(Γa)
such that every vertex is a half-sink. Due to the definition of half-sinks, it is
straightforward to show that there is a unique orientation of Γa such that every
vertex is a half-sink, obtained by reversing all edges of Γa. �

Corollary 33. In [Sta95], Stanley shows that XP in (18) expands positively in the
Gessel fundamental basis. It follows that Gν(x; q+ 1) is positive in this basis as well
with the following expansion:

Gν(x, q + 1) =
∑

θ:O∗(Γν)

qascν(θ)
∑

π∈L(P (θ),wθ)

QD(π),

where wθ is a order reversing labeling of P (θ) and π is linear extension of P viewed
as a permutation of the labels in wθ.

Note: We cannot hope to this all circular ribbon LLT polynomials — for example,
Gν(x, q+1) with area sequence (1, 1, 1) and the weak inequalities F (1) ≥ F (2) ≥ F (3)
does not expand positively in the fundamental basis.

Proof. We have that XP (θ) =
∑
π∈L(P (θ),wθ)QD(π), where D(π) is the descent set

of π, after fixing an order-reversing labeling wθ on P (θ) and regarding π as a
permutation on these labels, i.e. the word w(π−1). Putting this in Equation (16)
gives the expansion. �
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5.1. Other consequences. Recall the definition of bounce path in Section 3.
Proposition 28 implies the following corollary:
Corollary 34. Let a be a circular area sequence and let r be the number of complete
subgraphs in the bounce path. If

Xa(x; q) =
∑
µ

ca
µ(q)eµ(x), then

∑
µ

`(µ)>r

ca
µ(q) = 0.

Proof. Each acyclic orientation of Γa contains at most one sink in each of the
complete subgraphs of Γa corresponding to parts of the bounce path. The conclusion
now follows from Proposition 28. �

Proposition 35. Let a be a circular area sequence of length n, and suppose one of
the two conditions below hold:

• ai ≥ n/2 for all i,
• maxi ai = n− 1.

Then Xa(x; q) = Ca(q)e(n)(x) for some Ca(q) with non-negative integer coefficients.

Proof. Note that in these two case, every vertex of Γa is connected with an edge
to every other vertex. It follows that every proper coloring of Γa must use distinct
colors for the vertices. This implies the statement. �

The following conjecture extends and refines Conjecture 26 to the circular case:
Conjecture 36. Let a be a circular area sequence and Xa(x; q) be the correspond-
ing chromatic symmetric function. Then the coefficients cλ(q) in the expansion
Xa(x; q) =

∑
λ cλ(q)eλ(x) are palindromic and unimodal polynomials with non-

negative integer coefficients.

The following lemma establishes the palindromic property of the e-coefficients.
Lemma 37. The coefficients of Xa(x; q) in the e-basis are palindromic.

Proof. Suppose n is the number of vertices of Γa. The coefficients are palindromic,
because this holds in any basis as long as the symmetry is about the same degree,
which in this case is |a|/2. To prove palindromicity in the monomial basis, first
restrict to n variables and consider the map on colorings that send color i to color
n+ 1− i. This map sends ascending edges to non-ascending edges and vice versa,
and there |a| edges in total. �

5.2. Path, cycle and the complete graph: Chromatic case. The results in
the following theorem has also been proved using different methods in [SW10, Ell16].
Theorem 38. Let Pn and Cn denote the line and cycle graph on n vertices. Then∑

n

XPn(x; q)zn =
∑
i≥0 ei(x)zi

1− q
∑
i≥2[i− 1]qei(x)zi

and ∑
n

XCn(x; q) =
q
∑
i≥2 i[i− 1]qei(x)zi

1− q
∑
i≥2[i− 1]qei(x)zi .
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Proof. We will first show the formula for the path graph Pn. The proof is by
induction on n and the number m of variables appearing, xm := (x1, . . . , xm).

Case m = 1: We have XPn(x1; q) = x1 = e1(x1) when n = 1 and 0 otherwise.
We have that eµ(x1) = 0 unless µ = 1k and any acyclic orientation would have
sectors of size at least 2. Thus if n > 1 there would be no terms e1k in the right
hand side and the formula holds.

Case m = 2: There are only two proper colorings of Pn — either alternating
121 . . . or alternating 212 . . . , which give

XPn(x1, x2; q) =
{
qk(xk+1

1 xk2 + xk1x
k+1
2 ) = qke2k1(x1, x2) if n = 2k + 1

xk1x
k
2(qk + qk+1) = (qk + qk+1)e2k(x1, x2) if n = 2k.

Since eµ(x1, x2) = 0 if µ1 > 2, the acyclic orientations can only have sectors of size
1 or 2, and thus the vertices are alternating sinks and sources. The formulas match
again.

Case m ≥ 3: In a proper coloring of Pn, let the vertices colored m be at positions
α1, α1 + α2, . . . , α1 + · · ·+ αk = r ≤ n, where α is a composition of some r ≤ n and
αi > 1 for i > 1. The total number of inversions introduced by the color m is k if
r < n or k − 1 if r = n. For brevity, let Xn(x) := XPn(x; q). We then have

XPn(xm; q) =
∑

r<n,k,|α|=r

qkxkm

[
k∏
i=1

Xαi−1(xm−1)
]
Xn−r(xm−1)

+
∑

k,|α|=n

qk−1xkm

k∏
i=1

Xαi−1(xm−1),

(22)

where the two sums represent colorings where vertex n has color either less than m,
or m, respectively.

Now set

Hm(z) :=
∞∑
n=0

XPn(xm; q)zn = 1 + e(xm)z +
∑
n≥2

XP2(xm; q)zn.

The recursive formula (22) can be written as

Hm(z) =
∞∑
k=0

(qxm)kzkHm−1(z)(Hm−1(z)− 1)k +
∑
k≥1

qk−1xkmz
kHm−1(z)(Hm−1(z)− 1)k−1

= Hm−1(z) 1 + zxm
1− qzxmHm−1(z) + qzxm

.

We now prove the generating function version of the formula. Let F (x; z) :=∑
i≥0 ei(x)zi, and Fm(z) := F (xm; z) = (xmz + 1)Fm−1(z). Our goal is now to
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show that

Hm(z) =
∑
i≥0 ei(xm)zi

1− q
∑
i≥2[i− 1]qei(xm)zi

= F (xm; z)
1− 1

q−1 (F (xm; qz)− 1− e1(xm)qz − qF (xm; z) + q + qe1(xm)z)

= (q − 1) Fm(z)
−Fm(qz) + qFm(z) .

By induction on m we have:

Hm(z) = Hm−1(z) 1 + zxm
1− qzxmHm−1(z) + qzxm

= (q − 1) Fm−1(z)(1 + zxm)
(−Fm−1(qz) + qFm−1(z))

(
1 + qzxm − qzxm(q − 1) Fm−1(z)

−Fm−1(qz)+qFm−1(z)

)
= (q − 1)Fm(z)
−Fm−1(qz) + qFm−1(z)− qzxmFm−1(qz) + q2zxmFm−1(z)− q2zxmFm−1(z) + qzxmFm−1(z)

= (q − 1)Fm(z)
−(1 + zqxm)Fm−1(qz) + q(1 + zxm)Fm−1(z)

= (q − 1) Fm(z)
−Fm(qz) + qFm(z)

which is what we wanted to prove.

The formula for Cn is proved in a similar fashion where we use the formula for the
path graph. For a coloring of the cycle, either no vertex is colored m, or k vertices
with color m are dividing the cycle into sectors of sizes αi > 1 for i = 1, . . . , k, which
are themselves path graphs of length αi − 1 in the colors xm−1. Thus

XCn(xm; q) = XCn(xm−1, q) +
∑
k≥1

qkxkm
∑
|α|=n

α1

k∏
i=1

Xαi−1(xm−1, q).

Note that since we have a cycle, we need to choose where in the first sector vertex 1
appears. This explains the α1 in the formula.

If we let Hc
m(z) :=

∑
n XCn(xm, q)zn, then

Hc
m(z) = Hc

m−1(z) +
∑
k≥1

qkxkmz
k

(
∂z(Hm−1(z)− 1)

∂z

)
(Hm−1(z)− 1)k−1

= Hc
m−1(z) +

qxmz
(
z ∂Hm−1(z)

∂z +Hm−1(z)− 1
)

1− qxmz(Hm−1(z)− 1) .

We need to show the following formula, which we prove by induction on m:

Hc
m(z) =

q
∑
i≥2 i[i− 1]qeizi

1− q
∑
i≥2[i− 1]qeizi

= zq(F ′m(qz)− F ′m(z))
−Fm(qz) + qFm(z) .
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Here we noted that the denominator is the same as for Hm and the numerator
can be written as

z
∂

∂z
q
∑
i≥2

[i−1]qeizi = z

q − 1
∂

∂z
(Fm(qz)+q−1−qFm(z)) = z

q − 1(F ′m(qz)q−qF ′m(z)).

We also calculate that
∂Hm(z)
∂z

= (q−1)−F
′
m(z)Fm(qz) + qFm(z)F ′m(qz)

(−Fm(qz) + qFm(z))2 , Hm−1 = Fm(qz)− Fm(z)
qFm(z)− Fm(qz) ,

and
1− qxmz(Hm−1(z)− 1) = qFm(z)− Fm(qz)

qFm−1(z)− Fm−1(qz) .

Using these identities in the recursion for Hc, the induction hypothesis and the fact
that F ′m(u) = (1 + xmu)F ′m−1(u) + xmFm(u), we get

Hc
m(z) =

zq(F ′m−1(qz)− F ′m−1(z))
qFm−1(z)− Fm−1(qz)

+ qxmz
z(q − 1)(qFm−1(z)F ′m−1(qz)− F ′m−1(z)Fm−1(qz))

(qFm−1(z)− Fm−1(qz))(qFm(z)− Fm(qz))

+ qxmz
(Fm−1(qz)− Fm−1(z))

(qFm(z)− Fm(qz))

= zq
((1 + qzxm)F ′m−1(qz)− (1 + zxm)F ′m−1(z))(qFm−1(z)− Fm−1(qz))

(qFm−1(z)− Fm−1(qz))(qFm(z)− Fm(qz))

+ qzxm
Fm−1(qz)− Fm−1(z)
qFm(z)− Fm(qz)

= zq
xmFm−1(qz)− xmFm−1(z) + F ′m(qz)− xmFm−1(qz)− F ′m(z) + xmFm−1(z)

qFm(z)− Fm(qz)

= zq
F ′m(qz)− F ′m(z)
qFm(z)− Fm(qz)

as desired. �

In [Sta95, Prop. 5.4], Stanley consider the e-expansion of the cycle graphs,
i.e., a = (1, 1, . . . , 1) and show that the expansion is positive in the case q = 1,
similar to how the above formulas imply e-positivity. However, no combinatorial
interpretation of the e-coefficients is given. In the following theorem, we present
such a combinatorial interpretation. This interpretation also appears in [Ell16].

Theorem 39. Let Pn, Cn, Kn and Bn denote the line graph, the cycle graph, the
complete unit interval graph and the complete circular unit arc digraph on n vertices.
Let Γ be any disjoint union of such graphs. Then

XΓ(x; q) =
∑

θ:AO(Γ)

qascΓ(θ)eµ(θ)(x) (23)

where µ(θ) is the sizes of the circle sectors when using the sinks of θ as dividers.

Before proving this theorem, we give an example on how to find µ(θ) of an
orientation of Pn or Cn. For orientations θ of Kn and Bn, µ(θ) = (n) for all
orientations, since orientations on these graphs have unique sinks.
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Example 40. In the following two figures, we have an orientation of P8 and C8,
respectively. The sources are marked with a bar and the gray vertices are the
sinks. For each sink, we have an associated circle sector, consisting of the sinks and
the cyclically following non-sinks clockwise. The sectors in both orientations are
{2, 1, 8}, {4, 3} and {7, 6, 5}, giving the shape µ(A) = 332.

Note that in the first orientation, the “virtual” edge 8–1 does not have an
orientation, and we have that the number of ascents is 3, as there are 3 edges
oriented in the same direction as the underlying orientation of the path. In the
second orientation, there are 4 ascents.

1̄

2
3̄

4

5

6̄
7

8̄

q

q

q

1̄

2
3̄

4

5

6̄
7

8

q

q

q

q

Proof. Let XCn(x; q) denote the chromatic symmetric function for a cycle with n
vertices. Recall from Theorem 38 the generating function identity

∑
z≥0

XCn(x; q)zn =
q
∑
i≥2 i[i− 1]qeizi

1− q
∑
i≥2[i− 1]qeizi

.

We will show that the formula in (23) satisfies this generating function.
An acyclic orientation of Cn partitions Cn into sectors determined by the sinks.

A sector consists of the sink s and all vertices clockwise from s until the next sink.
Note that every sector has size at least two, and that there is exactly one source in
each sector.

• The numerator q
∑
i≥2 i[i− 1]qeizi describes constructing the unique sector

containing vertex 1. After picking the size i, there are i ways to assign
which of the i vertices in the sector that has label 1. The [i − 1]q factor
determines the position of the source — there are only i− 1 choices since
we cannot choose the sink. The extra q comes from the fact that the sink
always contributes with an ascending edge.

• The denominator now simply adds more sectors after the initial one, using
a similar reasoning as for constructing the first sector, where each sink has
an ascending edge. Edges between sectors are always descending.
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Let XPn(x; q) denote the chromatic symmetric function for a path with n vertices.
We previously proved∑

z≥0
XPn(x; q)zn =

∑
i≥0 eizi

1− q
∑
i≥2[i− 1]qeizi

=
∑
i≥1 eizi

1− q
∑
i≥2[i− 1]qeizi

+ 1
1− q

∑
i≥2[i− 1]qeizi

.

Since vertex 1 is an end-point of the path, it can either be a sink or a source.
These two cases correspond to the two terms we indicated above.
Vertex 1 is a sink. There is a unique vertex v such that

1 — n→ (n− 1)→ · · · → v

is a sector in the orientation. There is no q here, since all these edges are descending,
and we are not yet sure if there is a second sink following v, since we could have
v = 1. The denominator now adds additional sectors with unique sources just as in
the cycle graph.
Vertex 1 is a source. The second term in the expression is given by

1 +

q∑
i≥2

[i− 1]qeizi
+

q∑
i≥2

[i− 1]qeizi
2

+ · · ·

We need to show that constructing a sector of size i with 1 as a source, correspond
to the expression q[i− 1]qeizi. Note that 1 belongs to some sector

s← (s− 1)← · · · ← 1 — n→ (n− 1)→ · · · → v

with s ≥ 2 being the sink. The factor [i− 1]q correspond in this case to the choice
of s (which determines v uniquely since the size must be i) and thus the number of
ascending edges in the sector. We are guaranteed to have at least one ascending
edge, s← (s− 1), which account for the extra q. As before, the remaining part of
the orientation is created sector by sector.

The graphs Kn and Bn only allow colorings with distinct colors. Each such
coloring F induce an acyclic orientation θ, such that asc θ = ascF .

Finally, the case when Γ is a disjoint union of smaller graphs follows from the
fact that the e-basis is multiplicative and the fact that asc and µ(θ) are additive on
disjoint graph components. �

The following propositions explicitly give the e-coefficients in case of the path
and cycle graph.

Proposition 41. Let Pn be the path graph with n vertices, and let µ be a partition
with k parts. Then

[eµ]XPn(x; q) = k!qk−1ek−1([ν1]q, . . . , [νk]q)
m1(µ)! · · ·mn(µ)! + k!qkek([ν1]q, . . . , [νk]q)

m1(µ)! · · ·mn(µ)! (24)

where νi = µi − 1 for i = 1, . . . , k.
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Proof. We use the same model and sub-cases as in Theorem 39.
The first fraction treats vertex 1 as a sink in a special sector and 1 does not

contribute with a descending edge.

• The k!/m1(µ)! · · ·mn(µ)! accounts for permuting sector sizes.
• The expression ek−1([ν1]q, . . . , [νk]q) corresponds to deciding which sector

is special, and then placing the sources within the other k − 1 sectors. Each
of these sectors contain one descending edge next to the sink.

The second fraction is the weighted count of the orientations with sector sizes
given by µ and vertex 1 is a source.

• The k!/m1(µ)! · · ·mn(µ)! again accounts for all permutations of the sector
sizes, where the first sector is the one containing vertex 1.

• The qk accounts for the fact that each sink now contributes with exactly
one ascending edge.

• Finally, ek([ν1]q, . . . , [νk]q) describes the placement of the unique source
within each sector, or in the case of sector 1, starting and ending vertices.

�

Proposition 42. Let Cn be the cycle graph with n vertices, and let µ be a partition
with k parts. Then

[eµ]XCn(x; q) =
∑
j∈µ

(k − 1)!qk · j · ek−1([µj1 − 1]q, . . . , [µjk−1 − 1]q)
m1(µj)! · · ·mn(µj)! , (25)

where the sum runs over all different parts of µ, and µj is the partition obtained
from µ by removing one part of size j. For example, µ = 743321 gives

µ3 = 74321 and µ2 = 74331.

Proof. The proof follows a similar reasoning as for the path case. The sum is over
all possible sizes of sectors that contain the vertex 1. Within this sector, there are j
ways to choose which vertex has label 1. The remaining k − 1 sectors can then be
permuted freely, just as in the path case. Note that each sector now contains a sink
with an ascending edge — explaining the qk. �

Remark 43. In (23) we can interchange replace sinks with sources and count
descending edges instead of ascending edges, as there is a bijection on acyclic
orientations given by reversing all edges. Since we proved that the e-coefficients
are palindromic in Lemma 37, we can in fact use any of the four combination of
ascending/descending edges and sinks/sources. However,only the combinations
(inv, sinks) and (asc, sources) allow us to give interpretations of the individual terms
in (24).

Finally, we note that a recent preprint, [DvW17], give an algebraic proof of
e-positivity of another family of graphs, each such graph consisting of a complete
graph glued together with a chain.
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5.3. Path, cycle and the complete graph: LLT case. There is also an analogue
of Theorem 39 in the LLT case:

Proposition 44. Let a be any of the graphs

• (1, 1, . . . , 1, 1),
• (1, 1, . . . , 1, 0),
• (n− 1, n− 2, . . . , 0),

i.e., the line graph, the circuit or the acyclic complete graph on n vertices. Then

Ga(x; q + 1) =
∑

θ:O∗(Γa)

qasc(θ)eµ(θ)(x). (26)

where µ(θ) is the sizes of the circle sectors when using the half-sinks of θ as dividers.

Proof. We consider the formula given in Equation (17). In this case of a cycle graph,
it is fairly straightforward to see that the poset P (θ) is a disjoint union of chains
with lengths given by µ(θ), and then that Xθ = eµ(θ)(x).

Note that for the path graph a = (1, . . . , 1, 0), vertex n is always a half-sink. This
prevents circle sectors to “wrap around”, and a similar reasoning as in the cycle
graph case shows that again, Xθ = eµ(θ)(x).

The third case is more involved and requires several steps. First, define

ĜKn(x; q + 1) :=
∑

θ:O∗(Γa)

qasc(θ)eµ(θ)(x). (27)

Our goal is to show that GKn(x; q) = ĜKn(x; q). First, it is fairly straightforward
from the definition in (27) to obtain the recurrence

ĜKn(x; q + 1) =
n−1∑
i=0

ĜKi(x; q + 1)en−i(x)
n−1∏
k=i+1

[
(q + 1)k − 1

]
, GK0(x; q + 1) = 1.

(28)

Basically, every orientation of Kn, can be obtained by first orientating the bottom i
rows, followed by making row i+ 1 from the bottom the top-most half-sink, thus
adding a sector of size n− i. This also forces the orientations of all edges in row
i + 1. Finally we need to orient the edges in the remaining n − i − 1 rows, while
avoiding creating more half-sinks. The only configuration we need to avoid is having
all edges “pointing right” in some row. This explains the product in the formula.

Let

F (x; q) :=
∑
n≥0

ĜKn(x; q)
(1− qn) · · · (1− q2)(1− q) .
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Applying the recurrence (28) and noting that ĜKn(x; q) is a homogeneous polynomial
in x of degree n, we have the following

F (x; q)− F (qx; q) =
∑
n≥1

∑n−1
i=0

(
ĜKi(x; q)en−i(x)− ĜKi(qx; q)en−i(qx)

)∏n−1
k=i+1

[
qk − 1

]
(1− qn) · · · (1− q2)(1− q)

=
∑
n≥1

∑n−1
i=0 ĜKi(x; q)en−i(x)(1− qn)

∏n−1
k=i+1

[
qk − 1

]
(1− qn) · · · (1− q2)(1− q)

=
∑
i≥0

ĜKi(x; q)
(1− qi) · · · (1− q)

∑
r≥1

(−1)r−1er(x) = F (x; q)

1−
∏
j

(1− xj)

 .

Solving for F (x; q) in terms of F (qx; q) and iterating we get

F (x; q) = F (qx; q)∏
j(1− xj)

= · · · =
m∏
r=1

∏
j

1
1− xjqr−1F (qmx; q),

leading to the generating function identity∑
n≥0

ĜKn(x; q)
(1− qn) · · · (1− q2)(1− q) =

∏
i,j≥0

1
1− xiqj

.

The right hand side can be interpreted as a specialization of the Cauchy identity,
see e.g., [Sta01]: ∏

i,j≥0

1
1− xiyj

=
∑
λ

sλ(x)sλ(y) (Cauchy Identity)

Hence,∑
n≥0

ĜKn(x; q)
(1− qn) · · · (1− q2)(1− q) =

∑
λ

sλ(x)sλ(1, q, q2, . . . )

=
∑
λ

sλ(x)
∑
T∈SYT(λ) q

comaj(T )

(1− qn) · · · (1− q2)(1− q) (29)

where the second equality is due to [Sta01, Prop. 7.19.11]. As a side note, the right
hand side above is the Frobenius series of C[x1, . . . , xn] under the usual Sn action.

On the other side of the identity we want to prove, we have by definition that

GKn(x; q) =
∑
w∈Nn

xw1 · · ·xwnqinv(w) =
∑

T∈SYT(n)

qcc(T )sλ(T )(x) (30)

where the middle sum is over all words of length n with letters in N, and the
second equality is an identity that follows from the Robinson–Schensted–Knuth
correspondence. By comparing Schur coefficients in (29) and (30), the identity now
follows (see [Hag07, p. 16]) from the fact that cc(T ) = comaj(T ). �

As a small remark, the series∑
n≥0

GKn(x; q) =
∑
λ

sλ(x)
∑

T∈SYT(λ)

qcomaj(T )
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is the Frobenius series of the ring of contravariants, that is, C[x1, . . . , xn]/〈e1, . . . , en〉,
see the first chapter in [Hag07].

Corollary 45. Let Pn and Cn denote the path and the cycle graph on n vertices,
respectively. Then ∑

n≥0
GPn(x; q + 1)zn = 1

1−
∑
i≥1 q

i−1ziei
,

and ∑
n≥0

GCn(x; q + 1)zn =
∑
i≥1 iq

i−1ziei

1−
∑
i≥1 q

i−1ziei
.

Proof. These identities are straightforward to prove using the combinatorial formula
in Proposition 44. �

We end this section with a conjecture indicated by computer experiments:

Conjecture 46. Let Γ be a circular unit arc digraph, and let H be a graph obtained
from Γ by marking k corner edges strict. Then

GΓ(x; q + 1)− qkGH(x; q + 1)
is e-positive.

6. Expansion of unicellular LLT polynomials in power-sum basis

In 2015, C. Athanasiadis gave the p-expansion of the chromatic symmetric
functions, associated with unit interval graphs, see [Ath15]. By using this expansion
together with properties of plethysitc substitution, we obtain a combinatorial formula
for the p-expansion of unicellular LLT polynomials. The relation in question is from
[CM15, Prop. 3.4]:

Lemma 47. Let a be a unit interval graph. Then
(q − 1)−nGa[x(q − 1); q] = Xa(x; q), (31)

where the bracket denotes a plethystic substitution.

This plethystic relation does not extend to the circular case, where something
more involved happens in that case.

6.1. Unit interval case.

Theorem 48 ([Ath15]). Let Γa be a non-circular unit interval graph. Then

ωXa(x; q) =
∑
µ

ca,µ(q)pµ(x)
zµ

(32)

where ca,µ(q) is a unimodal and palindromic polynomial with non-negative integer
coefficients. In fact,

ca,µ(q) = [µ1]q · · · [µk]q
∑
π∈Sn

π µ-admissible

qasca(π−1),
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where π is µ-admissible if the following holds: partition π into contiguous blocks
of size µi — that is, the first µ1 letters of π constitute the first block, the next µ2
letters the second block, and so on. Each such block [a1, . . . , ak] is admissible if

• ai ← ai+1 is never in Pa (no P -descents).
• ai < ak for 1 ≤ i < k.

Here, Pa is the poset in Section 2.1

We now show that a similar statement holds for the LLT polynomials (a variant
of this is mentioned in [HW17]).

Theorem 49. Let Γa be a non-circular unit interval graph. Then

ωGa(x; q + 1) =
∑
λ

qn−`(λ)

 ∑
π∈Sn

π λ-admissible

(q + 1)asca(π−1)

 pλ(x)
zλ

(33)

Proof. From Lemma 47, it follows that

Ga(x; q) = (q − 1)nXa

[
x

(q − 1) ; q
]
. (34)

Recall that ωpk(x) = (−1)k−1pk(x), and that pk [x/(q − 1)] = (qk − 1)−1pk(x), so
it is clear that ω commutes with this type of plethystic substitution. We have

ωGa(x; q) = (q − 1)nωXa

[
x

q − 1 ; q
]

= (q − 1)n
∑
λ

ca,λ(q) 1
zλ

pλ
[

x
q − 1

]
(35)

= (q − 1)n
∑
λ

`(λ)∏
i=1

[λi]q
qλi − 1


 ∑

π∈Sn
π λ-admissible

qasca(π−1)

 pλ(x)
zλ

=
∑
λ

(q − 1)n−`(λ)

 ∑
π∈Sn

π λ-admissible

qasca(π−1)

 pλ(x)
zλ

Replacing q with q + 1 now gives the expansion

ωGa(x; q + 1) =
∑
λ

qn−`(λ)

 ∑
π∈Sn

π λ-admissible

(q + 1)asca(π−1)

 pλ(x)
zλ

.

�

6.2. Circular case. Now we let a be any circular area sequence and define ĉa,λ(q)
via the relation

ωGa(x; q) =
∑
λ

ĉa,λ(q)

`(λ)∏
i=1

(q − 1)λi
qλi − 1

 pλ(x)
zλ

. (36)
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Remember that we previously defined

ωXa(x; q) =
∑
λ

ca,λ(q)pλ(x)
zλ

,

and that (35) implies that ca,λ(q) = ĉa,λ(q) whenever a is non-circular. In [Ell16],
a combinatorial interpretation is given for the ca,λ(q), thus giving the p-expansion
of the chromatic quasisymmetric functions in the circular setting.

Conjecture 50. The coefficients ĉa,λ(q) are unimodal polynomials in q with non-
negative integer coefficients. Furthermore, the difference

ĉa,λ(q)− ca,λ(q)
have non-negative coefficients.

Note that in the non-circular case, the coefficients ĉa,λ(q) are palindromic. This
is no longer the case in the circular setting.

6.3. The double-complete graph. Let Bn denote the double-complete directed
graph on n vertices, that is, the graph with directed edges i → j for all i 6=
j. Consider the associated LLT polynomial, GBn(x; q), and define Hn(x; q) :=
q(
n
2)GBn(x; q−1), which is easier to work with in this case. We have that

Hn(x; q) :=
∑

F∈[n]n
xwqm(F )

wherem(F ) is the number of monochromatic edges, when interpreting w as a coloring
of Kn. In particular, if we let (compare with Equation (36))

ωHn(x; q) =
∑
λ`n

c̃λ(q)

`(λ)∏
i=1

(1− q)λi
1− qλi

 pλ(x)
zλ

,

then c̃λ(q) = q(
n
n)ĉBn,λ(q−1). We now consider the generating function for Hn(x; q),

and have that

F (x; q) :=
∑
n≥0

Hn(x; q)
n! =

∑
n

∑
µ`n

mµ(x)
µ! · q

∑
j
(µj2 ) =

∏
i

∑
j≥0

q(
j
2)x

j
i

j!

 ,

because for each coloring with µi colors i, there are
(
µi
2
)
monochromatic edges. For

each collection µ of labels, we then have
(

n
µ1,µ2,...

)
ways of placing the labels. Finally,

dividing by n! and splitting the sums independently over each variable we get the
identity. Next, to express in terms of power sum symmetric functions, define the
expansion of the series above as

log

∑
j≥0

q(
j
2)x

j

j!

 =:
∑
r≥1

gr(q)xr
r! = L(x; q), (37)

to obtain

logF (x; q) =
∑
i

log

∑
j≥0

q(
j
2)x

j
i

j!

 =
∑
i

∑
r≥1

gr(q)xri
r! =

∑
r≥1

gr(q)pr(x)
r! .
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Hence, ∑
n≥0

Hn(x; q)
n! = exp

∑
r≥1

gr(q)pr(x)
r!

 .

It follows that

c̃(n)(q) = z(n)
1− qn

(1− q)n (−1)n−1n![pn(x)]
∑
n≥0

Hn(x; q)
n!

= n
qn − 1

(q − 1)n gn(q) = n(qn − 1)
(q − 1)n

[
xn

n!

]
log

∑
j≥0

q(
j
2)x

j

j!

 , (38)

or equivalently as a generating function we have the following identity

log

∑
j≥0

q(
j
2)x

j

j!

 =
∑
n≥1

c̃(n)(q)
(q − 1)n
n(qn − 1)

xn

n! . (39)

The generating functions above implies the following recurrence for c̃(m):

c̃(m)(q)
m

= qm − 1
(q − 1)m

[
q(
m
2 ) −

m−1∑
r=1

(
m− 1
r − 1

)
q(
m−r

2 )(q − 1)r
qr − 1

c̃(r)(q)
r

]
, c̃(1)(q) = 1.

As an example, the coefficient c̃(5)(q) is

5q10 + 25q9 + 75q8 + 175q7 + 325q6 + 500q5 + 600q4 + 550q3 + 450q2 + 300q + 120.

We shall now connect the c̃(m)(q) with the theory of parking functions. Let
PF(n) = {a = (a1, . . . , an) : 1 ≤ sort(a)i ≤ i, i = 1, . . . , n} be the set of parking
functions on n cars, where the ith car has a preferred spot ai, and sort(a) is a
arranged in increasing order. The graphical representation of parking functions
is a lattice path γ from (0, 0) to (n, n), such that there are #{i : ai = j} vertical
steps with x-coordinate j − 1, and the corresponding indices i : ai = j are written
in increasing order in the boxes to the right of these steps. The parking function
condition is equivalent to γ being a Dyck path. The area of a parking function is
defined as the area of the corresponding Dyck path.

Example 51. As an example, (1, 3, 4, 1, 1, 4, 1) is a parking function, with the
graphical representation

6
3

2
7
5
4
1

(40)

The area of the parking function is 13.
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Theorem 52. Let PF(n) be the set of all parking functions with n letters. Let
fn(q) =

∑
w∈PF(n) q

area(w) be an associated q-weighted enumeration of parking
functions. We have the following relationship

c̃n(q) = n
1− qn
1− q fn(q)q−n.

Proof. Let
In(q) =

∑
(a1,...,an)∈PF(n)

qa1+a2+···+an

be the q-weight enumerator for parking functions. It is easy to see that in the Dyck
path representation a1 + · · · + an + area(γ) =

(
n+1

2
)
, since ai is the x-coordinate

of the label i on the Dyck path and so a1 + · · ·+ an is the complementary area of
the Dyck path inside the (n× n)-box. Hence q(

n+1
2 )In(q−1) = fn(q). The following

generating function has been derived in [Kre80]:∑
n≥1

q(
n
2)(q − 1)n−1In(q−1)x

n

n! = log
∑
n≥0

q(
n
2)x

n

n! .

The right hand side matches the generating function expansion in (39), hence

q(
n
2)(q − 1)n−1In(q−1) = (q − 1)n

n(qn − 1) c̃(n)(q),

and replacing In(q−1) by fn(q)q−(n2)−n we get

c̃(n)(q) = fn(q)nq
n − 1
q − 1 q−n.

�

Note that In(q+1) =
∑
G q

e(G)−n, where G runs over all simple connected graphs
on n vertices.

In the study of diagonal harmonics, a central operator on symmetric functions is
the ∇-operator, for which the modified Macdonald polynomials are eigenfunctions.
The polynomial fn(q) is related to the ∇-operator in the following sense: The
quasi-symmetric expansion of ∇en can be expressed as

∇en =
∑

w∈PF(n)

tarea(w)qdinv(w)Qides(w).

where dinv and ides are certain statistics on parking functions — see [CM15] for
a recent proof of this identity (the “shuffle” conjecture), originally conjectured in
[HHL+05b].

6.4. Vertical strip case. For general vertical strips, the relation in Equation (36)
does not produce polynomial coefficients, but computer experiments suggests the
following conjectural generalization of the positivity in Theorem 49:

Conjecture 53. Let ν determine a circular vertical strip digraph. Then ωGν(x; q+
1) is p-positive. Furthermore, the coefficients cν,λ(q)

ωGν(x; q + 1) =
∑
λ

cν,λ(q)pλ(x)
zλ
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are polynomials with unimodal and non-negative integer coefficients.

7. Discussion on Schur positivity

There is no known combinatorial proof of Schur positivity of vertical-strip LLT
polynomials Gν(x; q), not even in the case of unicellular diagrams. However, there
is a formula for the Schur expansion of Xa(x; q) in the non-circular case in terms of
P -tableaux appearing in [Gas96].

For circular a, the polynomials Ga(x; q) are not Schur-positive in general. How-
ever, for circular vertical-strip LLT polynomials we conjecture that there is an
expansion of the form

Gν(x; q + 1) =
∑

θ∈O∗(Γν)

qasc θ
∑

F :Γν→[n]
F is θ−compatible
+ extra condition

sλ(F )(x). (41)

where the extra condition ensures to pick a highest weight representative for each
Schur component. The partition λ(F ) is given by λi being the number of vertices
with color i in F , and the extra condition should ensure that λ(F ) is indeed a
partition. This conjectured expansion is reminiscent of the Schur expansion of
the chromatic quasisymmetric functions, [Gas96], which can be expressed in the
following way:

Xa(x; q) =
∑

θ∈AO(Γa)

qasc θ
∑

F :Γa→[n]
F non-attacking
F is θ−compatible
F is a P -tableau

sλ(F )(x). (42)

Note that due to the non-attacking condition, each coloring appear for exactly one
acyclic orientation, so the above formula is expressed in a quite unnecessary manner
— we write it in this way to emphasize the similarities with Equation (41).

To give some additional support for the above expression, computer experiments
suggests the following property:

Conjecture 54. For a circular area sequence a, the difference
Ga(x; q + 1)−Xa(x; q)

is Schur-positive.

This conjecture suggests that colorings that are Gasharov’s P -tableaux should
be a subset of the colorings appearing in the sum in (41). This approach would be
a new and unexplored avenue to give a combinatorial expansion of (vertical strip)
LLT polynomials in the Schur basis. The main difference compared to previous
approaches is the q + 1 shift and the fact that we know the generating q-statistic,
rather than the combinatorial object to sum over.

8. Linear relations among chromatic symmetric functions

The following shows that every linear relation among a set of chromatic symmetric
functions has a corresponding relation among LLT polynomials:
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Proposition 55. Let a1, . . . ,ak be classical unit-interval graphs. Then

k∑
j=1

cj(q)Xai(x; q) = 0 if and only if
k∑
j=1

cj(q)Gai(x; q) = 0. (43)

for some cj(q).

Proof. This follows immediately from the plethystic relation Lemma 47 between
LLT polynomials and chromatic symmetric polynomials. �

8.1. A principal specialization and Eulerian polynomials. Given a symmet-
ric function f(x), its principal specialization is defined as f(1, t, t2, . . . ). One can
show that the principal specialization of Schur polynomials is given by

sλ(1, t, t2, . . . ) = tn(λ)∏
s∈λ 1− thook(s) . (44)

Moreover, notice that by the hook-length formula we have

(1− t)n[n]!tsλ(1, t, t2, . . .)|t=1 = fλ,

the number of SYTs of shape λ, and equivalently, the coefficient of x1 · · ·xn in
the expansion of sλ. Since the Schur functions form a basis, this property directly
extends to all symmetric functions: (1− t)n[n]!tf(1, t, . . .)|t=1 is the coefficient of
the monomial x1 · · ·xn in f .

In the case of Xa, the coefficient counts the number of all colorings of Γa with
distinct colors (hence all are proper) weighted by qascF , in the case of line and cycle
graphs the ascents are just the descents in the corresponding permutation. Thus we
have the following:

Proposition 56 ([SW14]). Let Ln be the area sequence determining a line graph
on n vertices. Then

(1− t)n[n]!tXLn(1, t, t2, . . . ; q)
∣∣
t=1 = An(q) (45)

where An(q) is the Eulerian polynomial.

It directly extends to the cycle graph — there are n positions to put the number
n, which always introduces one ascent. The remaining n − 1 labels then form a
permutation, where q keeps track of the number of descents there. Hence we have

Proposition 57. Let Cn be the area sequence determining a cycle graph on n
vertices. Then

(t; t)nXCn(1, t, t2, . . . ; q)
∣∣
t=1 = nqAn−1(q) (46)

where An(q) is the Eulerian polynomial.

This is a special case of a more general theorem in [Ell16].
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9. Acyclic orientations and rook placements

In this section, we give several combinatorial proofs for formulas concerning
counting acyclic orientations of unit-interval graphs. This gives alternative proofs
for some identities given in [SW14, SW11].

We have seen that the area sequence, a, counting the number of inner shapes
in each row determines a unit interval graph. Similarly, the column area sequence
b = {b1, . . . , bn} is the list where bi counts the number of squares in the inner shape
in column i, from right to left.

Lemma 58. Suppose a and b are the row and column area sequences, respectively,
of a unit interval graph. Then b is a permutation of a.

Proof. The proof is by induction on n, the number of vertices of the graph. Consider
the left-most column in the path, its peak is at (1, bn) and ends at row i = n− bn.
It must be at horizontal distance bn from the diagonal too, so ai = bn. We must
have that ai+j = ai − j for all j ≥ 0 since these rows reach the end. Consider
the Dyck path of height n − 1 formed by removing the left-most column of the
original path, so it has column sequence (b1, . . . , bn−1). The row sequence is a′ =
(a1, . . . , ai−1, ai − 1, ai+1 − 1, . . .) = (a1, . . . , ai−1, ai+1, ai+2, . . . , an). By induction,
there is a permutation σ, s.t. (b1, . . . , bn−1) = a′ ◦ σ. Let φ(j) := j if j < i and
φ(j) := j + 1 if j ≥ i, then a′j = aφ(j), so bj = a′σ(j) = aφ(σ(j)). Finally, set bn = ai,
so the permutation that sends a to b is (φ(σ), i). �

As before, we represent acyclic orientations of Γa by marking the inner squares
with arrows pointing either right or down. Arrows pointing down represent ascending
edges, i → j where i < j. The number of ascending edges in an orientation θ is
denoted asc(θ).

Proposition 59. Let a = {a1, . . . , an} be a row area sequence and {v1, . . . , vn} be
non-negative integers such that vi ≤ ai. Then there is a unique acyclic orientation
of Γa with vi ascending edges in row i.

Proof. We do proof by induction over the number of rows. The statement is trivial
for one row. Suppose there is already an acyclic orientation of rows i+ 1, . . . , n. We
restrict our attention to rows i, i+ 1, . . . , i+ ai. This cuts out a triangle as in (47).

i

i+1

i+2

. .
.

(47)

The vertices i + 1, . . . , i + ai are totally ordered by the acyclic orientation in the
corresponding rows. Thus, there is a unique subset consisting of the vi maximal
vertices among i + 1, . . . , i + ai in this total order. Connect vertex i to these via
ascending edges and let the remaining edges in row i be descending. It is clear from
the construction that this is an acyclic orientation and that this is unique. �
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Corollary 60 (See [SW14, Thm 6.9]). Suppose Xa(x; q) =
∑
µ cµ(q)eµ. Then∑

µ

cµ(q) =
n∏
i=1

[ai + 1]q =
n∏
i=1

[bi + 1]q

where b1, . . . , bn is the column area sequence of Γa.

Proof. The first equality follows from Proposition 28 with t = 1 and the above
Proposition 59. The second equality follows from the bijection in Lemma 58. �

Example 61. Consider the diagram with area sequence (2, 2, 3, 2, 1, 0).

We compute that
X223210(x; q) = (1 + 4q + 8q2 + 11q3 + 12q4 + 11q5 + 8q6 + 4q7 + q8)e11111

+ (q2 + 3q3 + 4q4 + 3q5 + q6)e21110

and verify that
(1 + 4q + 8q2 + 11q3 + 12q4 + 11q5 + 8q6 + 4q7 + q8)
+ (q2 + 3q3 + 4q4 + 3q5 + q6)
= [1 + 1]q[2 + 1]q[3 + 1]q[2 + 1]q[2 + 1]q.

Lemma 62. Let Γa be connected. The number of acyclic orientations of Γa with
one unique sink in the first row, where each ascending edge has weight q, is given by∑

θ∈AO(Γa)
Sinks(θ)={1}

qasc(θ) =
n−1∏
i=1

[ai]q =
n−1∏
i=1

[bi]q. (48)

Proof. We will show that an acyclic orientation has a unique sink at vertex 1 (first
row) if and only if every column has at least one descending edge (i.e. right arrow).

Consider an acyclic orientation with a unique sink at vertex 1, and suppose there
is a column with no descending edges, i.e. only down arrows. Let this column be
i1, necessarily i1 > a1. Since the unique sink is 1, and Γa is acyclic and connected,
there is a path i1 → i2 → · · · → 1. Since all arrows in column i1 point down, we
must have that i2 > i1. The only vertices connected to 1 are 2, . . . , a1 < i1, so there
must be some j, for which ij > i1 ≥ ij+1. Then the row at ij+1 must extend to
column ij , and thus intersect the i1 column. Hence there is a down pointing arrow
from ij+1 to i1, i.e. ij+1 → i1, which creates a cycle i1 → · · · → ij → ij+1 → i1,
leading to a contradiction.

Now suppose that we have an acyclic orientation with every column having at
least one right arrow. Since it is acyclic, there must be at least one sink. No vertex
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with a nonempty column could be a sink because of the right arrow. Since Γa is
connected, the only empty column is 1, so 1 has to be the only sink.

By Proposition 59, the orientation is uniquely specified by the number of down
arrows in the columns, and every column can have at most bi − 1 down arrows.
Hence there is a bijection with sequences (v1, . . . , vn) with vi ∈ {0, . . . , bi − 1} with
the total number of down arrows v1 + · · ·+ vn, so∑

θ∈AO(Γa)
Sinks(θ)={1}

qasc(θ) =
∑

(v1,...,vn)

qv1+···+vn =
n−1∏
i=1

bi−1∑
vi=0

qvi =
n−1∏
i=1

[bi]q. �

Proposition 63 ([SW14, Corr 7.2]). Suppose Xπ(x; q) =
∑
µ cµ(q)eµ. Then

c(n) = [n]q
n−1∏
i=1

[ai]q.

Proof. Remember that c(n) is the q-weighted count of acyclic orientations with one
sink. Note that

[n]q
n−1∏
i=1

[ai]q = q[a1]q ([n− 1]q[a2]q · · · [an]q) + [a1]q · · · [an]q.

The second term in the right hand side is the number of acyclic orientations with a
unique sink in the first row, according to Lemma 62. It suffices to show that

q[a1]q ([n− 1]q[a2]q · · · [an]q)
counts the number of acyclic orientation with a unique sink not in the first row. By
induction, the expression in the parenthesis is the number of acyclic orientations with
a unique sink somewhere in rows 2, . . . , n. We can then augment this orientation
with the first row by specifying the number of ascending arrows in that row. In order
to ensure that the first vertex is not a sink, there has to be at least one ascending
arrow in the first row. The weighted choice we can make here is therefore given by
q[a1]q. This completes the proof. �

9.1. A connection with rook placements. The formula in Corollary 60 appears
in the study of rook placements and rook polynomials, see e.g. [LM16]. In particular,
it implies that acyclic orientations of a diagram with area sequence a, is in bijection
with n-rook placements on a Ferrers board with row lengths ri given by ai + i. This
correspond to augmenting the triangular diagram such that it becomes a square:

−→

The q-weight of a rook placement is determined by the number of inversions in
the rook placement. Given a rook placement, a square is considered an inversion if
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it is part of the diagram, and it has no rooks above it in the same column, and no
rooks to the left in the same row.

In Proposition 59, we noted that the number of ascents in each row uniquely
defines the acyclic orientation. A similar property holds for rook placements, where
the number of inversions in each row uniquely defines the rook placement, see
[GR86]. By combining these two properties, we see that there is a unique bijection
between acyclic orientations and rook placements that sends ascending edges in row
i to inversions in row i in the corresponding rook placement.

In Equation (49), we illustrate a rook placement where the bullets mark the
inversions. The left hand side is the corresponding acyclic orientation. Note that
each row contributes the same amount to the q-weight, and this property uniquely
defines the bijection.

↓ ↓
↓ ↓

→ → ↓
→ →
↓

←→

• • ×
• • ×

• ×
×

• ×
×

(49)

A bijection between rook placements and acyclic orientations is also given by
A. Hultman in the appendix of [LM16], although this does not take the q-weight
into account.
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