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A NATURAL PROBABILITY MEASURE DERIVED FROM

STERN’S DIATOMIC SEQUENCE

MICHAEL BAAKE AND MICHAEL COONS

Abstract. Stern’s diatomic sequence with its intrinsic repetition and refinement structure

between consecutive powers of 2 gives rise to a rather natural probability measure on the

unit interval. We construct this measure and show that it is purely singular continuous,

with a strictly increasing, Hölder continuous distribution function. Moreover, we relate this

function with the solution of the dilation equation for Stern’s diatomic sequence.

1. Introduction

Stern’s diatomic sequence
(
s(n)

)
n∈N0

, also known as the Stern–Brocot sequence, is defined

by s(0) = 0, s(1) = 1 together with the recursions

(1.1) s(2n) = s(n) and s(2n+ 1) = s(n) + s(n+ 1)

for n ∈ N. This well-studied sequence has fascinating properties; see entry A002487 of [12]

for a concise summary with many references and links. The initial values and recursions

in Eq. (1.1) allow one to determine the value s(n) based on the binary expansion of n. In

particular, if

(1.2) S0 =

(
1 0

1 1

)
, S1 =

(
1 1

0 1

)
, v =

(
1

0

)
,

and if (n)2 = bkbk−1 · · · b1b0 is the binary expansion of n, one has

(1.3) s(n) = vTSb
k
Sb

k−1
· · ·Sb

1
Sb

0
v.

Sequences with a linear representation as provided by Eqs. (1.2) and (1.3) are called b-regular

sequences, where b is the base (b = 2 for Stern’s diatomic sequence). Regular sequences were

introduced by Allouche and Shallit [1] as a mathematical generalisation of sequences that are

generated by deterministic finite automata, such as the Thue–Morse sequence.

Here, we reconsider the self-similarity type property of Stern’s diatomic sequence, which

manifests itself in the fact that the sequence, in the range from 2n to 2n+1, can be seen as a

stretched and interlaced version of what it is between 2n−1 and 2n. In particular, as follows

from a simple induction argument, one has the well-known summation relation

(1.4)

2n+1−1∑

m=2n

s(m) = 3n,

http://arxiv.org/abs/1706.00187v1
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which holds for all n ∈ N0. Therefore, if we define

(1.5) µn := 3−n
2n−1∑

m=0

s(2n +m) δm/2n ,

where δx denotes the unit Dirac measure at x, we can view (µn)n∈N0
as a sequence of proba-

bility measures on the 1-torus, the latter written as T = [0, 1) with addition modulo 1. Here,

we have simply re-interpreted the values of the Stern sequence between 2n and 2n+1 − 1 as

weights of a pure point probability measure on T with supp(µn) =
{

m
2n : 0 6 m < 2n

}
.

In the remainder of this article, we will study the sequence (µn)n∈N0
and its limit, as well as

various properties of the latter and how they relate to other known results on Stern’s sequence.

Our approach is motivated by the similarity of Eq. (1.1) with the recursion relation for the

Fourier–Bohr coefficients of the classic Thue–Morse measure and some of its generalisations;

see [3, Sec. 10.1] as well as [2] and references therein for background.

2. The probability measure

Each µn is a probability measure on T, which in particular implies that it is Fourier (or

Fourier–Stieltjes) transformable, where

k 7→ µ̂n(k) :=

∫

T

e−2π ikx dµn(x)

defines a continuous function on the dual group T̂ = Z; see [11, Sec. 4.4] for background.

Remark 2.1. It is sometimes useful to ‘periodise’ the measure µn to νn := µn ∗ δZ and inter-

pret it as a translation bounded measure on R. Its Fourier transform is still well defined, via

the Poisson summation formula δ̂
Z
= δ

Z
and the convolution theorem; compare [3, Prop. 8.5

and Sec. 9.2]. It then reads

ν̂n = µ̂n δZ =
∑

x∈Z

µ̂n(x) δx ,

where µ̂n now defines a (continuous) function on R. The values of µ̂n in the complement of

Z are irrelevant, but still useful; compare [3, Sec. 9.2.4] for a general interpretation of this

phenomenon. ♦

Let us analyse the functions µ̂n. Clearly, one has µ̂0 ≡ 1 and

µ̂1(k) = 1
3

(
1 + 2 cos(πk)

)
=

{
1, k even,

−1
3 , k odd,

where δ̂x(k) = e−2π ikx was used in the calculation. More generally, by induction on the basis

of Eqs. (1.5) and (1.1), one finds

(2.1) µ̂n(k) =

n∏

m=1

1
3

(
1 + 2 cos

(
2πk
2m

))
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for n ∈ N0 and k ∈ Z, where the empty product is defined to be 1 as usual. Since

1
3

(
1 + 2 cos(x)

)
= 1 + 1

3x
2 +O(x4)

as |x| ց 0, one can apply standard arguments to show that, for any fixed k, the sequence(
µ̂n(k)

)
n∈N0

converges. In fact, one has compact convergence, both for k ∈ Z and for k ∈ R.

The latter viewpoint is useful in the context of Remark 2.1, and will be vital later.

Let us now formulate some consequences, where the location x of the Dirac measure δx is

always understood to be an element of T, hence taken modulo 1. This is important to give

the correct meaning to the convolution identity δx ∗ δy = δx+y on T.

Proposition 2.2. The sequence (µn)n∈N0
of probability measures on T converges weakly to a

probability measure µ. In particular, one has µ0 = δ0 and µn =∗n
m=1

1
3

(
δ0 + δ2−m + δ−2−m

)

for n > 1. The weak limit as n → ∞ is given by the convergent infinite convolution product

µ = ∗
m>1

1
3

(
δ0 + δ2−m + δ−2−m

)
.

Its Fourier transform µ̂ is given by µ̂(k) =
∏

m>1
1
3

(
1+2 cos(2πk/2m)

)
for k ∈ Z. Moreover,

this infinite product is also well-defined on R, where it converges compactly.

Proof. Due to the convergence of the sequences
(
µ̂n(k)

)
n∈N0

, the first claim can be seen as a

consequence of Levy’s continuity theorem [6, Thm. 3.14]. The explicit formula for µn follows

from Eq. (2.1) with a simple calculation via the inverse of the convolution theorem.

The representation of µ is clear, with weak convergence, as is the formula for µ̂(k) with

compact convergence of the infinite product as mentioned above. �

Since µ is a probability measure on T, Bochner’s theorem [6, Thm. 3.12] implies that

k 7→ µ̂(k) defines a (continuous) positive definite function on Z. In particular, one has

(2.2) µ̂(−k) = µ̂(k) = µ̂(k)

for all k ∈ Z. Here, µ̂ is real (which gives the second equality) as a consequence of the invari-

ance of µ on T under the reflection x 7→ −x, again taken modulo 1, while the normalisation

of µ corresponds to µ̂(0) = 1. The symmetry relation also implies that

µ̂(k) =

∫

T

e2π ikx dµ(x) =

∫

T

cos(2πkx) dµ(x)

holds for all k ∈ Z.

The representation of µ as an infinite convolution product of pure point measures allows

us to use a result by Jessen and Wintner [10, Thm. 35] which tells us that the spectral type

of µ is pure. By the general Lebesgue decomposition theorem, this means that µ is either

a pure point measure, or purely singular continuous, or purely absolutely continuous — but

not a mixture. Its remains to determine the type, for which we need a scaling property of the

Fourier–Bohr coefficients µ̂(k).
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Figure 1. The function |µ̂(κ)| for 0 6 κ 6 1.

Lemma 2.3. For all k ∈ R, the coefficients µ̂(k) from Proposition 2.2 satisfy

µ̂(2k) = 1
3

(
1 + 2 cos(2πk)

)
µ̂(k).

In particular, µ̂(2k) = µ̂(k) for all k ∈ Z.

Proof. Since the infinite product representation of µ̂(k) is absolutely converging by standard

arguments, one may simply calculate

µ̂(2k) =
∏

m>1

1
3

(
1 + 2 cos(2πk/2m−1)

)
= 1

3

(
1 + 2 cos(2πk)

)
µ̂(k),

which obviously implies both relations. �

The relationship for real k in Lemma 2.3 has some immediate implications. Let us first

note that, for each positive integer N , one has

(2.3) µ̂(2Nk) = µ̂(k)

N∏

m=1

1
3

(
1 + 2 cos(2mπk)

)
.

For the proof of our next result, we will require information about |µ̂(k)|2. Since the product
on the right hand side of Eq. (2.3) is symmetric around 1

2 in [0, 1] for each N ∈ N, we can

profit from relating values of µ̂(k) with 0 6 k 6 2N to values of µ̂(κ) with κ ∈ [0, 1]; see

Figure 1 for an illustration of |µ̂(κ)|. For larger values of κ, the function values µ̂(κ) are

generally small, with (bounded) negative excursions at powers of 2.

Let us first observe that, for κ ∈
[
0, 12
]
, we clearly have

(2.4)
µ̂
(
2N (1− κ)

)

µ̂
(
2Nκ

) =
µ̂(1− κ)

µ̂(κ)
.

Since |µ̂(κ)| > |µ̂(1− κ)| on this interval, we obtain the estimate

(2.5)
∣∣µ̂
(
2N (1− κ)

)∣∣ 6
∣∣µ̂
(
2Nκ

)∣∣,
again for κ ∈

[
0, 12
]
, which implies

∣∣µ̂(2N− k)
∣∣ 6

∣∣µ̂(k)
∣∣ for 0 6 k 6 2N−1.
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Theorem 2.4. The probability measure µ from Proposition 2.2 is purely singular continuous.

Proof. Clearly, µ 6= 0, and the spectral type of µ is pure by [10, Thm. 35]. Thus, we can

prove the result by showing that µ is neither absolutely continuous nor pure point.

Since 0 6= µ̂(1) = µ̂(−1) ≈ −0.083432 and µ̂(2k) = µ̂(k) for all k ∈ Z by Lemma 2.3

, the Fourier coefficients cannot decay as |k| → ∞. Consequently, µ cannot be absolutely

continuous by the Riemann–Lebesgue lemma; compare [11, Thm. 4.4.3].

To rule out a pure point nature of µ, we employ Wiener’s criterion; see [3, Prop. 8.9].

Because µ̂(k) = µ̂(−k) for all k, the theorem will follow if
∑

k6x |µ̂(k)|2 = o(x) as x → ∞,

where here and below the summation for k starts at 0 unless specified otherwise. Moreover,

when x ∈ [2N , 2N+1], one has the estimate

1
x

∑

k6x

|µ̂(k)|2 6
1
2N

2N+1∑

k=0

|µ̂(k)|2 6
2

2N+1

2N+1∑

k=0

|µ̂(k)|2,

which implies that it suffices to show
∑

k62N+1 |µ̂(k)|2 = o
(
2N
)
.

To this end, note that using Eq. (2.4) we have

∑

k62N

|µ̂(k)|2 =
∑

k6
3
5 2

N

|µ̂(k)|2 +
∑

3
5 2N<k62N

|µ̂(k)|2 6
∑

k6
3
5 2

N

|µ̂(k)|2 +
∑

k6
2
5 2

N

|r(k) µ̂(k)|2

where, due to 0 6 k 6 2
5 2

N ,

|r(k)| =
∣∣∣ µ̂(2

N− k)

µ̂(k)

∣∣∣ =
∣∣∣ µ̂(1− k/2N )

µ̂(k/2N )

∣∣∣ 6
max06ℓ6 2

5
2N

∣∣µ̂(1− ℓ/2N )
∣∣

min06ℓ6 2

5
2N

∣∣µ̂(ℓ/2N )
∣∣

6
maxκ∈[ 3

5
,1]

∣∣µ̂(κ)
∣∣

minκ∈[0, 2
5
]

∣∣µ̂(κ)
∣∣ =

∣∣µ̂(t)
∣∣

∣∣µ̂(25
)∣∣ =

0.105423890 . . .

0.450342617 . . .
< 1

4
,

with t = 0.877996139 . . . being the position of the unique (relative) maximum of |µ̂| in the

interval
[
3
5 , 1
]
; compare Figure 1. So, we get

∑

k62N

|µ̂(k)|2 <
∑

k6 3

5
2N

|µ̂(k)|2 + 1
16

∑

k6 2

5
2N

|µ̂(k)|2

= 17
16

∑

k62N−1

|µ̂(k)|2 +
∑

2N−1<k6 3

5
2N

|µ̂(k)|2 − 1
16

∑

2

5
2N<k62N−1

|µ̂(k)|2.
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To obtain an upper estimate of the last two sums in the previous line, we write 2N = 2 · 2N−1

and use Eq. (2.5) to get
∑

2N−1<k6 6

5
2N−1

|µ̂(k)|2 − 1
16

∑

4

5
2N−1<k62N−1

|µ̂(k)|2

6
∑

4

5
2N−1<k62N−1

|µ̂(k)|2 − 1
16

∑

4

5
2N−1<k62N−1

|µ̂(k)|2

= 15
16

∑

4

5
2N−1<k62N−1

|µ̂(k)|2

6
15
16

∑

k62N−1

|µ̂(k)|2 − 15
16

∑

k62N−2

|µ̂(k)|2.

With ΣN := 1
2N

∑
k62N |µ̂(k)|2, inserting the last estimate into the previous one gives

(2.6) ΣN < ΣN−1 − 15
64

ΣN−2 .

Substituting the recursive inequality (2.6) for ΣN−1 with N > 2 results in

ΣN < 49
64

ΣN−2 − 15
64

ΣN−3 6
49
64

ΣN−2 ,

where Σ−1 := 0. Consequently, for N > 2, we obtain

0 6 ΣN <
(
7
8

)N−1
max

{
Σ0, Σ1

} N→∞−−−−→ 0,

which proves the absence of pure point components for µ, and completes our argument. �

3. The distribution function

Here, we are in a situation that is somewhat similar to that of the singular continuous

diffraction measures known from the spectral theory of certain substitution systems; compare

[4] and references therein. First of all, the distribution function

(3.1) F (x) := µ
(
[0, x]

)

with x ∈ T, where F (1) := 1, defines a continuous function that is monotonically increasing

on the unit interval. It is illustrated in Figure 2.

It is clear from Theorem 2.4 that F is a non-decreasing, continuous function. Next, we

will show that F is strictly increasing. To do this, we need some specific asymptotics on the

summatory function of Stern’s sequence. In what follows, for a positive real number y, we

use ⌊y⌋ and 〈y〉 to denote the integer and the fractional part1 of y, respectively. In particular,

y = ⌊y⌋ + 〈y〉. Also, we write log2(y) for the base-2 logarithm of y and let τ =
(
1 +

√
5
)
/2

denote the golden ratio.

1We use this version for the fractional part because the more common notation, {y}, represents a singleton

set in our measure-theoretic arguments.
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Figure 2. The distribution function F of the purely singular continuous prob-

ability measure µ derived from Stern’s diatomic sequence.

Proposition 3.1. If
(
s(n)

)
n>0

is Stern’s diatomic sequence, its summatory function satisfies

∑

n6x

s(n) = 3⌊log2(x)⌋+1 f0
(
2〈log2(x)〉−1

)
+O

(
xlog2(τ)+ε

)
,

where the function f0 is Hölder continuous with exponent log2(3/τ). Moreover, f0(t) is the

first coordinate of the column vector f(t) =
(
f0(t), f1(t)

)T
that is the unique solution of the

dilation equation

f(t) = 1
3

(
S0f(2t) + S1f(2t− 1)

)
,

with the conditions f0(t) = f1(t) = 0 for t 6 0 and f0(t) = f1(t) =
1
2 for t > 1.

Sketch of proof. This result follows from a method of Dumas. In particular, it follows from

an application of [9, Thm. 3], when using the linear representation of the Stern sequence (1.2)

along with the facts that the set {S0, S1} satisfies the finiteness property with joint spectral

radius equal to the golden ratio (see [7, 8]), that Q := S0 + S1 has eigenvalues 3 and 1 with

Jordan basis v3 =
(
1
2 ,

1
2

)T
and v1 =

(
1
2 ,−1

2

)T
, and that v = v3 + v1. �

Theorem 3.2. The distribution function F from Eq. (3.1) is strictly increasing.

Proof. Let x ∈ [0, 1) and ε > 0 with x + ε 6 1 be arbitrary. Since F is continuous and

non-decreasing, we have that

F (x+ ε)− F (x) = µ([0, x + ε])− µ([0, x]) = µ([x, x+ ε]) > 0.
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Figure 3. The functions f0 (lower curve) and f1 (upper curve).

Thus, to prove the theorem, it is enough to show that µ([x, x + ε]) > 0. Note also that,

since the dyadic rationals are dense in [0, 1], there exist positive integers m and k so that

[2m/2k, (2m + 1)/2k] ⊆ [x, x + ε]. Thus, to show that µ([x, x + ε]) > 0, it suffices to show

that µ([2m/2k, (2m+ 1)/2k ]) > 0.

To this end, observe that, for any real number y ∈ [2n, 2n+1), we have ⌊log2(y)⌋ = n. Thus,

combining Eq. (1.5) with Proposition 3.1 gives

µn

(
[2m/2k, (2m + 1)/2k]

)
= 3−n

2n+2n((2m+1)/2k)∑

ℓ=2n+2n(2m/2k)

s(ℓ)

= 3f0
(
2〈log2(2

n+2n((2m+1)/2k))〉−1
)
− 3f0

(
2〈log2(2

n+2n(2m/2k))〉−1
)

+On

(
3−n

(
2n + 2n((2m+ 1)/2k)

)log2(τ)+ε
)
,

where we have used the notation On to indicate the dependence on n. Since m and k are

fixed, one has

On

(
(2n + 2n((2m + 1)/2k))log2(τ)+ε 3−n

)
= On

(
2n(log2(τ)+ε) 3−n

)
= on(1), as n → ∞,

and, for any y ∈ (0, 1),

〈log2(2n + 2ny)〉 = 〈n+ log2(1 + y)〉 = log2(1 + y).

Continuing the above then gives

µn

(
[2m/2k, (2m + 1)/2k)]

)
= 3f0

(
((2m + 1)/2k) + 1

2

)
− 3f0

(
(2m/2k) + 1

2

)
+ on(1).

Taking the limit as n goes to infinity gives

(3.2) µ
(
[2m/2k , (2m+ 1)/2k)]

)
= 3f0

(
2k + 2m+ 1

2k+1

)
− 3f0

(
2k + 2m

2k+1

)
.
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We can now use the dilation equation for f to determine the value of the right-hand side of

(3.2) based on the binary expansion of the numerators of the dyadic rationals involved. In

particular, if bi ∈ {0, 1} for i ∈ {0, 1, . . . , k}, we have

f

(
bk2

k + bk−12
k−1 + · · · + b12 + b0
2k+1

)

=





1

6

(
1 0

1 1

)(
1

1

)
+

1

3

(
1 1

0 1

)
f

(
bk−12

k−1 + · · ·+ b12 + b0
2k

)
, if bk = 1

1

3

(
1 0

1 1

)
f

(
bk−12

k−1 + · · ·+ b12 + b0
2k

)
, if bk = 0

=
bk
6

(
1 0

1 1

)(
1

1

)
+

[
bk
3

(
1 1

0 1

)
+

1− bk
3

(
1 0

1 1

)]
f

(
bk−12

k−1 + · · · + b12 + b0
2k

)

=
bk
6

(
1 0

1 1

)(
1

1

)
+

1

3

(
1 1

0 1

)b
k
(
1 0

1 1

)1−b
k

f

(
bk−12

k−1 + · · ·+ b12 + b0
2k

)
.

Note next that
(
1 1

0 1

)b
k
(
1 0

1 1

)1−b
k

= Sb
k
,

where Sb
k
is as given in the linear representation of s(n). Thus setting

ubk :=
bk
2

(
1 0

1 1

)(
1

1

)
=

bk
2

(
1

2

)
,

we have

(3.3)

(
f
(
b
k
2k+···+b

1
2+b

0

2k+1

)

1

)
= 1

3

(
Sbk

ubk
0 0 3

)
f

(
b
k−1

2k−1+···+b
1
2+b

0

2k

)

1


 .

Iterating Eq. (3.3) we get

(3.4)

(
f
(
b
k
2k+···+b12+b0

2k+1

)

1

)
= 1

3k

(
Sbk

ubk
0 0 3

)
· · ·
(

Sb1
ub1

0 0 3

)(
f
(
b0
2

)

1

)
.

For the integer 2m ∈ [0, 2k), consider the binary expansions 2k+2m+1 = 1bk−1 · · · b11 and

2k + 2m = 1bk−1 · · · b10 in obvious notation. Then, using Eqs. (3.2) and (3.4) and observing



10 MICHAEL BAAKE AND MICHAEL COONS

that f
(
1
2

)
=
(
1
6 ,

1
3

)T
, we have

µ([2m/2k , (2m+ 1)/2k)]) = (31−k, 0, 0)

(
S1 u1
0 0 3

)
· · ·
(

Sb1
ub1

0 0 3

)[(
f
(
1
2

)

1

)
−
(
f (0)

1

)]

= 1
6
(31−k, 0, 0)

(
S1 u1
0 0 3

)
· · ·
(

Sb1
ub1

0 0 3

)

1

2

0




= 1
6
(31−k, 0)S1 Sb

k−1
· · · Sb

1

(
1

2

)
>

3

6 · 3k
> 0,

which proves the theorem. �

Unlike other distribution functions of singular continuous measures, the distribution func-

tion F from Eq. (3.1) looks relatively ‘smooth’; this is quantified in the following corollary.

Corollary 3.3. The distribution function F from Eq. (3.1) is Hölder continuous with expo-

nent log2(3/τ).

Proof. The distribution function F inherits this exponent from the dilation equation for the

assiciated function f . One can see this by following through the proof of Theorem 3.2 through

Eq. (3.2) using the interval [x, y] ⊆ [0, 1]. �

Further, it will be an interesting question to analyse some of the scaling properties of µ, for

instance in analogy to the treatment of the Thue–Morse measure in [5]. For this, it will be

helpful to understand the precise relation between the measure µ and the dilation equation

from Proposition 3.1. One such relation can be stated as follows.

Corollary 3.4. For x ∈ [0, 1], the distribution function F from Eq. (3.1) satisfies

F (x) = 3
(
f0
(
1+x
2

)
− f0

(
1
2

))
= f0(x) + f1(x),

where f0 and f1 are the functions from Proposition 3.1.

Proof. The first identity is a rather direct consequence of Eq. (3.2) in the proof of Proposi-

tion 3.1. While f0
(
1
2

)
= 1

6 , the dilation equation for the functions fi gives

f0
(
1+x
2

)
= 1

6
+ 1

3

(
f0(x) + f1(x)

)
.

This implies the second identity. �

Appendix

The purpose of this appendix is to provide two other proofs of the continuity of the measure

µ from Proposition 2.2, in view of their potential usefulness in other applications to recursive

sequences of a similar kind.

The first one starts from the observation that µ =∗m>1νm, with the probability measures

νm = 1
3

(
δ0 + δ2−m + δ−2−m

)
on T as building blocks, is absolutely convergent in the weak
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topology, which is to say that that it is weakly convergent to the same limit in any order of

its terms. This follows from [10, Thm. 6], where one has to notice that

Mr(νm) :=

∫

T

xr dνm(x) = 1
3

(
0r + 2−rm + (−2)−rm

)

for r > 0. In particular, M1(νm) = 0 and M2(νm) = 2
3 4

−m, so both
∑∞

m=1|M1(νm)| and∑∞
m=1 M2(νm) are finite, which ensures absolute convergence.

If we now assume, contrary to the claim, that µ fails to be continuous, there must be an

x ∈ T with µ({x}) > 0. Now, rewrite µ as µ = νn ∗ ρn with ρn :=∗m6=nνm, which is possible

for any n ∈ N. This implies

µ({x}) =
(
νn ∗ ρn

)
({x}) = 1

3

(
ρn({x}) + ρn({x+ 2−n}) + ρn({x− 2−n})

)
.

Analogously, one obtains

µ({x± 2−n}) = 1
3

(
ρn({x}) + ρn({x± 2−n}) + ρn({x± 2 · 2−n})

)
.

Together with the previous relation, this implies the estimate2

(3.5) µ({x}) 6 µ({x+ 2−n}) + µ({x− 2−n}).
Now, choose r ∈ N with µ({x}) > 1

r , and select r integers j1 < j2 < . . . < jr with j1 > 2.

Since µ is a probability measure on T, we then get

1 > µ

( ⋃̇

16q6r

({
x− 2−jq

}
∪̇
{
x+ 2−jq

}))

=
r∑

q=1

(
µ
({

x− 2−jq
})

+ µ
({

x+ 2−jq
}))

> rµ
(
{x}
)

> r 1
r

= 1.

This contradiction shows that µ is continuous.

The second alternative proof employs Wiener’s criterion again. Observing (without proof)

that the inequalities

(3.6) |µ̂(2k + 1)| 6 1

2
|µ̂(k) + µ̂(k + 1)| and µ̂(2k + 1)

(
µ̂(2k) + µ̂(2k + 2)

)
6 0

hold for all k ∈ Z, one can proceed as follows. With Σ(N) :=
∑N

k=−N µ̂(k)2, one has

Σ(4N) =

2N∑

k=−2N

µ̂(2k)2 +

2N−1∑

k=−2N

µ̂(2k + 1)2 6 Σ(2N) + 1
4

2N−1∑

k=−2N

(
µ̂(k) + µ̂(k + 1)

)2

= 3
2
Σ(2N) − µ̂(2N)2

2
+ 1

2

2N−1∑

k=−2N

µ̂(k) µ̂(k + 1)

6
3
2
Σ(2N) + 1

2

N−1∑

k=−N

µ̂(2k + 1)
(
µ̂(2k) + µ̂(2k + 2)

)
6

3
2
Σ(2N),

2More generally, one has the relation νn 6
(

δ
2−n + δ

−2−n

)

∗ νn as an inequality between positive measures,

and hence — by convolution with ρn — also µ 6
(

δ
2−n + δ

−2−n

)

∗ µ, which implies Eq. (3.5).
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where Lemma 2.3 was used several times, while Eq. (3.6) was needed for the two inequalities.

This estimate implies Σ(2k+1) 6
(
3
2

)k
Σ(2) and thus also Σ(N) 6 C (32)

log2(N) for some

positive constant C. With α = log2(3/2) < 1, one then obtains the asymptotic behaviour
1
NΣ(N) = O(1/N1−α) as N → ∞, which implies the absence of pure point components in µ

by Wiener’s criterion. This approach has the advantage (over the Jessen–Wintner argument)

that one also gets a lower bound on the Hölder exponent from Corollary 3.3
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