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Abstract

We consider the Polchinski RG equation for a theory of matrix scalar fields
interacting with single trace operators and show that it can be written in a
Hamiltonian form for a specific choice of the cut-off function. The obtained
Hamiltonian equations are a non-linear generalization of the shock-wave
equation that is known to be integrable. We present an infinite tower of
conserved quantities and recover their relation to Motzkin polynomials.
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1 Introduction
Since the discovery of the duality correspondence between gravity theories in a bulk

space and gauge theories on its boundary, and in particular the AdS/CFT correspon-
dence, there has been many works putting forward the idea that the renormalization
group equations on the field theory side should generate dynamic equations on the
gravity side [1, 2, 3, 4, 5, 6]. The most promising approach to address these construc-
tions has happened to be based on the so-called functional (or exact) renormalization
group approach (ERG). In this approach one works with the full partition function
containing all possible operators appearing during renormalization group evolution –
marginal, relevant and irrelevant.

Following the initial idea of the Wilsonian renormalization group one introduces
a cut-off parameter Λ and splits all fields in the theory into high-momentum and
low-momentum modes, then integrating out the former. Imposing the condition that
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physics driven by the partition function should not change under such manipulations,
one gets equations governing change of the operators with respect to the cut-off param-
eter Λ, hence renormalization group equations [7, 8] (see [9, 10, 11] for a review). This
work is organized around the so-called Polchinski equation that is an exact renormal-
ization group flow equation on operators entering the action of interactions SI . The
next section is devoted to review of some technical details of this construction.

There are two main approaches when constructing the full base of possible operators
in a theory: vertex and derivative expansion. In the vertex expansion approach one
writes a series of operators each containing a given number of fields but dependence
on momentum can be arbitrary. Hence, in a given operator one includes vertices with
different powers of momentum constructing an infinite tower of n-point functions [12,
13].

The opposite approach would be to expand in powers of momenta while keeping the
full field dependence of operators. In this case one ends up with local terms in action
with different powers of derivative [14]. It is based on existence of a mass scale in the
system which in our case will be hidden inside a source J2(x; Λ0) = m2. However in
principle this scheme behaves well for conformal systems (see also [9]) and hence we do
not restrict ourselves in the dimension of the system keeping the discussion general.

The various approaches of exact renormalization group allow to consider flow equa-
tions by themselves as dynamical systems and investigate exact solutions, critical
points, phase transition etc. The most inspiring are the works [15, 16] where it has
been shown that exact renormalization group equations for O(N) vector model can be
recast into gravity equation or more general into the Vasiliev’s higher spin equations,
which are indeed known to be the corresponding holographic duals (see [17, 18]). This
is in the context of a more general idea of obtaining dynamical space-time Lorentz (or
diffeomorphism) invariant theories from renormalization group flow. For example, one
mentions the works [19, 20, 21] where a procedure to arrive to the general relativity
equations from the RG equation has been proposed.

The aim of our work is less ambitious. We use the second approach to construct
the basis of operators in a theory of N ×N matrix fields with an addition of all single
trace operators with arbitrary sources which depend on the cut-off Λ. We show that
it is possible to choose the cut-off function in such a way that ERG equations for such
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operators can be written as Hamiltonian equations with the Hamiltonian given by

H =
∫
γ
dσ

∫
dDx

[
Π2J ′ + ΠJ ′2

]
, (1.1)

where the fields are complex satisfying the condition f(σ, T )∗ = f(−σ, T ). The inte-
gration here is performed along the curve γ = {|σ| = 1, 0 ≤ Arg(σ) ≤ π

2}, that is just
the first quarter of the unit circle. Physically leaving only single trace operators and
the specific dependence of SI on momenta in derivative expansion means that we are
working in the large N limit and IR approximation. This point is crucial for further
study of exact solutions of the obtained equations, and will be commented more in the
discussion section.

By studying the Hamiltonian (1.1) we show that there exist an infinite number of
integrals of motion, and hence conserved current, parametrized by a single integer. All
these stay in involution with respect to the naturally defined Poisson brackets, that
might be a good sign of (classical) integrability of the system. Another argument in
favor of this conjecture is that taking the limit J � Π and dropping the second term in
the Hamiltonian one is able to rewrite the equations on J as the so-called Burgers-Hopf
shock wave equations

∂Tρ = ρ∂sρ, ρ = ∂TJ

∂σJ
, (1.2)

that is known to be integrable. However, after trying to apply the known to us inte-
grability criteria, such as constructing a Lax pair and performing the Painlevé test, we
were not able to show this explicitly so far and hence leave this task for a further work.

Irrespective of the possible relations between ERG and the AdS/CFT correspon-
dence exact solutions of renormalization group equations are of great interest by them-
selves as the flow usually possesses fascinating properties. On the other hand having
integrable dynamics governing the flow gives more control over the system and allows
more deep investigation. As another example of such correspondence one may recall
the work [22] where it was shown that the RG equations of two-dimensional sigma
models turn out to be a continual analogue of Toda equations.

Finally, we notice the appearance of the so-called Motzkin numbers in the system,
which are usually observed in description of unit paths (see sequence A055151 in [23]
and references therein). In the considered system these numbers appear as coefficients
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in the obtained integrals of motion thus rendering them very similar to Motzkin polyno-
mials and allowing to rewrite them as a very nice expression in terms of hypergeometric
2F1 functions. This might be an interesting result from the pure mathematical point
of view.

To conclude this section we must set up few remarks concerning our previous works
[24] and [25]. The latter can be considered as a particular case of the present consider-
ation for small sources J , however with a general cut-off function. Put differently, the
present results are derived from a particular case of the system considered in [25] with
a fixed form of the cut-off function. This allowed us to go beyond the J � Π limit and
to write the second term in the Hamiltonian in ultra-local form.

The relation with the work [24] is more subtle as the Hamiltonian presented here has
already appeared in the previous work. However, as we mention in [25], this derivation
contained a non-obvious technical subtlety that under a more detailed consideration
actually did not allow to write the Hamiltonian in ultra-local form as it was written in
[24]. Here we present a way of avoiding this subtlety by choosing an appropriate cut-off
function and hence provide the proper derivation of the Hamiltonian and investigate
its properties in more details.

2 Exact renormalization group
Renormalization group procedure is known to introduce new types of interactions

when the cut-off scale is changed. In the work [7] it was suggested a nice and simple
procedure of how to take into account these terms in a consistent way. For further
development and review on exact (Wilsonian or functional) renormalization group see
[9, 10, 11].

Let us consider the case of a scalar field theory for simplicity and for further use in
the present work. The corresponding action will include a cut-off function K(p2/Λ2)
that is equal to 1 for low momenta and vanishes for p� Λ

S = −1
2

∫
dDpφ(p)φ(−p)(p2 +m2)K−1(p2/Λ2

0) + SI , (2.1)

where SI contains a finite number of interacting terms at the scale Λ. Hence, the
free propagator has the form G0(p) = (p2 + m2)−1K(p2/Λ2) and the cut-off function
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Figure 1: A general possible form for the cut-off function K(p2/Λ2)
(on the left) and the form of the function K(x) = e−x used in the present work.

removes contributions from p � Λ. Another way to understand it is through the
partition function where the cut-off function effectively suppresses the integration for
modes with higher momentum.

If one now decides to investigate physics on a scale m2 � Λ2
R, one has to integrate

our modes with momentum higher than this value. During this procedure many new
terms are generated and in general one writes the following new effective Lagrangian

Z =
∫
Dφ exp

[
− 1

2

∫
dDpφ(p)φ(−p)(p2 +m2)K−1(p2/Λ2) + SI

]
. (2.2)

Here SI now contains all possible terms generated during the procedure. In principle
it is an infinite sum of all operators in the theory. Hence, one exchanges shift in the
scale for many new terms in the Lagrangian. To keep physics unchanged at the new
scale one simply sets

0 = ΛdZ
dΛ

=
∫
Dφ

[
− 1

2

∫
dDpφ(p)φ(−p)(p2 +m2)ΛdK

−1(p2/Λ2)
dΛ + ΛdSI

dΛ

]
eS. (2.3)

The integrand on the RHS of the above expression becomes full derivative and hence
vanishes if

ΛdSI [φ]
dΛ = −1

2

∫
dDp

1
p2 +m2 Λ dKΛ(p2)

dΛ

[
δ2SI [φ]

δφ(−p)δφ(p) + δSI [φ]
δφ(p)

δSI [φ]
δφ(−p)

]
. (2.4)
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This is the desired Polchinski renormalization group equation. It has a simple inter-
pretation in terms of vertices. Indeed, as modes are removed from the integration new
terms must be placed in order to compensate their contribution. On the level partition
function diagrams this looks like a gluing point connected by a propagator carrying
momenta higher than the cutoff.

Although the initial effective Lagrangian might be as simple as say an φ6 theory, the
resulting interaction Lagrangian in principle contains an infinite number of terms ob-
tained by gluing vertices in various ways. The Polchinski equation allows to investigate
dynamics of these terms with change of the RG scale Λ and has been conjectured to be
actually a dynamical equation for the corresponding operators and sources. Checking
this for the N × N matrix scalar field theory case is the challenge for the rest of the
paper.

3 Theory of scalar N ×N matrix fields

3.1 Renormalization group flow

In this section we revisit the result of [24] where the Wilsonian renormalization
group equations for the matrix scalar field theory

S = −N2

∫
dDxTr[∂µφ∂µφ] +N

∫
dDxJk(x)Tr[φ(x)k] (3.1)

was considered. In the momentum representation the action reads:

S[φ] = −N2

∫
p
p2K−1

Λ (p2)Tr [φ(p)φ(−p)] +N S̄I ,

S̄I =
∞∑
l=0

∫
k1...kl

Tr
[
φ(k1) . . . φ(kl)

]
Jl(−k1 − . . .− kl),

(3.2)

where the notation SI was reserved for further use. Here we assume that there is some
momentum cut–off imposed, i.e. K(p2/Λ2) ∼ 1 as p2 << Λ2, while K(p2/Λ2) ∼ 0 as
p2 >> Λ2. In what follows the cut-off function will be taken to be of a particular form
accompanied by a field redefinition.

It appears that the Polchinski equation for this theory has closed form for the given
choice of canonical variables: sources for the single–trace operators in question and their
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VEVs. The quantum average of Polchinski equations for a theory with the interaction
action SI (the second line in (3.2)) reads:〈

ΛdS̄I [φ]
dΛ

〉
= −1

2

∫
p

1
p2 Λ dKΛ(p2)

dΛ

〈[
N−1 δ2S̄I [φ]

δφij(−p)δφji(p) + δS̄I [φ]
δφij(p)

δS̄I [φ]
δφji(−p)

]〉
.

(3.3)
As it was noted in [25] keeping both the sources and the cut-off function general does
not allow to write these equations in a Hamiltonian form. The approach taken in [25]
was to consider IR limit of the theory where the sources J(x) become small since all
the corresponding operators become suppressed (even the marginal ones). Here we act
differently and choose the cut-off function to be

KΛ(p2) = e−2 p2

Λ2 , (3.4)

that indeed satisfies the necessary conditions. In addition, it proves crucial to perform
the following field redefinition

φ(p)→ e−
p2

Λ2 φ(p), (3.5)

that can always be done given the existence of the scale Λ in the theory. Effectively,
this redefinition returns the quadratic part of the action into its canonical form hiding
the cut-off into the the fields and from now on we will be talking only about the rescaled
fields. Hence, we have for the Polchinski equation〈

ΛdSI [φ]
dΛ

〉
= −2Λ−2

∫
p

〈[
N−1 δ2SI [φ]

δφij(−p)δφji(p) + δSI [φ]
δφij(p)

δSI [φ]
δφji(−p)

]〉
, (3.6)

where accordingly redefined action for the interaction terms should be used

SI [ϕ] =
∞∑
l=0

∫
k1...kl

e−
k2
1

Λ2−···−
k2

l
Λ2 Tr

[
φ(k1) . . . φ(kl)

]
Jl(−k1 − . . .− kl). (3.7)

Note, that now the quantum average is performed with the weight e−S0 , where S0 is the
rescaled free action. On the level of the functional integral such rescaling just produces
an extra (infinite) prefactor which does not depend on the fields and is cancelled out
by normalization.
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With this set up let us now briefly repeat the derivation of the equations on sources
and the corresponding VEV’s of operators Tr[φ(x)k] to introduce notations and to make
the narrative self-contained. Throughout the derivation we correct several misprints of
[24] and highlight important issues.

Hence, we start with the derivatives of the interaction part SI of the action

Tr
[
δSI
δφ(p)

δSI
δφ(−p)

]
=

∞∑
k,l=0

(k + 1)(l + 1)
∫
p1...pkq1...ql

e−
p2
1

Λ2−···−
p2

k
Λ2 e−

q2
1

Λ2−···−
q2

l
Λ2×

× Tr [φ(p1) . . . φ(pk)φ(q1) . . . φ(ql)]×
× Jk+1(−p− p1 − . . .− pk) Jl+1(p− q1 − . . .− ql),

Tr
[

δ2SI
δφ(p)δφ(−p)

]
=
∞∑
n=0

(n+ 2)
∫
p1...pn

n∑
m=0

e−
p2
1

Λ2−···−
p2

n
Λ2×

× Tr
[
φ(p1) . . . φ(pm)

]
Tr
[
φ(pm+1) . . . φ(pn)

]
×

× Jn+2(−p1 − . . .− pn).

According to the standard Wilsonian renormalization group prescription the quan-
tum averaging in the expression above is performed only with respect to quantum
fluctuations ϕ(p) over the classical solution φ0(p). Hence, we write φ(p) = φ0(p) +ϕ(p)
and integrate out the field ϕ(p). This is a tedious procedure and in what follows it
proves useful to introduce shorthand notations∫

p(n)

:=
∫
p1...pn

,

Tn[ pn ] := Tr [φ0(p1) . . . φ0(pn)] ,
Jl(−k(l)) := Jl(−k1 − . . .− kl),

e
−p2

(n) := e−
p2
1

Λ2−···−
p2

n
Λ2 .

Note that the LHS of the last line does not contain Λ explicitly to lighten the notations.
Hence, the quantum average of a single-trace operator Tr [(φ01 + ϕ1) . . . (φ0n + ϕn)]
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over the fluctuations can be reduced to action of some operator Ŵ on Tl[ kl ] as follows〈∫
p(n)

Tr [(φ0(p1) + ϕ(p1)) . . . (φ0(pn) + ϕ(pn))]
〉

=
∫
p(n)

∫
Dϕ eS0 Tr [(φ0(p1) + ϕ(p1)) . . . (φ0(pn) + ϕ(pn))]

=
∫
p(n)

∫
D ϕ eS0 exp

[∫
p
ϕp

δ

δφ0(p)

]
Tr [φ0(p1) . . . φ0(pn)]

= Ŵ

{∫
p(n)

Tr [φ01 . . . φ0n]
}

= Ŵ

[∫
p(n)

Tn[ pn ]
]
,

(3.8)

where S0 = −N
2
∫
p p

2Tr[φ(p)φ(−p)] is the canonical kinetic action and the operator can
be written explicitly as

Ŵ = exp
(

1
2N

∫
p
p−2Tr

[
δ

δφ0p

δ

δφ0−p

])
. (3.9)

Since we are working in the large N approximation it is possible to use the OPE
factorization property 〈∏nTrOn〉 = ∏

n〈TrOn〉 to write

Ŵ
[
Tl[ kl ]Tn[ pn ]

]
= Ŵ

[
Tl[ kl ]

]
Ŵ
[
Tn[ pn ]

]
= T̃l[ kl ] T̃n[ pn ] (3.10)

where the notation T̃ = Ŵ T was used. Hence, the Polchinski equation for the theory
reads
∞∑
l=1

∫
k(l)

e
−k2

(l)T̃l[ kl ]J̇l(−k(l)) =

− 2Λ−2
∫
p

N−1
∞∑
a=1

a−1∑
s=0

∫
k(a−1)

(a+ 1)e−k
2
(a−s−1)e

−q2
(s)T̃a−s−1[ ka−s−1 ] T̃s[ qs ]

× Ja+1(−k(a−s−1) − q(s))

+
∞∑

l,k=1
kl
∫
q(k−1)p(l−1)

e
−p2

(l−1)e
−q2

(k−1)T̃l+k−2[ pl−1 ][ qk−1 ]Jl(−p(l−1) − p)Jj(−q(k−1) + p)
,

(3.11)
where the overdot means differentiation with respect to d/d log Λ and the indices were
tuned in such a was as to shift the infinite summations to run from 1. Note that
although the operator Ŵ does not depend on Λ explicitly, there is still non-trivial
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dependence due to the rescaling of the fields, which hides the cut-off inside the field.
For the same reason the objects T̃n have non-trivial dependence on Λ which is governed
by the RG flow. In what follows we show, that (for the chosen cut-off) the RG flow
actually defines a Hamiltonian dynamics, which has nice properties formulated in terms
of the Motzkin polynomials and has some hints for classical integrability.

To do so the equation above suggests to define momenta canonically conjugate to
Jl(k) as follows

Πl(k) = N−1ΛD
∫
k(l)

e
−k2

(l)δ(D)
(
k − k(l)

)
T̃l[ kl ]. (3.12)

This definition reflects the fact that the sources Jk depend only on a sum of arguments
of the corresponding T̃k. The factor of N−1 was included to make the sources and the
canonical momentum to be of the same order as N →∞. Hence we obtain for the RG
equation in these variables

−1
2Λ2

∫
q

∞∑
l=0

Πl(q)J̇l(−q) =
∫
q1q2

∞∑
k,l=0

(k + l + 2)Πl(q1)Πs(q2)Jk+l+2(−q1 − q2)

+
∫
q1q2

∞∑
k,l=0

(k + 1)(l + 1)Πk+l(q1 + q2)Jk+1(−q1)Jl+1(−q2).

(3.13)
It is worth to stop here and discuss relation of the above result to the expressions
presented in [24] where the very same equation has already been presented.

As it has been mentioned in [25] the previously obtained Hamiltonian equation [24]
was blemished by a subtle technical error at the step when going from (3.11) to (3.13).
It was shown, that this procedure can not actually be performed for a general cut-off
function and general fields. The result of [25] is based on a general cut-off function and
IR limit which suppressed the second term J2. This implies that the Hamiltonian form
of the RG equation is governed by that of the Hopf-Burgess equation for shock waves.

In the present work we step out of the IR limit and choose a specific form of the
cut-off function to keep the J2 term. As it is shown above this also allows to perform
the procedure and turn to Hamiltonian equations. It is not surprising that the result
depends on the form of the cut-off function as there has been no the opposite constraint.
Indeed, the Polchinski procedure ensures that the physics does not depend on the cut-
off itself (hence the equation), but apparently does depend on the form of the function
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itself. Finally, it is worth mentioning that the present choice of the cut-off function
relates the Polchinski and the Wilson equations [10, 26].

3.2 Ultra-local Hamiltonian

Following the same idea as in [24, 25] the equation (3.13) can be written in the
Hamiltonian form, i.e. as the following system of equations

d Jl(−q)
dT

= δH

δΠl(q)
dΠl(q)
dT

= − δH

δJl(−q)
,

(3.14)

where the “time” variable is defined as T = Λ−2 and the Hamiltonian defined as

H =
∫
q1q2

∞∑
l,s=0

[
(l + s+ 2)Πl(q1)Πs(q2)Jl+s+2(−q1 − q2)

+ (l + 1)(s+ 1)Πl+s(q1 + q2)Jl+1(−q1)Js+1(−q2)
]
.

(3.15)

Indeed, the first equation in (3.14) follows immediately from the Polchinski equation
(3.13) and reflects that the path integral does not depend on the choice of the cut-off
scale. Similarly the second equation in (3.14) is a direct consequence of the indepen-
dence of Λ of all the VEV’s 〈Trφl(x)〉. More straightforward but equivalent derivation
of these equations is to perform variation of the Polchinski equation in the form (3.13)
with respect to the sources Jk(−q). This follows from the simple fact, that an effective
action expressed in terms of sources is related to the one expressed in terms of the
corresponding VEV’s via the Legendre (functional Fourier) transformation [4].

To formulate the Hamiltonian in the ultra-local term it is suggestive to perform
Fourier transform of the Jk and Πk harmonics

J(T, σ, x) =
∑
k

eiσkJk(T, x);

Π(T, s, x) =
∑
k

e−i(σ+1)kΠk(T, x),
(3.16)

with σ ∈ [0, 2π] and periodic σ ∼ σ + 2π. Since the source fields Jk(T, x) are real
the complex field J(T, σ, x) satisfies J(T, σ, x)∗ = J(T,−σ, x). This implies that at the
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point σ = 0 ∼ σ = 2π the complex field J(T, σ, x) has no imaginary part, i.e.

J(T, 0, x)∗ = J(T, 0, x). (3.17)

The inverse Fourier transformation then reads

Jk(T, x) = 1
4π

∫ 2π

0
dσ
(
e−ikσJ(T, σ, x) + eikσJ(T, σ, x)∗

)
= 1

4π

∫ 2π

0
dσ
(
e−ikσJ(T, σ, x) + eikσJ(T,−σ, x)

)
= 1

2π

∫ 2π

0
dσe−ikσJ(T, σ, x).

(3.18)

Substituting this back to the equation and redefining σ → e−iσ the Hamiltonian finally
becomes

H =
∫ π

−π
dσ

∫
dDx

[
Π2J ′ + ΠJ ′2

]
. (3.19)

To solve equations of motion, one should observe the constraints on the complex fields
J and Π, that equivalently equates the left-moving modes with to complex conjugate
right moving, allowing to perform the Fourier transform properly.

In the next section we investigate properties of integrals of motion corresponding to
the obtained Hamiltonian. Since we do not go after solutions, the mentioned constraints
do not play role in the following discussion.

4 Motzkin Hamiltonian

4.1 Conservation laws

In this section we consider dynamics of a theory defined by the following Hamilto-
nian

H =
∫ π

−π
dσ

∫
dDx

[
Π2J ′ + ΠJ ′2

]
, (4.1)

that originates form the renormalization group procedure. Given the direct relation
between integrability properties of this system and Motzkin paths and that the system
does not look recognizable to the knowledge of the authors, we suggest to call it the
Motzkin system.
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Let us start with equations of motion

J̇ = 2ΠJ ′ + J ′
2;

Π̇ = 2ΠΠ′ + 2Π′J ′ + 2ΠJ ′′,
(4.2)

which can be easily solved with respect to Π to provide the following Lagrangian for-
mulation of the theory

L =

(
J̇ − J ′2

)2

4J ′ . (4.3)

The EOM for the field J(t, σ) can be found either varying the Lagrangian (4.3) with
respect to J(t, σ) or substituting an expression for Π(t, σ) into the second equation in
(4.2):

ρ̇− 1
2∂σρ

2 = 5J̇ ′ − 6J ′′J ′,

ρ := J̇

J ′
.

(4.4)

One notices, that in the IR limit of the corresponding field theory the sources become
infinitesimally small J → 0 , and hence the above equation drops to the Burgess-Hopf
equation in agreement with [25].

In general the above equation does not immediately drop into one of the commonly
known types of non–linear equations. On the other hand, if one is lucky to find the
explicit Lax pair for these equations it would be possible either to compare the system
to one of the known systems (e.g. KdV) or to prove that it is a new integrable system.
However, so far we were not able to find the corresponding Lax pair and we cannot
claim if there exists one. In general the process of finding of the Lax pair is always
some kind of art.

However, in the next section we present the infinite set of integrals of motion for the
system in question, which is the good arguments that favours the integrability of the
Hamiltonian flow in question. It is suggestive to consider the notion of integrability in
the Liouvile sence, that means having a maximal set of Poisson-commuting integrals of
motion (i.e. function(al)s on the phase space whose Poisson brackets vanish) which are
not trivial, i.e. zero or Casimir elements. Certainly one must be subtly when applying
the Liouville criterion to infinitely dimensional systems such as field theoretical equa-
tions. For this reason to present the required full set of integrals of motion refraining
from the claim that the system is indeed integrable.
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Starting with some obvious integrals of motion of the type

I1 =
∫
σ

(Π + J ′) ;

I2 =
∫
σ

ΠJ ′;

I3 =
∫
σ

ΠJ ′(Π + J ′) = H,

(4.5)

it is straightforward to see that there exists the following infinite tower of such con-
structions (see Appendix A)

In =
∫
σ

n∑
k=1

(ΠJ ′)k (Π + J ′)n−2k
tn,k + δ1

n(Π + J ′),

tn,k = (n− 2)!
(n− 2k)!k!(k − 1)! ,∀n > 1

t1,1 = 1.

(4.6)

It is worth mentioning here that one shouldn’t be confused by the fact that we have
discrete set of integrals of motion facing “continuous” variables J(t, σ). Since σ is
compact one actually has a discrete spectrum of variables Jl(t) (3.16).

By making use of the relation between tn,k and the Motzkin polynomial coefficients

tn,k = Tn−2,k−1 (4.7)

we can write

In =
∫
σ

n∑
k=1

(ΠJ ′)k (Π + J ′)n−2k
Tn−2,k−1 + (Π + J ′) δ1

n. (4.8)

Interestingly, the sum in the first term above can be performed explicitly and the
result for this term can be written in terms of hypergeometric to give (note that n 6= 1)

Īn =
n∑
k=1

(ΠJ ′)k (Π + J ′)n−2k
Tn−2,k−1

= (ΠJ ′) (Π + J ′)n−2
∫
σ

2F2

[
1− n

2 ,
3
2 −

n

2 ; 2, 4 (ΠJ ′)
(Π + J ′)2

]
.

(4.9)

This expression can be further simplified by making use of the following quadratic
relation

2F1

[
a

2 ,
a

2 + 1
2; 1 + a− b, 4z

(1 + z)2

]
= (1 + z)a2F1[a, b; 1 + a− b, z] (4.10)
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to obtain
Īn =

∫
σ

ΠJ ′n−1
2F1

[
2− n, 1− n; 2, Π

J ′

]
. (4.11)

The conserved quantities Ik can be shown to be in involution, i.e they commute with
respect to the standard Poissone bracket

{f, g} = ∂f

∂J

∂g

∂Π −
∂f

∂Π
∂g

∂J
,

{Im, In} = 0.
(4.12)

Finally it is possible to write the above integrals in terms of conserving currents
using the notations ∂µ = (∂/∂T, ∂/∂σ)

İm = 0→ ∂µjm
µ = 0. (4.13)

hence, the currents read

jn
0 =

n∑
k=1

αkβn−2ktn,k,

jn
1 = −2

n∑
k=1

αkβn−2k+1 n− k
n− 2k + 1tn,k,

(4.14)

with α = ΠJ ′ and β = Π + J ′. According to the Noether theorem each conserving
current is associated to a global symmetry of the system.

4.2 Motzkin numbers

Here we review the Motzkin paths and related polynomials which appear in many
contexts in the mathematical literature, e.g. [27, 28, 29] and physics, e.g. [30, 31, 32].

First let us define a lattice path. A lattice path L in Zd of length n is a sequence
v0, . . . , vn ∈ Zd with corresponding steps s1, . . . , sn ∈ Zd defined by consecutive differ-
ence si = vi− vi−1. A Motzkin path of length n is a lattice path on N×N consisting of
up steps (1, 1), down steps (1,−1) and flat steps (1, 0). The number of Motzkin paths
from (0, 0) to (n, 0) is given by the Motzkin number1 (sequence A001006 in [23]) mn

1Note that historically the Motzkin numbers appeared in a circle chording setting [33].
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a0 T4,0 = 1

a1 T4,1 = 6

a2 T4,2 = 2

Figure 2: Motzkin paths of length 4 between the points (0,0) and (4,0). The powers of
a in the left column denote the number of up steps. The number of paths of length n
with k up step is given by the Motzkin polynomial coefficient Tn,k.

which can be written in the following form

mn =
[n/2]∑
k=0

(
n

2k

)
ck , (4.15)

where ck are the Catalan numbers (sequence A000108 in [23]) defined as

ck = 1
k + 1

(
2k
k

)
. (4.16)

We are particularly interested in Motzkin polynomial associated to a Motzkin path. In
order to define the Motzkin polynomial one needs to assign a weight keeping track of
the number of up steps (or flat steps). Then one gets the following polynomial with
the corresponding coefficients (sequence A055151 in [23])

mn(a) =
[n/2]∑
k=0

Tn,k a
k (4.17)

where a stands for up steps. The coefficient Tn,k is number of Motzkin paths of length
n with k up steps. Note that the polynomial (4.17) is also known as the Jacobi-Rogers
polynomial [29].
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It might now be reasonable to expect the occurrence of other lattice path poly-
nomials such that the Riordan polynomials, Dick polynomials etc. in the context of
integrable models.

5 Conclusion
There are two main results presented in this paper i) an explicitly derived route

from the Polchinski equation to the Hamiltonian (4.1) and ii) analysis of integrability
properties of the corresponding Hamiltonian system and observation that these are
related to Motzkin paths.

We start from the theory of matrix scalar fields and consider renormalization group
evolution of single trace operators of the type Tr[ϕn] using the Polchinsky equation. As
it was shown in [25] to keep only these operators and to prevent triggering operators
with momentum dependence one should working in the IR limit. In this case it is
possible to relate the Polchinsky equations of the system to a set of Hamiltonian equa-
tions for the operators and the corresponding sources Jk. To go beyond of the result of
[25] where the Hamiltonian equations were shown to be the Hopf-Burgess shock wave
equations, we keep the previously omitted J2

k terms.
This allows us to recover a non-linear generalization of the shock wave equations

which at first glance do not look as a recognizable integrable system. It is interesting
that to include these terms in the ultra-local form one has to choose the cut-off function
appropriately. The corresponding cut-off function appears to be the one which relates
the Polchinsky and the Wilson equations.

The Hamiltonian has the following form

H =
∫ π

−π
dσ

[
Π2J ′ + ΠJ ′2

]
, (5.1)

with the fundamental fields and their conjugates given by J(σ, T ) and Π(σ, T ). This
system has an infinite number of conserved quantities In of the form

In =
∫
σ

n∑
k=1

(ΠJ ′)k (Π + J ′)n−2k
Tn−2,k−1 + (Π + J ′) δ1

n, (5.2)

which Poisson-commute with each other. This allows to conjecture, that the non-linear
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system in question might be indeed integrable. A way to show that explicitly would be
to find the corresponding Lax pair or to satisfy the Painlevé criterion.

The very first step forward from our result would be looking at explicit solutions
of the obtained Hamiltonian equation, probably using numerical methods. This will
provide RG flows for single-trace operators. For more general approach one would like
to go beyond the IR limit and to include momentum dependence into the sources. That
can be done in multiple ways, for example along the line of [34].

Finally, from the pure mathematical side the presented results are interesting in
the aspect of appearance of the so-called Motzkin number (sequence A055151 in [23]).
These enter the theory as the coefficients Tn,k in the integrals of motion In. These
numbers and the corresponding polynomials appear in the problem of counting all
routes on a lattice with a given number of vertical and horizontal steps (see Figure 2).
Hence, each integral of motion In is given by a Motzkin polynomial corresponding to a
path of length n− 2 with k − 1 horizontal steps.

An interesting problem would be to consider other polynomials corresponding to
various paths on a lattice, and reversely build a set of expressions understood as inte-
grals of motion for some system. Having such procedure would be a fascinating way of
generating dynamical systems.

The presented result is strongly based on the explicit form of the cut-off function
chosen. One wonders if it is possible to shift from this dependence and to consider
a way to formulate similar or new results using a general cut-off function or using
another choices of that. Along the same lines would be the idea to generalize the
system itself and to consider more realistic models such as theories with vector gauge
bosons, fermions etc. On the mathematical side all these generalizations might lead to
new numerical sequences or be related to other known ones.
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A Derivation of integrals of motion
Let us start by listing few first integrals of motion for which purpose we first intro-

duce the notations

α = ΠJ ′;
β = Π + J ′.

(A.1)

The equations of motion for these variables are rather simple

α̇ = 2(αβ)′;

β̇ =
(
β2 + 2α

)′
,

(A.2)

using which one easily checks that the following expressions represent conserved charges

I1 =
∫
σ
β,

I2 =
∫
σ
α,

I3 =
∫
σ
αβ,

I4 =
∫
σ
α2 + αβ,

I5 =
∫
σ

3α2β + αβ3,

I6 =
∫
σ

2α3 + 6α2β2 + αβ.

(A.3)

One immediately notices that all terms in each expression are of the same power in the
fields Π and J ′. After observing some other patters above one conjectures the following
general expressions for an integral of motion

In =
∫
σ

n∑
k=1

αkβn−ktn,k, (A.4)

where the coefficients tn,k are constrained to satisfy certain conditions.
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Indeed, let us show that these expressions represent an infinite number of conserving
charges and find the coefficients explicitly. Hence, we consider time derivative

İn =
∫
σ

n∑
k=1

2kαk−1α′βn−2k+1tn,k +
n+1∑
k=2

2(n− 2k + 2)αk−1βn−2k+1α′tn,k−1

+
n∑
k=1

2(n− 2k)αkβn−2kβ′tn,k

=
∫
σ

n∑
k=1

(
2ktn,k + 2(n− 2k + 2)tn,k−1

)
αk−1α′βn−2k+1 − 2nβn−1α′tn,0

+
n∑
k=1

2(n− k)αkβn−2kβ′tn,k − 2nαnα′β−n−1tn,n

(A.5)

Here in the first line we used the equations of motion for α and β and shifted the
summation index in the second term, while in the second line we added and subtracted
the term with k = 1 needed to complete the second sum. Now to form a full derivative
and to make the additional terms vanish one imposes the following conditions for the
coefficients

k − 1
n− 2k + 1tn,k = n− 2k + 2

k
tn,k−1,

tn,0 = 0,
tn,n = 0

(A.6)

The second condition above ensures that all terms in the charges In always have at
least one power of α as it can be explicitly seen from (A.3) while the last condition
removes terms of negative powers from (A.5). In what follows this will be extended to
{tn,k = 0 for all 2k > n }.

The recurrence relations (A.6) can be used to determine explicit expressions for the
coefficients tn,k as follows

tn,k = (n− 2k + 1)(n− 2k + 2)
k(k − 1) tn,k−1

= (n− 2k + 1)(n− 2k + 2)(n− 2k + 3)(n− 2k + 4) · · · (n− 3)(n− 2)
k(k − 1)(k − 1)(k − 2) · · · 2 · 1 tn,1

= (n− 2)!
(n− 2k)!k!(k − 1)!tn,1.

(A.7)
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Finally, using the freedom to choose the overall normalization of each of In one is
allowed to fix tn,1 = 1

tn,k = (n− 2)!
(n− 2k)!k!(k − 1)! . (A.8)

Since this formula does not cover the case n = 1 and the cases 2k > n we set the
additional constraints based on the explicit form of the integrals of motion (A.3)

t1,1 = 1,
tn,k = 0,∀k > 2n.

(A.9)

B Poisson brackets
For proper integrable systems one observes all integrals of motion in involution

meaning that Poisson brackets {In, Im} vanishes for any In and Im. Since the funda-
mental variables for our theory are Π(T, σ) and J(T, σ) the Poisson bracket is written
as

{F,G} =
∫
σ

δF

δJ(T, σ)
δG

δΠ(T, σ) −
δG

δJ(T, σ)
δF

δΠ(T, σ) , (B.1)

where F and G are some functionals in Π and J . In what follows we will not mention
dependence on T and σ for the sake of space.

Let us now show that {In, Im} = 0 for any n,m, and start with derivatives of In with
respect to the fundamental variables. Denoting variation with respect to a function f
by δf we note the following

δJIm = −∂σδJ ′Im,
δJ ′Im = δαImΠ + δβIm,

δΠIm = δαImJ
′ + δβIm.

(B.2)
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Given these we can write for the Poisson bracket

{Im, In} = 2
∫
σ
δJI[mδΠIn] = −2

∫
σ
∂σ
(
δJ ′I[m

)
δΠIn]

= −2
∫
σ
∂σ
(
δαImΠ + δβIm

)(
δαInJ

′ + δβIn
)

= −2
∫
σ
α(δαIm)′δαIn + Π′δαImδβIn + J ′(δβIm)′δαIn

+ (δβIm)′δβIn + Π(δαIm)′δβIn

= −2
∫
σ

[
α(δαIm)′δαIn + β′δαImδβIn + β(δαIm)′δβIn + (δβIm)′δβIn

]
,

(B.3)

where antisymmetrization in {m,n} is always undermined. Here we used integration by
parts and the antisymmetry properties to recollect terms with J,Π and their derivatives
back into α and β.

Substituting the explicit form of the integrals Im and introducing a new variable
γ = αβ−2 for convenience the integrand of the above expression can be written as (all
terms are antisymmetric in {m,n})

∑
k,l

tn,ktm,l

[
klγkβn(γl−1βm−2)′ + (m− 2l)kγk−1βn−1(γlβm−1)′

+ (n− 2k)(m− 2l)(γlβm−1)′γkβn−1
]
− (n↔ m)

=
∑
k,l

tn,ktm,l

[
klγk−1βn−1(γlβm−1)′ + (m− 2l)kγk−1βn−1(γlβm−1)′

+ (n− 2k)(m− 2l)(γlβm−1)′γkβn−1
]
− (n↔ m)

=
∑
k,l

tn,ktm,l

[
(m− l)(m− 1)kγk+l−1 + (n− 2k)(m− 2l)(m− 1)γk+l

]
βn+m−3β′

+tn,ktm,l
[
(m− l)klγk+l−2 + l(n− 2k)(m− 2l)γk+l−1

]
γ′βn+m−2 − (n↔ m)

(B.4)

where in the second line we the antisymmetry to shift powers of β and γ out of the
derivative in the first term. Noticing that the power of γ in the second term in each
line is just that of the first term shifted as k → k + 1 we can use the property of the
Motzkin coefficients k(k − 1)tn,k = (n − 2k + 1)(n − 2k + 2)tn,k−1 to write the above
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expression as

{In, Im} =
∑
k,l

tn,ktm,l

[
An,m,k,lγ

k+l−2γ′βn+m−2 +Bn,m,k,lγ
k+l−1βn+m−3β′

]
− (n↔ m),

where

An,m,k,l = kl(m− l)(n+ 2k + 1) + kl(k − 1)(m− 2l)
n− 2k + 1 ,

Bn,m,k,l = k(m− l)(m− 1)(n+ 2k + 1) + k(k − 1)(m− 2l)(m− 1)
n− 2k + 1 .

(B.5)
This sum does not form a full derivative term by term and one must turn to summation
over p = k + l to actually get cancellation. Hence, we write

{In, Im} =
N∑
p=2

p−1∑
k=1

[
Ân,N,k,pγ

p−2γ′βN−2 + B̂n,N,k,pγ
p−1βN−3β′

]
,

with
Ân,N,k,p = An,N−n,k,p−k − AN−n,n,p−k,k,
B̂n,N,k,p = Bn,N−n,k,p−k −BN−n,n,p−k,k,

(B.6)

and N = n + m. Although each term in the sum has now the same power of the
variables γ and β the full derivative can be obtained only after taking the summation
along k explicitly. This is a tough calculational task and it is much easier to check

p−1∑
k=1

Ân,N,k,p
p− 1 −

p−1∑
k=1

B̂n,N,k,p

N − 2 = 0. (B.7)

Indeed, using Wolfram Mathematica and performing the calculation explicitly one gets
the desired cancellation for any p,N and n. Obviously, this ensures that the expression
(B.6) is indeed a full derivative and hence all the integrals of motion are in involution.
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