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Abstract

From varying Egyptian fraction equations we obtain generalizations of primary

pseudoperfect numbers and Giuga numbers which we call prime power psuedoperfect

numbers and prime power Giuga numbers respectively. We show that a sequence

of Amarnath Murthy in the OEIS is a subsequence of the sequence of prime power

psuedoperfect numbers. Prime factorization conditions sufficient to imply a number

is a prime power pseudoperfect number or a prime power Giuga number are given.

The conditions on prime factorizations naturally give rise to a generalization of Fermat

primes which we call extended Fermat primes.

1 Introduction

We define and study two new types of integers which we call prime power pseudoperfect
numbers and prime power Giuga numbers. Each satisfies an Egyptian fraction equation
that is a variation of a previously studied Egyptian fraction equation. Throughout we will
reference relevant sequences from the OEIS [7]. In Section 1 we review pseudoperfect num-
bers, primary pseudoperfect numbers, and Giuga numbers. In Section 2 we will define prime
power pseudoperfect numbers and show their relation to a sequence in the OEIS contributed
by Amarnath Murthy. Prime power Giuga numbers are defined in Section 3. We will give
some formulas that can produce more terms of our sequences in Section 4. In Section 5 we
discuss some open problems and introduce extended Fermat primes. We have contributed
each of our new sequences to the OEIS. The sequences of prime power pseudoperfect num-
bers, prime power Giuga numbers, and extended Fermat primes are A283423, A286497, and
A286499 respectively.

A pseudoperfect number is a positive integer n such that there exist 0 < d1 < · · · < dk < n
where di | n for each i and n = d1+ · · ·+ dk. For example, the number 20 is a pseudoperfect
number since 20 = 1+4+5+10. Pseudoperfect numbers were first considered in the article [6]
and are sequence A005835. Open problems on pseudoperfect numbers can be found in the
book [5, B2]. A primary pseudoperfect number is a positive integer n > 1 which satisfies the
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Egyptian fraction equation
∑

p|n

1

p
+

1

n
= 1

where the sum is taken over all prime divisors on n. Primary pseudoperfect numbers were
originally defined in the article [3] and are sequence A054377. When n > 1 is primary
pseudoperfect number it follows that

∑

p|n

n

p
+ 1 = n.

So, we see that, with the exception of 2, every primary pseudoperfect number is a pseudop-
erfect number.

A Giuga number is a positive composite integer n such that

∑

p|n

1

p
−

1

n
∈ N

where the sum is taken over all prime divisors on n. Giuga numbers were defined in the
article [2] and are sequence A007850. All known Giuga numbers satisfy the stronger Egyptian
fraction equation

∑

p|n

1

p
−

1

n
= 1.

Giuga numbers are realted to Giuga’s conjecture on primality [4]. Open problems relating
to Giuga numbers can be found in the book [5, A17]

2 Prime power pseudoperfect numbers

A prime power pseudoperfect number is a positive integer n > 1 which satisfies the Egyptian
fraction equation

∑

pk|n

1

pk
+

1

n
= 1

where the sum is taken over all prime power divisors of n. Observe that, with the excep-
tion of powers of 2, all prime power pseudoperfect numbers are pseudoperfect. Also note
that any primary pseudoperfect number is a prime power pseudoperfect number since pri-
mary pseudoperfect numbers must be squarefree. Prime power pseudoperfect numbers are
sequence A283423.

We will now consider the sequences A073932 and A073935 both of which were contributed
to the OEIS by Amarnath Murthy. We first define a function d on composite numbers by
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letting d(n) denote the largest nontrivial divisor of n. For example, d(15) = 5. Next we
define a function f on positive integers greater than 1 by

f(n) :=

{

n− 1 if n is prime;

n− d(n) otherwise.

As an example, f(15) = 10. Given any positive integer n > 1 we can iterate the function f
until we reach 1. In this way we obtain a triangle with nth row given by n, f(n), f(f(n)), . . . , 1.
The sequence A073932 is the sequence consisting of the entries of this triangle read by
rows. For any positive integer n let Dn denote the set of divisors of n and we define
F (n) := {n, f(n), f(f(n)), . . . , 1}. The sequence consisting of all n such that the F (n) = Dn

is sequence A073935.
If we consider n = 20 we obtain

f(20) = 10

f(f(20)) = 5

f(f(f(20)) = 4

f(f(f(f(20)))) = 2

f(f(f(f(f(20))))) = 1

which are exactly the divisors of 20. We also notice that 20 is a prime power pseudoperfect
number since

1

2
+

1

4
+

1

5
+

1

20
= 1.

We will show in Theorem 3 that every number in the sequence A073935, with the exception
of 1, is a prime power pseudoperfect number. We first prove two lemmata.

Lemma 1. Let n > 1 be a positive integer with prime factorization n = p1p2 · · · pℓ where
p1 ≤ p2 ≤ · · · ≤ pℓ. The function f is then given by

f(n) = (p1 − 1)p2 · · · pℓ.

Proof. Take any positive integer n > 1 with prime factorization n = p1p2 · · · pℓ where p1 ≤
p2 ≤ · · · ≤ pℓ. If n is prime, then ℓ = 1 and n = p1. In this case f(n) = n − 1 = p1 − 1.
When n is composite ℓ > 1 the largest nontrivial divisor is p2p3 · · ·pℓ. In this case

f(n) = n− d(n)

= p1p2 · · · pℓ − p2p3 · · · pℓ

= (p1 − 1)p2 · · · pℓ.

We see in any case the lemma holds.
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Lemma 2. Let n > 1 be a positive integer with prime factorization

n =

ℓ
∏

i=1

paii

where p1 < p2 < · · · < pℓ. The positive integer n is then in the sequence A073935 if and only
if

(pi − 1) =
i−1
∏

j=1

p
aj
j

for 1 ≤ i ≤ ℓ.

Proof. Take any positive integer n > 1 with prime factorization

n =
ℓ
∏

i=1

paii

where p1 < p2 < · · · < pℓ. The divisors of n are

Dn =

{

ℓ
∏

i=1

pbii : 0 ≤ bi ≤ ai

}

.

We must show F (n) = Dn if and only if

(pi − 1) =

i−1
∏

j=1

p
aj
j

for 1 ≤ i ≤ ℓ.
First assume that

(pi − 1) =
i−1
∏

j=1

p
aj
j

for 1 ≤ i ≤ ℓ. It follows that F (n) = Dn as the divisors of n are obtained in lexicographic
order of exponent vectors when we iterate f .

Next assume that F (n) = Dn. Write Dn = {1 = d0 < d1 < · · · < dk = n}. Note
that the function f is strictly decreasing. Thus F (n) = Dn if and only if f(di) = di−1 for
1 ≤ i ≤ k. First observe that (p1 − 1) | f(n) and f(n) | n by assumption. It follows that
p1 = 2. Otherwise any prime divisor of p1− 1 must divide n, but any prime divisor of p1− 1
is strictly less than any prime divisor of n. Now assume that for j < i

(pj − 1) =

j−1
∏

j′=1

p
aj′

j′ .
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By iterating f we will initially obtain divisors of n of the form

(

i−1
∏

j=1

p
bj
j

)(

ℓ
∏

j=i

p
aj
j

)

where 0 ≤ bj ≤ aj for 1 ≤ j < i.
When we come to the divisor paii p

ai+1

i+1 · · · p
aℓ
ℓ , by Lemma 1

f(paii p
ai+1

i+1 · · · p
aℓ
ℓ ) = (pi − 1)pai−1

i p
ai+1

i+1 · · · p
aℓ
ℓ .

By assumption (pi − 1)pai−1
i p

ai+1

i+1 · · · p
aℓ
ℓ divides n. If

(pi − 1) 6=

i−1
∏

j=1

p
aj
j

we see that

f(paii p
ai+1

i+1 · · · p
aℓ
ℓ ) = (pi − 1)pai−1

i p
ai+1

i+1 · · · p
aℓ
ℓ

< pa11 pa22 · · · p
ai−1

i−1 p
ai−1
i p

ai+1

i+1 · · · p
aℓ
ℓ

and the divisor pa11 pa22 · · · p
ai−1

i−1 p
ai−1
i p

ai+1

i+1 · · · p
aℓ
ℓ will not be contained in F (n). Thus when

F (n) = Dn we must have

(pi − 1) =

i−1
∏

j=1

p
aj
j

for all 1 ≤ i ≤ ℓ.

Algorithm 1 Nondeterministic algorithm to produce terms of sequence A073935.
n← 2
loop

p← largest prime divisor of n
if n+ 1 is prime then

n← np
n← n(n + 1)

else
n← np

end if
end loop

Algorithm 1 is a nondeterministic algorithm which produces the terms of A073935.
Lemma 2 implies that Algorithm 1 does indeed produce the sequence. Terms of the se-
quence coming from various branches of the algorithm are shown in Figure 1.
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2

6

42

1806

77658

...

294

2058

...

18

342

6496

...

54

162

...

4

20

100

10100

...

500

...

8

16

272

...

32

...

Figure 1: Tree showing terms of sequence A073935 on various branches of Algorithm 1.

Theorem 3. Every number in the sequence A073935, with the exception of 1, is a prime
power pseudoperfect number.

Proof. Let n > 1 be in the sequence A073935. Assume n has prime factorization

n =

ℓ
∏

i=1

paii .

By Lemma 2 we know that

(pi − 1) =
i−1
∏

j=1

p
aj
j

for 1 ≤ i ≤ ℓ. We define

ni :=
n

paii

n′
i :=

n
∏i

j=1 p
aj
j
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for 1 ≤ i ≤ ℓ and define n′
0 := n. We now compute

∑

pk|n

1

pk
+

1

n
=

ℓ
∑

i=1

ai
∑

j=1

1

pji
+

1

n

=

ℓ
∑

i=1

ai−1
∑

j=0

pjini

n
+

1

n

=

ℓ
∑

i=1

(paii − 1)ni

(pi − 1)n
+

1

n

=

ℓ
∑

i=1

(paii − 1)n′
i

n
+

1

n

=
ℓ
∑

i=1

paii n
′
i − n′

i

n
+

1

n

=
ℓ
∑

i=1

n′
i−1 − n′

i

n
+

1

n

=
n′
0 − n′

ℓ + 1

n
= 1

Therefore n is prime power pseudoperfect.

The converse of Theorem 3 is not true. For example, the number 23994 = 2 · 32 · 31 · 41
is a prime power pseudoprime number that is not in the sequence A073935.

3 Prime power Giuga numbers

A prime power Giuga number is a positive composite integer n > 1 which satisfies the
Egyptian fraction condition

∑

pk|n

1

pk
−

1

n
∈ N

where the sum is taken over all prime power divisors of n. Since Giuga numbers are squarefree
it follows that all Giuga numbers are prime power Giuga numbers. All prime power Giuga
numbers we have found obey the stricter Egyptian fraction equation

∑

pk|n

1

pk
−

1

n
= 1.

Prime power Giuga numbers are sequence A286497.
We now prove a lemma analogous to Lemma 2.

7

http://oeis.org/A073935
http://oeis.org/A286497


Lemma 4. Let n > 1 be a positive integer with prime factorization

n =

ℓ
∏

i=1

paii

with p1 < p2 < · · · < pℓ and aℓ = 1. If

pi − 1 =

i−1
∏

j=1

p
aj
j

for 1 ≤ i < ℓ and pℓ + 1 = n
pℓ
, then the positive integer n is a prime power Giuga number.

Proof. Assume n > 1 is a positive integer satisfying the hypothesis of the lemma. Then by
Lemma 2 and Theoerm 3 we know the n

pℓ
is a prime power pseudoperfect number. So,

∑

pk|n

1

pk
−

1

n
=
∑

pk|
n
pℓ

1

pk
+

1

pℓ
−

1

n

=

n
pℓ
− 1
n
pℓ

+
1

pℓ
−

1

n

=
pℓ

pℓ + 1
+

1

pℓ
−

1

(pℓ + 1)pℓ

= 1.

Lemma 4 gives a sufficient but not necessary condition for being a prime power Giuga
number. Table 1 shows prime power Giuga numbers less than 107. Notice some numbers in
the table, such as 858 = 2 · 3 · 11 · 13, do not satisfy the condition in Lemma 4.

4 Producing more terms

In this section we give some formulas that can be helpful in finding solutions to our Egyptian
fraction equations. Similar results for primary pseudoperfect numbers and Giuga numbers
are given in the article [9, Theorem 8]. The article [8, Proposition 1] also contains conditions
for primary pseudoperfect numbers. Results to help search for solutions of other related
Egyptian fraction equations can be found in the articles [1, Proposition 12, Lemma 17]
and [3, Lemma 4.1, Lemma 4.2].

Proposition 5. Let n > 1 be a positive integer.

(i) If n is in the sequence A073935 and p is largest prime divisor of n, then both n
p
and

np are in the sequence A073935.
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n prime factorization
12 22 · 3
30 2 · 3 · 5
56 23 · 7
306 2 · 32 · 17
380 22 · 5 · 19
858 2 · 3 · 11 · 13
992 25 · 31
1722 2 · 3 · 7 · 41
2552 23 · 11 · 29
2862 2 · 33 · 53
16256 27 · 127
30704 24 · 19 · 101
66198 2 · 3 · 11 · 17 · 59
73712 24 · 17 · 271
86142 2 · 3 · 72 · 293
249500 22 · 53 · 499
629802 2 · 33 · 107 · 109
1703872 26 · 79 · 337
6127552 26 · 67 · 1429

Table 1: Prime power Giuga numbers less than 107.
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(ii) If n is in the sequence A073935 and n + 1 is prime, then n(n + 1)k is in the se-
quence A073935 for any nonnegative integer k.

(iii) If n is a prime power pseudoperfect number and n + 1 is prime, then n(n + 1)k is a
prime power pseudoperfect number for any nonnegative integer k.

(iv) If n is a prime power pseudoperfect number and n − 1 is prime, then n(n − 1) is a
prime power Giuga number.

Proof. Parts (i) and (ii) follow immediately from Lemma 2.
For part (iii) assume that n is a prime power pseudoperfect number and n + 1 is prime.

So,

∑

pk|n(n+1)k

1

pk
+

1

n(n+ 1)k
=
∑

pk|n

1

pk
+

k
∑

j=1

1

(n + 1)j
+

1

n(n+ 1)k

=
n− 1

n
+

(n + 1)k − 1

n(n+ 1)k
+

1

n(n+ 1)k

=
(n− 1)(n+ 1)k + (n+ 1)k

n(n+ 1)k

= 1.

For part (iv) assume that n is a prime power pseudoperfect number and n− 1 is prime.
So,

∑

pk|n(n+1)

1

pk
−

1

n(n− 1)
=
∑

pk|n

1

pk
+

1

(n + 1)
−

1

n(n− 1)

=
n− 1

n
+

1

(n+ 1)
−

1

n(n− 1)

=
(n− 1)(n− 1) + n− 1

n(n− 1)

= 1.

Consider the number
n = 23994 = 2 · 32 · 31 · 43

which is a prime power pseudoperfect number. However, neither

n

43
= 558 = 2 · 32 · 31

nor
43n = 1031742 = 2 · 32 · 31 · 432

10

http://oeis.org/A073935
http://oeis.org/A073935


is a prime power pseudoperfect number. Hence, a version of Proposition 5 (i) does not hold
from prime power pseudoperfect numbers. Also consider the number n = 18 which is a
prime power pseudoperfect number, and the number n(n− 1) = 306 is a prime power Giuga
number since n − 1 = 17 is prime. However, the number n(n − 1)2 = 5202 is not a prime
power Giuga number. Thus a version of Proposition 5 (ii) or (iii) does not hold for prime
power Giuga numbers.

5 Open questions

Proposition 5 immediately shows that there are infinitely many terms in both the se-
quence A073935 and the sequence of prime power pseudoperfect numbers A283423. Propo-
sition 5 does not give a way to produce infinitely many prime power Giuga numbers, but we
conjecture there are infinitely many such numbers.

Conjecture 6. There are infinitely many prime power Giuga numbers.

A Mersenne prime is prime number p such that p = 2k− 1 for some integer k. Mersenne
primes are sequence A000668. By Lemma 4, the number n = 2k(2k − 1) is a prime power
Giuga number whenever 2k−1 is a Mersenne prime. Hence, Conjecture 6 would follow from
an infinitude of Mersenne primes, and it is believed that there are infinitely many Mersenne
primes.

A Fermat prime is prime number p such that p = 2k + 1 for some positive integer k.
Fermat primes are sequence A019434. By Lemma 2 the number 2k is in the sequence A073935
for any positive integer k, and the powers of 2 are the only numbers in the sequence that have
a unique prime divisor. If a number with two distinct prime divisors is in sequence A073935
it must be of the form 2k(2k +1)j where 2k +1 is a Fermat prime and j is a positive integer.

The primes which occur as divisors of terms of the sequence A073935 are primes p such
that

p− 1 =

ℓ
∏

i=1

paii

where for 1 ≤ i ≤ ℓ

pi − 1 =
i−1
∏

j=1

paii .

A table of such primes is included in Table 2. Let us call such primes extended Fermat primes
and if p is an extended Fermat prime such that

p− 1 =

ℓ
∏

i=1

paii

we say p is a level-ℓ extended Fermat prime. By convention the prime 2 is the only level-
0 extended Fermat prime. With this new definition usual Fermat primes are now level-1
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p p− 1
2 1
3 2
5 22

7 2 · 3
17 24

19 2 · 32

43 2 · 3 · 7
101 22 · 52

163 2 · 34

257 28

487 2 · 35

1459 2 · 36

14407 2 · 3 · 74

26407 2 · 34 · 163
39367 2 · 39

62501 22 · 56

65537 216

77659 2 · 3 · 7 · 432

1020101 22 · 52 · 1012

Table 2: Table of extended Fermat primes p along with factorizations of p− 1.
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· · ·5

· · ·62501

...

101

...

3

· · ·163

...

19

...

7

· · ·14407

...

43

· · ·77659

p

Figure 2: A portion of the tree of extended Fermat primes.

extended Fermat primes. Extended Fermat primes are sequence A286499. It is thought that
there are only finitely many Fermat primes. However, we believe there are infinitely many
extended Fermat primes and offer the following conjectures.

Conjecture 7. There exists an extended Fermat prime p such that (p − 1)pk + 1 is an
extended Fermat prime for infinitely many values of k.

Conjecture 8. Given any positive integer ℓ there exists a level-ℓ extended Fermat prime.

Towards an answer to Conjecture 7, the prime 3 may give a example. Computation
suggests there are many primes of the form 2 · 3k + 1. The values of k for which 2 · 3k + 1
is prime is sequence A003306. In the direction of Conjecture 8, we have found a level-5
extended Fermat prime

p = 2 · 3 · 7 · 432 · 77659197 + 1.

We can form a rooted tree of extended Fermat primes with root 2 as follows. Let p and q be
two extended Fermat primes, then q is a descendent of p if and only if p | (q− 1). A portion
of this tree, including a path to the level-5 extended Fermat prime p, is shown in Figure 2.
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