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Abstract

The Riordan group, along with its constituent elements, Riordan arrays, has been a

tool for combinatorial exploration since its inception in 1991. More recently, this group

has made an appearance in the area of mathematical physics, where it can be used as

a toy model in the theory of the renormalization of scalar fields. In this context, its

Hopf algebra nature is of importance. In this note, we explain these notions. Power

series play a fundamental role in this discussion.

1 The Riordan group

In this note, we use the notation
N = {1, 2, 3, . . .}

for the set of natural or counting numbers,

N0 = {0, 1, 2, 3, . . .}

for the set of non-negative integers, and

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

for the set of integers. The notation K will be used to denote a field of characteristic 0, and
R and C will denote the fields of real and complex numbers, respectively.

Many of the sets that we shall study will be algebras, so we recall the definition of
an algebra. Thus we say that a K-algebra is a ring A with unit 1A together with a ring
homomorphism λA : K → A which satisfies λA(r)a = aλA(r) for a ∈ A, r ∈ K. Then A is a
vector space over K with scalar multiplication given by

ra = λA(r)a = aλA(r)

for r ∈ K, a ∈ A, and a product mA : A× A→ A, with mA(a, b) = ab.
A (formal) power series over the field K is a formal expression of the form

g(x) = g0 + g1x+ g2x
2 + g3x

3 + · · · =
∞
∑

n=0

gnx
n, gn ∈ K.
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Such formal power sequences are in a one-to-one correspondence with sequences

g0, g1, g2, g3, . . .

which can be regarded as maps from N0 to K. The power series
∑

∞

n=0 gnx
n is called the

(ordinary) generating function of the sequence

g0, g1, g2, g3, . . .

Using the notations
F = F(K) = K[[x]]

for the set of formal power series over K, we see that

F ∼= K
N0

by the correspondence
∞
∑

n=0

gnx
n 7→ (g0, g1, g2, g3, . . .).

In the above, it is seen that x is a “dummy” or “synthetic” variable, in that
∑

n=0 gnt
n

also represents the element (g0, g1, g2, . . .).
We shall also use the notation K[x] to denote the algebra of polynomials in the indeter-

minate x over K. Its elements are thus formal sums of the form Pn(x) =
∑n

k=0 pkx
k. The

degree of such a polynomial is the highest value of k for which pk is non-zero. The product
of a polynomial of degree n times a polynomial of degree m is a polynomial of degree n+m.

The Riordan group R was first defined [12] in 1991 by Shapiro, Getu, Woan andWoodson.
As a group of matrices, its elements are invertible lower-triangular matrices with elements

dn,k = [xn]g(x)φ(x)k,

for suitable power series g(x) and φ(x) defined over an appropriate ring or field.
Here, [xn] is the functional

[xn] : F = K[[x]] −→ K

f(x) =
∞
∑

n=0

fnx
n 7→ fn =

1

n!

dn

dxn
f |x=0

that extracts from the power series f(x) the coefficient of xn. (See the Appendix for more
about this functional [9]). We note that x here is a “dummy” or “synthetic” variable. Hence
we have

fn = [xn]f(x) = [yn]f(y).
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Example 1. The element
(

1
(1−x)2

, x(1 + x)
)

∈ R has a matrix representation given by























1 0 0 0 0 0 · · ·
2 1 0 0 0 0 · · ·
3 3 1 0 0 0 · · ·
4 5 4 1 0 0 · · ·
5 7 8 5 1 0 · · ·
6 9 12 12 6 1 · · ·
...

...
. . .























Many examples of Riordan arrays are to be found in the On-Line Encyclopedia of Integer
Sequences [14, 15]. The nature of the matrix representation of the elements of the Riordan
group is explored in [5].

In order to ensure that these matrices are lower-triangular and invertible, we stipulate
that

φ(x) = φ1x+ φ2x
2 + φ3x

3 + · · · ,
with φ1 6= 0. In other words, we have φ0 = 0, φ1 6= 0. The monic Riordan group R(1), whose
matrices have all 1’s on the diagonal, can then be prescribed by taking

g(x) = 1 + g1x+ g2x
2 + · · · ,

along with φ1 = 1. This is a subgroup of R, being evidently closed under matrix multiplica-
tion.

Taken over a field K of characteristic 0, the matrices corresponding to R(1) form a closed
subgroup of the prounipotent group [7] T∞ of lower-triangular matrices all of whose diagonal
elements are 1. This is a Lie group, thus the monic Riordan group is a Lie subgroup of
this group. The Lie algebra t∞ of T∞ is composed of the lower-triangular nilpotent matrices
with 0 on the diagonal. The corresponding Lie algebra r

(1) is composed of those nilpotent
matrices of the form uφ + dψ, for φ, ψ ∈ F1, where [1]

uφ =























φ0 0 0 0 0 0 · · ·
φ1 φ0 0 0 0 0 · · ·
φ2 φ1 φ0 0 0 0 · · ·
φ3 φ2 φ1 φ0 0 0 · · ·
φ4 φ3 φ2 φ1 φ0 0 · · ·
φ5 φ4 φ3 φ2 φ1 φ0 · · ·
...

...
...

...
...

...
. . .























,

and

uψ =























0 0 0 0 0 0 · · ·
0 ψ0 0 0 0 0 · · ·
0 ψ1 2ψ0 0 0 0 · · ·
0 ψ2 2ψ1 3ψ0 0 0 · · ·
0 ψ3 2ψ2 3ψ1 4ψ0 0 · · ·
0 ψ4 2ψ3 3ψ2 4ψ1 5ψ0 · · ·
...

...
...

...
...

...
. . .























.
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Note that φ0 = ψ0 = 0.
For combinatorial purposes, it is often sufficient to consider “monic” matrices with integer

entries [2]. However we shall continue here to consider entities defined over the field K.

Example 2. The element
(

1
1−x

, x
1−x

)

∈ R has general term

bn,k = [xn]
1

1− x

(

x

1− x

)k

= [xn]
xk

(1− x)k+1

= [xn−k](1− x)−(k+1)

= [xn−k]

∞
∑

i=0

(−(k + 1)

i

)

(−x)i

= [xn−k]
∞
∑

i=0

(

k + 1 + i− 1

i

)

(−1)i(−x)i

= [xn−k]

∞
∑

i=0

(

k + i

i

)

xi

=

(

k + n− k

n− k

)

=

(

n

k

)

.

Thus the Riordan array element
(

1
1−x

, x
1−x

)

corresponds to the binomial matrix that
begins























1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
1 2 1 0 0 0 · · ·
1 3 3 1 0 0 · · ·
1 4 6 4 1 0 · · ·
1 5 10 10 5 1 · · ·
...

...
...

...
...

...
. . .























.

The exponential map
exp : r −→ R

then gives us

exp

































































0 0 0 0 0 0 · · ·
1 0 0 0 0 0 · · ·
0 2 0 0 0 0 · · ·
0 0 3 0 0 0 · · ·
0 0 0 4 0 0 · · ·
0 0 0 0 5 0 · · ·
...

...
...

...
...

...
. . .

































































=























1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
1 2 1 0 0 0 · · ·
1 3 3 1 0 0 · · ·
1 4 6 4 1 0 · · ·
1 5 10 10 5 1 · · ·
...

...
...

...
...

...
. . .























.
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As it happens, [8] the Riordan group R can be shown to be the inverse limit of the groups
Rn, where the group Rn is obtained by taking the n× n truncations of the elements of R.

Each element of R is thus determined by a pair of power series g(x), φ(x) where

g(x) = 1 + g1x+ g2x
2 + g3x

3 + · · ·

and
φ(x) = x+ φ2x

2 + φ3x
3 + · · ·

We let F = K[[x]], and we let

Fd = {f(x) ∈ F|f(x) = fdx
d + fd+1x

d+1 + · · · , fd 6= 0}.

The elements of Fd are called powers series of order d. The set F is an algebra for the
convolution product

f(x)g(x) = f(x).g(x) =

∞
∑

n=0

(

n
∑

k=0

fkgn−k)x
n,

and the scalar product
K× F → F ,
(r, g) 7→ rg

The identity is the element
1 = 1.x0 + 0x1 + 0x2 + · · · ,

corresponding to the element
(1, 0, 0, 0, . . .) ∈ K

N0 .

This convolution product defines a multiplication

mc : F × F −→ F ,

(g, f) 7→ gf,

which is commutative.
The set F0 = {g(x) ∈ F|g(x) = g0+g1x+ · · · , g0 6= 0} is the group of invertible elements

in F . This is a group for the product

g(x)u(x) = mc(g(x), u(x)).

Under this law F0 is a commutative group (g(x)u(x) = u(x)g(x)). Again, the identity is the
element

1 = 1x0 + 0x1 + 0x2 + · · · .
The inverse in this group of g(x) is the element 1

g(x)
.

The set F1 = {φ(x) ∈ F|φ(x) = φ1x+φ2x
2+ · · · } is the group of composable or reversible

elements. This is a group for the product given by composition

φ(x) · ψ(x) = φ(x) ◦ ψ(x).

5



The composition product ◦ is not commutative, for we have

(φ ◦ ψ)(x) = φ(ψ(x)) 6= ψ(φ(x)) = (ψ ◦ φ)(x)
in general. The identity element for this group is

id(x) = x = x+ 0x2 + 0x3 + · · · ,
which can be identified with the element

(0, 1, 0, 0, 0, . . .) ∈ K
N0 .

This multiplication defines a map

mo : F1 × F1 −→ F1,

(φ, ψ) 7→ φ ◦ ψ,
which as we have seen is not commutative.

If the pair (g(x), φ(x)) defines the infinite lower triangular matrix M1 and the pair
(u(x), ψ(x)) defines the matrix M2, then the matrix product M1M2 =M1 ·M2 is defined by
the pair (f, θ) where

(f, θ) = (g, φ) · (u, ψ) = (g.(u ◦ φ), ψ ◦ φ).
As for all matrices, this product is associative but not commutative. The identity for this
multiplication is the element (1, x). We have

[xn]xk = [xn−k]1 = δn,k

and hence the matrix corresponding to (1, x) is the (infinite) identity matrix.

Example 3. The Riordan array
(

1
1−ax

, x
1−ax

)

is represented by the matrix with general

element
(

n

k

)

an−k. We have

(

1

1− ax
,

x

1− ax

)

·
(

1

1− bx
,

x

1− bx

)

=

(

1

1− ax

1

1− b x
1−ax

,
x

1−ax

1− b x
1−ax

)

=

(

1

1− ax

1− ax

1− (a+ b)x
,

x

1− (a + b)x

)

=

(

1

1− (a+ b)x
,

x

1− (a + b)x

)

.

This example shows that the set of elements
(

1
1−tx

, x
1−tx

)

describes a one-parameter semi-
group (in fact, a subgroup) in R. Its infinitesimal generator is given by























0 0 0 0 0 0 · · ·
1 0 0 0 0 0 · · ·
0 2 0 0 0 0 · · ·
0 0 3 0 0 0 · · ·
0 0 0 4 0 0 · · ·
0 0 0 0 5 0 · · ·
...

...
...

...
...

...
. . .























.
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The inverse matrix M−1 of M where M is defined by (g(x), φ(x)) is defined by

(g(x), φ(x))−1 =

(

1

(g ◦ φ̄)(x) , φ̄
)

,

where φ̄ is the reversion of φ(x). We sometimes use the notation φ̄(x) = Rev{φ}(x). The
existence of φ̄ is guaranteed because φ ∈ F1. It is the solution u to the equation φ(u) = x

that satisfies u(0) = 0. Note that x̄ = x. Note also that φ̄(x) = φ(x).

Example 4. We consider the element φ(x) = x(1 − x) ∈ F1. This corresponds to the
sequence (0, 1,−1, 0, 0, 0, . . .). To find φ̄(x), we solve the equation

u(1− u) = x

or
u2 − u+ x = 0

to get

u(x) =
1−

√
1− 4x

2
or u(x) =

1 +
√
1− 4x

2
.

We obtain

φ̄(x) =
1−

√
1− 4x

2

since we require that the solution satisfy u(0) = 0. This is the generating function of the
sequence

(0, 1, 1, 2, 5, 14, 42, 132, . . .)

of the Catalan numbers (with a 0 pre-pended). It is easy to show likewise that

Rev

{

1−
√
1− 4x

2

}

(x) = x(1− x).

The element (1− x, x(1− x)) ∈ R is represented by the matrix that has general element
given by (−1)n−k

(

k+1
n−k

)

, since we have

[xn](1− x)(x(1− x))k = [xn]xk(1− x)k+1

= [xn−k]

k+1
∑

i=0

(

k + 1

i

)

(−1)ixi

=

(

k + 1

n− k

)

(−1)n−k.

To find the inverse of this element, we introduce the notation

c(x) =
1−

√
1− 4x

2x
.
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From above we know that

φ̄(x) = Rev{x(1− x)}(x) = xc(x).

The first element of the inverse we seek is given by

1

(g ◦ φ̄)(x) =
1

1− xc(x)
= c(x),

where we note that the last equality represents a special property of the Catalan numbers.
Thus we get

(1− x, x(1− x))−1 = (c(x), xc(x)).

This last example provides an example of elements of the Bell subgroup B of the Riordan
group R. We have

B = {(g, φ) ∈ R|φ(x) = xg(x)}.
In order to work out a formula for the general element of the matrix corresponding to

(c(x), xc(x)) we use the Lagrange inversion, in the form given by the Lagrange-Bürmann
theorem. This states that

[xn]G(φ̄) =
1

n
[xn−1]G′(x)

(

x

φ

)n

,

where G(x) ∈ K[[x]].
Thus we have

[xn]c(x)(xc(x))k = [xn]
1

x
xc(x)(xc(x))k

= [xn]
1

x
(xc(x))k+1

= [xn+1] (Rev{x(1− x)}(x))k+1

=
1

n+ 1
[xn](k + 1)xk

(

x

x(1 − x)

)n+1

=
k + 1

n+ 1
[xn−k](1− x)−(n+1)

=
k + 1

n+ 1
[xn−k]

∞
∑

i=0

(−(n + 1)

i

)

(−1)ixi

=
k + 1

n+ 1
[xn−k]

∞
∑

i=0

(

n + 1 + i− 1

i

)

xi

=
k + 1

n+ 1

(

n + n− k

n− k

)

=
k + 1

n+ 1

(

2n− k

n− k

)

.
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We conclude that the matrix corresponding to (1− x, x(1− x))−1 = (c(x), xc(x)) has its
general term given by

k + 1

n− k + 1

(

2n− k

n− k

)

.

Algebraically, we have

R = F0 ⋊ F1,

where the symbol ⋊ denotes the semi-direct product.
This means that we have an exact sequence

1 −→ F0
α−→ R β−→ F1 −→ 1,

where we have the maps
α : F0 → R,
g 7→ (g, x),

and
β : R → F1,

(g, φ) 7→ φ.

The Riordan group R has a number of well-studied subgroups. We have already seen the
Bell subgroup. The so-called Appell subgroup is the subgroup

A = {(g(x), φ(x)) ∈ R|φ(x) = x},
while the associated subgroup or the Lagrange subgroup is defined by

L = {(g(x), φ(x) ∈ R|g(x) = 1}.
Then A is a easily shown to be a normal subgroup of R. Since we have

(g(x), x) · (1, φ(x)) = (g(x).1, (φ ◦ x)(x)) = (g(x), φ(x))

and
(1, φ(x)) · (g(x), x) = (1.g(x), (x ◦ φ)(x)) = (g(x), φ(x))

it follows that
R = A⋊ L.

In fact, it is clear that we have
A ∼= F0

by the mapping
(g(x), x) 7→ g(x),

and we have
L ∼= F1

by the mapping
(1, φ(x)) 7→ φ(x).

Thus we re-find that
R ∼= A⋊ L ∼= F0 ⋊ F1.
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2 Tensor products of R modules

In this section, we let R be a commutative ring with unit, we let M1,M2, . . . ,Mn be a
collection of R modules, and we let A be an R-module. Our goal is to define and briefly
study the tensor products M1 ⊗M2,..., M1 ⊗ · · · ⊗Mn. We follow the development in [16]
for this.

We shall say that a function f : M1 ×M2 × · · · ×Mn −→ A is Rn-linear if for all i,
1 ≤ i ≤ n, and all ai, a

′

i ∈Mi, r ∈ R we have

• f(a1, a2, . . . , ai + a′i, . . . , an) = f(a1, a2, . . . , ai, . . . , an) + f(a1, a2, . . . , a
′

i, . . . , an)

• f(a1, a2, . . . , rai, . . . , an) = rf(a1, a2, . . . , ai, . . . , an).

For example, an R-bilinear map is an R 2-linear map.
A tensor product of M1,M2, . . . ,Mn over R is an R module M1⊗M2⊗· · ·⊗Mn together

with an Rn-linear map

f :M1 ×M2 × · · · ×Mn −→ M1 ⊗M2 ⊗ · · · ⊗Mn

so that for every R module A and Rn-linear map h : M1 ×M2 × · · · × Mn −→ A there
exits a unique R module map h̃ :M1 ⊗M2 ⊗ · · · ⊗Mn −→ A for which h̃f = h, that is, the
following diagram commutes.

M1 ×M2 × · · · ×Mn A

M1 ⊗M2 ⊗ · · · ⊗Mn

f

h

h̃

The tensor product can be constructed as follows. We let F 〈M1×M2×· · ·×Mn〉 denote
the free R-module on the set M1×M2×· · ·×Mn. Let J be the submodule of this R-module
generated by quantities of the form

(a1, a2, . . . , ai + a′i, . . . , an)− (a1, a2, . . . , ai, . . . , an)− (a1, a2, . . . , a
′

i, . . . , an),

(a1, a2, . . . , rai, . . . , an)− r(a1, a2, . . . , ai, . . . , an),

for all i, 1 ≤ i ≤ n, and all ai, a
′

i ∈Mi, r ∈ R. Let

ι :M1 ×M2 × · · · ×Mn −→ F 〈M1 ×M2 × · · · ×Mn〉

be the natural inclusion map and let

s : F 〈M1 ×M2 × · · · ×Mn〉 −→ F 〈M1 ×M2 × · · · ×Mn〉/J

be the canonical surjection. Set f = sι. Then the quotient space

F 〈M1 ×M2 × · · · ×Mn〉/J

10



together with the map f is a tensor product which solves the universal mapping problem
above [16].

Furthermore, we have

M1 ⊗ (M1 ⊗M2) ∼= (M1 ⊗M2)⊗M3)

so that we can use the notation
M1 ⊗M2 ⊗M3

unambiguously. This extends by induction to M1 ⊗M2 ⊗ · · · ⊗Mn.
Given maps fi : Mi −→ M ′

i of R-modules, for 1 ≤ i ≤ n, there exists a unique map of
R-modules

(f1 ⊗ f2 · · · ⊗ fn) :M1 ⊗M2 ⊗ · · · ⊗Mn →M ′

1 ⊗M ′

2 ⊗ · · · ⊗M ′

n

defined as

(f1 ⊗ f2 · · · ⊗ fn)(a1 ⊗ a2 ⊗ · · · ⊗ an) = f1(a1)⊗ f2(a2)⊗ · · · ⊗ fn(an)

for all ai ∈Mi.
We note the following. If Vi, 1 ≤ i ≤ n is a finite set of vector spaces over the field K,

then
V ∗

1 ⊗ V ∗

2 ⊗ · · · ⊗ V ∗

n ⊆ (V1 ⊗ V2 ⊗ · · · ⊗ Vn)
∗,

with equality only if all the Vi are finite dimensional.

3 Algebras, coalgebras and bialgebras

We begin this section by re-visiting the notion of an algebra, for which we will find useful
the notion of the tensor product. Thus we can define a K-algebra to be a triple (A,mA, λA)
consisting of a vector space A over K, and K-linear maps mA : A⊗A→ A and λA : K → A
that satisfy the following conditions.

• We have a commutative diagram:

A⊗A⊗ A A⊗ A

A⊗A A

mA⊗IA

IA⊗mA

mA

mA

Here, IA is the identity on A, and we have IA ⊗ mA : A ⊗ A ⊗ A → A ⊗ A defined
by a ⊗ b ⊗ c 7→ a ⊗mA(b ⊗ c) and similarly for mA ⊗ IA. The commutativity of the
diagram thus means that for all a, b, c ∈ A, we have

mA(IA ⊗mA)(a⊗ b⊗ c) = mA(mA ⊗ IA)(a⊗ b⊗ c). (1)

11



• We have a commutative diagram

A⊗K A⊗ A

A K⊗A

s2

IA⊗λA

mA

λA⊗IA

s1

Here, the map s1 : K⊗A→ A is defined by r ⊗ a 7→ ra and the map s2 : A⊗K → A
is defined by a⊗ r 7→ ra. We have

mA(IA ⊗ λA)(a⊗ r) = ra = mA(λA ⊗ IA)(r ⊗ a). (2)

The map mA is the multiplication map (for A) and the map λA is the unit map. The
maps s1 and s2 represent scalar multiplication. The property (1) is called the associative
property and the property (2) is called the unit property.

It is straightforward to show that this definition of a K-algebra coincides with that given
before.

Example 5. The polynomial K[x] is a K-algebra with multiplication

mK : K[x]⊗K[x] → K[x]

given by ordinary polynomial multiplication, and λK[x] : K → K[x] defined as r 7→ r.1, for
all r ∈ K.

Example 6. The ring of power series K[[x]] over K is a K-algebra. The multiplication is
given by

mK : K[[x]] ⊗K[[x]] → K[[x]]

f ⊗ g 7→
∞
∑

n=0

(

n
∑

k=0

fkgn−k)x
n.

The unit λK[[x]] : K → K[[x]] is defined as r 7→ r.1, for all r ∈ K.

These algebras are commutative, where we define a K-algebra A to be commutative if
we have

mAτ = mA

where τ denotes the twist map defined by τ(a⊗ b) = b⊗ a for a, b ∈ A.
An example of a non-commutative K-algebra is the algebra F1 of composable power

series.
Let (A,mA, λA), (B,mB, λB) be two K-algebras. A K-algebra homomorphism from A to

B is a map of additive groups φ : A→ B for which φ(1A) = 1B with

φ(mA(a⊗ a′)) = mB(φ(a)⊗ φ(a′)),

and
φ(λA(r)) = λB(r)

12



for a, a′ ∈ A, r ∈ K.
The usefulness of using commutative diagrams to describe K will now come into play

when we define the notion of coalgebra. Essentially we will need to reverse the arrows in
some of our diagrams.

Thus a K-coalgebra is a triple (C,∆C , ǫC) consisting of a vector space C over K and
K-linear maps

∆C : C −→ C ⊗ C

and
ǫC : C −→ K

that satisfy the following conditions.

• The following diagram commutes.

C C ⊗ C

C ⊗ C C ⊗ C ⊗ C

∆C

∆C IC⊗∆C

∆C⊗IC

Here the map IC : C → C is the identity map and the maps IC⊗∆C : C⊗C → C⊗C⊗C
and ∆C⊗IC : C⊗ → C⊗C⊗C are defined by a⊗b 7→ a⊗∆C(b) and a⊗b 7→ ∆C(a)⊗b,
for all a, b ∈ C, respectively. Thus for all c ∈ C, we have

(IC ⊗∆C)∆C(c) = (∆C ⊗ IC)∆C(c). (3)

• The following diagram commutes.

C K⊗ C

C ⊗K C ⊗ C

−⊗1
∆C

1⊗−

IC⊗ǫC

ǫC⊗IC

Here the maps − ⊗ 1 and 1 ⊗ − are defined by c 7→ c ⊗ 1 and c 7→ 1 ⊗ c, respectively.
Equivalently, we have

(ǫC ⊗ IC)∆C = 1⊗ c, (IC ⊗ ǫC)∆C(c) = c⊗ 1. (4)

The map ∆C is called the comultiplication map. The map ǫC is called the counit map.
The condition (3) is called the coassociative property and the condition (4) is called the
counit property.

A K-coalgebra C is cocommutative if

τ(∆C)(c)) = ∆C(c)

for all c ∈ C.

13



Example 7. Let K[x] denote the K-vector space of polynomials in the indeterminate x. Let

∆K[x] : K[x] −→ K[x]⊗K[x]

be the K-linear map defined on the K-basis {1, x, x2, . . .} as

∆K[x](x
m) = xm ⊗ xm,

and let
ǫK[x] : K[x] −→ K

be the K-linear map defined on {1, x, x2, . . .} as

ǫK[x](x
n) = 1.

Then the triple (K[x],∆K[x], ǫK[x]) is a K-coalgebra.

Example 8. We follow [3] in this example, which is built around the group algebra or
coordinate ring of the set F0. Thus we denote by C(F0) the set of functions

F : F0 −→ C

that are polynomial with respect to an appropriate basis. Choosing the basis {1 = [x0], [x], [x2], . . .}
we obtain the identification

C(F0) ∼= C[[x], [x2], [x3], . . .].

We then obtain a map
∆0 : C(F0) −→ C(F0)⊗ C(F0),

[xn] 7→ (f ⊗ g 7→ [xn]fg).

Since we have [xn]fg =
∑n

k=0[x
k]f [xn−k]g, we obtain that

∆0[x
n] =

n
∑

k=0

[xk]⊗ [xn−k].

We define a counit ǫ0 on C(F0) by

ǫ0 : C(F0) −→ C,

[xn] 7→ [xn]1

Thus we have ǫ0([x
n]) = δn,0. Then (C(F0),∆0, ǫ0) is a coalgebra. As a ring of polynomials,

with multiplication of polynomials as the multiplication, and the unit element [x0] = 1, the
set C(F0) is of course an algebra as well.

14



Example 9. We again follow [3] in this example, which is built around the coordinate ring
of the set F1. For this, we define the family of functionals an on F0 by

an(φ) =
1

(n+ 1)!

dn+1

dxn+1
φ|x=0.

In other words, an = 1
(n+1)!

[xn+1]. We identify the coordinate ring C(F1) with the polynomial

ring C[a1, a2, . . .] in infinitely many variables a1, a2, . . .. We can define a co-product on C(F1)
as follows:

∆1 : C(F1) −→ C(F1)⊗ C(F1),

an 7→ (φ⊗ ψ 7→ an(φ ◦ ψ)).
Thus the co-product for the generators of C(F1) can be extracted from the standard duality
condition

〈∆1an, φ⊗ ψ〉 = an(φ ◦ ψ),
where 〈an, φ〉 = an(φ) and 〈an ⊗ am, φ⊗ ψ〉 = an(φ)am(ψ).

Let C be a K-coalgebra. A non-zero element c of C for which ∆C(c) = c⊗ c is called a
grouplike element of C. Necessarily we then have ǫC(c) = 1. The set of grouplike elements
G(C) of C is a linearly independent subset of C.

Now let C,D be coalgebras over K. A K-linear map φ : C → D is a coalgebra homomor-
phism if

(φ⊗ φ)∆C(c) = ∆D(φ(c))

and
ǫC(c) = ǫD(φ(c))

for all c ∈ C.

Example 10. The field K as a vector space over itself is a K-coalgebra where the comumlti-
plicaton map ∆K : K → K⊗K is defined by ∆K(a) = a⊗ 1 and the counit map ǫK : K → K

is defined by ǫK(a) = a. This is the trivial coalgebra.
If now C is a K-coalgebra, then the counit map ǫC : C → K is a homomorphism of K

algebras.

If φ : C → D is a homomorphism of coalgebras, and if c is a grouplike element of C, then
φ(c) is a grouplike element of D.

A coalgebra homomorphism φ : C → D that is injective and surjective is an isomorphism
of coalgebras.

Duality will play an important role in the sequel. Thus we look at this in the context of
algebras and coalgebras. If C is a K-coalgebra, then we denote by C∗ its linear dual. The
important fact now is that if C is a K-coalgebra, then its dual C∗ is an algebra. Under this
duality, the dual mapping

∆∗

C : (C ⊗ C)∗ −→ C∗

15



restricts to a K-linear map mC∗ to C∗ ⊗ C∗ ⊆ (C ⊗ C)∗ defined as

mC∗(f ⊗ g)(c) = ∆∗

C(f ⊗ g)(c)

= (f ⊗ g)(∆C(c))

= =
∑

(c)

f(c(1))g(c(2)).

The transpose of the counit map of C is

ǫ∗C : K∗ = K → C∗

defined by
ǫ∗C(r)(c) = r(ǫC(c)) = rǫC(c)

for r ∈ K, c ∈ C. We set λC∗ = ǫ∗C and define maps

IC∗ ⊗ λC∗ : C∗ ⊗K → C∗ ⊗ C∗,

f ⊗ r 7→ f ⊗ λC∗(r),

and
λC∗ ⊗ IC∗ : K⊗ C∗ → C∗ ⊗ C∗,

r ⊗ f 7→ λC∗(r)⊗ f,

for f ∈ C∗, r ∈ K.
With these definitions, it can be shown that if (C,∆C, ǫC) is a coalgebra, then (C∗, mC∗ , λC∗)

is an algebra.
We may ask if the converse is also true, that is, if (A,mA, λA) is an algebra, does A∗ have

the structure of a coalgebra? The transpose of the multiplication map m∗

A is such that

m∗

A : A∗ → (A⊗ A)∗,

but in the infinite dimensional case, we have that A∗ ⊗ A∗ is a proper subset of (A ⊗ A)∗,
and so we may not have a transpose mapping A∗ → A∗ ⊗ A∗ which would be a necessary
condition for A∗ to be an algebra. To overcome this difficulty, we can proceed as follows.
For A a K-algebra, we define the finite dual Ao of A by

Ao = {f ∈ A∗|f vanishes on some ideal I ⊆ A of finite codimension}.
If A is an algebra, then it can be shown that Ao is a coalgebra.

Example 11. The collection of k-th order linearly recursive sequences over K of all orders
k > 0 can be identified with the finite dual K[x]o.

Sometimes, the two structures, algebra and coalgebra, can co-exist. A K-bialgebra is a
K vector space B together with maps mB, λB,∆B, ǫB that satisfy the following conditions:

1. (B,mB, λB) is a K-algebra and (B,∆B, ǫB) is a K-algebra,

2. ∆B and ǫB are homomorphisms of K-algebras.

If B is a bialgebra, it can be shown that Bo will also be a bialgebra.

Example 12. The sets C(F0) and C(F1) are bialgebras.
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4 Hopf algebras and the Riordan group

We are now in a position to define what we mean by a Hopf algebra. Thus a K-Hopf algebra
is a bialgebra over a field K

H = {H,mH , λH ,∆H , ǫH}
together with a K-linear map

σH : H −→ H

that satisfies
mH(IH ⊗ σH)∆H(h) = ǫH(h)1H = mH(σH ⊗ IH)∆H(h) (5)

for all h ∈ H .
The map σH is called the antipode or coinverse and property (5) is called the antipode

or the coinverse property.

Example 13. Consider the coordinate ring C(F0) of the set of invertible power series F0

over C. We can define a coinverse map

S0 : C(F0) −→ C(F0),

[xn] 7→ (f 7→ [xn]
1

f
).

To show that this is a coinverse map, we must show that

n
∑

k=0

[xk]⊗ (f 7→ [xn−k]
1

f
) =

n
∑

k=0

(f 7→ [xk]
1

f
)⊗ [xn−k].

But this is true since

δn,0 = [xn]1 = [xn]f.
1

f
=

n
∑

k=0

[xk]f [xn−k]
1

f

and

δn,0 = [xn]1 = [xn]
1

f
.f =

n
∑

k=0

[xk]
1

f
[xn−k]f.

We have already seen that C(F0) is a bialgebra. With this coinverse or antipode mapping,
it can be shown that H0 = C(F0) is a Hopf algebra [3].

As shown in [3], it is possible to recover F0 from H0. Thus we have that

F0
∼= HomAlg(H0,C),

where this last expression denotes the group of algebra homomorphisms (or characters) on
H0, with the convolution product defined on the generators by

(αβ)[xn] := m ◦ (α⊗ β) ◦∆0[x
n],

for any algebra homomorphisms α, β on H0. Here, m is multiplication on C.
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H0 H0 ⊗H0

C⊗ C

C

∆0

αβ

α⊗β

m

The isomorphism is given by

F0
∼= HomAlg(H0,C),

f 7→ αf := ([xn] 7→ [xn]f = fn).

Example 14. In this example, we consider the coordinate ring C(F1) of the set of compos-
able power series over C. This set is a bialgebra. We can define a coinverse map

S1 : C(F1) −→ C(F1),

an 7→ (f 7→ an(f̄)).

With this coinverse or antipode mapping, it can be shown that H1 = C(F1) is a Hopf algebra
[3].

Again, it is possible to recover F1 from H1. Thus we have that

F1
∼= HomAlg(H1,C),

where this last expression denotes the group of algebra homomorphisms (or characters) on
H0, with the convolution product defined on the generators by

(αβ)an := m ◦ (α⊗ β) ◦∆1an,

for any algebra homomorphisms α, β on H0. Here, m is multiplication on C.

H1 H1 ⊗H1

C⊗ C

C

∆1

αβ

α⊗β

m

The isomorphism is given by

F1
∼= HomAlg(H0,C),

φ 7→ αφ := (an 7→ an(φ)).

18



We now observe that we have an isomorphism of algebras

C(F0 ⋉ F1) ∼= H0 ⊗H1,

or
C(R) ∼= H0 ⊗H1.

It is clear that the relationship between C(R) and the semi-direct product H0 ⋊H1 [10]
deserves further research.

5 Conclusions

To date, the Riordan group has been applied, in the main, for investigations in the area of
combinatorics. Its appearance in other areas, all associated to its Lie group nature, and in
particular where the emphasis is in applications to mathematical physics [3, 6], indicates
that it may be important to study the group from different perspectives. This note revolves
around the perspective of Hopf algebras, though it barely scratches the surface.

We have looked only at the so-called “ordinary” Riordan group, defined using ordinary
generating functions. Of equal importance is the “exponential” Riordan group, defined using
exponential generating functions [?, 6]. The Faa di Bruno formula comes into play in the
definition of the relevant co-product in this context. The corresponding power series are
often referred to as “divided power” series in the mathematical physics area. Depending on
the area of application, it would be useful to develop a full theory of Hopf algebra association
for the general Riordan group as describe in [17].

The paper [3] indicates how the Riordan group might be generalized using invertible series
with non-commutative coefficients. This would further motivate studies of the semi-direct
product H0 ⋊H1 and its generalizations.

6 Appendix

Given its importance in the discussion, we summarize the rules of operation of the operator
[xn] [9].
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MC1 Linearity [xn](rf(x) + sg(x)) = r[xn]f(x) + s[xn]g(x)

MC2 Shifting [xn]xf(x) = [xn−1]f(x)

MC3 Differentiation [xn]f ′(x) = (n + 1)[xn+1]f(x)

MC4 Convolution [xn]g(x)f(x) =
∑n

k=0([x
k]g(x))[xn−k]f(x)

MC5 Composition [xn]g(f(x)) =
∑

∞

k=0([x]
kg(x))[xn]f(x)k

MC6 Inversion [xn]f̄(x)k = k
n
[xn−k]

(

x
f(x)

)n

Note that in (MC1), r, s ∈ R. We can extend rule (MC2) to the following.

[xn]xkf(x) = [xn−k]f(x).

There is a more general form of rule (MC6), which is known as Lagrange Inversion. We have

[xn]G(f̄) =
1

n
[xn−1]G′(x)

(

x

f

)n

,

where G(x) ∈ R[[x]].
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