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We present a method for calculating the complex Green function Gij(ω) at any real frequency
ω between any two sites i and j on a lattice. Starting from numbers of walks on square, cubic,
honeycomb, triangular, bcc, fcc, and diamond lattices, we derive Chebyshev expansion coefficients
for Gij(ω). The convergence of the Chebyshev series can be accelerated by constructing functions
f(ω) that mimic the van Hove singularities in Gij(ω) and subtracting their Chebyshev coefficients
from the original coefficients. We demonstrate this explicitly for the square lattice and bcc lattice.
Our algorithm achieves typical accuracies of 6–9 significant figures using 1000 series terms.

Consider the quantum mechanical tight-binding
Hamiltonian

Ĥ = t
∑
〈ij〉

(
|i〉 〈j|+ |j〉 〈i|

)
(1)

where t is the hopping amplitude between nearest-
neighbor sites i and j on a lattice. Define the “Greenian”
operator Ĝ(ω) = (ω− Ĥ)−1 where ω− Ĥ ≡ ω1̂− Ĥ and

1̂ is the identity operator. The matrix elements of the
Greenian

Gij(ω) = 〈i| (ω − Ĥ)−1 |j〉 (2)

are called the lattice Green function (LGF). In this paper
we consider i and j to be fixed, and we will often omit
these indices for brevity.

Lattice Green functions are not limited to quantum
mechanics, but arise frequently in many other areas of
physics. The ability to compute LGFs can be useful,
for example, for simulations of Hubbard models1 and for
non-perturbative renormalization group studies of scalar
boson models.2,3 For i = j, Gij(ω) can be expressed as
closed forms in terms of named special functions (mainly
elliptic integrals or generalized hypergeometric functions)
for square, bcc, honeycomb, diamond, cubic, hypercubic,
triangular, and fcc lattices.4–16 For i 6= j, Gij(ω) can be
expressed as closed forms for square, bcc,14 honeycomb,14

triangular,14 kagome,14 diced,14 and cubic10 lattices; spa-
tial recurrence relations exist but are often numerically
unstable.17–19 In this paper we develop a general numer-
ical method applicable to LGFs for which no closed form
is known.

In the complex ω plane, the Green function has a
branch cut running from ωmin to ωmax along the real
axis, where ωmin and ωmax are the lowest and highest
eigenvalues of Ĥ. Wherever ω occurs as an argument of
a Green function, it is to be interpreted as including an
infinitesimal imaginary shift, i.e., as ω + i0+. We will
always scale Ĥ such that all its eigenvalues lie within the
interval [−1, 1] (see Fig. 1). For the lattices treated in
this paper, we ensure this by choosing t = 1/z where z
is the coordination number (the number of neighbors of
each site).33

It is well known that the lattice Green function Gij(ω)

can be written as an inverse power series about ω = ∞,
where the coefficient of the ω−n−1 term is related to the
number of paths of length n from site i to site j.20,21

This series is useful for numerically evaluating the Green
function outside the unit disk (|ω| > 1), and sometimes
to evaluate the quantities G(±1), which are known as
Watson integrals. (See Ref. 4 for a review.) However,
for certain applications, one requires values of the Green
function “on the cut” (i.e., on either side of the branch
cut), where the power series diverges. This is a more
difficult problem.

The most direct approach is to write the Green func-
tion as a d-dimensional integral over the Brillouin zone,
typically of the form

G(ω, r) =

∫
BZ

ddq

(2π)d
exp iq · r

ω −
∑
δδδ

eiq·δδδ
. (3)

This expression does not lend itself well to numerical im-
plementation because it involves high-dimensional inte-
gration of singular integrands.22 In previous papers23,24

we presented an approach for calculating Green functions
accurately (> 12 s.f.) based on time-frequency Fourier
transformation and contour integration techniques. Un-
fortunately, that approach relies on a factorization prop-
erty of hypercubic lattice Green functions in the time
domain, and we have not been able to generalize it to
non-hypercubic lattices.

Some of the literature focuses on finding ordinary dif-
ferential equations that are satisfied by each lattice Green
function.4 This does not appear to help directly with
evaluating the LGFs on the cut.

The recursion method and the continued-fraction
method22,25 can be used to evaluate LGFs on the cut,
although accuracy appears to be limited to 2–6 decimal
places.

In this paper we evaluate LGFs by converting their
power series into Chebyshev series. This amounts to an-
alytic continuation from the region |ω| > 1 to the region
|ω| ≤ 1, as depicted in Fig. 1.
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FIG. 1: Structure of a lattice Green function Gij(ω) in the
complex plane. The power series converges outside the unit
disk, whereas the Chebyshev series is applicable just above
the branch cut.

I. COUNTING WALKS ON LATTICES

Tables I and III show combinatorial formulas and ex-
plicit values for the numbers of polygons (closed walks)
on various lattices. Most of these results are well known
in the literature.4,8–12,26,27 We reproduce them here for
the reader’s convenience, organized to reveal that the
formulas fall into various families: the bcc family (1D
chain, 2D square, 3D body-centered cubic); honeycomb
family (2D honeycomb, 3D diamond); cubic family (1D
chain, 2D square, 3D cubic, 4D hypercubic); and trian-
gular family (2D triangular, 3D face-centered cubic).

Table I also gives formulas for the numbers of open
walks beginning at the origin and ending at position r =
(x, y, z) on the lattice. We outline the derivations below.

BCC family: Consider a walk on a bcc lattice. Let
nx, mx, ny, my, nz, and mz be the numbers of steps
in the ±x, ±y, and ±z directions. Let n be the total
number of steps. During each step, the walker moves
simultaneously in the±x, ±y, and±z directions by either
+1 or −1 units. Thus n = nx+mx = ny+my = nz+mz.
Let the net displacements in each direction be x = nx −
mx, y = ny −my, and z = nz −mz. Then nx = n+x

2 ,

ny = n+y
2 , and nz = n+z

2 . Thus the number of walks of
length n with total displacement (x, y, z) is

W bcc
xyzn =

(
n
n+x

2

)(
n
n+y

2

)(
n
n+z

2

)
. (4)

This derivation can easily be generalized to a d-
dimensional bcc lattice.

Cubic family: Consider a walk on a cubic lattice.
Suppose the numbers of steps in the ±x, ±y, and ±z
directions are given by the six integers nx, mx, ny, my,
nz, and mz. The number of such walks is given by the
multinomial coefficient

n!

nx! mx! ny! my! nz! mz!
. (5)

The total number of steps is n = nx + mx + ny + my +
nz +mz and the net displacements in each direction are
x = nx−mx, y = ny−my, and z = nz−mz. Let j = mx,

k = my, and l = mz. Then nx = j + x, ny = k + y, and
nz = l + z. Furthermore, n = 2(j + k + l) + x + y + z.
Thus the total number of walks of length n with total
displacement (x, y, z) is

W cubic
xyzn =

s∑
j=0

s−j∑
k=0

n!

j! (j + x)! k! (k + y)! l! (l + z)!
(6)

where s ≡ n−x−y−z
2 and l ≡ s− j − k. This derivation is

easily generalized to a d-dimensional hypercubic lattice.

Honeycomb family: The honeycomb lattice can be
viewed as the projection of a puckered subset of a cubic
lattice, as shown in Fig. 2. Consider a walk starting
at the origin. Suppose the numbers of steps in the ±x,
±y, and ±z directions are given by the six integers nx,
mx, ny, my, nz, and mz. The total number of steps is
n = nx+mx+ny+my+nz+mz and the net displacements
in each direction are x = nx − mx, y = ny − my, and
z = nz −mz. Let j = mx, k = my, and l = mz. Then
nx = j + x, ny = k + y, and nz = l + z.

On the odd-numbered steps of the walk, the walker can
only travel in the +x, +y, or +z directions. Likewise, on
even-numbered steps, the walker can only travel in the
−x, −y, or −z directions.

If n is even, then there must be exactly n/2 steps along
“positive” directions, and n/2 steps along “negative” di-
rections. So n/2 = nx + ny + nz = mx +my +mz. Thus
the number of walks of length n is the number of permu-
tations of step displacement vectors along odd-numbered
steps, times the number of ways of permutations for even-
numbered steps:

W hon
xyzn =

n/2∑
j=0

n/2−j∑
k=0

(n/2)!

j! k! l!

(n/2)!

(j + x)! (k + y)! (l + z)!
(7)

where l ≡ n/2−j−k, and it is assumed that x+y+z = 0.

If n is odd, then there are (n+ 1)/2 positive steps and
(n− 1)/2 negative steps, so

W hon
xyzn =

n−1
2∑
j=0

n−1
2 −j∑
k=0

(n+1
2 )!

j! k! l!

(n−1
2 )!

(j + x)! (k + y)! (l + z)!

(8)

where l ≡ (n− 1)/2− j − k.

Walks on a diamond lattice can be counted in a similar
fashion.

Triangular family: If one starts at the origin of
the honeycomb lattice and performs two successive hops,
there are three paths that return to the origin, and one
path to each of the 6 A sites surrounding the origin.
Thus 6Ĥtri = (3Ĥhon)2 − 3(1̂). Therefore the number
of paths on a triangular lattice of length n with displace-
ment (x, y, z) (where x + y + z = 0), using the same
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FIG. 2: (Color online) Visualizing the honeycomb lattice as
the projection of two (111) planes of a cubic lattice. The A
sublattice (blue spheres) has coordinates (x, y, z) satisfying
x+ y+ z = 0. The B sublattice (red spheres) has coordinates
such that x+ y + z = 1.

coordinate scheme, is

W tri
xyzn = 〈r| (6Ĥtri)n |0〉

= 〈r|
n∑
j=0

(
n

j

)
(3Ĥhon)2j(−3)n−j |0〉

=

n∑
j=0

(
n

j

)
(−3)n−jW hon

x,y,z,2j . (9)

For closed walks (x = y = z = 0) this reduces to the
formula for W tri

n shown in Table I, derived in Ref. 4 using
a different approach.

Similarly, using 12Ĥ fcc = (4Ĥdiam)2−4(1̂), one obtains

W fcc
uvwsn =

n∑
j=0

(
n

j

)
(−4)n−jW diam

u,v,w,s,2j (10)

in terms of the (u, v, w, s) coordinates for diamond and
fcc lattices embedded in a 4D grid. The “physical” 3D
Cartesian coordinates (x, y, z) are given by the projection

x = u+ v − w − s, (11)

y = u− v + w − s, (12)

z = u− v − w + s. (13)

In the above discussion we have derived the Wn using
combinatorics. There are other methods to obtain Wn,
such as contour integration techniques.14

II. BASIC APPROACH FOR CALCULATING
GREEN FUNCTIONS

Power moments: Starting from the definition of
G(ω), Eq. (2), and expanding in powers of Ĥ shows that
the Green function can be written in an inverse power

series

G(ω) =

∞∑
n=0

〈i| Ĥn |j〉
ωn+1

. (14)

From Eq. (1) it is easy to see that 〈i| Ĥn |j〉 = tnWn =
z−nWn, where Wn is the number of walks of length n
that begin at site i and end at site j. As discussed earlier,
Eq. (14) converges only for |ω| > 1.

Chebyshev polynomials: The Chebyshev polyno-
mials of the first and second kinds are defined as

Tn(cos θ) = cosnθ, (15)

Un−1(cos θ) = sin(nθ)/ sin θ. (16)

They satisfy orthogonality and completeness relations∫ 1

−1

dx φn(x)φn′(x) = δnn′ , (17)

∞∑
n=0

φn(x)φn(x′) = δ(x− x′), (18)

where φn(x) =
√

2−δn
π
√

1−x2
Tn(x). Here δnn′ is the Kro-

necker delta function and δn ≡ δn,0. The Chebyshev
polynomials can be written in terms of monomials as

Tn(x) =

n∑
k=0

ankx
k, (19)

a00 = 1,

ank = (−1)(n−k)/2n
(n+ k − 2)!!

k!(n− k)!!
(20)

where n = 0, 1, 2, . . . ,∞; k = 0, 1, 2, . . . , n; and n − k is
even. The first few coefficients ank are shown in Table V.
In Mathematica we have found it fastest to to evaluate
ank using the recursion ank = 2an−1,k−1 − an−2,k for
n ≥ 2.

The functions Tn(x)/
√

1− x2 and πUn−1(x) are
Hilbert transforms of each other; that is, they obey
Kramers-Kronig relations:∫ 1

−1

dν
Tn(ν)

(ν − ω)
√

1− ν2
= πUn−1(ω). (21)

Chebyshev moments: Define the Chebyshev mo-
ment gn to be the matrix element of the Chebyshev poly-
nomial of the Hamiltonian operator,

gn = 〈i|Tn(Ĥ) |j〉 . (22)

Using Eq. (19) we obtain

gn =

n∑
k=0

ankz
−kWk (23)
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where the coefficients ank are given by Eq. (20). Tables II
and IV give formulas and values for Chebyshev moments
on various lattices.

Spectral function: Define the spectral function g(ω)
as the matrix elements of a Dirac delta function,

g(ω) = 〈i| δ(ω − Ĥ) |j〉 . (24)

This is a generalization of the local density of states. Ex-
panding the Dirac delta function using the Chebyshev
polynomial completeness relation, Eq. (18), we see that
the spectral function is the sum of an infinite series of
Chebyshev polynomials weighted by the Chebyshev mo-
ments,

g(ω) =
1

π
√

1− ω2

∞∑
n=0

(2− δn)Tn(ω)gn. (25)

Green function: The spectral function and the
Green function are related by g(ω) = − 1

π ImG(ω + i0+)

and G(ω) =
∫ 1

−1
dν 1

ω−ν+i0+ g(ν). Thus

G(ω) =

∫ 1

−1

dν
[

1
ω−ν − iπδ(ω − ν)

]
g(ν). (26)

From Eq. (25) and Eq. (21) we then obtain

G(ω) = −
∞∑
n=0

(2− δn)gn

[
Un−1(ω) +

iTn(ω)√
1− ω2

]
. (27)

Basic algorithm: Our approach for numerical com-
putation of Green function may now be outlined as fol-
lows:

1. Calculate {Wn} using combinatorial formulas.

2. Calculate {gn} using Eq. (23).

3. Calculate G(ω) using Eq. (27).

Illustration: Figure 3 shows the bcc lattice Green
function Gij(ω) ≡ Gxyz(ω) for various displacements
j− i = (x, y, z), computed using this approach.
Practical considerations: The sum in Eq. (23)

involves large cancellations between terms, so it must be
calculated using exact arithmetic. Rewriting the sum as

zngn =

n∑
k=0

ankz
n−kWk (28)

allows us to perform the computation exactly using inte-
ger arithmetic.

Computing gn for n = 0, 1, 2, 3, . . . , N directly from
values of Wk would require at least O(N2) time. By
using expressions for Wk we can derive expressions for
gn that may be quicker to evaluate. See Table II.

The sum has an infinite number of terms. If we trun-
cate the series after N terms, we necessarily introduce
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FIG. 3: Real and imaginary parts of the bcc lattice Green
function Gxyz(ω) for various displacements (x, y, z), com-
puted using the methods of Sec. II. For |ω| > 1 the Green
function is computed using the inverse power series, Eq. (14),
truncated at n = 200. For |ω| < 1 we use the Chebyshev
series truncated at n = 200, which is equivalent to a Fourier
series using a rectangular window function. Gibbs oscillations
are visible near ω = 0 and ω = ±1. Truncation error produces
visible discrepancies between the power series and Chebyshev
approximations at ω = ±1.

some error. The Chebyshev series on ω ∈ [−1, 1] is equiv-
alent to a Fourier series on cosω ∈ [0, π], and so trunca-
tion error takes the form of Gibbs oscillations. These can
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be mitigated by multiplying gn by an appropriate win-
dow function such as a Kaiser-Bessel window28,29 before
inserting it into Eq. (27):

G(ω) = −
L∑
n=0

(2− δn)fwin
n gn

[
Un−1(ω) +

iTn(ω)√
1− ω2

]
,

fwin
n =

I0

(
β
√

1− ( n
L−1 )2

)
I0(β)

(29)

where β is a tuning parameter. Nevertheless, accuracy is
still limited.

III. VAN HOVE SINGULARITIES

As illustrated in Fig. 3, lattice Green functions contain
van Hove singularities, which are difficult to expand in
terms of Chebyshev polynomials. They cause the Cheby-
shev coefficients gn to decay slowly as some inverse power
of n. We can accelerate the convergence of the series by
identifying the functional forms of the singularities and
subtracting the corresponding tails from the sequence of
Chebyshev coefficients.

First let us review the theory of van Hove singularities.
The density of states on a lattice is

g(ω) =

∫
BZ

ddk

(2π)d
δ
(
ω − ε(k)

)
(30)

where ε(k) is the dispersion relation and δ is the d-
dimensional Dirac delta function. Roughly speaking, this
may be written as

g(ω) =

∫
dd−1k⊥
(2π)d

1

|∇ε(k)|
. (31)

When the wavevector k approaches a critical point k0

where ∇ε = 0, the integrand diverges, producing a van
Hove singularity in g(ω) at ω = ε0 = ε(k0). The disper-
sion relation may be expanded as a power series about
the critical point. Typically

g(ω) =

∫
ddq

(2π)d
δ
(
ω − ε0 −

λ1q1
2 + . . .+ λdqd

2

2

)
(32)

where (λ1, . . . , λd) are the eigenvalues of the Hessian
matrix ∇∇ε and (q1, . . . , qd) are coordinates along or-
thogonal eigenvectors of the Hessian. Suppose there
are m positive and n negative eigenvalues. The num-
bers m and n determine the shape of the constant-
energy surfaces of the dispersion relation; for example,
for d = 3, these surfaces may be ellipsoids, one-sheeted
hyperboloids, or two-sheeted hyperboloids. Rescaling co-
ordinates to (p1, . . . , pn, P1, . . . , Pm) and ξ = ω− ε0, and

using |λ1 . . . λd| = |det∇∇ε(k0)|, one obtains

g(ω) =
2−d/2π−d

|det∇∇ε|1/2
Imn, (33)

Imn =

∫ L

−L
dp1 . . . dpn

∫ ∞
−∞
dP1 . . . dPm δ(ξ + |p|2 − |P|2).

(34)

To obtain meaningful results as ξ → 0, the integratiosn
over P1, . . . , Pn should be extended to infinity, but the
integrals over p1, . . . , pm must be cut off at a wavenumber
L on the scale of the Brillouin zone.

For ξ > 0 the leading singular terms in Imn, excluding
constant backgrounds, are

I00 = 0 I01 = 0 I02 = 0 I03 = 0

I10 = 1
2
√
ξ

I11 ≈ ln 4L2

ξ I12 ≈ −2π
√
ξ

I20 = π I21 = 0

I30 = 2π
√
ξ.

For ξ < 0 we may use Imn(ξ) = Inm(−ξ).
Equation (32) assumed that the Hessian, ∇∇ε, is finite

at k0. For tight-binding models that exhibit flat bands
where the Hessian is zero, Dirac cones where the Hessian
is infinite, Weyl cones, or other unusual features in the
band structure, the critical points should be treated on
a case-by-case basis.

If there are two or more critical points k1,k2, . . . con-
tributing to a van Hove singularity at the same energy
ε0, the singular forms simply combine additively:

gsing(ω) =
∑
α

gsing
α (ω). (35)

Singularity subtraction for the DoS: We may
exploit knowledge of the van Hove singularities as follows:

1. Choose an approximate DoS, f(ω), whose singular-
ities mimic the van Hove singularities in the density
of states, g(ω).

2. Calculate its Chebyshev coefficients fn analytically.

3. Subtract the approximation in the Chebyshev do-
main to obtain the residual Chebyshev coefficients,
hn = gn − fn.

4. Construct the residual function h(ω) from the co-
efficients hn, for certain values of ω.

5. Construct g(ω) = f(ω) + h(ω) for these ω values.

Since g(ω) and f(ω) have similar singularities, gn and
fn will have the same tails at large n, and hn will decay
faster. Thus the Chebyshev series for h(ω) will converge
faster.
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Illustration for square lattice DoS: The square
lattice DoS has band-edge step discontinuities and a mid-
band logarithmic divergence,

g(ω) ≈

{
2
π2 ln 1

|ω| + const ω ≈ 0
1
π ω . 1.

(36)

Construct an approximation using the functions listed in
Table VI, and write down its Chebyshev coefficients:

f(ω) =
2

π
·

ln 1
|ω|

π
√

1− ω2
+

1

π
· 1, (37)

fn =
2

π
·

({
ln 2 n = 0
(−1)n/2

n n = 2, 4, 6, . . .

)

+
1

π
·

({
2

1−n2 n = 0, 2, 4, . . .

0

)
. (38)

The exact Chebyshev coefficients, from Table II, are

gn =

{
1 n = 0

2n−1
(
n
n/2

)2
3F2

(
n
2 ,

n
2 ,

n
2 ; 1− n, 1

2 −
n
2 ; 1
)

n = 2, 4, . . .
.

(39)

Let hn = gn − fn and calculate

h(ω) =
1

π
√

1− ω2

∞∑
n=0

(2− δn)Tn(ω)hn. (40)

The functions fn, hn, gn, f(ω), h(ω), and g(ω) are shown
in Figs. 4. By dealing with the leading-order van Hove
singularities analytically, we have decreased the trunca-
tion error of the 1000-term series from 10−3 to 10−9.

Illustration for bcc lattice DoS: The van Hove
singularities for the bcc lattice density of states are diffi-
cult to derive, because the Hessian is zero at the critical
points and one has to expand the dispersion relation to
third order, and because it is not clear how to cut off the
logarithmic divergence correctly. Here we “cheat” by us-
ing the leading terms in the series expansion of the closed
form involving elliptic integrals:4,7

g(ω) ≈

{
2
π3 ln2 |ω|

8 −
1

2π ω ≈ 0
√

8
π2

√
1− |ω| ω . 1.

(41)

We now construct an approximation using the functions
listed in Table VI, and write down its Chebyshev coeffi-

cients:

f(ω) =
2

π2
·

ln2 1
|ω|

π
√

1− ω2
+

4 ln 8

π2
·

ln 1
|ω|

π
√

1− ω2
, (42)

fn =
2

π2

[{
π2

12 + ln2 2 n = 0

(−1)n/2
(

2
n2 +

2Hn/2−1+2 ln 2

n

)
n = 2, 4, . . .

]

+
4 ln 8

π2

[{
ln 2 n = 0
(−1)n/2

n n = 2, 4, 6, . . .

]
, (43)

where Hn =
∑n
k=1 1/k are the harmonic numbers. Since

Hn ∼ lnn for large n, we see that fn ∼ (lnn)/n. The
exact Chebyshev coefficients, from Table II, are

gn =


1 n = 0

2n−1
(
n
n/2

)3
4F3

(
n
2 ,

n
2 ,

n
2 ,

n
2 ;

1− n, 1−n
2 , 1−n

2 ; 1
)

n = 2, 4, . . . .

As before, we compute hn = gn − fn and h(ω). The re-
sults are shown in Figs. 4. Again, the singularity subtrac-
tion has decreased the truncation error of the 1000-term
series from 10−3 to 10−9.

The results agree with closed forms for gsq(ω) and
gbcc(ω) in terms of complete elliptic integrals.4

Singularity subtraction for nonlocal spectral
functions: We now consider the spectral function,
Eq. (24), for injecting a particle at the origin and re-
moving it at position r. We have

gr(ω) = − ImGr(ω)
π =

∫
BZ

ddk

(2π)d
eik·r δ

(
ω − ε(k)

)
. (44)

Van Hove singularities in gr(ω) arise from regions
k ≈ kα where |∇ε| ≈ 0. We can generalize Eq. (35)
such that the contribution from each critical point kα is
weighted by a different phase factor:

gsing
r (ω) =

∑
α

eikα·rgsing
α (ω). (45)

Square lattice spectrum: For the square lattice,
the dispersion relation ε(k) has two saddle points at (π, 0)
and (0, π). Thus the logarithmic singularity at ω = 0 is
modified to

gsing
xy (ω) = (eiπx + eiπy)

1

π2
ln

1

|ω|
. (46)

We have verified that subtracting this singularity reduces
the truncation error in gxy(ω) to about 10−9, similar to
the case of g00(ω).

BCC lattice spectrum: For the bcc lattice, ε(k)
has eight third-order saddle points at (±π2 ,±

π
2 ,±

π
2 ).

The nature of the dominant (ln2 |ω|) singularities at
ω = 0 in Fig. 3 can be explained in terms of Eq. (45).
Unfortunately, we are unable to predict the coefficient of
the subdominant (ln |ω|) singularity, because it depends
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FIG. 4: (Left) Chebyshev coefficients of the true square lattice density of states (gn), of the approximate DoS (fn), and of
the residual (hn), on a log-log plot. gn and fn both decay as 1/n because g(ω) and f(ω) have singularities of the form ln |ω|.
In contrast, hn decays as 1/n3. The truncation error of the series can be estimated as |h1000| < 10−9. (Right) f(ω) is an
approximation to the DoS that correctly captures the van Hove singularities at ω = 0 and ω = ±1. h(ω) is the “correction”
computed from the residual coefficients hn; it has much weaker singularities. g(ω) = f(ω) + h(ω) is the corrected DoS.
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FIG. 5: (Left) Chebyshev coefficients and (right) functions for the bcc lattice density of states. gn and fn both decay as
(lnn)/n because g(ω) and f(ω) have singularities of the form ln2 |ω|. The residual coefficients hn appear to decay as (lnn)/n3.

delicately on the cutoff of a logarithmic integral. Thus
we proceed as follows. For simplicity we focus on the
case where x, y, and z are multiples of 4. We know the
dominant singularity to be

fA(ω) = 2
π2

ln2 1
|ω|

π
√

1− ω2
, (47)

fAn = 2
π2

{
π2

12 + ln2 2 n = 0

(−1)n/2
(

2
n2 +

2Hn/2−1+2 ln 2

n

)
n = 2, 4, . . . .

(48)

Calculate the dominant residual coefficients gAn = gn −

fAn . Assume the subdominant singularity is of the form

fB(ω) = c
ln 1
|ω|

π
√

1− ω2
, (49)

fBn = c

{
ln 2 n = 0
(−1)n/2

n n = 2, 4, 6, . . . .
(50)

Determine the coefficient c by performing a least-squares
fit, over a suitable range, such that fBn ≈ gAn . Calculate
the secondary residual coefficients gBn = gAn − fBn . Per-
form a Chebyshev transform to obtain gB(ω). Finally,
reconstruct the spectral function as

g(ω) ≈ fA(ω) + fB(ω) + gB(ω). (51)

We have verified, in a few cases, that this singularity sub-
traction approach reduces the truncation error in g(ω) to
about 10−9. Figure 6 shows the case of gbcc

400(ω). (Accord-
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ing to Ref. 14, gbcc
xyz(ω) is expressible in terms of hyper-

geometric functions.)
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FIG. 6: Chebyshev coefficients in the calculation of the
nonlocal spectral function gbcc400(ω). The raw Chebyshev co-
efficients gn and the dominant singular form fAn decay as
(lnn)/n. After subtracting the dominant singularity we are
left with gAn , which we fit with fBn , which decays as 1/n. The
final residual, gBn , appears to decay as (lnn)/n3. Thus with
1000 terms the truncation error of the Chebyshev series is
about 10−9.

Real part of Green function: In this section we
have dealt with the DoS g(ω), which is proportional to
ImG(ω). To obtain the complex function G(ω) we may
write G(ω) = F (ω) +H(ω) where

H(ω) = −
∞∑
n=0

(2− δn)hn

[
Un−1(ω) +

iTn(ω)√
1− ω2

]
, (52)

F (ω) =

∫ 1

−1

dν 1
ω−ν+i0+ f(ν). (53)

Unfortunately, for many of the singular forms for f(ω)
tabulated in Table VI, F (ω) cannot be calculated in
closed form. Thus Eq. (53) may need to be evaluated
numerically.

IV. DISCUSSION

In this paper we calculate the Chebyshev moments
combinatorially. Another way to obtain the moments
is to calculate |ψn〉 ≡ Tn(Ĥ) |j〉 in the site basis by re-
peated application of the Chebyshev recursion formula
|ψn+1〉 = 2Ĥ |ψn〉−|ψn−1〉. The Chebyshev moments are
obtained by taking the inner product with 〈i|. This is re-
ferred to as the “spectral method,” “equation-of-motion
method,” or “kernel polynomial method” for calculating
the density of states.28–32. With this approach, com-
puting the Lth Chebyshev moment requires storing val-

ues of three wavefunctions on O(Ld) sites, which may be
memory-intensive. The “recursion method”22 is similar.
The continued fraction method22 may be more efficient
but still requires O(Ld−1) storage.

In place of Chebyshev polynomials, one can use Leg-
endre polynomials or any other family of orthogonal
polynomials. Chebyshev polynomials have the advan-
tage that Eq. (25) can be implemented using fast Fourier
transform methods.

We have attempted to accelerate the convergence of the
Chebyshev series using techniques such as Borel summa-
tion or Wynn’s epsilon rule. For a fixed value of ω, we
computed the partial sums of the Chebyshev series and
applied convergence acceleration transformations. We
only achieved limited success. In our opinion, it is more
effective to fit the Chebyshev coefficients as in Eq. (50),
which allows us to “accelerate” the convergence of the
series “globally” for all values of ω simultaneously.

We have considered other methods of analytically con-
tinuing the inverse power series into the unit disk (Fig. 1).
For example, one can use the inverse power series to
calculate the derivatives of the Green function, G(k)(Ω)

(k = 0, 1, 2, . . . , L), at a “pivot” point Ω = ω+ i
√

1− ω2

in the complex plane. One can then calculate the Green
function using the power series about the pivot point,

G(ω) ≈
∑L
k=0

G(k)(Ω)
k! (ω − Ω)k. We have found that

G(k)(Ω) must be evaluated extremely accurately, up to
very large values of k, in order to obtain G(ω) with mod-
est accuracy. The “Chebyshev analytic continuation”
method in this paper is preferable, as it naturally lends
itself to exact integer arithmetic.

In many cases G(ω) is related to Gauss, Appell, or
Lauricella hypergeometric functions.4,14 In those cases
our method may be viewed as a method (albeit an in-
direct one) for analytic continuation of hypergeometric
functions.

V. CONCLUSIONS

We have developed and demonstrated a general and
efficient method for calculating lattice Green functions.
The method relies on combinatorial formulas for the
numbers of walks on the lattice, which are available for
bcc-like, cubic-like, and honeycomb-like lattices. The
method can be used to calculate imaginary parts (spec-
tra) as well as real parts of the Green functions. The basic
algorithm (Sec. II) gives Green functions to about 3 dec-
imal places by summing Chebyshev series to 1000 terms.
Singularity subtraction (Sec. III) increases the accuracy
to about 6–9 decimals with little extra computational ef-
fort. Arbitrary-precision integer arithmetic is required.
Fast cosine transforms and least-squares fitting routines
may be useful when implementing the algorithms.
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W chain
2N =

(
2N

N

)
W sq

2N =

(
2N

N

)2

W bcc
2N =

(
2N

N

)3

W hon
2N =

∑
j+k+l=N

(
N !

j! k! l!

)2

=

N∑
j=0

(
N

j

)2(
2j

j

)
= 3F2

(
1
2 ,−N,−N ; 1, 1; 4

)
W diam

2N =
∑

j+k+l+m=N

(
N !

j! k! l! m!

)2

=

N∑
j=0

(
N

j

)2(
2j

j

)(
2N − 2j

N − j

)
=

(
2N

N

)
4F3

(
1
2 ,−N,−N,−N ; 1, 1, 1

2 −N ; 1
)

W cubic
2N =

∑
j+k+l=N

(2N)!

(j! k! l!)2
=

(
2N

N

)
W hon

2N

W hcub
2N =

∑
j+k+l+m=N

(2N)!

(j! k! l! m!)2
=

(
2N

N

)
W diam

2N

W tri
n =

n∑
j=0

(
n

j

)
(−3)n−jW hon

2j

W fcc
n =

n∑
j=0

(
n

j

)
(−4)n−jW diam

2j

W chain
xn =

(
n
n+x

2

)
if x+ n even, 0 otherwise

W sq
xyzn =

(
n
n+x

2

)(
n
n+y

2

)
if x+ y + n even, 0 otherwise

W bcc
xyzn =

(
n
n+x

2

)(
n
n+y

2

)(
n
n+z

2

)
if x+ y + z + n even, 0 otherwise

W cubic
xyzn =

2(j+k+l)=n−x−y−z∑
jkl

n!

j! (j + x)! k! (k + y)! l! (l + z)!
if x+ y + z + n even, 0 otherwise

W hon
xyzn =

2(j+k+l)=bn/2c∑
jkl

bn/2c!
j! k! l!

dn/2e!
(j + x)! (k + y)! (l + z)!

if x+ y + z = mod(n, 2); 0 otherwise

W diam
uvwsn =

2(j+k+l+m)=bn/2c∑
jklm

bn/2c!
j! k! l! m!

dn/2e!
(j + u)! (k + v)! (l + w)! (m+ s)!

if u+ v + w + s = mod(n, 2); 0 otherwise

W tri
xyzn =

n∑
j=0

(
n

j

)
(−3)n−jW hon

xyz,2j

W fcc
uvwsn =

n∑
j=0

(
n

j

)
(−4)n−jW diam

uvws,2j

TABLE I: Combinatorial formulas for the numbers of walks on various lattices (1D chain, 2D square, 3D body-centered cubic,
2D honeycomb, 3D diamond, 3D cubic, 4D hypercubic, 2D triangular, 3D face-centered cubic). Wn ≡W000n is the number of
closed walks of length n (starting and ending at the origin). Wxyzn is the number of walks of length n starting at the origin and
ending at another point (x, y, z). We use the convention that all lattice sites have integer coordinates. The honeycomb lattice
is treated as a projection of two planes of the cubic lattice (see Fig. 2). Similarly, the diamond lattice is viewed as a projection
of a subset of a hypercubic lattice. All lattices in the table are bipartite except for the triangular and fcc lattices. On bipartite
lattices, all closed walks have an even number of steps. Many of the above formulas are from Ref. 4; we have arranged them
to illuminate similarities and differences between families of lattices.
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gchain
n = δn

gsq
2N = 4−2N (1 + δN )22N−1

(
2N

N

)2

3F2(−N,−N,−N ; 1− 2N, 1
2 −N ; 1)

gbcc
2N = 8−2N (1 + δN )22N−1

(
2N

N

)3

4F3(−N,−N,−N,−N ; 1− 2N, 1
2 −N,

1
2 −N ; 1)

TABLE II: Formulas for Chebyshev moments gn =
∑n
k=0 ankz

−kWk on certain lattices, derived and verified with the aid of
Mathematica. (The above Chebyshev moments are zero for odd n.)

n W chain
n W sq

n W bcc
n W hon

n W diam
n W cubic

n W hcub
n W tri

n W fcc
n

0 1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0 0

2 2 4 8 3 4 6 8 6 12

3 0 0 0 0 0 0 0 12 48

4 6 36 216 15 28 90 168 90 540

5 0 0 0 0 0 0 0 360 4320

6 20 400 8000 93 256 1860 5120 2040 42240

7 0 0 0 0 0 0 0 10080 403200

8 70 4900 343000 639 2716 44730 190120 54810 4038300

9 0 0 0 0 0 0 0 290640 40958400

10 252 63504 16003008 4653 31504 1172556 7939008 1588356 423550512

OEIS# A000984 A002894 A002897 A002893 A002895 A002896 A039699 A002898 A002899

TABLE III: Numbers of walks of length n that return to the origin on various lattices. These correspond to existing entries
in the Online Encyclopedia of Integer Sequences (OEIS).

z 2 4 8 3 4 6 8 6 12

n zngchain
n zngsq

n zngbcc
n znghon

n zngdiam
n zngcubic

n znghcub
n zngtri

n zngfcc
n

0 1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0 0

2 0 −8 −48 −3 −8 −24 −48 −24 −120

3 0 0 0 0 0 0 0 48 192

4 0 32 1728 −15 −32 288 1344 288 11232

5 0 0 0 0 0 0 0 −2880 −69120

6 0 −512 −79872 141 1024 −2688 −24576 3072 −887808

7 0 0 0 0 0 0 0 64512 11870208

8 0 4608 4058112 −1503 −12800 −32256 218112 −400896 34721280

9 0 0 0 0 0 0 0 −245760 −1458585600

10 0 −73728 −216956928 9117 90112 2820096 −688128 12496896 4612792320

TABLE IV: Values of local Chebyshev moments gn = 〈0|Tn(Ĥ) |0〉 =
∑n
k=0 ankz

−kWk on various lattices. We quote the
integer-valued quantities zngn, where z is the coordination number of each lattice. The last eight series have been submitted
to the Online Encyclopedia of Integer Sequences as OEIS A288454, A288455, A288456, A288457, A288458, A288459, A288460,
and A288461.



12

ank k

0 1 2 3 4 5 6

0 1

1 1

2 −1 2

n 3 −3 4

4 1 −8 8

5 5 −20 16

6 −1 18 −48 32

TABLE V: Coefficients of powers in Chebyshev polynomials, ank, such that Tn(x) =
∑n
k=0 ankx

k. Blank elements are zero.

f(ω) fn

1

π
√

1− ω2
δn

1

π

√
1− ω2 1

2δn −
1
4δn−2

1
2

1− n2
(n = 0, 2, 4, . . . )

1− x2 12

(1− n2)(9− n2)
(n = 0, 2, 4, . . . )

1

π
√

1− ω2
ln

1

|ω|

ln 2 n = 0

(−1)n/2

n
n = 2, 4, 6, . . .

1

π
√

1− ω2
ln2 1

|ω|


π2

12
+ ln2 2 n = 0

(−1)n/2
(

2

n2
+

2Hn/2−1 + 2 ln 2

n

)
n = 2, 4, . . .

TABLE VI: Chebyshev transform pairs, i.e., functions f(ω) for ω ∈ [−1, 1] and Chebyshev coefficients fn for n = 0, 1, 2, . . . such

that f(ω) = 1

π
√

1−ω2

∑∞
n=0(2−δn)Tn(ω)fn and fn =

∫ 1

−1
dω Tn(ω)f(ω). The harmonic numbers are defined as Hn =

∑n
k=1 1/k.

Generally, stronger divergences in f(ω) correspond to more slowly decaying tails in fn.
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