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NEW ESTIMATES FOR THE n-TH PRIME NUMBER

CHRISTIAN AXLER

ABSTRACT. In this paper we establish a new explicit upper and lower bound for the n-th prime number,
which improve the currently best estimates given by Dusart in 2010. As the main tool we use some
recently obtained explicit estimates for the prime counting function. A further main tool is the usage
of estimates concerning the reciprocal of logpn. As an application we derive refined estimates for ¥ (pn)
in terms of n, where ¥(z) is Chebyshev’s ¥-function.

1. INTRODUCTION

Let p,, denotes the n-th prime number and let 7(x) be the number of primes not exceeding x. In 1896,
Hadamard [7] and de la Vallée-Poussin [I5] proved, independently, the asymptotic formula m(x) ~ 2/ log x
for £ — oo, which is known as the Prime Number Theorem. Here, logx is the natural logarithm of x.
As a consequence of the Prime Number Theorem, one gets an asymptotic expression for the n-th prime
number, namely

(1.1) pn ~nlogn (n — 00).
In 1902, Cipolla [3] proved a more precise result. He showed that for every positive integer m there exist
unique monic polynomials 77, ..., T,, € Q[z] with rational coefficients and deg(Ty) = k, such that
" (—1)F+1Ty,(log log log n)™+1
(1.2) Pn="n 1ogn+10glogn71+z( ) k(kog ogn) +O(%).
et klog"n log n

The polynomials T} can be computed explicitly. In particular, Tj(z) = z — 2 and Th(x) = 22 — 6z + 11
(see Cipolla [3] or Salvy [I3] for further terms). Since the computation of the n-th prime number p,, is
difficult for large n, we are interested in upper and lower bounds for p,. Cipolla’s asymptotic formula
([I2) yields that the inequalities

(1.3) pn > nlogn,
(1.4) prn < n(logn + loglogn),
(1.5) prn > n(logn + loglogn — 1)

hold for all sufficiently large values of n, respectively. The first breakthrough concerning a lower bound
for the n-th prime number is due to Rosser [10, Theorem 1]. In 1939, he showed that the inequality (T3]
holds for every positive integer n. In the literature, this result is often called Rosser’s theorem. Further,
he proved [I0, Theorem 2] that the inequality

(1.6) prn < n(logn + 2loglogn)

holds for every positive integer n > 4. The next result concerning an upper bound which corresponds
to the first three terms of (I.2) is due to Rosser and Schoenfeld [11, Theorem 3]. In 1962, they refined
Rosser’s theorem and the inequality (6] by showing that

pn > n(logn + loglogn — 1.5)
holds for every positive integer n > 2, and that the inequality
(1.7) pn < n(logn 4 loglogn — 0.5)

holds for every positive integer n > 20, which implies that the inequality (L4) is fulfilled for every
positive integer n > 6. Based on their estimates for the Chebyshev functions ¢(x) and 9(x), Rosser
and Schoenfeld [12] announced to have new estimates for the n-th prime number p,, but they have never
published the details. In the direction of (LH]), Robin [9, Lemme 3, Théoréme 8] showed that

(1.8) pn > n(logn + loglogn — 1.0072629)
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for every positive integer n > 2, and that the inequality (I3 holds for every positive integer n such that
2 < n < 7w(10!). In 1996, Massias and Robin [8, Théoreme A] gave a series of improvements of (7))
and ([L8). For example, they have found that

pn > n(logn + loglogn — 1.002872)

for every positive integer n > 2. Under the assumption that the Riemann hypothesis is true, they [
Théoreme A(vi)] were able to show that the inequality (L) holds for every positive integer n > 2 and
that the inequality

log1 —1.8
(1.9) pngn(logn—i—loglogn—l—i—w)

logn

holds for every positive integer n > 27076. Two years later, Dusart [4, Théoréme 1.7] showed in his thesis
that the inequality (L8] holds for every positive integer n > 27076 even without the assumption that
the Riemann hypothesis is true. Further, he achieved a breakthrough concerning the inequality (L) by
showing that this inequality holds for every positive integer n > 2. He even found a refinement of (LX)
by showing that the lower bound

log 1 —2.25
Pn>n (1ogn—|—1oglogn— 1+ M)

logn
is valid for every positive integer n > 2. The current best estimates for the n-th prime are also given

by Dusart [B, Proposition 6.6 and Proposition 6.7] (see also Dusart [6, Proposition 5.15 and Proposition
5.16]). In 2010, he used new estimates for Chebyshev’s ¥-function to show that the inequality

loglogn — 2)

1.10 L <n(l loglogn — 1
(1.10) p_n(ogn+0gogn + Tog 1

holds for every positive integer n > 688 383, which corresponds to the four terms of (2)), and that

loglogn — 2.1)

(1.11) pn2n<logn+log10gn1+
logn

for every positive integer n > 3. The goal of this paper is to improve the inequalities (LI0) and (TI1)
in the direction of (L2). For this purpose, we first use some recently established estimates for the prime
counting function 7(z) to construct ng,bo(n), depending on some parameters, with by(n) — 10.7 for
n — 0o so that the following result holds.

Theorem 1.1 (See Theorem [.3]). For every positive integer n > ng, we have

loglogn —2  (loglogn)? — 6loglogn + bo(n))

n <n|logn+loglogn — 1+
p ( g g log logn 2log2n

By estimating bg(n), we obtain the following refinement of (LI0).

Corollary 1.2 (See Corollary d6l). For every positive integers n > 46 254 381, we have

loglogn —2  (loglogn)? — 6loglogn + 10.667)

n < n|logn+loglogn — 1+
p ( g g log logn 2log2n

Furthermore, we construct ny, b;(n), depending on some parameters, with b;(n) — 11.3 for n — oo so
that the following upper bound is valid.

Theorem 1.3 (See Theorem [B.4l). For every positive integer n > ny, we have

log1 -2  (logl 2 —6logl b
- <logn+loglogn1+ oglogn —2  (loglogn) % ogn + 1(n)) .
logn 2log”n

Finally, we use Theorem to find the following improvement of (IT]).

Corollary 1.4 (See Corollary B.H). For every positive integer n > 2, we have

loglogn —2  (loglogn)* — 6loglogn + 11.508>

n > n | logn +loglogn — 1+
p ( g g log log 72 2log2n
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2. THROUGHOUT NOTATIONS

Throughout this paper, n denotes a positive integer. In the majority of the proofs, we use, for a better
readability, the notation
w =loglogn, y=Ilogn, z=Ilogp,.
Before we give the proofs of Theorem [ and Theorem [[L3] we first establish some preliminary re-
sults concerning the reciprocal of logp,, in Section 3, in which we introduce the following polynomials

Py,..., P € Q[x]

= — 483 + 12022 — 12435 + 51,
= 92° — 80z? + 280z3 — 48030 + 4053@ — 124

—Sx — 6x + 5.2,

=23 — 622 + 11.42 — 4.2,
(z)f2x —7.22% + 8.4z — 4.41,
) = 2% — 4.22% + 4.41z,
Pyo(x) = 9.3:c2 — 1232+ 11.5.

Furthermore, we define the polynomials Q1,..., Qg € Q[z] b

o Qi(z) = 1227 — 13825 4 67625 — 18192 + 291423 — 27821’ + 1468z — 328,

o Q2(z) = 9025 — 70025 + 24052* — 450623 + 480122 — 27327 + 648,

o Qs(z) = 50a° — 27524 + 66223 — 83322 + 538z — 140,

o Qu(z) = 30z* — 11423 4 18122 — 1362 + 40,

o Qs(z) = 1823 — 4322 + 38z — 12,

o Q¢(z) = Ta? — 8z + 2,

o Q7(z) = @:—x+1ﬂ@()+@P—x+1ﬁym—3JM%@)—Pm@y+n8M%@L
o Qs(z) = 3.15Pyo(x) + 12.85P(x),

* Qo(z) =2(2* — 2z + 1) Py(x) — Ps(x) Pra().

In addition, let Ag be a real number such that 0.75 < Ay < 1 and let Fj : N>2 — R be defined by
Fo(n) =logn — Aglog py.

From (L)) follows that Fy(n) > 0 for all sufficiently large values of n, and we define

(2.1) No = N(4p) = min{k € IN | Fy(n) > 0 for every positive integer n > k}.

3. SOME ESTIMATES FOR THE QUANTITY 1/logp,

In 1902, Cipolla [3] p. 139] showed that an asypmtotic formula for 1/logp, is given by

1 1 loglo 1
(3.1) - - gQg"+o< s ).
logp, logn log“n log”n

3.1. New lower bounds. Concerning (31, we show the following lower bound for 1/log p,, where the
polynomials Py, ..., Py € Z[z] are defined as in Section 2.

Proposition 3.1. For every positive integer n > 688 383, we have

1 S 1 loglogn N (loglogn)? —loglogn + 1

logp, ~ logn  log’n log® nlog p,,
1 < Pi(loglogn)  P(loglogn) N Ps(loglogn)  Py(loglogn) )
log pn, 2log” n 6log*n 121og° n 20log®n )’

Proof. Let n be a positive integer satisfying n > 688383. As mentioned in Section 2, we write, for
convenience, w = loglogn, y = logn and z = log p,,. First, we note that log(1 + z) < Zzzl(—l)k“xk/lﬂ
for every # > —1. Together with (LI0) and the fact that (w —1)/y + (w — 2)/y? > —1 for every positive
integer n > 5, we get

7 1\k+1 w — w — k
*y2+(y*w)2§*w2+(y7w)z( 1; ( 1Jr 22>

1 Y Y
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Extending the right-hand side of the last inequality, we obtain that the inequality

_hw) | Pw)  Bs(w) | Paw)  Ps(w) | Pe(w)
2y 6y> 12¢3 20y* 30y° 4296

CPr(w)  (w=2)Qi(w)  (w—2)%Qa(w)  (w—2)°Qs(w)

28y7 1298 30y° 10y10

_(w-2)'Quw)  (w—2)°Qs(w)  (w—2)°Qs(w) w(w—2)
6y11

(3.2) P+ (y—w)z < —w+w—1

6y12 Tyl3 o Tyl

holds, where the polynomials Ps, Ps, Pr, Q1, Q2, Q3,Q4, @5, Qs € Q[z] are defined in Section 2. We have
Qi(x) > 0 for every positive integer ¢ such that 1 < ¢ < 6 and every x > 2. Together with (B2]) and
z(z —2)7 > 0 for every x > 2, we get

P(w) P(w) P(w) Pi(w) B(w) Ps(w) Pr(w)
Pt (y— —w?tw—1- 2 - - - .
vty -w)z<muwttw 20 T 62 1208 T 2007 30p5 | d245 2847
Finally, it suffices to apply the inequality Ps(w)/30 — Ps(w)/(42y) + Pr(w)/(28y?%) > 0. O

We obtain the following weaker lower bound for 1/logp,.

Corollary 3.2. For every positive integer n > 456 914, we have

1 N 1 loglogn n (loglogn)? —loglogn +1  Pi(loglogn) Py (loglogn)
logp, ~ logn  log*n log® nlog pn 2log® nlogp, 6log*nlogp,
Proof. Tt is easy to see that Ps(loglogn)/(12log®n) — Py(loglogn)/(20log* n) > 0 for every positive
integer n > exp(exp(2)). Now we use Proposition Bl to get that the required inequality holds for every
positive integer n > 688 383. For the remaining cases we use a computer. 0
Corollary 3.3. For every positive integer n > 71, we have
1 o 1 loglogn N (loglogn)? — loglogn + 1
logp, ~ logn  log®n log® n log py, '

Proof. Since the inequality
Pi(loglogn)  Py(loglogn) -

(3.3)

2logn 6log® n
holds for every positive integer n > 3, Corollary implies the validity of the required inequality for
every positive integer n > 456 914. we conclude by checking the remaining cases with a computer. O

3.2. New upper bounds. Next, we establish the following upper bound for 1/logp,,. Here, we use a
similar method as in the proof of Proposition [311

Proposition 3.4. For every positive integer n > 2, we have

1 < 1 loglogn N (loglogn)? —loglogn + 1 n Ps(loglogn) Py(loglogn)

logp, ~— logn log?n log® nlog p,, 2log’ nlogp, 2log*nlogp,
_ Pio(loglogn)  Pii(loglogn)

2log’ nlogp, 2log®nlogp,

Proof. First, we consider the case n > 33. For convenience, we write again w = loglogn, y = logn and
z = logp,. We note that the inequality log(1 + t) >t — t2/2 holds for every t > 0. Together with (L.IT)
and (w —1)/y + (w —2.1)/y? > 0, we obtain that

2 k+1 k
9 9 (-1) w—1 w-21

which implies that the required inequality holds. Finally we use a computer for the remaining cases. [
Proposition B4 implies the following upper bounds for 1/ logp,.

Corollary 3.5. For every positive integer n > 2, we have

1 < 1 loglogn N (loglogn)? —loglogn +1  Ps(loglogn)  Py(loglogn)  Pig(loglogn)

logp, ~ logn log®n log® nlog pn 2log® nlogp, 2log*nlogp, 2log’nlogp,

Proof. If n > 3, we have Pi1(w) = w(w — 2.1)?> > 0. So the claim follows from Proposition [3.4] for every
positive integer n > 3. A computer check completes the proof. O
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Corollary 3.6. For every positive integer n > 2, we have

1 < 1 loglogn N (loglogn)? — loglogn + 1 N Ps(loglogn) Py(loglogn)
logp, — logn log®n log? nlog pn, 2log® nlogp, 2log*nlogp,

Proof. Since Pig(x) > 0 if and only if 2 > 2.1, Corollary B.5limplies the validity of the required inequality
for every positive integer n > 3520. We check the remaining cases with a computer. (I

4. A NEW UPPER BOUND FOR THE n-TH PRIME NUMBER

Before we formulate the main result of this section concerning an upper bound for the n-th prime
number, which improves the upper bound (LI0), we introduce some preliminaries.

4.1. Preliminaries. Before we give the proof of Theorem[I.1] we first show two lemmata. We start with
the following implicit upper bound for the n-th prime number.
Lemma 4.1. For every positive integer n > 841424 868, we have
1 2.85 13.15 70.7 458.7275 3428.7225)
logpn  log’p, log’p, log'p,  log’pn log’p, /-
Proof. If n > 841424976, the inequality follows from [2, Theorem 3.8]. So it remains to check with a
computer that this inequality holds for every positive integer n with 841424868 < n < 841424975. O

Pn <N (logpn —1

Lemma 4.2. For every x > 2.11, we have

(22 — 3.85x + 14.15) Py (z) 5 2.85P(x)  Ps(x) S (22 — 3.852 + 14.15) Pa(z) = Pu(x)
2 6 12 = Gew 20e
Proof. We set g1(x) = 250x% — 210323 + 816922 — 119352 + 6351 and gz(z) = —1542° + 134521 — 572323 +
1295522 — 145452 + 4706. Further, we define f(x) = g1(2)(1 + z) + g2(z). It is easy to see that f(x) >0
for every > 1.8. Since g1(z) > 0 for every x > 2.11, we use the inequality e’ > 1 + ¢ to get that the
inequality g1(x)e® 4 go(x) > 0, which is equivalent to the desired inequality, holds for every = > 2.11. O

4.2. Notations. In the section, we use the following notation. Let A; be a real number such that
0 < Ay <458.7275 and let F; : IN>o — R be defined by

Ay N ((loglogn)? — 3.85loglogn + 14.15)((loglogn)? — loglogn + 1)

Fin) = log® p, log* nlogpy
N <13.15((10glogn)2 —loglogn+1) 70.7loglogn) ( 1 N 1 )
log® nlog? pn log? nlog®p, ) \logn = logpn
2.85P (loglogn) = 2.85P(loglogn)  Py(loglogn)
21og® nlog? p, 2 1og4 nlogpy, 6 log4 nlogpy,

Then Fj(n) > 0 for all sufficiently large values of n and we define
Ny = N(4;) =min{k € N | Fi(n) >0 for every positive integer n > k}.
In the following let a : IN>2 — R be an arithmetic function so that
(4.1) a(n) > —(loglogn)? + 6loglogn
and let No, N3, Ny > 2 be three constants depending on the arithmetic function a, so that

loglogn —1 loglogn —2  (loglogn)? — 6loglogn + a(n)

4.2 -1<
(4.2) logn log®n 21og® n

<1

for every positive integer n > Ny and

(4.3) logloan -2 (log logn)? — 61§glogn +a(n) >0
log™n 2log” n

for every positive integer n > N3 as well as

log1 -2 (logl 2 —6logl
(4.4) Pn <n (logn—I—loglogn— 1+ 08081 — (loglogn) o8 ogn+a(n))

logn 2log*n

for every positive integer n > Ny.
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4.3. A new upper bound for the n-th prime number. Now, we give the proof of Theorem [Tl For
this we set
223 — 212% + 82.22 — 98.9  z* — 1423 + 53.42% — 100.6z + 17
6€3x 4641
225 — 10z* + 3523 — 11022 + 1502 — 42 3z? — 4423 4 15622 — 96z + 64
+ —
10e5= 246

G(z) =

and for w = loglogn let

2A 24 -1 -2 2w?—12
(45)  bon) = 1074 A2 24s | aln) (1 _wol wo2 ) 2w ug+d(ﬂ))
log°n  log*n logn logn  log®n 4log® n

Ao((5.7A1 +8.7)w? — (3240 + 38)w + 147.14¢ + 10.7)
log2n
n 2-70.7A3(w? —w + 1) n 2-70.7A8(w? —w + 1)
log* n log* n
where Ay = (458.7275 — A1) A and A3 = 3428.7225 A§.

Theorem 4.3. For every positive integer n > max{ Ny, N1, Na, N3, Ny, 688 383}, we have

—2G(w)log®n +

)

log 1 -2 log 1 2 _6logl b
pn<n<1ogn+loglogn1+ 08081 - (loglog ) 02g ogn + O(H)).
logn 2log”n
Proof. For convenience, we write w = loglogn, y = logn and z = logp,,. We set

1w w-w+1 P(w) _ P(w)

(0] = — - —
1(n) Y2 ysJr v3z 29tz 6yo2
1w w o wr-w+1l w-w+1 Py(w) Py(w) 1 1
o(n)= 5 — = — o+ 3 + YO 3. Gut PR
Y Y Y2z Y3z Y=z 299z 6y*z Yy oz
B (n) 1 w w w27w+1+w27w+1
3(nN)=— ——5 — —5—
2o o3 g2z Y3z Y222

By Corollary B2l we get

(4.6) 1 - 1 w Jrw2—w+1 Pi(w) Py(w)

227y 2z Y222 2322 6ytz?’
Again by Corollary B.2] we obtain

1
(4.7) = ®y(n).
We apply this inequality to (£8) to obtain
(4.8) é > By(n)
and by using (33), we get
(49) 5 > Bs(n).

Since Fp(n) > 0 and 2.852% — 162 + 73.55 > 0 for every = > 0, we obtain

2.85w? — 16w + 73.55 _ Ao(5.7w? — 32w + 147.1)
- > .

(4.10)

z 2yz

We define f(x) = (5.740 + 8.7)a% — (3240 + 38)x + 147.14¢ + 10.7. Since 0.75 < Ay < 1, it follows
f(x) > 1297522 — 70z + 121.025 > 0 for every z > 0. Using Fp(n) > 0 and (@I0), we get

2.850” — 16w+ 73.55 | 87w’ 38w + 107 _ Aof(w)

(4.11) ~

z 2yz - 22

From the definition of As and A3 and from Fj(n) > 0 it follows that

Ay Az 458.7275— A;  3428.7225
(4.12) e s 5 +——
and
3 4
(4.13) 70.7A7 n 70.7A5 < 70.7  70.7

Y6 yS T oyBz3 oy
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Now we use (@I1)), ({I2) and (£I3) to obtain
107 —bo(n) | 285(u? —w 1) 1315w 707 87w’ — 38w+ 10.7  458.7275

4.14
(4.14) 2y2 Y222 Y222 Y222 232 25
Ay 3428.7225  70.7(w? —w+1) (1 1
-2y + ~ 4
25 26 y2z3 y oz
ZG(w)_a(n) 1_w—1_w—2+2w2712w+a(n) .
2y? y y? 4y

From B3) follows directly

13.15 (Pl(w) B Pz(w)> <l n l) >0.

z 2y3z 6ytz y oz
We add the last inequality and the inequality obtained in Lemma .2 with z = w to the left-hand side of
@I4) and get
535 bo(n) | 285(w’ —wt1) 1315w 707 | 87w’ 38w 107 4587275 34287225

Y2 22 222 Y222 222 232 25 26
A T07(? w1 (1 .\ 1) L1315 (Pl(w) - PQ(w)) (1 s 1) _ 2.85Py(w)
25 y2z3 y oz z 232 6ytz y oz 6y°z
2.85P(w)  (w? —3.85w + 14.15) Py (w)  (w? — 3.85w + 14.15) Py (w) = P3(w)  Py(w)
C 6yta? 2Pz B 6162 12y52  20y5z
> )_a(n) (1_w—1 _w—2+2w2—12w+a(n))_
2y° y y? 4y’

Next we add Fj(n) > 0 into the left-hand side, use the identity 8.7w? — 38w +10.7 = P (w) +2-2.85(w? —
w+ 1) —2-13.15w and collect all terms containing the number 70.7 and the term w? — 3.85w + 14.15,

respectively, to obtain the inequality

5.35 bo(n) 2.85(w?—-w+1) 1315w  70.7 458.7275  3428.7225  2.85(w? —w + 1)
— = - — - ®3(n) + + +
Y2 292 Y222 Y222 ) 25 6 Y3z
13.15w 1315\ (Pi(w) Pa(w 11 w? — 3.85w + 14.15
- +(2.85+ 1(w) _ 2(4 AN - B (n)
y3z 23z 6ytz y oz Y
P(w) Py(w) Py(w) Py(w) 1315w?—-w+1) /1 1 2.85w
232 6ytz 1252 2045z Y222 y oz y3
-1 -2 2w?—12
> H( )_a(n) LW w L2 w~+ a(n) 7
2y° y y? 4y’
where
x? —3.85x +14.15 23 —3.852%2 + 14.15z  2.85x
H(x) =G(z) + T — e st
Now we use ([£7) and (9] and collect all terms containing the numbers 2.85 and 13.15 to get
2.5  bo(n 13.15 70.7  458.7275  3428.7225 w? —w+1
— - O()Jr 285+ —— | - ®a(n) + — + + +
32 242 z z4 25 26 y*z

P1 (’LU) _ PQ(’LU) Pg(’w) _ P4(w)
232 6ytz 12452 2045z
a(n) w—1 w-2 2w?—12w+ a(n)
1— - + :
y y? 4y?

Applying (4£8) and Proposition Bl to get
25 bo(n) 2.85 13.15 70.7 458.7275 34287225 1 w
= - +—+ + -

32 292 22 23 24 25 26 y oy oz
a(n) (1 w—1 w2+2w212w+a(n)>
) .

2y3 y? 4g3

v}

> H(w) —
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A straightforward calculation shows that the last inequality is equivalent to
1 w?—4w—(4—bo(n)) 1 285 13.15 70.7 458.7275 3428.7225
+ -+ —+ + + +

Y 212 z 22 23 z4 25 28
S w?—6w+an) 1 /w—-1 w-2 w?>—6w+a(n) 2+1 w-1 w-2\"
- 2y° 2\ vy y? 2y 3\ vy y?

1 /w—1\" ! °
4\ vy 5\ v /)~
We add both sides of this inequality by (w — 1)/y + (w — 2)/y?. Since g(z) = 2®/3 is increasing and

h(z) = —x*/4 + 2°/5 is decreasing on the interval [0, 1], we use (&), ({2) and E3) to get that
w—2 w?—6w+by(n) 1 285 1315 70.7 458.7275  3428.7225
- + o+ = —+ +

y 2y2 P 22 23 24 20 26
5 k—+1 2 k
-1 w—1 w—-—2 w —6w+a(n
LU (2w i)
= K Yy Yy 2y

We have log(1 + z) < Zizl(fl)’”lx/k for every x > —1. Using ([@.2]), we obtain
w—2  w’—6w+by(n) N 1 285 13.15 70.7 458.7275 N 3428.7225

1 Sl Mt
ytw + 212 z 22 23 + z4 + 25 28
-1 -2 2-6
2y+w1+10g<1+w +w2 L w w+a(n)>_
y y 2y*
Finally we use (£4]) and Lemma .1 to conclude the proof. O

Next, we use Theorem to derive the exlicit upper bound for the n-th prime number stated in
Corollary For this purpose, we first prove the following both lemmata. In the first lemma we
determine the value of Ny for A9 = 0.87.

Lemma 4.4. For every positive integer n > 1338 564 587, we have
logn > 0.87log py,.

—1 -2
f(z) =€ —0.87 (ez—l—x—l—log (1—|— xem + xeh )) )

Since f’(x) > 0 for every z > 2.5 and f(3.046) > 0.00137, it follows that f(x) > 0 for every x > 3.046.
Substituting = = loglogn in f(z), we use (L.I0) to obtain that the desired inequality holds for every
positive integer n > exp(exp(3.046)). We check the remaining cases with a computer. O

Proof. We set

Next we use Lemma [£.4] to determine the value of Ny for 4; = 155.32.
Lemma 4.5. Let A; = 155.32. Then N7 = 100720 878.

Proof. First, let n > exp(exp(3.05)). Since f(x) = 62* — 34.123 + 163.6522 — 198.3x + 141.65 > 0 for
every x > 0, we get f(w)/(6y*z) > f(w)/(6y>2?) and it suffices to show that
155.32  6w* — 34.1w> + 268.2w? — 752.7w + 263.3 13.15w? — 83.85w + 13.15
+ > — .
25 6y322 = Y223
In order to do this, we set
g(x) = (6x* — 34.12° 4 268.22% — 752.72 + 263.3)(e* + )
+ 6€”(13.152% — 83.85x + 13.15 + 155.32 - 0.877).
It is easy to see that hy(z) = 62* — 10.123 + 244.822 — 561.62 — 208.229752 > 0 for every z > 2.6
and that ho(z) = 302t — 136.423 + 804.62% — 1505.4z + 263.3 > 0 for every x > 2.2. Hence ¢'(z) =

hi(x)e® + hao(z) > 0 for every x > 2.6. Since ¢(3.05) > 0.9, we obtain that g(z) > 0 for every z > 3.05.
Since 6% — 34.123 + 268.222 — 752.7x + 263.3 > 0 for every © > 3.05, we use ([L3) to get

155.32-0.872  6w* — 34.1w3 + 268.2w? — 752.7w + 263.3 S 13.15w? — 83.85w + 13.15
Y223 6y3 22 = Y223 :

(4.15)

Now we apply Lemma 4l to obtain [@IH). So, the desired inequality holds for every positive integer
n > exp(exp(3.05)). For every positive integer n satisfying 100720878 < n < exp(exp(3.05)) we check
the asserted inequality with a computer. O
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In view of Cipolla’s asymptotic expansion ([.2)), we find the following upper bound for the n-th prime
numnber, which refines the upper bound (I0) from Dusart [, Proposition 6.6].

Corollary 4.6. For every positive integers n > 46 254 381, we have
loglogn —2  (loglogn)? — 6loglogn + 10.667)
logn 2log®n .

Pn <M (logn—l—loglogn -1+

Proof. For convenience, we write w = loglogn and y = logn. We set Ag = 0.87 and A; = 155.32. By
Lemma [£.4] and Lemma [£3] we have Ny = 1338564 587 and N; = 100 720 878. The proof is divided into
two steps.

First step: We set a(n) = —w? + 6w. Then we can chose Ny = 5 and N3 = 1619. By (LI0), we obtain
that Ny = 688383 is a suitable choice for Ny. Using (£5) we obtain

(4.16) bo(n) > 10.7 + g(n),
where
2w — 18w? +64.2w —98.9  w* — 12w3 + 63.16w? — 203.17w + 258.29
g(n) = — + -
3y 2y
B 2w — 10w* + 30w® — 70w? + 90w — 1554.24 B 8w — 2137.44w? + 2185.45w — 37836.25
5y3 12y4 :

Now we show that g(n) > —0.059 for every positive integer n > 3. In order to do this, we define
g1(x,t) = 3.54e? 4 20(1822 4 98.9)e3” — 20(2t3 + 64.2t)e3" + 30(x* + 63.162% + 258.29)e*®
— 30(12¢% 4 203.17t)e* + 12(102* + 702% + 1554.24)e” — 12(2t° + 30> + 90t)e’
+ 5(2137.442% 4 37836.25) — 5(8t> 4 2185.45t).

If to < = < ty, then g1(x,x) > g1(to,t1). We check with a computer that g;(i - 107, (i + 1) - 1075) > 0
for every nonnegative integer ¢ with 0 < i < 699 999. Therefore,

g1 (’LU, ’LU) >
60yt~

Next, we prove that g;(z,x) > 0 for every x > 7. In order to do this, let Wy (z) = 3.54e® — 20(223 —
1822 + 64.2z — 98.9). It is easy to show that Wy (z) > 792 for every x > 7. Hence, we get

g1(z, ) > (792¢” 4 30(z* — 122° 4 63.162% — 203.17x + 258.29))e?”
—12(22° — 102" + 302% — 702% 4+ 90z — 1554.24)¢”
— 5(82° — 2137.442* 4 2185.45x — 37836.25).

(4.17) g(n) +0.059 = 0<w<7).

Since 792et + 30(1&4 — 123 + 63.16t2 — 203.17t + 258.29) > 875011 for every t > 7, we obtain that
g(n) +0.059 = g1 (w,w)/(60y*) > 0 for every positive integer n satisfying w > 7. Together with (EI7)
and ([@I6]), we get that b(n) > 10.641 for every positive integer n > 3. Applying this to Theorem [£3] we
obtain that the inequality

w—2 w?— 6w+ 10.641
m<nlyt+w—-1+ - 5
Y 2y
holds for every positive integer n > 1338 564 587. For every positive integer n such that 39529802 < n <
1338564 586 we check the last inequality with a computer.
Second step: We set a(n) = 10.641. Then, we can chose No = 8 and N3 = 4914. Further, it follows

from the first step that Ny = 39529 802. By (&3], we have
(4.18) bo(n) > 10.7 4 h(n),
where h(n) is given by
2w3 — 21w? + 82.2w — 130.823 N wt — 14w? + 77.16w? — 236.45w + 279.57
3y 2y?
2uw® — 10w?* + 35w — 110w? + 203.205w — 1660.65
5y3

3w? — 44w3 + 2309.28w? — 2568.52w + 38175.947

+ 3 .

h(n) = —
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Now we show that h(n) > —0.033 for every positive integer n > 3. We set
hi(z,t) = 1.98¢** + 20(212% + 130.823)e®* — 20(2t3 + 82.2t)e" + 30(z* + 77.162% + 279.57)e**
—30(14¢% 4 236.45t)e?" + 12(102* + 11022 + 1660.65)e™ — 12(2t° + 35¢° + 203.205t)e’
+ 5(32* 4 2309.282% 4 38175.947) — 5(44t> + 2568.52¢).

Clearly, hi(xz,z) > hi(to,t1) for every x such that tg < x < ¢;. We use a computer to verify that
hy(i- 106, (i+1)- 10_6) > 0 for every nonnegative integer ¢ with 0 < ¢ < 7999999. Therefore,

hi(w, w)
— 2 >0 0<w<y).
60yt = Osws8)

Next, we show that hy(z,x) > 0 for every = > 8. Since 1.98¢! — 20(2t3 — 21¢% + 82.2t — 130.823) > 1766
for every t > 8, we have

hi(z, ) > 17663 + 30(z* — 142° + 77.162° — 236.45z 4 279.57)e**
—12(22° — 102" + 352% — 11022 + 203.2052 — 1660.65)e”
+ 5(32* — 442 4 2309.282% — 2568.52x + 38175.947).

(4.19) h(n) +0.033 =

Note that 1766e! + 30(t* — 143 + 77.16t% — 236.45¢ + 279.57) > 5271 998 for every t > 8. Hence, we get
that ( )
hi(w,w

6041 >0 (w > 8).
Combined with (£19) and (£I]), we get that b(n) > 10.667 for every positive integer n > 3. Finally,
we apply this to Theorem [£.3] and obtain that the required inequality holds for every positive integer
n > 1338564 587. We verify the remaining cases with a computer. O

h(n) +0.033 =

In the following example we compare the error term of the approximation from Corollary with
Dusart’s approximation from ([LI0) for the 10™-th prime number.

Ezample. Denoting the right-hand side of (ILI0) by Dy,(n) and the right-hand side from Corollary
by Aup(n), we use [14] to obtain the following table:

n Pn [Dup(n) — pn] [Aup(n) — pnl
108 2038074743 299 689 52949
10° 22801763 489 2522619 580644
1010 252097800623 20510784 4613984
101! 2760727302517 172884400 38768198
1012 29996 224 275 833 1469932710 311593524
1013 323780508 946 331 12732767 836 2542231421
1014 3475385758524 527 112026 014 682 21049069 521
101 37124508 045 065 437 998 861 791 991 176 995 293 694
1016 394906 913903 735 329 9004 342407 404 1507 803 850451
107 4185296 581 467 695 669 81924060 077026 12998 658 322 559
1018 44211790234 832169 331 751154 982 343 786 113204 602 033 556
1019 465675465 116 607 065 549 6932757377044 651 994 838 584 902 026
1020 4892055594 575155 744 537 64 346 895 915 006 554 8812315669274 243
102! 51271091498016403 471853 600 148 288 357489 952 78609427974 695423
1022 536193 870744162118 627429 5621 157733905567 326 705633790460 554 787
1023 5596 564 467 986 980 643 073683 | 52844890559120248010 | 6369721461578 220680
10%* || 58310039994 836 584 070 534 263 | 498427891 603 997 785646 | 57790 587904 575515367

5. A NEW LOWER BOUND FOR THE n-TH PRIME NUMBER

The goal of this section is to prove Theorem and Corollary [[4l In order to do this, we first note
some useful inequalities.
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5.1. Preliminaries. First, we use a recently obtained upper bound for 7(z) to derive the following
implicit lower bound for the n-th prime number.

Lemma 5.1. For every positive integer n, we have
1315 1285 713 463.2275 4585 >
logpn  log’pn, log’p, log'pn  log’p,  log®pn/

Proof. Tf n > 49, the claim follows from [2, Theorem 3.2]. For smaller values of n, we use a computer. [

Pn >N <logpn -1

Lemma 5.2. For every positive integer n > 6, we have
12.85Py(loglogn)  3.15P;p(loglogn)  Pii(loglogn) >0
21og® nlog pn, 21og® nlog py 21log® nlogp, —

Proof. Tt is easy to see that f(x) = 12.85Py(x) + 3.15Po(z) + Py1(z) > 0 for every « > 2. Hence,
f(w) > 0 for every positive integer n > exp(exp(2)). We check the remaining cases with a computer. [

Lemma 5.3. Let w = loglogn. For every positive integer n > 17, we have
Pg(’w)P12(’w) + 1285P10(’LU) + 315P11(’LU) + 315P11(w) N (’LU - 2)4
41og" nlogp, 2log"nlogp, 2log" nlogp, 2log®nlog?p, ~ 4log®n

Proof. Using Lemma 4] and a computer, we get that the inequality

(5.1) logm > 0.75log py,

holds for every positive integers m > 255. Let n > 255. We set f(z) = Py(x)Pi2(z) +2-12.85Po(z) +2-
3.15P11(2)+0.75-2-3.15Py1(z) and g(z) = 0.75f(z) — (x—2)*. Note that g(x) > 0 and f(z) > 0 for every
x > 1.5. Together with (5.1), we get f(w)/(4log” nlogp,) — (w — 2)*/(4log®n) > g(w)/(41og®n) > 0.
Further, we have Pi1(z) > 0 for every x > 0. Hence, by (&), we get that the required inequality holds
for every positive integer n > 255. We conclude by direct computation. (|

5.2. Notations. Beside the notation from Section 2, we use in this section the following further notations.
Let By,..., Bio be real positive constants satisfying
(5.2) Bg + B7 + Bg + Bg + Big < 3.15.

Writing w = loglogn, y = logn and z = logp,, we define the arithmetic functions H; : N> — R,
1 <i <10, by

e Hi(n) = Biw _ Qr(w)  Qs(w)  Qo(w)  12.85P(w)

Y3z 2y5z 21522 4962 2yt23
Bow 1285w 71.3
o Ha(n) = v32 + 222 A
Bsw  3.15P3(w)  12.85(w? —w + 1)
o Hs(n)=—— —— 55~ 3,2 ’
Y-z Y-z Yy-z
Biw  3.15Py(w) — 12.85Ps(w)
H =
* Hiln) y3z + 2yt 22 ’
Bsw  Py(w) —3.15Ps(w) 12.85(w? —w+1)  (w® —w+ 1)
o Hs(n)=—5—+ 2y B 1 - 1 v
Bon ( sz B,—B Byé) 315(2yz1)
Bgw 12.85 — By — By — B3 — By — Bs)w . we —w +
o Ho(n) = ——+ 3 - 2,2
Bow 12 85 Py (w) - v
w . slw
Hq(n) = =1— —
* Hr(n) Y2z 2y?z32 )
Bsw  12.85(w* —w+ 1
o Hs(n) = —— — 2.3 ,
g . 463 227y52
w .
o Hy(n) = —5— — ———,
y2z z
Blo’w 4585
Hig(n) = 220 _ 2%
* Hioln) y2z 26

Since H;(n) > 0 for every 1 < ¢ < 10 and all sufficiently large values of n, respectively, we define
M;(B;) = min{k € N | H;(n) > 0 for every n > k}

and set

K1 = max MZ(BZ)
1<:i<10
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Let a : N> — R be an arithmetic function and let K, K3, K4 be positive integers, which depend on a,
so that

log 1 -2  (logl 2 —6logl
(5.3) Dn >N <logn+1oglogn 14 2808n _ (loglogn)” — 6 Zg ogn+a(n))
logn 2log"n

for every positive integer n > Ko and
(5.4) a(n) > —(loglogn)? + 6loglogn
for every positive integer n > K3, as well as

loglogn —1 loglogn —2  (loglogn)? — 6loglogn + a(n)

<1
logn log®n 21og®n

(5.5) 0< <

for every positive integer n > K. Furthermore, we define the function G : R — R by
223 — 1522 4 422 — 14 n 3.15x 1285 22—z +1 N (22 —z+ 1)z Pra(z) 12.85x

G(x) = 66313 eSm eSm eSm e4$ 26413 e4z
Pp(z)z  (x—1)2 28 —622+ 1207 : (1) fz—1 x-2\" (z—2)*
26513 2€2$ o 3631 o Z k ex + eQz + 46813
k=2

5.3. A new lower bound for the n-th prime number. In order to find the explicit lower bound for
the n-th prime number stated in Corollary [[L4] we set

2A0(3.15— (Bs + B7+ Bs+ Bg+ B logl
(5.6) bi(n) = 11.3 — 2G(loglogn)log® n + a(n) _ 240(3.15 = (Bo + By + Bs + By + Bio)) loglogm
logn logn

and first show the following theorem.

Theorem 5.4. For every positive integer n > max{ Ny, K1, K2, K3, K4,3520}, we have

log1 -2 (logl 2 _6logl b
pn>n<1ogn+loglogn1+ oglogn —2  (loglogn) % ogn + 1(n))'
logn 2log"n
Proof. Let n > max{Ny, K1, K2, K3, K4,3520}. For convenience, we write w = loglogn, y = logn and
z = logpn. We set

N ) )
Yoy Y2z 295z 29tz
Ty(n) = LI A (l i 1) <w2 —w+l  Rw)  P(w)  Pow) Pn(w)>
yz2 oy g2z Yy oz y2z 2y3z 2ytz 215z 2162
\Ilg(n):fiJrﬂ w w 7w2—w+17w2—w+17w2—w+1
B h B g2 vz Y322 223

 B(w)  Bw) Pw) | Py(w) | Py(w) n Py(w) n Pro(w)

252 2ytz2 2323 282 2522 2ydz3 272
By Corollary [3.0] we have

(5.7) — W),

Similar to the proof of (&J]), we use Proposition B4l to get that
1
(5.8) — 5 2 P2(n).

Together with Py (x) = z(z — 2.1)2 > 0 for every x > 0, Pio(z) = 2(z — 2.1)(2? — 1.5z + 1.05) > 0 for
every x > 2.1 and Corollary [3.5 we get

(5.9) = > Us(n).

We have Fy(n) > 0 and, by (&2)), 3.15 — (B + B7 + Bs + By + Bi1g) > 0. Together with the definition of
b1(n), we obtain that the inequality
11.3 — by (n)
2y?

a(n) + (3-15 - (BG + B7 + Bg + Bg + Blo))’w

< G(w) - 23 Y2z
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holds. Now we add the right-hand side of the last inequality with Zgl H;(n) > 0 and use Lemma
and Lemma [£.3] to get

M < G(w) _ a(n) + 3.15w + 12.85P9(w) 3.15P10(’LU) Pu(’w) _ Q7(’LU) Qg(’w) Qg(’w)

2y2 — 2y3 y2z 2152 2162 2162 2y5z 21522 4952
N 12.85 Py (w) N 1285w 713 3.15P(w) 12.85(w® —w+1)  3.15Py(w)
29423 222 4 29322 Y322 29422

12.85P(w)  Po(w) 3.15Ps(w) 12.85(w? —w+1) (w?—w+1)2 1285w

S 2y4p2 2tz 2ytz ylz B ylz y3z
3.15(w? —w+1) 12.85P(w) 12.85(w? —w+1) 463.2275 4585

a 4222 - 29323 - Y223 a 25 L6
Py(w)Pi2(w) = 12.85P1o(w)  3.15P;(w)  3.15P1(w) (w—2)*

* 4y7z 2y7z 2y7z 20622 48

where d(n) = 11.3 — by (n). Substituting the definitions of Q7(z), Qs(x), Qo(x) and G(x), it follows that

d(n) a(n) 2w —15w? + 42w — 14  3.15w w?—w+1  Ppa(w)
< - 12.85- ¥ -
22 = 20 + 6 + 7 + 3(n) + 7 + 293 1(n)
w1 e 6w’ 12w T 24: (D (w1 w2 M o315w  3.15P0(w)
2y? 3y = y y? y?z 2y°z
2162 2Pz 2Pz 24P 22 z4 29322 29122 2ytz
~ 315P(w)  3.15(w? —w+1) 4632275 4585 N 3.15P11(w)  3.15P;1(w)
2ytz y222 25 28 2y72 29622

Note that w? —w + 1> 0 und Pj2(w) > 0. Then, by using (5.7) and (5.9)), we get
d(n) _ 2w3 — 15w? + 42w — 14 N 315w 12.85 w?—w+1 Pp(w)  (w-—1)?

292 6y3 3 T3 y2z o 232 22
w — 6w? 4+ 12w — 7 24: (D (w1 w2 " oan) L 315w | 315P(w)
3y3 = k y y2 213 Y2z 216z
216z 215z 25z 245 22 z4 21322 29422 2ytz
3.15Ps(w) 315w’ —w 1) 463.2275 4585 3.15Pi(w)  3.15P(w)
2ytz Y222 25 26 2y7z 21622

Since Pi2(z) = Ps(x) +2-3.15(2? — 2 + 1) and d(n) = 11.3 — b1(n), we obtain

5— bl(n)<315 Wa(n) + w3—15w2+42w714712.857w2—w+17P8(w) (w—1)2
212 6y3 23 y2z 213z 212
w3 — 6w? + 12w — 7 7i (-1)F (w—1 n w—2 ki a(n) n Py(w) n Pip(w)
3y? y y? 29 29tz 2952

N Py(w) 713 463.2275 4585

2982 24 25 28
Together with (0.8]) and Proposition [B4], we get
5-bin) _ 1 815 1285 713 4632275 4585 2w’ — 15u? 4 420 — 14

1 w
22 Tz 22 23 24 20 26 6y3 y o y?
w—1)2 w—6w + 12w -7 ! w—1 w-2\" a
+ ( 2 ) Z Tz - ( 3)'
2y 3y = k y y 2y
This inequality is equivalent to
4 k
w—2 w-—1 w-—2 w—6w+a <w1 w2)
5.10 < + +
(510 y y y? ZQ y?
n w? — 6w + bi(n) 1 315 1285 71.3  463.2275 4585
212 z  Z2 23 24 25 28
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The functions ¢;(z) = —22/2 + 23/3 and ga(x) = —2*/4 are monotonic decreasing on the interval [0, 1].
Together with (5.4]), (5.5) and the inequality log(1 + ¢) > Zizl(—l)k“tk/k, we get that the inequality
(EI0) implies

w—2  w’—6w+bi(n) < log 1_i_w—l +w—2 ~w?—6w+a(n)) 1 315 1285
y 2y2 y Y2 2¢3 > 22 23
71.3  463.2275 4585
T 25 T L6
Now we add y +w — 1 to both sides of the last inequality und use (B3)) to get
w—2  w?— 6w+ bi(n) 1 315 12.85 71.3 463.2275 4585
y+w—1+ — <z-1—-=--— - — - — - — .
logn Yy z 22 23 24 25 28
Finally we multiply the last inequality by n and apply Lemma [5.1]to conclude the proof. O

Now, we use Theorem [£.4] to establish the following explicit lower bound for the n-th prime number,
which refines Dusart’s lower bound given in (LIT]).

Corollary 5.5. For every positive integer n > 2, we have
loglogn —2  (loglogn)? — 6loglogn + 11.508>
logn 21og” n '

D >N <logn+loglogn 1+

Proof. Let Ay = 0.87. Then, by Lemma 4 Ny = 1338564 587. In the following table we note the
explicit values of M;(B;) for given B;:

1 1 2 3 4 )

B; 0.27 4.23 1.575 0.058 2.24
M;(B;) || 1359056314 | 1471247583 | 1468111666 | 1383728153 | 1462324835

1 6 7 8 9 10

B; 0.105 0.0026 0.052 0.1955 0.08
M;(B;) 5 1075859481 | 1445815789 | 1479240488 | 1447605594

The respective proof that H;(n) > 0, where 1 < i < 10, holds for every positive integer n > M;(B;) can
be found in the appendix. The above table indicates

(5.11) 3.15 — (B + By + Bs + Bo + Big) = 2.7149

and Ky = maxj<;<i10 M;(B;) = 1479240488. The proof of the required lower bound for the n-th prime
number p,, consists of three steps.

First step: We set a(n) = 0.2y — w? + 6w. By (LII), we can chose Ko = 3. Further it is easy to see
that K3 = 2 and K4 = 33 are suitable choices for K3 and Ky, respectiviely. Using (5.6) and (GI1I), we
obtain the identity

2w3 — 18w? + 63.071778w — 97.1 n w* — 12w3 + 46.6w? — 112w + 40

b =11.5—
() 3y 2y?
2wt — 21.3w3 + 40.3w? — 41.5w+ 12 Yw?* — 56w3 + 129w? — 132w + 52
+ -
y? 3yt
n 2w?* — 14w’ + 36w? — 40w + 16

I
In this first step, we show that by(n) < 11.589 for every positive integer n > exp(exp(3.05)). For this
purpose, we set

afz,t) = 0.534e5® + 2(223 + 63.0717782)e’® — 2(18t% 4 97.1)e 4 3(1223 + 112z)e3®
— 3(t" +46.6t% + 40)e3" + 6(21.323 4 41.5z)e** — 6(2t* 4 40.3t% + 12)e?
+ 2(562° + 132z)e” — 2(9t* + 129> + 52)e’ + 6(142> + 40z) — 6(2t* + 361> + 16).
and notice the identity
(5.12) a(w, w) = 6(11.589 — by (n))y°.

If to <z < t1, then a(z,z) > a(ty,t1). We check with a computer that «(3.05 +i-107°,3.05 + (i + 1) -
10~?) > 0 for every nonnegative integer i with 0 < i < 394999. Hence, by (5.12),

(5.13) bi(n) <11.589  (3.05 <w < 7).
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Next, we show that a(z,x) > 0 for every z > 7. Since 0.534e® + 2(223 — 1822 + 63.071778x — 97.1) > 882
for every x > 7, we have

oz, z) > 882e™ — 3(zt — 122° + 46.627 — 1122 + 40)e3® — 6(22* — 21.323 + 40.32% — 41.52 + 12)e**

—2(92" — 562 4+ 12927 — 1322 + 52)e” — 6(22* — 1423 + 3627 — 40z + 16).
Note that 882e® — 3(2* — 1223 + 46.622 — 112z + 40) > 967 757 for every z > 7. So, a(z,z) > 0 for
every x > 7. Combined with (12 and (BI3), we get that by1(n) < 11.589 for every positive integer
n > exp(exp(3.05)). Applying this to Theorem 5.4 we get that the inequality
w—2  w?— 6w+ 11.589

y 2y?
is fulfilled for every positive integer n > exp(exp(3.05)). We check with a computer that the last inequality
holds for every positive integer n such that 2 < n < exp(exp(3.05)).

Second step: We set a(n) = 11.589. Then, we can chose Ko = 2 and K3 = 2. Further, it is easy to see
that K, = 48 is a suitable choice for K4. Together with (5.8) and (5I1I), we get that

2w3 — 21w? + 81.071778w — 131.867 n w* — 12w3 + 46.6w? — 112w + 40

pn>n(y—|—w—1+

bi(n) =11.3 — 3 297
2wt — 21.3w3 + 40.3w? —41.5w+ 12 w?* — 56w> + 129w? — 132w + 52
+ 3 + 4
Y 3y
n 2wt — 14w? + 36w? — 40w + 16

5

)
Our goal in this step is to show that the inequality b1(n) < 11.512 holds for every positive integer
n > exp(exp(3.05)). For this, we set

Bz, t) = 1.272¢ 4 2(223 + 81.071778z)e*™ — 2(21t% 4 131.867)e*" + 3(122° 4 112x)e®”
— 3(t* + 46.6t% + 40)e® + 6(21.323 + 41.52)e?” — 6(2t* + 40.3t> 4 12)e?
+ 2(562° + 132x)e™ — 2(9t* + 129t 4 52)e’ + 6(142> + 40z) — 6(2t* + 361> + 16).
Then, we get
(5.14) Blw,w) = 6(11.512 — by (n))y°.
Similar to the first step, we get that
(5.15) bi(n) <11.512  (3.05<w < 7).

So, it suffices to verify that 8(z,x) > 0 for every x > 7. We notice that 1.272e* + 2(223 — 2122 +
81.071778x — 131.867) > 1580 for every z > 7. Hence,

Bz, x) > 1580e*™ — 3(x* — 1223 + 46.62% — 1122 + 40)e>” — 6(22* — 21.32° 4 40.32% — 41.52 + 12)e*”
—2(92 — 562 4 12927 — 1322 + 52)e” — 6(22* — 1423 + 3627 — 40z + 16).

Since 1580e® — 3(x* — 1223 +46.62% — 1122+ 40) > 1733 207 for every x > 7, we conclude that 8(z,z) > 0
for every x > 7. Together with (B.14) and (BIH), we establish that by(n) < 11.512 for every positive
integer n > exp(exp(3.05)). Applying this to Theorem [0l we get that
w—2  w?—6w+11.512
Pn>n (y +w—1+ - 5 )
Y 2y

for every positive integer n > exp(exp(3.05)). Finally, we use a computer to verify that the last inequality
also holds for every positive integer n such that 2 < n < exp(exp(3.05)).

Third step: In this last step, we set a(n) = 11.512. Then, we can chose K5 = 2 and K3 = 2. Further,
K, = 47 is a suitable value for K. Now, we use (5.8) and (EI1)) to get

2w — 21w? + 81.071778w — 131.636 n w? — 12w + 46.6w? — 112w + 40

bi(n) = 11.3 — % 2
2uw! — 213w + 40.3w? — 415w+ 12 w' — 56w’ + 129w? — 132w + 52
+ 7 + 31

2wt — 14w? + 36w? — 40w + 16
+ 7 .
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To show that by (n) < 11.508 for every positive integer n > exp(exp(3.05)), we set
y(z,t) = 1.248¢* + 2(22° + 81.071778x)e™™ — 2(214 + 131.636)e™" + 3(122% + 112z)e>”
— 3(t* 4 46.6t% + 40)e3" + 6(21.323 + 41.52)e*® — 6(2t* 4 40.3t> + 12)e?
+ 2(562° + 132x)e™ — 2(9t* + 1297 4 52)e’ + 6(142> + 40z) — 6(2t* + 361> + 16).
Notice that

(5.16) y(w,w) = 6(11.508 — by (n))y°.

Analogously to the first step, we obtain that
(5.17)

bi(n) <11.508  (3.05 <w < 7).

Next, we find that v(x,z) > 0 for every x > 7. Note that 1.248e%+2(2x3 —212%+81.071778x—131.636) >
1554 for every x > 7. Therefore

v(z,x) > 1554e*® — 3(2* — 122% + 46.62% — 1122 + 40)e* — 6(22* — 21.32° + 40.32% — 41.52 + 12)e**
—2(92 — 562 4 12927 — 1322 + 52)e” — 6(22* — 1423 + 3627 — 40z + 16).
Since 1554€® — 3(x? — 1223 + 46.622 — 1122 +40) > 1704694 for every x > 7, we get that v(z,x) > 0 for
every x > 7. Combined with (516 and (517, we conclude that by(n) < 11.508 for every positive integer

n > exp(exp(3.05)). Then, Theorem 4] implies that the required inequality holds for every positive
integer n > exp(exp(3.05)). A direct computation for smaller values of n completes the proof. O

In the following example we compare the error term of the approximation from Corollary [5.5 with the
approximation from ([L.IT)) for the 10™-th prime number.

Ezample. Denoting the right-hand side of (LII)) by Djow(n) and the right-hand side of Corollary B35 by

Ajow(n), we use [14] to obtain the following table:

n Dn [Pn — Diow(n)] [Pn — Aiow ()]
106 15485863 6503 6202
107 179424673 22441 9600
108 2038074743 243180 70976
10° 22801763489 2302876 398508
1010 252097 800 623 22918665 3317139
10t 2760727302517 221928 766 26778265
1012 29996 224 275833 2149187973 239178 828
1013 323780508 946 331 20674 500003 2150740095
1014 3475385758 524 527 198 184 329 536 19415837925
10%° 37124 508 045 065 437 1896 434 754 032 175499011 167
1016 394906 913 903 735 329 18139062 711 550 1590290 625 854

107 4185296 581 467 695 669 173 543282219005 14444669910 447
1018 44211790234 832169 331 1661592139 340947 131583109674 419
10%° 465675465 116 607 065 549 15924 846 933 652 812 1202148079 734 641
1020 4892055594 575 155 744 537 152800 345036 619 338 11015488979071672
102 51271091498016 403471 853 1467920673 086 566 371 101234 605116 877 497
1022 536193 870744162118 627 429 14119500 534 424 061 205 933027750 725057967
1023 || 5596564 467 986 980 643 073683 | 135978 797 224 902285752 | 8622 947 459 666 327 003
1024 || 58310039994 836 584 070534 263 | 1311 132449 659 551 496 235 | 79 902 499 931 160 000 670
Remark. The asymptotic expansion ([L2]) for the n-th prime number implies that the inequality
(5.18) Pn >N <logn +loglogn — 1+ loglogn ~2 _ (loglogn)” 6;0g10gn u 11)
logn 2log"n
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holds for all sufficiently large values of n. Let r3 denotes the smallest positive integer such that the
inequality (B.I8) holds for every positive integer n > r3. Under the assumption that the Riemann
hypothesis is true, Arias de Reyna and Toulisse [I, Theorem 6.4] proved that

39-10% < r3 < 39.58-10%.

6. ESTIMATES FOR ¥(p,,) IN TERMS OF n
Chebyshev’s ¥-function is defined by
I(x) = logp,
p<z
where p runs over primes not exceeding z. Notice that the Prime Number Theorem is equivalent to
(6.1) Izx) ~x (x — 00).

By proving the existence of a zero-free region for the Riemann zeta-function ((s) to the left of the line
Re(s) = 1, de la Vallée-Poussin [16] was able to bound the error term in (G.I)) by proving

I(z) =z + O(z exp(—cy/log)),

where ¢ is a positive absolute constant. Together with Cipolla’s asymptotic expansion (L2) we get

loglogn —2  (loglogn)* — 6loglogn + 11 L0 ((loglogn)3)>
logn 2log® n log® n '

Ipn) =n <logn +loglogn — 1+

In this direction, many estimates for ¥(p,) were obtained (see for example Massias and Robin [8]
Théoréme BJ, and Dusart [5l Proposition 6.2 and Proposition 6.3]). Using Corollary and Corol-
lary [L4] we are able to establish the following estimates for ¥(p,) in terms of n, which improve the
current best estimates found by Dusart [6] Proposition 5.11 and Proposition 5.12], namely
Y(pn) >n <logn+ loglogn — 1+ M)
logn

for every positive integer n > 7(10%%) + 1 = 29844 570422 670, and

loglogn — 2 0.782)
10g n 10g2 n

Hpn) <n (logn +loglogn — 1+

for every positive integer n > 781.

Proposition 6.1. For every positive integer n > 2, we have

log1 -2 log1 2 —6logl 11.
ﬂ(pn)>n<1ogn+loglogn1+ oglogn _ (loglogn)* — 6 og ogn + 808>,
logn 2log™n

and for every positive integer n > 2581, we have

log1 -2 log1 2 —6logl 10.
ﬂ(pn)<n<1ogn+loglogn1+ oglogn _ (loglogn)* — 6 og ogn + 0367).
logn 2log"n

Proof. From [2, Theorem 1.1], it follows that the inequality

0.15p,,
log” pn,
holds for every positive integer n > 841508 302, and that
0.15py,
(6.3) Hpn) <pn+—5—
log” pn,

for every positive integer n. By Rosser and Schoenfeld [I1] Corollary 1], we have n > p,,/logp,, for every
positive integer n > 7. Applying this inequality to B.2), we get ¥(p,) > pn — 0.15n/ log® n for every
positive integer n > 841508 302. Together with Corollary 5.5 we obtain that the desired lower bound
for ¥(py) holds for every positive integer n > 841508 302. We check the remaining cases for n with a
computer.

Similar to the first part of the proof, we apply the inequality n > p,/logp, to ([G3) and obtain that
the inequality ¥(p,) < pn + 0.15n/ log® n holds for every positive integer n > 7. Now, we use Corollary
to get that the required upper bound for ¥(p,) holds for every positive integer n > 46 254 381. For
smaller values of n, we verify the required upper bound with a computer. (I
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7. APPENDIX

In the proof of Corollary [5.5] we note the following table, which indicates the explicit values of M;(B;)
for given B;:

7 1 2 3 4 5
B; 0.27 4.23 1.575 0.058 2.24
M;(B;) || 1359056314 | 1471247583 | 1468111666 | 1383728153 | 1462324835
1 6 7 8 9 10
i 0.105 0.0026 0.052 0.1955 0.08
M;(B;) ) 1075859481 | 1445815789 | 1479240488 | 1447605594

In this appendix, we show that this table is indeed correct; i.e. H;(n) > 0 for every positive integer
n > M;(B;) for the given values of B;. We start with the claim concerning Hy(n).

Proposition 7.1. We have M1(0.27) = 1359 056 314.

Proof. We have Qg(x) > 0 for every x > 0.6 and Py(z) > 0 for every z > 0.6. Using Lemma 4] we get
that the inequality

fi(w(n))
(7.1) Hi(n) = g

for every positive integer n > 1338564587, where fi(z) = 4 - 0.272e3* — 2Q+(x)e® + 2 - 0.87Qs(z) +
Qo(x) +2-12.85 - 0.872Py(z). We show that f(x) > 0 for every x > 3.05. For this purpose, we set
g(z) = (116.64 + 87.48x)e” + (—24.62* — 322.123 — 1137.122 — 1265.98z — 512.24). It is easy to show that
g(z) > 212 for every z > 1.7. So, £ (z) = g(z)e® + 240z — 1005.6 > 212¢® + 240z — 1034.688 > 0 for
every & > 1.7. Now, it is easy to see that f(x) > 0 for every x > 3.05. Applying this to (TI]), we get
that Hi(n) > 0 for every positive integer n > exp(exp(3.05)). Finally, it suffices to verify the remaining
cases with a computer. O

Before we verify that M>(4.23) = 1471247 583, we introduce the following function.
Definition. For x > 1, let

—1 —2.1
@(x)ex+z+1og<1+ze—$+ze2z >

We notice the following three properties of the function ®(z).
Lemma 7.2. For every x > 1, we have ®'(z) > e* 4+ 3/4.

Proof. We have ®(z) > e* + 3/4 if and only if g(z) = €2* — 3we® + 7e® — Tz + 18.7 > 0. Since
g"(x) = 4e®*®* — (3xz — 1)e® > 0 for every z > 0 and ¢'(1) > 10.49, we obtain that ¢’(z) > 0 for every
x > 1. Together with g(1) > 29.96, we get that g(z) > 0 for every x > 1. O

Lemma 7.3. For every x > 1.25, we have ®(x) > e* + x.

Proof. The desired inequality holds if and only if (x — 1)e* +x — 2.1 > 0. Since the last inequality holds
for every x > 1.25, we conclude the proof. O

Lemma 7.4. For every positive integer n > 3, we have ®(loglogn) < logpy,.

Proof. The claim follows directly from [0} Proposition 5.16]. O
Next, we use these properties to determine the value M5(4.23).

Proposition 7.5. We have M2(4.23) = 1471247 583.

Proof. We set fo(x) = 4.23203(x) + 12.852¢*®%(z) — 71.3¢3” and use Lemma and Lemma to
obtain that the inequality

(7.2)  fh(x) > 4.23(e” + x)® + 25.54ze” (e” + ) 4 12.85¢%(e® + x)? + 25.72e**(e” + x) — 213.9¢3®
holds for every > 1.25. We denote the right-hand side of the last inequality by g2(z). A straightforward

calculation gives gés)(x) > (1383.487 — 3930.66)e3® > 0 for every x > 2.85. Now, it is easy to see that
g2(x) > 0 for every x > 3.02. Applying this to (Z2), we conclude that fi(xz) > 0 for every x > 3.02.
Since f2(3.05) > 16.797, we obtain that fa(loglogn) > 0 for every positive integer n > exp(exp(3.05)).
Finally, we apply Lemma [7.4l For smaller values of n, we use a computer. O
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Proposition 7.6. We have M3(1.575) = 1468111 666.

Proof. Let f3(z) = 3.152®(z) —35.1522+44.6x —42.08. Using Lemma[l2and Lemmal7.3] we get that the
inequality f§(z) > (3.15e” +3.15—67.15)x > 0 holds for every & > 3.02. Combined with f3(3.05) > 0.044
and Lemma [T we get that Hs(n) > 0 for every positive integer n > exp(exp(3.05)). We conclude by a
computer check. (I

Proposition 7.7. We have M4(0.058) = 1383728 153.

Proof. We set fi(z) = 0.1162e"®(x) + 3.150% — 57.4522 + 113.01z — 80.05. We have f4(3.05) > 0.812
and, by Lemma and Lemma [T3] fi(z) > (0.116(e®(e® + z) + 2*) + 9.452 — 114.9)x > 0 for every
x > 2.92. Hence, fi(loglogn) > 0 for every positive integer n > exp(exp(3.05)). Finally it suffices to
apply Lemma [[4l For smaller values of n, we check the required inequality with a computer. ([

Proposition 7.8. We have M5(2.24) = 1462324 835.

Proof. To proof the claim, we define f5(x) = 4.48ze” — 22+ 523 —37.722 +41.1x — 31.9. Since fé3)(x) >0
for every x > 2.1 and f£(2.1) > 31.756, we obtain that fZ(x) > 0 for every x > 2.1. Together with
1£(2.4) > 3.853, we get that fi(x) > 0 for every x > 2.4. Combined with f5(3.05) > 0.06, we conclude
that f5(loglogn) > 0, and thus Hs(n) > 0, for every positive integer n > exp(exp(3.05)). For smaller
values of n, we verify the inequality Hs(n) > 0 with a computer. U

By adding the constants Bi, ..., Bs given in Proposition [.Il Proposition [[.5 Proposition [.6], Propo-
sition [.71 und Proposition [.8, we get 12.85 — By — By — B3 — By — Bs = 4.477. Now we set Bg = 0.12
to obtain the following explicit value for Mg(Bg).

Proposition 7.9. We have Mg(0.105) = 5.

Proof. Let r(z,t) = (0.105€® + 4.477)x®(z) + 3.15xe® — 3.15(t% + 1)e?, let fo(x) = r(z,x). If tg <z < ty,
then fg(x) > r(to,t1). We check with a computer that r(0.7 +4-1072,0.7 + (i + 1) - 1073) > 0 for every
nonnegative integer ¢ such that 0 <4 < 2799. Hence fg(x) > 0 for every x such that 0.7 < 2 < 3.5. To
show, that fg(x) > 0 for every & > 3.5, we set

g(x) = (0.105ze” 4+ 0.105€” + 4.477)(e* + x) + (0.105e” + 4.477)ze” — 3.15xe”(1 + x).

Then ¢'(z) = h(z)e® + 4.477, where h(z) = 0.42(1 + z)e® — 3.0452% — 4.658z + 5.909. Since h(z) > 0
for every x > 3.09, we get that ¢’(x) > 0 for every x > 3.09. Together with ¢(3.47) > 0, we conclude
that g(x) > 0 for every « > 3.47. Using Lemma [[2] and Lemma [T3] we obtain that fi(x) > g(x) > 0
for every x > 3.47. Combined with f5(3.5) > 4.35411, we have fg(x) > 0 for every x > 3.5. Hence,
fe(x) > 0 for every x > 0.7. Now, we apply Lemma [T.4] to get that Hg(n) > 0 for every positive integer
n > exp(exp(0.7)). We conclude by direct computation. (I

Proposition 7.10. We have M7(0.0026) = 1075859 481.
Proof. Substituting the definition of Py(z), we get

_ 0.0026w 38.55w? — 77.1w + 66.82

H
7(n) v2z 2y323

To show that H7(n) > 0 for every positive integer n > 1075859481, we first consider the function
f7(x) = 0.00522e*®2(x) — 38.552% + 77.1x — 66.82. We have f7(3.05) > 6.821. Additionally, we use
Lemma [7.2 and Lemma [T3 to get that f2(x) > (0.0052(e® 4 x)?(1 + e%) + 0.0104e**(e* + ) — 77.1)x > 0
for every x > 2.76. Hence, f7(loglogn) > 0 for every positive integer n > exp(exp(3.05)). Finally, we
apply Lemma [[4l For the remaining cases, we use a computer. (I

Proposition 7.11. We have Mg(0.052) = 1445815 789.

Proof. We set fs(z) = 0.052z ®?(x) — 12.85(2% — z + 1). Then f5(3.05) > 0.148 and, by Lemma [T.2 and
Lemma [(.3] we obtain f§(z) > (0.052(e” 4+ x) 4+ 0.104(e” + x)e” — 25.7)x > 0 for every x > 2.66. Hence
fs(loglogn) > 0 for every positive integer n > exp(exp(3.05)). Now we use Lemma [74] to obtain that
Hg(n) > 0 for every positive integer n > exp(exp(3.05)). For smaller values of n, we use a computer. [

Proposition 7.12. We have Mo(0.1955) = 1479240 488.
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Proof. We define fo(z) = 0.1955z ®*(z) — 463.2275¢**. Then, by using Lemma and Lemma [T.3]
we have f§(z) > (0.1955(e® + )% + 0.782x(e® + x)? — 926.455)e?* > 0 for every x > 2.83. Combined
with f9(3.05) > 7.11, we conclude that fo(z) > 0 for every x > 3.05. Substituting x = loglogn in
fo(z), we get, by Lemma [T4 that Hg(n) > 0 for every positive integer n > exp(exp(3.05)). For every
positive integer n such that 1479240488 < n < exp(exp(3.05)) we check the desired inequality with a
computer. O

Finally, we determine the value of M;((0.08).
Proposition 7.13. We have M0(0.08) = 1447605 594.

Proof. Let fio(x) = 0.087 ®5(x) — 4585¢%*. Applying Lemma and Lemma [T3 we get fiy(z) >
(0.4x(e* + x)% — 9170)e2* > 0 for every x > 2.9. Together with f10(3.05) > 6142.27, we obtain that
fio(loglogn) > 0 for every positive integer n > exp(exp(3.05)). Now, we use Lemma [[4] to conclude
that Hip(n) > 0 for every positive integer n > exp(exp(3.05)). Finally, it suffices to verify the remaining
cases with a computer. O
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