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Abstract

In this paper we first generalize the numerical recurrence relation given by Hosoya
to polynomials. Using this generalization we construct a Hosoya-like triangle for poly-
nomials, where its entries are products of generalized Fibonacci polynomials (GFP).
Examples of GFP are: Fibonacci polynomials, Chebyshev polynomials, Morgan-Voyce
polynomials, Lucas polynomials, Pell polynomials, Fermat polynomials, Jacobsthal
polynomials, Vieta polynomials and other familiar sequences of polynomials. For every
choice of a GFP we obtain a triangular array of polynomials. In this paper we extend
the star of David property, also called the Hoggatt-Hansell identity, to this type of
triangles. We also establish the star of David property in the gibonomial triangle. In
addition, we study other geometric patterns in these triangles and as a consequence we
give geometric interpretations for the Cassini’s identity, Catalan’s identity, and other
identities for Fibonacci polynomials.
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1 Introduction

The generalized Fibonacci polynomial (GFP) is a recursive polynomial sequence that gen-
eralizes the Fibonacci numbers sequence. Familiar examples of GFP are Fibonacci polyno-
mials, Chebyshev polynomials, Morgan-Voyce polynomials, Lucas polynomials, Pell polyno-
mials, Fermat polynomials, Jacobsthal polynomials, Vieta polynomials, and other familiar
sequences of polynomials. Most of the polynomials mentioned here may be found in [12,13].

The Hosoya triangle, formerly called the Fibonacci triangle, [2, 5, 8, 12], consists of a
triangular array of numbers where each entry is a product of two Fibonacci numbers (see
A058071). In this triangle if we replace Fibonacci numbers with the corresponding GFP,
we obtain the Hosoya like polynomial triangles (see Tables 2 and 3). For brevity we call
these triangles the Hosoya polynomial triangles and if there is any ambiguity we call them
Hosoya triangles. Therefore, for every choice of GFP we obtain a distinct Hosoya polynomial
triangle. So, every polynomial evaluation gives rise to a numerical triangle (see Table 11).
In particular the classic Hosoya triangle can be obtained by evaluating the entries of Hosoya
polynomial triangle at x = 1 when they are Fibonacci polynomials.

The Hosoya polynomial triangle provides a good geometry to study algebraic and com-
binatorial properties of products of recursive sequences of polynomials. In this paper we
study some of its geometric properties. Note that any geometric property in this triangle is
automatically true for the classic (numerical) Hosoya triangle.

A hexagon gives rise to the star of David –connecting its alternating vertices with a
continuous line– as in Figure 1 part (d) on page 9. Given a hexagon in a Hosoya polynomial
triangle can we determine whether the vertices of the two triangles of the star of David have
the same greatest common divisor (GCD)? If both GCD’s are equal, then we say that the
star of David has the GCD property. Several authors have been interested in this property,
see for example [3, 5, 7, 11, 15, 16, 19]. For instance, in 2014 Flórez et. al. [4] proved the Star
of David property in the generalized Hosoya triangle. Koshy [11,13] defined the gibonomial
triangle and proved one of the fundamental properties of the star of David in this triangle.
In this paper we establish the GCD property of the star of David for the gibonomial triangle.

Since every polynomial that satisfies the definition of GFP gives rise to a Hosoya poly-
nomial triangle, the above question seems complicated to answer. We prove that the star of
David property holds for most of the cases (depending on the locations of its points in the
Hosoya polynomial triangle). We also prove that if the star of David does not hold, then
the two GCD’s are proportional. We give a characterization of the members of the family
of Hosoya polynomial triangles that satisfy the star of David property. From Table 1, we
obtain a sub-family of fourteen distinct Hosoya polynomial triangles. We provide a complete
classification of the members that satisfy the star of David property.

We also study other geometric properties that hold in a Hosoya polynomial triangle,
called the rectangle property and the zigzag property. A rectangle in the Hosoya polynomial
triangle is a set of four points in the triangle that are arranged as the vertices of a rectangle.
Using the rectangle property we give geometric interpretations and proofs of the Cassini,
Catalan, and Johnson identities for GFP.
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2 Generalized Fibonacci polynomials GFP

In this section we summarize the definition of the generalized Fibonacci polynomial given by
the authors in an earlier article, [1]. The generalized Fibonacci polynomial sequence, denoted
by GFP, is defined by the following recurrence relation

G0(x) = p0(x), G1(x) = p1(x), and Gn(x) = d(x)Gn−1(x) + g(x)Gn−2(x) for n ≥ 2 (1)

where p0(x) is a constant and p1(x), d(x), and g(x) are non-zero polynomials in Z[x] with
gcd(d(x), g(x)) = 1. Some familiar examples of GFP are in Table 1 (also see [1,2,9,10,12]).

A sequence given by (1) is called Lucas type or first type if 2p1(x) = p0(x)d(x) with
p0 6= 0, and a sequence given by (1) is called Fibonacci type or second type if p0(x) = 0 with
p1(x) a constant, however in this paper we consider p1(x) to be 1. We use the notation G∗

n(x)
when Gn(x) is of Lucas type and G

′

n when Gn(x) is of Fibonacci type. Using these definitions
of Lucas type and Fibonacci type polynomials the authors [1] found closed formulas for the
GFP that are similar to Binet formulas for the classical numerical sequences like Fibonacci
and Lucas numbers.

If d2(x) + 4g(x) > 0, then the explicit formula for the recurrence relation (1) is given by

Gn(x) = t1a
n(x) + t2b

n(x) (2)

where a(x) and b(x) are the solutions of the quadratic equation associated to the second order
recurrence relation Gn(x). That is, a(x) and b(x) are the solutions of z2 − d(x)z − g(x) = 0
(for details on the construction of Binet formulas see [1]). So, the Binet formula for the GFP
of Lucas type is

Ln(x) =
an(x) + bn(x)

α
(3)

where α = 2/p0(x). The Binet formula for the GFP of Fibonacci type when p1(x) = 1 is

Rn(x) =
an(x)− bn(x)

a(x)− b(x)
. (4)

Note that a(x) + b(x) = d(x), a(x)b(x) = −g(x), and a(x) − b(x) =
√

d2(x) + 4g(x) where
d(x) and g(x) are the polynomials defined in (1). For the sake of simplicity, throughout this
paper we use a in place of a(x) and b in place of b(x).

A GFP sequence of Lucas (Fibonacci) type is equivalent or conjugate to a sequence of the
Fibonacci (Lucas) type, if their recursive sequences are determined by the same polynomials
d(x) and g(x). Notice that two equivalent polynomials have the same a(x) and b(x) in their
Binet representations. Examples of equivalent polynomials are in Table 1. Note that the
leftmost polynomials in Table 1 are of the Lucas type and their equivalent Fibonacci type
polynomials are in the third column on the same line.

For most of the proofs involving GFP of Lucas type it is required that gcd(p0(x), p1(x)) =
1, gcd(p0(x), d(x)) = 1, gcd(p0(x), g(x)) = 1, and gcd(d(x), g(x)) = 1. Therefore, for the
rest the paper we suppose that these four mentioned conditions hold for all GFP. We use ρ
to denote gcd(d(x), G1(x)). Notice that in the definition Pell-Lucas we have that p0(x) = 2
and p1(x) = 2x. Thus, the gcd(p0(x), p1(x)) 6= 1. Therefore, Pell-Lucas does not satisfy the

3



extra conditions that we just imposed for Generalized Fibonacci polynomial. To solve this
inconsistency we define Pell-Lucas-prime as follows:

Q′
0(x) = 1, Q′

1(x) = x, and Q
′

n(x) = 2xQ
′

n−1(x) +Q
′

n−2(x) for n ≥ 2.

It is easy to see that 2Q
′

n(x) = Qn(x). Flórez, Junes, and Higuita [3], have worked on similar
problems for numerical sequences.

Polynomial Ln(x) Polynomial of Rn(x) a(x) b(x)
Lucas type Fibonacci type

Lucas Dn(x) Fibonacci Fn(x) (x+
√
x2 + 4)/2 (x−

√
x2 + 4)/2

Pell-Lucas Qn(x) Pell Pn(x) x+
√
x2 + 1 x−

√
x2 + 1

Fermat-Lucas ϑn(x) Fermat Φn(x) (3x+
√
9x2 − 8)/2 (3x−

√
9x2 − 8)/2

Chebyshev first kind Tn(x) Chebyshev second kind Un(x) x+
√
x2 − 1 x−

√
x2 − 1

Jacobsthal-Lucas jn(x) Jacobsthal Jn(x) (1 +
√
1 + 8x)/2 (1−

√
1 + 8x)/2

Morgan-Voyce Cn(x) Morgan-Voyce Bn(x) (x+ 2 +
√
x2 + 4x)/2 (x+ 2−

√
x2 + 4x)/2

Vieta-Lucas vn(x) Vieta Vn(x) (x+
√
x2 − 4)/2 (x−

√
x2 − 4)/2

Table 1: Rn(x) equivalent to Ln(x).

3 Divisibility properties of GFP

In this section we prove a few divisibility and gcd properties that are true for all GFP. These
results will be used in a section later on to prove the main results of this paper. Lemma 1
is a generalization of [5, Proposition 2.2], both proofs are similar. The reader can therefore
update the proof in the afore-mentioned paper to obtain the proof of Lemma 1.

Lemma 1. Let p(x), q(x), r(x), and s(x) be polynomials.

(1) If gcd(p(x), q(x)) = gcd(r(x), s(x)) = 1, then

gcd(p(x)q(x), r(x)s(x)) = gcd(p(x), r(x)) gcd(p(x), s(x)) gcd(q(x), r(x)) gcd(q(x), s(x)).

(2) If gcd(p(x), r(x)) = 1 and gcd(q(x), s(x)) = 1, then

gcd(p(x)q(x), r(x)s(x)) = gcd(p(x), s(x)) gcd(q(x), r(x)).

Proposition 2. If {Gt(x)} is a GFP sequence, then

Gm(x) mod d2(x) ≡
{

gk−1(x) (kd(x)G1(x) + g(x)G0(x)) , if m = 2k;

gk(x) (kd(x)G0(x) +G1(x)) , if m = 2k + 1.

Proof. We use mathematical induction. Let S(m) be the statement

Gm(x) mod d2(x) ≡
{

gt−1(x) (td(x)G1(x) + g(x)G0(x)) , if m = 2t;

gt(x) (td(x)G0(x) +G1(x)) , if m = 2t+ 1.
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It is easy to see that

G1(x) ≡ G1(x) = g0(x) (0d(x)G0(x) +G1(x)) mod d2(x)

and
G2(x) ≡ G2(x) = g0(x) (d(x)G1(x) + g(x)G0(x)) mod d2(x).

This proves S(1) and S(2).
We suppose that S(m) is true for m = 2k and m = 2k+1. The proof of S(m+1) requires

two cases, we prove the case for m+1 = 2k+2, the case m+1 = 2k+3 is similar and we omit
it. We know that Gm+1(x) = d(x)Gm(x) + g(x)Gm−1(x). Thus, G2k+2(x) = d(x)G2k+1(x) +
g(x)G2k(x). This and the inductive hypothesis imply that G2k+2(x) mod d2(x) is

d(x)
[

gk(x) (kd(x)G0(x) +G1(x))
]

+ g(x)
[

gk−1(x) (kd(x)G1(x) + g(x)G0(x))
]

.

Simplifying we obtain,

G2(k+1)(x) ≡ gk(x) ((k + 1)d(x)G1(x) + g(x)G0(x)) mod d2(x).

This completes the proof.

Lemma 3 ( [1]). Let m and n be positive integers. If Gn(x) is a GFP of either Lucas or
Fibonacci type, then

(1) gcd(d(x), G2n+1(x)) = G1(x) for every positive integer n.

(2) If the GFP is of Lucas type, then gcd(d(x), G∗
2n(x)) = 1 and

if the GFP is of Fibonacci type, then gcd(d(x), G′
2n(x)) = d(x).

(3) gcd(g(x), Gn(x)) = gcd(g(x), G1(x)) = 1, for every positive integer n.

(4) If 0 < |m− n| ≤ 2 and {G∗
t (x)} is a GFP of Lucas type, then

gcd(G∗
m(x), G

∗
n(x)) =

{

G∗
1(x), if m and n are both odd;

1, otherwise.

(5) If 0 < |m− n| ≤ 2 and {G′
t(x)} is a GFP of Fibonacci type, then

gcd(G′
m(x), G

′
n(x)) =

{

G′
2(x) if m and n are both even;

1, otherwise.
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4 Hosoya polynomial triangle

We now give a precise definition of both the Hosoya polynomial sequence and the Hosoya
polynomial triangle. Let δ(x), γ(x), p0(x), and p1(x) be polynomials in Z[x]. Then the
Hosoya polynomial sequence {H(r, k)}r,k≥0 is defined using the double recursion

H(r, k) = δ(x)H(r − 1, k) + γ(x)H(r − 2, k)

and
H(r, k) = δ(x)H(r − 1, k − 1) + γ(x)H(r − 2, k − 2)

where r > 1 and 0 ≤ k ≤ r − 1 with initial conditions

H(0, 0) = p0(x)
2; H(1, 0) = p0(x)p1(x); H(1, 1) = p0(x)p1(x); H(2, 1) = p1(x)

2.

This sequence gives rise to the Hosoya polynomial triangle, where the entry in position k
(taken from left to right), of the rth row is equal to H(r, k) (see Table 2).

H(0, 0)
H(1, 0) H(1, 1)

H(2, 0) H(2, 1) H(2, 2)
H(3, 0) H(3, 1) H(3, 2) H(3, 3)

H(4, 0) H(4, 1) H(4, 2) H(4, 3) H(4, 4)
H(5, 0) H(5, 1) H(5, 2) H(5, 3) H(5, 4) H(5, 5)

Table 2: Hosoya polynomial triangle.

In this paper we are interested in the relationship between the points of the Hosoya
polynomial triangle and the products of generalized Fibonacci polynomials. Flórez, Higuita,
and Mukherjee [2], proved Proposition 4 below which helped establish the mentioned relation.
Thus, from Proposition 4 we can see that Table 2 is equivalent to Table 3. To complete the
relation between Hosoya polynomial triangle and GFP we need δ(x) = d(x) and γ(x) = g(x)
where d(x) and g(x) are the polynomials defined in (1) and δ(x) and γ(x) are the polynomials
defined in the Hosoya polynomial sequence. So, for the rest of the paper we assume that
δ(x) = d(x) and γ(x) = g(x). Note that in Table 3, for brevity, we use the notation Gk

instead of Gk(x).

Proposition 4. H(r, k) = Gk(x)Gr−k(x).

The proof of this proposition is similar to the proof of [4, Proposition 1] for numerical
sequences.

4.1 A coordinate system for the Hosoya polynomial triangle

If P is a point in a Hosoya polynomial triangle, then it is clear that there are two unique
positive integers r and k such that r > k with P = H(r, k). We call the ordered pair (r, k) the
rectangular coordinates of the point P . Flórez et al. [4], introduced a more convenient system
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of coordinates for points in the generalized Hosoya triangle. The mentioned coordinate
system generalized naturally to Hosoya polynomial triangle. Thus, from Proposition 4 it
is easy to see that any diagonal of Table 3 is the collection of all generalized Fibonacci
polynomials multiplied by a particular Gn(x). More precisely, an nth diagonal in the Hosoya
polynomial triangle is the collection of all generalized Fibonacci polynomial multiplied by
Gn(x). We distinguish between slash diagonals and backslash diagonals, with the obvious
meaning. We write S(Gn(x)) and B(Gm(x)) to mean the slash diagonal and backslash
diagonal, respectively. These two diagonals are

S(Gn(x)) = {H(n+ i, n)}∞i=0 = {Gn(x)Gi(x)|i ∈ Z≥0},
and

B(Gm(x)) = {H(m+ i, i)}∞i=0 = {Gi(x)Gm(x)|i ∈ Z≥0}.
Using this idea we can now associate an ordered pair of non-negative integers to every

element of a Hosoya polynomial triangle. If P is a point in a Hosoya polynomial triangle,
then there are two polynomials Gm(x) and Gn(x) such that P ∈ B(Gm(x))∩S(Gn(x)). Thus,
P = Gm(x)Gn(x). Therefore, the point P corresponds to the pair (m,n). It is clear that this
correspondence is a bijection between points of a Hosoya polynomial triangle and ordered
pairs of non-negative integers. The pair (m,n) is called the diagonal coordinates of P . We
use Proposition 4 to find the diagonal coordinates of a point P represented in rectangular
coordinates. Indeed, the point P = H(r, k) in rectangular coordinates is P = (r, k). Since
H(r, k) = Gk(x)Gr−k(x), by Proposition 4 we have that the point P in diagonal coordinates
is P = (k, r − k).

G0 G0

G0 G1 G1 G0

G0 G2 G1 G1 G2 G0

G0 G3 G1 G2 G2 G1 G3 G0

G0 G4 G1 G3 G2 G2 G3 G1 G4 G0

G0 G5 G1 G4 G2 G3 G3 G2 G4 G1 G5 G0

Table 3: H(r, k) = Gk(x)Gr−k(x).

Some examples of H(r, k) are in Table 4, obtained from Table 1 using Proposition 4.
Therefore, some examples of Hosoya Polynomial triangle can be constructed using Tables 3
and 4. It is enough to substitute each entry in Table 2 or Table 3 by the corresponding entry
in Table 4. Thus, we obtain a Hosoya polynomial triangle for each of the specific polynomials
mentioned in Table 1. So, Table 4 gives rise to 14 examples of Hosoya polynomial triangle.

For example, using the first polynomial in Table 4 and Proposition 4 in Table 3 we obtain
the Hosoya polynomial triangle where the entry H(r, k) is equal to Fk(x)Fr−k(x). This is
represented in Table 5 without the points that contain the factor F0(x) = 0.

For Table 4 we use δ := δ(x) = d(x) and γ := γ(x) = g(x), the polynomials defined in
the Hosoya polynomial sequence are referred to as H(r, k), and p0 := p0(x) and p1 := p1(x)
are the polynomials defined in (1).

7



H(r, k) p0 p1 δ γ H(r, k) p0 p1 δ γ

Fk(x)Fr−k(x) 0 1 x 1 Dk(x)Dr−k(x) 2 2x 2x 1
Pk(x)Pr−k(x) 0 1 2x 1 Qk(x)Qr−k(x) 2 2x 2x 1
Φk(x)Φr−k(x) 0 1 x −2 ϑk(x)ϑr−k(x) 2 3x x −2
Uk(x)Ur−k(x) 0 1 2x −1 Tk(x)Tr−k(x) 1 x 2x −1
Jk(x)Jr−k(x) 0 1 1 2x jk(x)jr−k(x) 2 1 1 2x
Bk(x)Br−k(x) 0 1 x+ 2 −1 Ck(x)Cr−k(x) 2 x+ 2 x+ 2 −1
Vk(x)Vr−k(x) 0 1 x −1 vk(x)vr−k(x) 2 x x −1

Table 4: Terms H(r, k) of the Hosoya polynomial triangle.

Observe that H(r, k) in the first column of Table 4 is a product of polynomials of Fi-
bonacci type. Therefore, G0(x) = 0 so the edges containing G0(x) as a factor in Table 3,
will have entries equal to zero. From the sixth column of Table 4 we see that H(r, k) is a
product of polynomials of Lucas type. So the edges containing G0(x) as a factor in Table 3
will not have entries equal to zero.

1
x x

x2 + 1 x2 x2 + 1
x3 + 2x x3 + x x3 + x x3 + 2x

x4 + 3x2 + 1 x(x3 + 2x) (x2 + 1)2 x(x3 + 2x) x4 + 3x2 + 1

Table 5: The Hosoya polynomial triangle where H(r, k) = Fk(x)Fr−k(x).

5 Star of David property in the Hosoya polynomial

triangle

In the first part of this section we prove one of the main results of this paper, namely the
Star of David property for the Hosoya polynomial triangle. This property holds in Pascal’s
triangle, Hosoya triangle, generalized Hosoya triangle, Fibonomial triangle, and gibonomial
triangle.

Koshy [14, Chapters 6 and 26] discussed how some properties of star of David are present
in several triangular arrays. Those properties –called Hoggatt-Hansell identity, Gould prop-
erty, or GCD property– were also proved in [4,5] for Hosoya and generalized Hosoya triangles.
The results in this paper generalize several results in [4,5,8,14] that were proved for numeri-
cal sequences. In particular in Theorem 5 parts (1), (2) and (3) we prove the Hoggatt-Hansell
identity and Gould property for polynomials.

Throughout the rest of this paper we use only diagonal coordinates (see Subsection 4.1)
to refer to any point in a Hosoya polynomial triangle.

In the following part of this section we take, a1, a2, a3 and b1, b2, b3 as the vertices of
the two triangles of the star of David and c its interior point in the generalized Hosoya
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polynomial triangle (see Figure 1 parts (a) and (b)). The points a1, a2, a3 and b1, b2, b3 can
be seen as the alternating points of a hexagon (see Figure 1 part (d)).

If we know the location of one vertex, we can obtain the location of the remaining five
vertices of the star of David. For instance, if (m,n) are the diagonal coordinates of a2, then
the points in the star of David in Figure 1 part (a) are

a1 = Gm+1(x)Gn−2(x), a2 = Gm(x)Gn(x), and a3 = Gm+2(x)Gn−1(x),
b1 = Gm(x)Gn−1(x), b2 = Gm+2(x)Gn−2(x), and b3 = Gm+1(x)Gn(x).

Table 6: Coordinates for star of David in Figure 1 part (a).

Similarly, if (m,n) are the diagonal coordinates of b2, then the points in the star of David
seen in Figure 1 part (b):

a1 = Gm(x)Gn−1(x), a2 = Gm−2(x)Gn−2(x), and a3 = Gm−1(x)Gn(x),
b1 = Gm−1(x)Gn−2(x), b2 = Gm(x)Gn(x), and b3 = Gm−2(x)Gn−1(x).

Table 7: Coordinates for star of David in Figure 1 part (b).

Note that the coordinates for the point c in the star of David in Figure 1 part (a) are
given by Gm+1(x)Gn−1(x) and coordinates for the point c in the star of David in Figure 1
part (b) are given by Gm−1(x)Gn−1(x).

Figure 1: Star of David.

In Theorem 5 part (2), we analyze whether gcd(a1, a2, a3) = gcd(b1, b2, b3), this is true
if gcd(ρ,Gn(x)/ρ) = 1, where ρ = gcd(d(x), G1(x)). The polynomials in Table 1 that
satisfy this condition are: Fibonacci, Lucas, Pell-Lucas, Chebyshev first kind, Jacobsthal,
Jacobsthal-Lucas, and both Morgan-Voyce polynomials. The polynomials in Table 1 that
satisfy that gcd(ρ2, Gn(x)) 6= 1 are: Pell, Fermat, Fermat-Lucas, and Chebyshev second
kind. We analyze these cases in Corollaries 7 and 8. For Theorem 5 we use the points as
given in Figure 1 parts (a) and (b) with coordinates given in Tables 6 and 7.

For simplicity we introduce the following notation that we use in the theorem and the
corollaries below. We denote by ∆a the set of vertices {a1, a2, a3} and by ∆b the set of
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vertices {b1, b2, b3} of the two triangles of the star of David that are seen in Figure 1. That
is, the stars of David in the generalized Hosoya polynomial triangle. For the rest of the paper
we suppose that a2 6= G0(x)G0(x).

Theorem 5. Suppose that ∆a and ∆b are as defined on page 9. Let c be the interior point of
the star of David in the generalized Hosoya polynomial triangle. If a2 6= G0(x)G0(x), then

(1) a1a2a3 = b1b2b3.

(2) If m ≥ 1 and n > 1, then

gcd(a1, a2, a3) =

{

β gcd(b1, b2, b3), if m and n are both even;

gcd(b1, b2, b3), otherwise,

where β is a constant that depends on d(x), m, and n.

(3) If m ≥ 0 and n ≥ 0, then

gcd(a1, a2, a3) =

{

β ′ gcd(b1, b2, b3), if m and n are both odd;

gcd(b1, b2, b3), otherwise,

where β ′ is a constant that depends on G1(x), m, and n.

(4) The product gcd(a1, b3) gcd(b1, a3) is equal to either c, cGt(x), or cG2
t (x), where t = 1 if

Gt is Lucas type and t = 2 if Gt is Fibonacci type.

Proof. From the diagonal coordinates –of the star of David given in Figure 1– given for
a1, a2, a3 and b1, b2, b3 it is easy to see that part (1) is true. We now observe that the star of
David can be constructed in the Hosoya polynomial triangle if m ≥ 0, n ≥ 2.

We prove parts (2) and (3) together for the case in which the star of David is as in Figure
1 part (a). The proof of the case of the star of David in Figure 1 part (b) is similar and we
omit it.

From Lemma 1 part (2) we have

gcd(Gm(x)Gn−1(x), Gm+1(x)Gn(x)) = gcd(Gm(x), Gn(x)) gcd(Gn−1(x)Gm+1(x)).

Therefore,

gcd (b1, b3, b2) = gcd (gcd (Gm(x)Gn−1(x), Gm+1(x)Gn(x)) , Gm+2(x)Gn−2(x))

= gcd (gcd(Gm(x), Gn(x)) gcd (Gn−1(x)Gm+1(x)) , Gm+2(x)Gn−2(x)) .

From Lemma 3 we know that

gcd(Gm+2(x)Gn−2(x), gcd(Gn−1(x), Gm+1(x))) = 1.

So,

gcd (b1, b3, b2) = gcd (gcd (Gm(x), Gn(x)) , Gm+2(x), Gn−2(x))

= gcd (Gm(x), Gn(x), Gm+2(x)Gn−2(x))

= gcd(Gm(x), gcd(Gn(x), Gm+2(x)Gn−2(x))). (5)
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Let Dt(x) = gcd(Gt(x), Gt−2(x)) for t > 0. This, (5), and Lemma 1 imply that

gcd(b1, b3, b2) = gcd(Gm(x), gcd(Gn(x), Gm+2(x)Dn(x)))

= gcd(Gn(x), gcd(Gm(x), Gm+2(x)Dn(x)))

= gcd(Gn(x), gcd(Gm(x), Dm(x)Dn(x)))

= gcd(Gn(x), Gm(x), Dm(x)Dn(x)). (6)

Similarly, we can see that

gcd(a1, a2, a3) = gcd(Gn−2(x), Gm+2(x), Dn(x)Dm(x)).

We prove the remaining part of this proof by cases (GFP of Fibonacci type and Lucas
type).

Case GFP of Fibonacci type. Let’s suppose that Gn(x) = G′
n(x) and we divide this

case into three sub-cases depending on the parity of m and n.
Sub-case m and n are odd. From Lemma 3 part (5) it easy to see that

gcd(b1, b3, b2) = gcd(G′
n(x), G

′
m(x), Dm(x)Dn(x)) = 1

and
gcd(a1, a2, a3) = gcd(G′

n−2(x), G
′
m+2(x), Dn(x)Dm(x)) = 1.

Sub-case m and n have different parity. From Lemma 3 part (5) it is easy to see that
Dn(x)Dm(x) = G2(x). This and (6) imply that gcd(b1, b3, b2) = gcd(Gn(x), Gm(x), G2(x)).
This and Lemma 3 part (1), imply that gcd(b1, b3, b2) = 1.

Sub-case both m and n are even. Suppose that n = 2k1 and m = 2k2. So, from
Lemma 3 part (5) we have that Dm(x) = Dn(x) = d(x). Since G

′

0(x) = 0 and G
′

1(x) = 1, by
Proposition 2 we have

G
′

2k1(x) ≡ k1g
k1−1(x)d(x) mod d2(x)

G
′

2k2
(x) ≡ k2g

k2−1(x)d(x) mod d2(x).

This and gcd(d(x), g(x)) = 1 imply that

gcd(b1, b2, b3) = gcd(k1g
k1−1(x)d(x), k2g

k2−1(x)d(x), d2(x)) = d(x) gcd(d(x), k1, k2).

Similarly we have that gcd(a1, a2, a3) = d(x) gcd(d(x), k1 − 1, k2 + 1).
Let β = (gcd(d(x), k1 − 1, k2 + 1)) / (gcd(d(x), k1, k2)). Therefore,

gcd(a1, a2, a3) = β gcd(b1, b2, b3).

Notice that if the star of David is as in Figure 1 part (b), then

β = (gcd(d(x), k1, k2)) / (gcd(d(x), k1 − 1, k2 − 1)) .

This completes the proof of part (2).
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We prove part (3) for the star of David in Figure 1 part (a). The proof for the star of
David in Figure 1 part (b) is similar and we omit it.

Case GFP of Lucas type. Let’s suppose that Gn(x) = G∗
n(x). If m and n are not

both even, then the proof follows in a similar way as seen above.
Sub-case both m and n are odd. Suppose that n = 2k1 + 1 and m = 2k2 + 1.

Therefore, by Lemma 3 part (4) we know that Dm(x) = Dn(x) = G∗
1(x). Since, G

∗
1(x)|d(x),

by Proposition 2 we have that

G∗
n(x) ≡ ngk1(x)G∗

1(x) mod (G∗
1(x))

2

G∗
m(x) ≡ mgk2(x)G∗

1(x) mod (G∗
1(x))

2.

From this and (6) is easy to see that

gcd(b1, b2, b3) = gcd(ngk1(x)G∗
1(x), mgk2(x)G∗

1(x), (G
∗
1(x))

2).

This and gcd(d(x), g(x)) = 1 imply that gcd(b1, b2, b3) = G∗
1(x) gcd(n,m,G∗

1(x)).
Similarly we can prove that

gcd(a1, a2, a3) = G∗
1(x) gcd(G

∗
1(x), n− 2, m+ 2).

Let β ′ = (gcd(G∗
1(x), n− 2, m+ 2)) / (gcd(G∗

1(x), n,m)). Then,

gcd(a1, a2, a3) = β ′ gcd(b1, b2, b3).

Notice that if the star of David is as in Figure 1 part (b), then

β ′ = (gcd(G∗
1(x), n,m)) / (gcd(G∗

1(x), n− 2, m− 2)) .

This completes the proof of part (3).
We prove part (4) for the star of David in Figure 1 part (a). The proof for the star of

David in Figure 1 part (b) is similar and we omit it. Using the diagonal coordinates we have
that gcd(a1, b3) gcd(b1, a3) is equal to

gcd(Gm+1(x)Gn−2(x), Gm+1(x)Gn(x)) gcd(Gm(x)Gn−1(x), Gm+2(x)Gn−1(x)).

Therefore,

gcd(a1, b3) gcd(b1, a3) = Gm+1(x)Gn−1(x) gcd(Gn−2(x), Gn(x)) gcd(Gm(x), Gm+2(x)).

The conclusions follow using Proposition 3.

From the proof of Theorem 5 it is easy to see the following corollaries.

Corollary 6. Suppose that ∆a and ∆b are as defined on page 9, then gcd(a1, a2, a3) =
gcd(b1, b2, b3), if Gt(x) is one of the following polynomials: Fibonacci, Lucas, Jacobsthal,
Jacobsthal-Lucas, Chebyshev first kind polynomials, Pell-Lucas, and both Morgan-Voyce poly-
nomials.
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Corollary 7. Suppose that ∆a and ∆b are as defined on page 9 and that {G′
t(x)} is a GFP

of Fibonacci type with n = 2k1 and m = 2k2.

1. If G′
n(x) is a Pell polynomial or Chebyshev polynomial of the second kind with k1k2 6≡

0 mod 4 and k1 6≡ k2 mod 2, then gcd(a1, a2, a3) = gcd(b1, b2, b3).

2. If G′
n(x) is a Fermat polynomial with k1k2 6≡ 0 mod 9 and k1 6≡ 2k2 mod 3, then

gcd(a1, a2, a3) = gcd(b1, b2, b3).

3. Suppose that ∆a and ∆b are as in Figure 1 part (a) and that G′
n(x) is a Fermat

polynomial.

If k1k2 6≡ 0 mod 9 and k1 6≡ 2k2 mod 3, then gcd(a1, a2, a3) = gcd(b1, b2, b3).

4. Suppose that ∆a and ∆b are as in Figure 1 part (b) and that G′
n(x) is a Fermat

polynomial.

If k1k2 6≡ 0 mod 9 and (k1−1)(k2−1) 6≡ 0 mod 9, then gcd(a1, a2, a3) = gcd(b1, b2, b3).

Corollary 8. Suppose that ∆a and ∆b are as defined on page 9. Let {G′
t(x)} be the sequence

of Fermat-Lucas polynomials.

1. Suppose that ∆a and ∆b are as in Figure 1 part (a).

If nm 6≡ 0 mod 9 and (n− 2)(m+ 2) 6≡ 0 mod 9, then gcd(a1, a2, a3) = gcd(b1, b2, b3).

2. Suppose that ∆a and ∆b are as in Figure 1 part (b).

If nm 6≡ 0 mod 9 and (n− 2)(m− 2) 6≡ 0 mod 9, then gcd(a1, a2, a3) = gcd(b1, b2, b3).

6 The star of David in the gibonomial triangle

In this section we give a brief observation related to gibonomial coefficients. Let f ∗
k (x)

be the product of Fibonacci polynomials Fk(x)Fk−1(x) . . . F1(x). Then the nth gibonomial
coefficient is defined by

[[

n

r

]]

=
f ∗
n(x)

f ∗
n−r(x)f

∗
r (x)

.

Notice that f ∗
k (1) gives rise to the classic (numerical) Fibonomial coefficient (see [6]). Koshy

[11] defines the gibonomial triangle, similarly as Pascal (binomial) triangle, where its entries
are gibonomial coefficients instead of binomial coefficients (see Table 9). Note that Sagan
and Savage [17] define lucanomials,

{

n

r

}

, where
[[

n

r

]]

is a particular case.
We now consider the star of David as in Figure 1 part (a) on page 9, where the vertices are

gibonomial coefficients (see Table 8). Now it is easy to see that this star of David embeds in
the gibonomial triangle. Koshy [11] proved that a1a2a3 = b1b2b3. In this section we establish
the second fundamental property of the star of David for the gibonomial triangle –the GCD
property–. However, the property described in Figure 1 part (c) on page 9 does not hold in
this triangle. Thus, gcd(a1, b3) gcd(b1, a3) is not equal to c =

[[

n

r

]]

.
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a1 =
[[

n−1
r

]]

, a2 =
[[

n

r−1

]]

, and a3 =
[[

n+1
r+1

]]

,

b1 =
[[

n−1
r−1

]]

, b2 =
[[

n

r+1

]]

, and b3 =
[[

n+1
r

]]

.

Table 8: Coordinates for the star of David in Figure 1 part (a) on page 9.

1
1 1

1 x 1
1 x2 + 1 x2 + 1 1

1 x(x2 + 2) 2 + 3x2 + x4 x(x2 + 2) 1
1 x4 + 3x2 + 1 x6 + 5x4 + 7x2 + 2 x6 + 5x4 + 7x2 + 2 x4 + 3x2 + 1 1

Table 9: The gibonomial triangle.

Theorem 9. Let S be the star of David as in Figure 1 part (a) on page 9. If a1, a2, a3, b1, b2,
and b3 are the vertices of S in the gibonomial triangle, then

(1) a1a2a3 = b1b2b3.

(2) gcd(a1, a2, a3) = gcd(b1, b2, b3).

Proof. Koshy [11] proved part (1) while Hillman and Hoggatt [6] proved part (2) for Fibono-
mial coefficients (numerical). The proof of part (2) is similar to the proof for Fibonomial
coefficients.

7 Geometric interpretation of some identities of GFP

The aim of this section is to give geometrical interpretations of some polynomial identities
that are known for the Fibonacci numbers. The novelty of this section is that we extend some
well-known numerical identities to GFP and provide geometric proofs for these identities
instead of the classical mathematical induction proofs.

Hosoya type triangles (polynomial and numeric) are good tools to discover, prove, or
represent theorems geometrically. Some properties that have been found and proved alge-
braically, are easy to understand when interpreted geometrically using this triangle. We now
discuss some examples on how geometry of the triangle can be used to represent identities.
The examples given in the following discussion are only for the case in which the Hosoya
polynomial triangle denoted by HF (x) has products of Fibonacci polynomials as entries.
With this triangle in mind we introduce a notation that will be used in following examples.
We define an n-initial triangle Hn

F (x) as the finite triangular arrangement formed by the first
n-rows of the mentioned Hosoya triangle with non-zero entries. Note that the initial triangle
is the equilateral sub-triangle of the Hosoya triangle as in Table 3 on page 7 without the
entries containing the factor G0. For instance, Table 5 on page 8 represents the 5th initial
triangle of HF (x).
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If F ′
n(x) represent the derivative of the Fibonacci polynomial Fn(x), then F ′

n(x) =
∑n−1

k=1 Fk(x)Fn−k(x) (see [12]). The geometric representation of this property in Hn
F (x) is

as follows: the derivative of the first point of the nth row of Hn
F (x) is equal to the sums of

all points of the (n− 1)th row of Hn
F (x) (see Table 5 on page 8). We have observed that this

property implies that the integral of all points of Hn−1
F (x) is equal to the sum of all points

of one edge of the Hn
F (x), where the constant of integration is ⌈n/2⌉. This result is stated

formally in Proposition 10.

Proposition 10. Let C be the constant of integration. Then

1.

H(n, 1) =

n−1
∑

k=1

∫

H(n− 1, k).

Equivalently,

Fn(x) =
n−1
∑

k=1

∫

Fk(x)Fn−k(x),

where C = 1 if n is odd and zero otherwise.

2.

H(n+ 1, 1) +H(n, 1)− 1 = x
n

∑

r=1

r−1
∑

k=1

∫

H(r − 1, k).

Equivalently,

Fn+1(x) + Fn(x)− 1 = x

n
∑

r=1

r−1
∑

k=1

∫

Fk(x)Fr−k(x),

where C = ⌈n/2⌉.

Proof. The proof of part (1) is straightforward using the geometric interpretation of F ′
n(x).

We prove part (2). From part (1) and from the geometry of Hn−1
F (x) it is easy to see

that
∑n

r=1H(k, 1) =
∑n−1

r=1

∑r−1
k=1

∫

H(r − 1, k). From Koshy [12, Theorem 37.1] we know
that Fn+1(x)+Fn(x)−1 = x

∑n

i=1 Fi(x). This and the fact that H(t, 1) = Ft(x) for all t ≥ 1
completes the proof.

Lemma 11. If i, j, k, and r are nonnegative integers with k + j ≤ r, then in the Hosoya
polynomial triangle it holds that

H(r + 2i, k + j + i)−H(r + 2i, k + i) = (−1)iγ(x)(H(r, k + j)−H(r, k)).
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H(r,k+j)H(r,k)

H(r+2i,k+i) H(r+2i,k+j+i)

 2
i R

ow
s

j columns

Figure 2: Property of Rectangle.

The proof of the Lemma 11 follows using induction and the rectangle property which
states that H(n,m) = δ(x)H(n− 1, m) + γ(x)H(n− 2, m) (see Figure 2).

It is well known that the Catalan identity is a generalization of the Cassini identity. In
Wolfram MathWord there is another numerical generalization of the Cassini and Catalan
identities, called the Johnson identity [20]. It states that for the Fibonacci number sequence
{Fn},

FaFb − FcFd = (−1)r (Fa−rFb−r − Fc−rFd−r)

where a, b, c, d, and r are arbitrary integers with a+ b = c+ d.
The example in Figure 3 gives a geometric representation of the numeric identities (the

same representation holds for polynomials). To represent the Cassini identity we take two
consecutive points in the Hosoya triangle along a horizontal line such that one point is
located in the central column of the triangle, see Figure 3. We then pick two other arbitrary
consecutive points P1 and P2 such that they form a vertical rectangle along with the first
pair of points. Now it easy to see that subtracting the horizontal points P1 and P2 gives ±1.
Since the entries of the triangle are products of Fibonacci numbers, we obtain the Cassini
identity.

The second example in Figure 3 represent the Catalan identity. In this case we take any
two horizontal points Q1 and Q2 where Q1 is located (arbitrarily) in the central column of
the triangle. We then pick other two arbitrary points P1 and P2 such that those form a
rectangle with Q1 and Q2. Now it easy to see that subtracting the horizontal points P1 and
P2 gives ±(Q1 − Q2). Since the entries of the triangle are products of Fibonacci numbers,
we obtain the Catalan identity. Note that if we eliminate the condition that Q1 must be in
the central column, we obtain the Johnson identity.

Theorem 12 is the generalization of the Johnson identity. As a consequence of Theorem
12 we state Corollary 13 –this generalizes Catalan and Cassini identities for GFP–.
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1

1 1

2 1 2

3 2 2 3

5 3 4 3 5

8 5 6 6 5 8

13 8 10 9 10 8 13

21 13 16 15 15 16 13 21

34 21 26 24 25 24 26 21 34

55 34 42 39 40 40 39 42 34 55

89 55 68 63 65 64 65 63 68 55 89

144 89 110 102 105 104 104 105 102 110 89 144

233 144 178 165 170 168 169 168 170 165 178 144 233

377 233 288 267 275 272 273 273 272 275 267 288 233 377

610 377 466 432 445 440 442 441 442 440 445 432 466 377 610

987 610 754 699 720 712 715 714 714 715 712 720 699 754 610 987

1597 987 1220 1131 1165 1152 1157 1155 1156 1155 1157 1152 1165 1131 1220 987 1597

2584 1597 1974 1830 1885 1864 1872 1869 1870 1870 1869 1872 1864 1885 1830 1974 1597 2584

 Catalan identity

 Cassini identity

Figure 3: Cassini and Catalan identities.

Theorem 12. Let a, b, c, d and t be nonnegative integers with min{a, b, c, d}−t non-negative.
If {Gn(x)} is GFP and a+ b = c+ d then

∣

∣

∣

∣

Ga(x) Gc(x)
Gd(x) Gb(x)

∣

∣

∣

∣

= (−1)tgt(x)

∣

∣

∣

∣

Ga−t(x) Gc−t(x)
Gd−t(x) Gb−t(x)

∣

∣

∣

∣

.

Proof. Let i, j, k, and r be nonnegative integers such that a = k + j + i, b = r + i− k − j,
c = k + i, d = r + i − k, and t = i. Therefore, by Lemma (11) and Proposition (4) the
equality holds.

Corollary 13. Suppose that m, r are non-negative integers. If {Gn(x)} is GFP, then

1. (Catalan identity)

∣

∣

∣

∣

Gm(x) Gm+r(x)
Gm−r(x) Gm(x)

∣

∣

∣

∣

= (−1)m−rgm−r(x)

∣

∣

∣

∣

Gr(x) G2r(x)
G0(x) Gr(x)

∣

∣

∣

∣

,

2. (Cassini identity)

∣

∣

∣

∣

Gm(x) Gm+1(x)
Gm−1(x) Gm(x)

∣

∣

∣

∣

= (−1)m−1g(x)m−1

∣

∣

∣

∣

G1(x) G2(x)
G0(x) G1(x)

∣

∣

∣

∣

.

Proof. The proof is straightforward when the appropriate values of m and r are substituted
in Theorem 12 (see Figure 3). If we evaluate both determinants in Theorem 12 we obtain
four summands that are four points in the Hosoya polynomial triangle. Note that these four
points are the vertices of a rectangle in the Hosoya triangle.
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R3

R1

R2

R4

0

0

0

0

Figure 4: Geometrical interpretation of Theorem 14.

For the next result we introduce the function

I(n) =

{

g(x), if n is even;

1, if n is odd.

We observe that if we have a Hosoya triangle where the entries are products of GFP of
Fibonacci type, then we can draw rectangles with two vertices in the central line (perpen-
dicular bisector) of the triangle and a third vertex on the edge of the triangle (see Figure 4).
Let R be a rectangle with the extra condition that the upper vertex points are multiplied by
g(x), then Lemma 11 guarantees that the sum of the two top vertices of R is equal to the
sum of the remaining vertices of R. Since the points in the edge of this triangle are equal
to zero, we have that one of the vertices of R is equal to zero. The other vertex in the same
vertical line is a GFP multiplied by one. This geometry gives rise to Theorem 14.

Theorem 14. Suppose that n and k are positive integers. If {G′

n(x)} is of Fibonacci type
then

2n+1
∑

j=2

I(j)G
′2
j (x) =

n
∑

j=1

G
′

4j+1(x)

and
2n+1
∑

j=2

(−1)j+1I2(j)G
′2
2j(x) = d(x)

n
∑

j=1

G
′

8j+2(x).

Proof. First of all we recall that G
′

1(x) = 1. We prove the first identity.

2n+1
∑

j=2

I(j)G
′2
j (x) =

n
∑

j=1

(G
′2
2j+1(x) + g(x)G

′2
2j(x)) =

n
∑

j=1

(G
′

4j+1(x)G
′

1(x) +G
′

0(x)G
′

4j)

=

n
∑

j=1

G
′

4j+1(x).
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We now prove the second identity. Let S :=
∑2n+1

j=2 (−1)j+1I2(j)G
′2
2j(x). Lemma 11

implies that

S =
n

∑

j=1

(G
′2
4j+2(x)− g2(x)G

′2
4j(x))

=

n
∑

j=1

((

G
′2
4j+2(x) + g(x)G

′2
4j+1(x)

)

− g(x)
(

G
′2
4j+1(x) + g(x)G

′2
4j(x)

))

.

Since G
′

1(x) = 1, we have

S =
n

∑

j=1

((

G
′

8j+3(x) + g(x)G
′

8j+1(x)G
′

0(x)
)

− g(x)
(

G
′

8j+1(x) + g(x)G
′

8j−1(x)G
′

0(x)
))

= G
′

1(x)

n
∑

j=1

(

G
′

8j+3(x)− g(x)G
′

8j+1(x)
)

= d(x)

n
∑

j=1

G
′

8j+2(x).

This proves the theorem.

Corollary 15 provides a closed formula for special cases of Theorem 14. We use Figure
5 to have a geometric interpretation of Corollary 15. For simplicity we only prove part (2)
(part (1) is similar and we omit it). From the geometric point of view Corollary 15 part (2)
states that the sum of all points that are in the intersection of a finite zigzag configuration
and the central line of the triangle is the last point of the zigzag configuration (see Figure 5).
We now give more details of the validity of this statement. From the hypothesis of Corollary
15 we have that g = 1 and H(0, k) = H(k, 0) = 0 for every k. This and the definition of the
Hosoya polynomial sequence, on page 6, imply that

H(r, k) = d(x)H(r− 1, k) +H(r− 2, k) and H(r, k) = d(x)H(r− 1, k− 1)+H(r− 2, k− 2).

Therefore the points depicted in Figure 5 have the properties described in Table 10.

p0 = 0, p2 = d(x)p1 + p0, p4 = d(x)p3 + p2 p6 = d(x)p5 + p4
p6 = d(x)p5 + p4, p8 = d(x)p7 + p6, . . . p4n = d(x)p4n−1 + p4n−2.

Table 10: Properties of points in the Zigzag Figure 5.

Since g = 1, we have that I(j) = 1 for all j. Therefore,
∑2n+1

j=1 I(j)G
′2
j (x) is actually the

sum of all points that are in the intersection of the zigzag diagram with central line of the
triangle (see Figure 5). Thus,

d(x)
2n+1
∑

j=1

G
′2
j (x) = p0 + d(x)p1 + d(x)p3 + d(x)p5 + d(x)p7 + · · ·+ d(x)p4n−1.
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The first two terms of the right side of this sum are equal to the third point of the zigzag
diagram (see Table 10 and Figure 5). Therefore, substituting them by p2 we have

d(x)

2n+1
∑

j=1

G
′2
j (x) = p2 + d(x)p3 + d(x)p5 + d(x)p7 + · · ·+ d(x)p4n−1.

The first two terms of the right side of this sums are equal to the the fifth point of the zigzag
diagram (see Table 10 and Figure 5). Therefore, substituting them by p4 we have

d(x)

2n+1
∑

j=1

G
′2
j (x) = p4 + d(x)p5 + d(x)p7 + · · ·+ d(x)p4n−1.

Similarly, we substitute p4 + d(x)p5 by the seventh point of the zigzag diagram. Thus,

d(x)

2n+1
∑

j=1

G
′2
j (x) = p6 + d(x)p7 + · · ·+ d(x)p4n−1.

We keep systematically doing those substitutions to obtain

d(x)

2n+1
∑

j=1

G
′2
j (x) = p4n = G

′

2n−1(x)G
′

2n(x).

This completes the geometric proof of Corollary 15 part (2).

Figure 5: Geometric interpretation of Corollary 15.

Corollary 15. If {G′

n(x)} is of Fibonacci type then,

1.
n

∑

j=1

g2(n−j)G
′

4j−3(x) =
G

′

2n−1(x)G
′

2n(x)

d(x)
,
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2. if {G′

n(x)} satisfies that g = 1, then

2n−1
∑

j=1

I(j)G
′2
j (x) =

G
′

2n−1(x)G
′

2n(x)

d(x)
.

Proof. Since H(2n, n) = G2
n(x), we have that gn(x)H(1, 1) +

∑n

j=1 d(x)g
n−jG2

j(x) equals

n
∑

j=1

d(x)gn−jH(2j, j) = gn−1(x)(g(x)H(1, 1) + d(x)H(2, 1)) +

n
∑

j=2

d(x)gn−jG2
j(x)

= gn−1(x)H(3, 1) + d(x)gn−2H(4, 2) +
n

∑

j=3

d(x)gn−jG2
j(x)

= gn−2(x)H(5, 3) +

n
∑

j=3

d(x)gn−jG2
j (x)

= gn−2(x)G3(x)G2(x) +
n

∑

j=3

d(x)gn−jG2
j (x).

Similarly we obtain that

n
∑

j=1

d(x)gn−jG2
j (x) = H(2n+ 1, n+ 1) = Gn+1(x)Gn(x)− gn(x)G1(x)G0(x). (7)

Note that

2n+1
∑

j=2

g2n+1−j(x)G
′2
j (x) =

n
∑

j=1

g2n−j(x)(G
′2
2j+1(x) + g(x)G

′2
2j(x))

=

n
∑

j=1

g2n−j(x)(G
′

4j+1(x)G
′

1(x) +G
′

0(x)G
′

4j)

=
n

∑

j=1

g2n−j(x)G
′

4j+1(x).

This, the equation (7), and G0(x) = 0 completes the proof.

8 Numerical types of Hosoya triangle

In this section we study some connections of the Hosoya polynomial triangles with some
numeric sequences that maybe found in [18]. We show that when we evaluate the entries of
a Hosoya polynomial triangle at x = 1 they give a triangle that is in http://oeis.org/.
The first Hosoya triangle is the classic Hosoya triangle formerly called Fibonacci triangle.
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We now introduce some notation that is used in Table 11. Let HF (x) denote the Hosoya
polynomial triangle with products of Fibonacci polynomials as entries. Similarly we define
the notation for the Hosoya polynomial triangle of the other types –Chebyshev polynomi-
als, Morgan-Voyce polynomials, Lucas polynomials, Pell polynomials, Fermat polynomials,
Jacobsthal polynomials–. The star of David property holds obviously for all these numeric
triangles.

Type triangle Notation Entries Sloane
Fibonacci HF (1) Fk(1)Fr−k(1) A058071
Lucas HD(1) Dk(1)Dr−k(1) A284115
Pell HP (1) Pk(1)Pr−k(1) A284127
Pell-Lucas HQ(1) Qk(1)Qr−k(1) A284126
Fermat HΦ(1) Φk(1)Φr−k(1) A143088
Fermat-Lucas Hϑ(1) ϑk(1)ϑr−k(1) A284128
Jacobsthal HJ(1) Jk(1)Jr−k(1) A284130
Jacobsthal-Lucas Hj(1) jk(1)jr−k(1) A284129
Morgan-Voyce HB(1) Bk(1)Br−k(1) A284131
Morgan-Voyce HC(1) Ck(1)Cr−k(x) A141678

Table 11: Numerical Hosoya triangles present in Sloane [18].

We also observe some curious numerical patterns when we compute the GCD’s of the
coefficients of polynomials discussed in this paper. In particular, the GCD of the coefficients
of Φn(x) –the nth Fermat polynomial– is 3an where an is the nth element of A168570. The
GCD of the coefficients of ϑn(x) –the nth Fermat-Lucas polynomial– is 3an where an is the
nth element of A284413. We also found that the GCD of the coefficients of the P2n(x) –the
2nth Pell polynomial– is 2an where an is the nth element of A001511. Finally, the GCD of
the coefficients of the Un(x) –the nth Chebyshev’s polynomial of second kind– is 2an where
an is the nth element of A007814.
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