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The Frobenius number for sequences of triangular

and tetrahedral numbers
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Abstract

We compute the Frobenius number for sequences of triangular and

tetrahedral numbers. In addition, we study some properties of the nu-

merical semigroups associated to those sequences.
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1 Introduction

According to [4], Frobenius raised in his lectures the following question: given
relatively prime positive integers a1, . . . , an, compute the largest natural num-
ber that is not representable as a non-negative integer linear combination of
a1, . . . , an. Nowadays, it is known as the Frobenius (coin) problem. Moreover,
the solution is called the Frobenius number of the set {a1, . . . , an} and it is
denoted by F(a1, . . . , an).

It is well known the solution for n = 2 (see [22, 23]). Namely, F(a1, a2) =
a1a2 − a1 − a2. At present, the Frobenius problem is open for n ≥ 3. More
precisely, Curtis showed in [6] that it is impossible to find a polynomial formula
(this is, a finite set of polynomials) that computes the Frobenius number if
n = 3. In fact, Ramı́rez-Alfonśın proves in [15] that this problem is NP-hard
for n variable.

Many papers are devoted to study this problem for particular cases (see [16]
for more details). Specially, when {a1, . . . , an} is part of a “classic” integer
sequences: arithmetic and almost arithmetic ([4, 17, 11, 21]), Fibonacci ([12]),
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geometric ([14]), Mersenne ([19]), squares and cubes ([10, 13]), Thabit ([18]),
etcetera.

For example, in [4] Brauer proves that

F(n, n+ 1, . . . , n+ k − 1) =
(⌊n− 2

k − 1

⌋

+ 1
)

n− 1, (1.1)

where, if x ∈ R, then ⌊x⌋ ∈ Z and ⌊x⌋ ≤ x < ⌊x⌋ + 1. On the other hand,

denoting by a(n) = F
(

n(n+1)
2 ,

(n+1)(n+2)
2 ,

(n+2)(n+3)
2

)

, for n ∈ N\{0}, C. Baker

conjectured that (see https://oeis.org/A069755/internal)

a(n) =
−14 + 6(−1)n + (3 + 9(−1)n)n+ 3(5 + (−1)n)n2 + 6n3

8
; (1.2)

a(n) =
6n3 + 18n2 + 12n− 8

8
, for n even; (1.3)

a(n) =
6n3 + 12n2 − 6n− 20

8
, for n odd. (1.4)

Let us observe that both of these examples are particular cases of combinatorial
numbers (or binomial coefficients) sequences, that is,

•
(

n

1

)

,
(

n+1
1

)

, . . . ,
(

n+k−1
1

)

in the first case,

•
(

n+1
2

)

,
(

n+2
2

)

,
(

n+3
2

)

in the second one.

Let us recall that
(

n+1
2

)

is known as triangular (or triangle) number and that

the tetrahedral numbers correspond to
(

n+2
3

)

. These classes of numbers are
precisely the aims of this paper.

In order to achieve our purpose, we will use a well-known formula by Johnson
([8]): if a1, a2, a3 are relatively prime numbers and gcd{a1, a2} = d, then

F(a1, a2, a3) = dF
(a1

d
,
a2

d
, a3

)

+ (d− 1)a3. (1.5)

In fact, we will use the well-known generalization by Brauer y Shockley ([5]): if
a1, . . . , an are relatively prime numbers and d = gcd{a1, . . . , an−1}, then

F(a1, . . . , an) = dF
(a1

d
, . . . ,

an−1

d
, an

)

+ (d− 1)an. (1.6)

An interesting situation, to apply these formulae, corresponds with the tele-
scopic sequences ([9]) and leads to the free numerical semigroups, which were
introduced by Bertin and Carbonne ([2, 3]) and previously used by Watanabe
([24]). Let us note that this idea does not coincide with the categorical concept
of free object.

Definition 1.1. Let (a1, . . . , an) be a sequence of positive integers such that
gcd{a1, . . . , an} = 1 (where n ≥ 2). Let di = gcd{a1, . . . , ai} for i = 1, . . . , n.
We will say that (a1, . . . , an) is a telescopic sequence if ai

di

is representable as a

non-negative integer linear combination of a1

di−1
, . . . ,

ai−1

di−1
for i = 2, . . . , n.

2
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Let us observe that, if (a1, . . . , an) is a telescopic sequence, then the sequence
(

a1

di

, . . . , ai

di

)

is also telescopic for i = 2, . . . , n− 1.
Let (N,+) be the additive monoid of non-negative integers. We will say that

S is a numerical semigroup if it is an additive subsemigroup of N which satisfies
that 0 ∈ S and that N \ S is a finite set.

Let X = {x1, . . . , xn} be a non-empty subset of N \ {0}. We will denote by
〈X〉 = 〈x1, . . . , xn〉 the monoid generated by X , that is,

〈X〉 = {λ1x1 + · · ·+ λnxn | λ1, . . . λn ∈ N}.

It is well known (see [20]) that every submonoid S of (N,+) has a uniqueminimal

system of generators, that is, there exists a unique X such that S = 〈X〉 and
S 6= 〈Y 〉 for any Y ( X . In addition, X is a system of generators of a numerical
semigroup if and only if gcd(X) = 1.

Let X = {x1, . . . , xn} be the minimal system of generators of a numerical
semigroup S. Then n (that is, the cardinality of X) is called the embedding

dimension of S and it is denoted by e(S).

Definition 1.2. We will say that S is a free numerical semigroup if there exists
a telescopic sequence (a1, . . . , an) such that S = 〈a1, . . . , an〉.

Before finish this introduction, we summarize the content of this paper. In
Section 2 we compute the Frobenius number of three consecutive triangular
numbers. In Section 3 we solve the analogue for four consecutive tetrahedral
numbers. In the last section, we show some results on numerical semigroups gen-
erated by three consecutive triangular numbers or four consecutive tetrahedral
numbers, taking advantage of they are free numerical semigroups.

2 Triangular numbers

Let us recall that a triangular number (or triangle number) is a positive integer
which counts the number of dots composing an equilateral triangle. For example,
in the next figure we show the first six triangular numbers.

T1 = 1 T2 = 3 T3 = 6

T4 = 10 T5 = 15 T6 = 21

It is well known that the nth triangular number is given by the combinatorial
number Tn =

(

n+1
2

)

.

3



In order to compute the Frobenius number of a sequence of three triangular
numbers, we need to determine if we have a sequence of relatively prime integers.
First, we give a technical lemma.

Lemma 2.1.

gcd{Tn,Tn+1} =

{

n+1
2 , if n is odd,

n+ 1, if n is even.

Proof. If n is odd, then we have that

gcd{Tn,Tn+1} = gcd

{

n(n+ 1)

2
,
(n+ 1)(n+ 2)

2

}

=
n+ 1

2
gcd{n, 2} =

n+ 1

2
.

On the other hand, if n is even, then

gcd{Tn,Tn+1} = gcd

{

n(n+ 1)

2
,
(n+ 1)(n+ 2)

2

}

= (n+1) gcd
{n

2
, 1
}

= n+1.

In the following lemma we show that three consecutive triangular numbers
are always relatively prime.

Lemma 2.2. gcd{Tn,Tn+1,Tn+2} = 1.

Proof. By Lemma 2.1, if n is odd, then

gcd{Tn,Tn+1,Tn+2} = gcd
{

gcd{Tn,Tn+1}, gcd{Tn+1,Tn+2}
}

=

gcd

{

n+ 1

2
, n+ 2

}

= gcd

{

n+ 1

2
,
n+ 1

2
+ 1

}

= 1.

The proof is similar if n is even. Therefore, we omit it.

In the next result, we show the key to obtain the answer to our question.

Proposition 2.3. The sequences (Tn,Tn+1,Tn+2) and (Tn+2,Tn+1,Tn) are

telescopic.

Proof. Let n be an odd integer. From Lemmas 2.1 and 2.2, gcd{Tn,Tn+1} =
n+1
2 and gcd{Tn,Tn+1,Tn+2} = 1. Now, it is obvious that

Tn+2

1
=

n+ 3

2
(n+ 2) ∈

〈

Tn

n+1
2

,
Tn+1

n+1
2

〉

= 〈n, n+ 2〉.

Therefore, (Tn,Tn+1,Tn+2) is telescopic if n is odd.
In a similar way, we can show that (Tn,Tn+1,Tn+2) is telescopic if n is even.

And the same comment can be applied to the sequence (Tn+2,Tn+1,Tn).

Now we are ready to give the main result of this section.
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Proposition 2.4. Let n ∈ N \ {0}. Then

F(Tn,Tn+1,Tn+2) =

{

3n3+6n2
−3n−10
4 , if n is odd,

3n3+9n2+6n−4
4 , if n is even.

Equivalently,

F(Tn,Tn+1,Tn+2) =
⌊n

2

⌋

(Tn +Tn+1 +Tn+2 − 1)− 1. (2.1)

Proof. Let n be an odd positive integer. From (1.5) (or (1.6)) and the proof of
Proposition 2.3, we have that

F(Tn,Tn+1,Tn+2) =
n+ 1

2
F

(

Tn

n+1
2

,
Tn+1
n+1
2

,Tn+2

)

+
n− 1

2
Tn+2 =

n+ 1

2
F (n, n+ 2) +

n− 1

2

(n+ 2)(n+ 3)

2

and, having in mind that F (n, n+ 2) = n2 − 2, then the conclusion is obvious.
On the other hand, the reasoning for even n is similar. Finally, an straightfor-
ward computation leads to (2.1).

3 Tetrahedral numbers

Let us recall that a tetrahedral number (or triangular pyramidal number) is a
positive integer which counts the number of balls composing a regular tetra-
hedron. The nth tetrahedral number is given by the combinatorial number
THn =

(

n+2
3

)

. Thus, in the following figure, we see the pyramid (by layers)
associated to the 5th tetrahedral number (TH5 = 35).

In this section, our purpose is compute the Frobenius number for a sequence
of four consecutive tetrahedral numbers.

We need a previous lemma with an easy proof.

Lemma 3.1. Let (a1, a2, . . . , an) be a sequence of positive integers such that

d1 = gcd{a1, a2, . . . , an}. If d2 = gcd{a2 − a1, . . . , an − an−1}, then d1|d2. In

particular, if d2 = 1, then d1 = 1.
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Now, let us see that four consecutive tetrahedral numbers are always rela-
tively prime.

Lemma 3.2. gcd{THn,THn+1,THn+2,THn+3} = 1.

Proof. It is clear that

(THn+1 − THn,THn+2 − THn+1,THn+3 − THn+2) = (Tn,Tn+1,Tn+2).

Therefore, by applying Lemmas 2.2 and 3.1, we have the conclusion.

The following lemma has an easy proof too. So, we omit it.

Lemma 3.3. Let n ∈ N \ {0}.

1. If n = 6k, then gcd {THn,THn+1} = (6k + 1)(3k + 1).

2. If n = 6k + 1, then gcd {THn,THn+1} = (3k + 1)(2k + 1).

3. If n = 6k + 2, then gcd {THn,THn+1} = (2k + 1)(3k + 2).

4. If n = 6k + 3, then gcd {THn,THn+1} = (3k + 2)(6k + 5).

5. If n = 6k + 4, then gcd {THn,THn+1} = (6k + 5)(k + 1).

6. If n = 6k + 5, then gcd {THn,THn+1} = (k + 1)(6k + 7).

In the next two results, we give the tool for getting the answer to our problem.

Proposition 3.4. The sequence (THn,THn+1,THn+2,THn+3) is telescopic if

and only if n 6≡ 4 mod 6 or n 6≡ 5 mod 6.

Proof. We are going to study the six possible cases n = 6k + r with k ∈ N and
r ∈ {0, 1, . . . , 5}.

1. Let n = 6k. Since gcd{THn,THn+1,THn+2} is equal to

gcd
{

gcd{THn,THn+1}, gcd{THn+1,THn+2}
}

,

from items 1 and 2 of Lemma 3.3, we have gcd{THn,THn+1,THn+2} =
gcd{(6k+ 1)(3k+ 1), (3k+ 1)(2k+ 1)} = 3k+ 1. Now, it is easy to check

that THn+3 = 0 THn

3k+1 + (3k + 2)THn+1

3k+1 + 2THn+2

3k+1 .

On the other hand, since

(THn,THn+1,THn+2)

3k + 1
=

(

2k(6k+1), (6k+1)(2k+1), 2(2k+1)(3k+2)
)

,

gcd{2k(6k + 1), (6k + 1)(2k + 1)} = 6k + 1, and

2(2k + 1)(3k + 2) = 0
2k(6k + 1)

6k + 1
+ 2(3k + 2)

(6k + 1)(2k + 1)

6k + 1
,

we conclude that (THn,THn+1,THn+2,THn+3) is telescopic.

6



2. Having in mind items 2 and 3 of Lemma 3.3, if n = 6k + 1, then we get
that gcd{THn,THn+1,THn+2} = 2k + 1. In addition,

THn+3 = 0
THn

2k + 1
+ 0

THn+1

2k + 1
+ 2(k + 1)

THn+2

2k + 1
.

Since gcd
{

THn

2k+1 ,
THn+1

2k+1

}

= 3k + 1 and

THn+2

2k + 1
= (3k + 2)

THn

(2k + 1)(3k + 1)
+ 2

THn+1

(2k + 1)(3k + 1)
,

we have the result.

3. For n = 6k + 2, we have that gcd{THn,THn+1,THn+2} = 3k + 2,

THn+3 = 0
THn

3k + 2
+ 3(k + 1)

THn+1

3k + 2
+ 2

THn+2

3k + 2
,

gcd
{

THn

3k+2 ,
THn+1

3k+2

}

= 2k + 1, and

THn+2

3k + 2
= 0

THn

(3k + 2)(2k + 1)
+ 2(k + 1)

THn+1

(3k + 2)(2k + 1)
.

4. For n = 6k + 3, we have that gcd{THn,THn+1,THn+2} = 6k + 5,

THn+3 = 0
THn

6k + 5
+ 0

THn+1

6k + 5
+ 2(3k + 4)

THn+2

6k + 5
,

gcd
{

THn

6k+5 ,
THn+1

6k+5

}

= 3k + 2, and

THn+2

6k + 5
= 3(k + 1)

THn

(6k + 5)(3k + 2)
+ 2

THn+1

(6k + 5)(3k + 2)
.

5. If n = 6k + 4, then gcd{THn,THn+1,THn+2} = k + 1. Let us suppose

that there exist α, β, γ ∈ N such that THn+3 = αTHn

k+1 +β
THn+1

k+1 +γ
THn+2

k+1 .
Then

(6k+7)
(

(3k+4)(2k+3)− (6k+5)β− 2(3k+4)γ
)

= 2(3k+2)(6k+5)α.

Since gcd{6k + 7, 2} = gcd{6k + 7, 3k+ 2} = gcd{6k + 7, 6k + 5} = 1, we
have that α = (6k + 7)α̃. Consequently,

(3k + 4)(2k + 3)− (6k + 5)β − 2(3k + 4)γ = 2(3k + 2)(6k + 5)α̃ ⇒

(3k + 4)(2k + 3− 2γ) = (6k + 5)
(

β + 2(3k + 2)α̃
)

.

Now, since gcd{3k+4, 6k+5} = 1, we conclude that (6k+5)|(2k+3−2γ)
and, thereby, 2k + 3− 2γ = 0. That is, we have a contradiction.
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6. If n = 6k + 5, then gcd{THn,THn+1,THn+2} = 6k + 7,

THn+3 = 0
THn

6k + 7
+ 0

THn+1

6k + 7
+ 2(3k + 5)

THn+2

6k + 7
,

and gcd
{

THn

3k+5 ,
THn+1

3k+5

}

= k+ 1. Let us suppose that there exist α, β ∈ N

such that THn+2

6k+7 = α THn

(6k+7)(k+1) + β
THn+1

(6k+7)(k+1) . In such a case,

(3k + 4)(2k + 3) = (6k + 5)α+ 2(3k + 4)β.

Thus, since gcd{3k + 4, 6k + 5} = 1, we have that α = (3k + 4)α̃ and,
therefore, 2k + 3− 2β = (6k + 5)α̃. That is, once again, we get a contra-
diction.

Using the same techniques of the previous proof, we have the next result.

Proposition 3.5. The sequence (THn+3,THn+2,THn+1,THn) is telescopic if

and only if n ≡ 4 mod 6 or n ≡ 5 mod 6.

By combining Propositions 3.4 and 3.5 with (1.6), it is clear that we can
obtain the Frobenius number for every sequence (THn,THn+1,THn+2,THn+3).
Thus we get the following result.

Proposition 3.6. Let n ∈ N \ {0}. Then F (THn,THn+1,THn+2,THn+3) =

1. n−3
3 THn+1 + nTHn+2 +

n

2THn+3 − THn, if n = 6k,

2. (n− 1)THn+1 +
n−1
2 THn+2 +

n−1
3 THn+3 − THn, if n = 6k + 1,

3. (n− 1)THn+1 +
n−2
3 THn+2 +

n

2THn+3 − THn, if n = 6k + 2,

4. n−3
3 THn+1 +

n−1
2 THn+2 + (n+ 1)THn+3 − THn, if n = 6k + 3,

5. n+2
3 THn+2 +

n+2
2 THn+1 + (n+ 2)THn − THn+3, if n = 6k + 4,

6. (n+ 4)THn+2 +
n+1
3 THn+1 +

n+1
2 THn − THn+3, if n = 6k + 5.

Remark 3.7. From the contents of this section and the previous one, it looks
like that the problem is going to became more and more longueur as soon as we
consider combinatorial numbers

(

n

m

)

with bigger m. Anyway, it is not difficult

to see that the sequence
(

(

n+3
4

)

,
(

n+4
4

)

,
(

n+5
4

)

,
(

n+6
4

)

,
(

n+7
4

)

)

is telescopic if and

only if n ≡ x mod 6 for x ∈ {0, 1, 2}. On the other hand, for n ≥ 9, the sequence
(

(

n+7
4

)

,
(

n+6
4

)

,
(

n+5
4

)

,
(

n+4
4

)

,
(

n+3
4

)

)

is telescopic if and only if n ≡ x mod 6 for

x ∈ {3, 4, 5}. In addition, if n ∈ {3, 4, 5}, both of above sequences are telescopic.
(In order to study all these cases, it is better to consider n ≡ x mod 12 for
x ∈ {0, 1, . . . , 11}.)
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Remark 3.8. Let n,m be positive integers. At this moment, we could con-

jecture that the sequence
(

(

n+m−1
m

)

, . . . ,
(

n+2m−1
m

)

)

is telescopic if and only if

the sequence
(

(

n+2m−1
m

)

, . . . ,
(

n+m−1
m

)

)

is not telescopic and, consequently, we

would have an easy algorithmic process to compute F
(

(

n+m−1
m

)

, . . . ,
(

n+2m−1
m

)

)

.

Unfortunately, neither
(

(

12
5

)

, . . . ,
(

17
5

)

)

= (792, 1287, 2002, 3003, 4368, 6188) nor

(6188, 4368, 3003, 2002, 1287, 792) are telescopic. In fact, all possible permuta-
tions of (792, 1287, 2002, 3003, 4368, 6188) are not telescopic.

4 Consequences on numerical semigroups

As we comment in the introduction, if (a1, . . . , an) is a sequence of relatively
prime positive integers, then the monoid 〈a1, . . . , an〉 is a numerical semigroup.
In this section we are interested in those numerical semigroups which are gener-
ated by three consecutive triangular numbers or by four consecutive tetrahedral
numbers and have embedding dimension equal to three or four, respectively.

First of all, having in mind that

• (Tn,Tn+1,Tn+2) is always telescopic,

• either (THn,THn+1,THn+2,THn+3) or (THn+3,THn+2,THn+1,THn) is
telescopic,

we can use the ideas of [20, Chapter 8] to obtain several results for the numerical
semigroups Tn = 〈Tn,Tn+1,Tn+2〉 and T Hn = 〈THn,THn+1,THn+2,THn+3〉.

Since we want that e(Tn) = 3, then we are going to take n ≥ 3 along this
section in this case. In the same way, we are going to consider n ≥ 4 in order
to have e(T Hn) = 4. Thus, we have the next result.

Proposition 4.1.

1. If n ≥ 3, then Tn is a free numerical semigroup with embedding dimension

equal to three.

2. If n ≥ 4, then T Hn is a free numerical semigroup with embedding dimen-

sion equal to four.

We begin with a minimal presentation of Tn.

Proposition 4.2. A minimal presentation of Tn is

1. if n is odd: n+1
2 Tn+2 = n+3

2 Tn+1 and nTn+1 = (n+ 2)Tn;

2. if n is even: (n+ 1)Tn+2 = (n+ 3)Tn+1 and n

2Tn+1 = n+2
2 Tn.

Proof. It is immediate from [20, Corollary 9.18].

From the above proposition, we deduce the following result on the Apéry set
of Tn in Tn (see [1] for more information about Apéry sets).

9



Corollary 4.3. We have that

1. if n is odd, then

Ap(Tn,Tn) =

{

aTn+1+bTn+2

∣

∣

∣
a ∈ {0, . . . , n−1}, b ∈

{

0, . . . ,
n− 1

2

}

}

;

2. if n is even, then

Ap(Tn,Tn) =

{

aTn+1 + bTn+2

∣

∣

∣
a ∈

{

0, . . . ,
n− 2

2

}

, b ∈ {0, . . . , n}

}

.

Proof. It is enough to use the ideas developed in the proofs of Lemmas 9.14 and
9.15 in [20].

We finish the serie of results for Tn computing the Betti elements of these nu-
merical semigroups (see [7] for more details about these elements of a numerical
semigroup).

Corollary 4.4. The Betti elements of Tn are

1. 3
2

(

n+3
3

)

and 3
(

n+2
3

)

, if n is odd;

2. 3
(

n+3
3

)

and 3
2

(

n+2
3

)

, if n is even.

Remark 4.5. Let us observe that the Betti elements of Tn are given in terms
of tetrahedral numbers. An analogue property can be observed in the case of
T Hn (see Corollary 4.8): the Betti elements of T Hn can be expressed in terms
of the combinatorial numbers

(

m

4

)

.

We finish this section with the serie of results relative to the numerical
semigroups T Hn with n ≥ 4.

Proposition 4.6. A minimal presentation of T Hn is

1. if n = 6k: n+2
2 THn+3 = 2THn+2 +

n+4
2 THn+1, (n+ 1)THn+2 =

(n+ 4)THn+1, and n

3THn+1 = n+3
3 THn;

2. if n = 6k + 1: n+2
3 THn+3 = n+5

3 THn+2,
n+1
2 THn+2 = 2THn+1 +

n+3
2 THn, and nTHn+1 = (n+ 3)THn;

3. if n = 6k + 2: n+2
2 THn+3 = 2THn+2 +

n+4
2 THn+1,

n+1
3 THn+2 =

n+4
3 THn+1, and nTHn+1 = (n+ 3)THn;

4. if n = 6k + 3: (n + 2)THn+3 = (n + 5)THn+2,
n+1
2 THn+2 = 2THn+1 +

n+3
2 THn, and n

3THn+1 = n+3
3 THn;

5. if n = 6k + 4: (n + 3)THn = nTHn+1,
n+4
2 THn+1 = n−1

3 THn+2 +
n+2
6 THn+3, and n+5

3 THn+2 = n+2
3 THn+3;
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6. if n = 6k + 5: n+3
2 THn = n−2

3 THn+1 + n+1
6 THn+2,

n+4
3 THn+1 =

n+1
3 THn+2, and (n+ 5)THn+2 = (n+ 2)THn+3.

Corollary 4.7.

1. If n = 6k, then

Ap(T Hn,THn) =

{

aTHn+1 + bTHn+2 + cTHn+3

∣

∣

∣
a ∈

{

0, . . . ,
n− 3

3

}

,

b ∈ {0, . . . , n}, c ∈
{

0, . . . ,
n

2

}

}

.

2. If n = 6k + 1, then

Ap(T Hn,THn) =

{

aTHn+1 + bTHn+2 + cTHn+3

∣

∣

∣
a ∈ {0, . . . , n− 1},

b ∈

{

0, . . . ,
n− 1

2

}

, c ∈

{

0, . . . ,
n− 1

3

}

}

.

3. If n = 6k + 2, then

Ap(T Hn,THn) =

{

aTHn+1 + bTHn+2 + cTHn+3

∣

∣

∣
a ∈ {0, . . . , n− 1},

b ∈

{

0, . . . ,
n− 2

3

}

, c ∈
{

0, . . . ,
n

2

}

}

.

4. If n = 6k + 3, then

Ap(T Hn,THn) =

{

aTHn+1 + bTHn+2 + cTHn+3

∣

∣

∣
a ∈

{

0, . . . ,
n− 3

3

}

,

b ∈

{

0, . . . ,
n− 1

2

}

, c ∈ {0, . . . , n+ 1}

}

.

5. If n = 6k + 4, then

Ap(T Hn,THn+3) =

{

aTHn + bTHn+1 + cTHn+2

∣

∣

∣
a ∈ {0, . . . , n+ 2},

b ∈

{

0, . . . ,
n+ 2

2

}

, c ∈

{

0, . . . ,
n+ 2

3

}

}

.
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6. If n = 6k + 5, then

Ap(T Hn,THn+3) =

{

aTHn + bTHn+1 + cTHn+2

∣

∣

∣
a ∈

{

0, . . . ,
n+ 1

2

}

,

b ∈

{

0, . . . ,
n+ 1

3

}

, c ∈ {0, . . . , n+ 4}

}

.

Corollary 4.8. The Betti elements of T Hn are

1. 2
(

n+5
4

)

, 4
(

n+4
4

)

and 4
3

(

n+3
4

)

, if n = 6k;

2. 4
3

(

n+5
4

)

, 2
(

n+4
4

)

and 4
(

n+3
4

)

, if n = 6k + 1;

3. 2
(

n+5
4

)

, 4
3

(

n+4
4

)

and 4
(

n+3
4

)

, if n = 6k + 2;

4. 4
(

n+5
4

)

, 2
(

n+4
4

)

and 4
3

(

n+3
4

)

, if n = 6k + 3;

5. 4
3

(

n+5
4

)

, 2
(

n+4
4

)

and 4
(

n+3
4

)

, if n = 6k + 4;

6. 4
(

n+5
4

)

, 4
3

(

n+4
4

)

and 2
(

n+3
4

)

, if n = 6k + 5.
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