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Abstract

Plane increasing trees are rooted labeled trees embedded into the plane such that the
sequence of labels is increasing on any branch starting at the root. Relaxed binary trees
are a subclass of unlabeled directed acyclic graphs. We construct a bijection between
these two combinatorial objects and study the therefrom arising connections of certain
parameters. Furthermore, we show central limit theorems for two statistics on leaves. We
end the study by considering more than 20 subclasses and their bijective counterparts.
Many of these subclasses are enumerated by known counting sequences, and thus enrich
their combinatorial interpretation.
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1 Introduction

This paper provides a bijection between a class of directed acyclic graphs (DAGs) shown in
Figure 1, and plane increasing trees shown in Figure 2. The number of elements with n nodes
is given by the odd double factorials (OEIS A001147 [18]) (2n—1)!! := (2n—1)(2n—3)---3-1.
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Figure 1: All compacted binary trees of size 0,1,2. Note that it is not a tree, because there
are several different paths from the root to the leaf.

A tree is a connected undirected acyclic graph. It is rooted if there exists a unique node
v such that any other vertex w is connected with u by a unique path. It is called plane if
the children are equipped with an order, which is equivalent to an embedding into the plane.
Vertices of degree 1 are called leaves or external nodes. All other vertices are called internal
nodes. A young leaf is a leaf with no left sibling (see [5, Section 4.3]). A maximal young
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leaf is a young leaf with maximal label, see Figure 2. An increasing tree is a labeled rooted
tree in which labels along any branch from the root to the leaves are in increasing order.
For notational convenience we label the nodes of a tree from 0 to n and define its size to be
n. The concept was first introduced and intensively investigated by Bergeron, Flajolet, and
Salvy [2]. These trees have found vast applications appearing as data structures in computer
science, as models in genealogy, and as representations of permutations to name a few [7,19].

These trees can be generated uniformly at random by a growth process: start with the
root and label 0. At step i the parent of label 7 is chosen with probablhty 1 where d
is the out-degree (number of children) of the parent. This is known as the Albert Barabési
model [1].
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Figure 2: Left: All plane increasing trees of size 0,1,2. Right: An increasing tree of size 11
with the young leaves 3,5,7 and the maximal young leaf 7.

Trees are a widely used data structures. Yet real world data often contain vast amount of
redundant information. A strategy to save memory is to store every distinct subtree only once
and to mark repeated appearances. This concept finds applications in the efficient storage
of XML documents [3], and the design and analysis of algorithms and compilers [8]. The
gain in memory was studied by Flajolet, Sipala, and Steyaert in [9]. This procedure defines
a subclass of DAGs, called compacted trees, which are in bijection with the original trees,
see [9,10]. The characterizing property of the generated structure is the uniqueness of each
subtree which in the end brings savings in memory. In Figure 1 we see all compacted trees of
size 0,1, and 2.

Dropping the uniqueness condition of subtrees we encounter a related class of DAGs.

Definition 1.1. A relaxed tree of size n is a DAG consisting of a tree with n internal nodes,
one leaf, and n pointers. It is constructed from a tree of size n, where the first leaf in a
postorder traversal is kept and all other leaves are replaced by pointers. These may point to
any node that has already been visited in a postorder traversal.

The asymptotic counting problem for relaxed (and the more restrictive class of compacted)
binary trees when restricted to being of finite right height was solved in [10].

Definition 1.2. The right height is the mazimal number of right edges (or right children)
on all paths from the root to any leaf after deleting all pointers. The level of a node is the
number of right edges on the path from the root to this node, see Figure 3.

The general structure of relaxed binary trees of right height at most one is shown in
Figure 4. In [10, Theorem 7.3] it was shown that they possess the exponential generating
function

R(z 2n —1) ”—. 1

n>0



Figure 3: Left: A compacted tree with right height 2. The labels give the level of the node.
Right: The same tree rotated by 45 degrees.

Figure 4: The structure of a relaxed binary tree with right height at most one. For clarity
the pointers are only attached to its source. Note that for a specific relaxed tree the pointers
are fixed and point to specific nodes seen before the source node in postorder traversal.

In other words, the number of relaxed binary trees of right height at most one of size n is
equal to the number of increasing plane trees of size n and is equal to (2n — 1)!l. These
numbers count more than a dozen labeled objects (see OEIS A001147), yet the class of DAGs
is to our knowledge the first not labeled one. Bijections appear repeatedly in the literature in
order to relate properties of different objects with each other. See for example the bijection of
Janson [11] between plane increasing trees and Stirling permutations, or Janson, Kuba, and
Panholzer [12] for a bijection between plane increasing trees and ternary increasing trees.
Plan of this article. First, in Section 2, we present our main contribution: a bijection
between relaxed binary trees of right height at most one and plane increasing trees. In
Section 3, we consider the bijection from the point of view of relaxed trees. We investigate
the number of elements on level 0 and the number of branches, and map them to parameters
of plane increasing trees. Additionally, we show that they admit a central limit theorem. In
Section 4, we analyze the bijection from the point of view of plane increasing trees. We collect
known results and relate them to relaxed trees. Finally, in Section 5 we investigate more than
20 subclasses of the relaxed trees under consideration. We find their generating functions and
relate their counting sequences to known and unknown ones of the OEIS. Thereby we give
new interpretations of sequences and discover unexpected connections to Fibonacci numbers.

2 Bijection

The bijection stated below is shown on an example in Figure 5. From top to bottom and
left to right a relaxed binary tree of right height at most one is transformed into a plane
increasing tree. Reversing these steps gives the inverse bijection.

Let us start with an arbitrary relaxed binary tree of size n. First, we label the nodes from
0 to n. In the labeling process we ignore pointers. Start at the leaf and label it with 0. Then,
move to the parent. Whenever we see a node for the first time we attach a label incremented
by one. If we meet a node with a right child we traverse this branch starting from the cherry
(the node with two pointers) from left to right. Then we continue on level 0.

Next, we move the first (or left) pointer of each cherry (which has to be on level 1) to
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the unique node on level 0 its branch is attached to. This operation attaches to each node,
except the leaf, a unique pointer.

Then, we separate the pointers into two sets: parent- and sibling-pointers. A parent-
pointer is any pointer starting on level 0, and a sibling-pointer is any pointer starting on
level 1.

Moreover, every sibling-pointer that points to the leaf 0 is changed to point to root of its
branch. This is shown for node 8 in Figure 5.

Finally, we consider the nodes in the order of their labels and build a plane increasing
tree. The leaf with label 0 becomes the root. If the node has a parent-pointer, we attach it
as a first child (very left) of the node it is pointing to. If the node has a sibling-pointer, we
attach it as a direct sibling on the right of the node it is pointing to.
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Figure 5: The bijection applied step by step. Parent-pointer are black, and sibling-pointer
are gray. For the reverse bijection the maximal young leaf in every step is shaded.

For the reverse bijection we need the notion of young leaves from the introduction. Note
that from the previous algorithm, the maximal young leaves are the nodes of level 0.

Let us start with an arbitrary plane increasing tree of size n (recall that we label from 0 to
n). Every node corresponds to one node in the relaxed tree. Denote by T the tree restricted
to the labels O, ..., k.



The tree is traversed iteratively in the order of its labels. The algorithm builds the relaxed
tree and an auxiliary structure called the branch. At every step we either extend the tree
or the branch, which is on some point attached as right child to a node at level 0. At the
beginning this branch is empty.

For a label k one of the following two rules applies: First, if the current node k is a
maximal young leaf of 7; then attach the branch to the last node on level 0, attach the
pointer of this level 0 node as left child to the last node of the branch, and set the branch to
be empty. Then, attach the node k£ as new root node on level 0. For the pointer the parent
rule applies: set its pointer to the parent of node k in 7.

Second, if the current node is not a maximal young leaf of 7T then attach the node k as
new root to the branch. For the pointer the sibling rule applies: set the pointer to the direct
left sibling of node k in 7. In the case that this is the current root at level 0, set the node
to the leaf 0.

Theorem 2.1. The procedure above is a bijection between relaxed binary trees of right height
at most one of size n and plane increasing trees of size n. It maps nodes of level 0 to mazximal
young leaves in the growth process of the plane increasing tree.

Proof. The procedure uniquely transforms relaxed binary trees of right height at most one
into plane increasing trees and vice versa. The main observation is that when inserting a
node into 7 there are k + 1 places to insert it as maximal young leaf and k not to. O

Plane increasing trees are well-studied objects and many statistics exist on their param-
eters. This bijection transforms some of them into interesting quantities on relaxed binary
trees of right height at most one. But vice versa it also leads to interesting results on plane
increasing trees. In the next section we consider parameters which are easy to analyze on
relaxed trees, and in the section thereafter we look at known results for plane increasing trees.

3 Parameters of relaxed binary trees

We will use the bivariate generating function R(z,u) = 2 on k>0 rnk%uk with r,; > 0. It is
connected to the original generating function by R(z,1) = R(z). In particular, for fixed n the
sequence (rpk)i>o refines the number r,, and we have > ;< 7rnr = rn. The bivariate gener-
ating function R(z,u) will be constructed from the functional equation of R(z) by marking a
parameter of interest by an additional variable u.

In the sequel we will repeatedly talk about a sequence of nodes or a chain. This is the
(sub-)graph given by a set of internal nodes whose left children are always internal nodes
(except maybe the last one) and whose right children are always pointers. Its generic structre

Figure 6: The generic structure of a chain. Note that the last left edge, which is omitted

is shown in Figure 6.

here, could either be an internal edge or a pointer.



Let us therefore briefly revisit the combinatorial construction of R(z) given in [10, Corol-
lary 7.2 and Theorem 7.3]. For more details we refer to the deduction in there. The functional
equation is equal to

R(z) = 1iz+ 1i2/1i2z(2R(z))’ dz. @)

Let a branch node be a node on level 0 without pointers to which a branch of nodes on
level 1 is attached. In the relaxed tree in Figure 5 we see three branch nodes. The first term
corresponds to the last sequence of nodes on level 0 after the last branch node. It can be
interpreted as the initial value or boundary case of the combinatorial construction. The factor
in front of the integral represents a sequence of nodes on level 0 between branch nodes. The
integral creates a branch node. The factor 1—; in the integral creates the nodes of a branch
on level 1 except the leaf. Finally, the operator z (zR(z))" creates the leaf of the branch.
Solving this equation, by for example solving the equivalent differential equation, gives the
representation of R(z) in (1). In the next subsections we will use this equation by marking
certain parameters in order to deduce information on their distribution. For more information

on this concept see e.g., [8,20]. We start with the number of elements on level 0.

3.1 Number of elements on level 0 and number of maximal young leaves

Let 7% be the number of relaxed binary trees of right height at most one with k internal nodes
on level 0. This is also equal to the number of maximal young leaves in the growth process
of a plane increasing tree. Then, the bivariate generating function R(z,u) = 2 on k>0 T2 uF

can be computed from the functional equation (2) by marking nodes on level 0. This gives

1 U

Rew) = 1=+ 1_uz/1_zz(zR(2)) d.

which is then solved to give

1
R(z,u) = i-a+ u)z)l%u

Let X,, be the random variable giving the number of internal nodes on level 0 of relaxed
binary trees with right height at most one drawn uniformly at random among all such trees
of size n. Then, we have

[z"uF|R(z, u)
PX,=k)=——~—">
K =8 = "R, 1)
Theorem 3.1. The standardized random variable
X — puin , 1 log(n) (1) s 1 72 ( 1 >
—_— th == - - - - il
oivn o M=ot 0 n) 171 32n+(9 n?)’

converges in law to a standard normal distribution N(0,1).

Proof. The result follows from [17, Theorem 4.2] (see also [8, Theorem IX.13]), a generalized
quasi-powers scheme for bivariate generating functions. The necessary form is proved by the
saddle-point method [8, Chapter VIII]. O



3.2 Number of branches and number of dominating young leaves

Recall that a branch in a relaxed tree is a sequence of nodes on level 1. By the bijection
these correspond to maximal young leaves, which are not immediately replaced in the growth
process by a new young leaf in the next step. We call these dominating young leaves. Let s,
be the number of relaxed binary trees of right height at most one with k branches. Then, the
bivariate generating function S(z,u) = 2 on k>0 Snk %uk can be computed in a similar way as
done in Section 3.1 by marking only the branch node given by the integral. We get

1

S(zu) = V1=2z4 (1 —u)22’

Let Y,, be the random variable giving the number of branches of relaxed binary trees with
right height at most one of size n drawn uniformly at random among all such trees:

L [2"u*]S (2, u)
PO =R = sy

Theorem 3.2. The standardized random variable

Y, — pon ) 1 1 ( 1 ) 5 1 1 ( 1 )
_— th =-—-——+4+0|— =—+——4+0|—=
oo =175 O\ 2T T, PO
converges in law to a standard normal distribution N(0,1).
Proof. The result follows the same lines as the one of Theorem 3.1. O

4 Parameters of plane increasing trees

Several parameters of plane increasing trees are well-understood. In order to understand their
connection with respect to the stated bijection we introduce the concept of a pointer-path.
This is a path following only pointers from an arbitrary node to the leaf 0 with two special
rules: First, due to the transformation of the left cherry pointers to branch nodes every
internal node has exactly one outgoing pointer. Second, if a sibling-pointer points to the leaf
it is interpreted as pointing to its branch node, compare node 8 in Figure 7. The length of
a pointer-path is given by the number of parent-pointers in it. The results for our stated
example are shown in Figure 7.

These pointer-paths also have an interpretation on the level of increasing trees. Starting
from any node one jumps to its left sibling as long as its label is decreasing. This corresponds to
sibling-pointers. If this is not possible any more one moves up to its parent which corresponds
to a parent-pointer. The length of the path is the depth of the node. In particular, this gives
for every node a “maximal” decreasing sequence of labels encoded in the tree.

There is rich literature on parameters of plane increasing trees [2,7,12-16]. We have sum-
marized four interesting parameters and their counterparts in relaxed binary trees in Table 1.

In the first two cases the standardized random variables % converge in distribution to a

Xn
V2n

standard normal distribution, whereas in the third case the normalized random variable



Pointer-path Length

1—0
2—-1—-0
3—-1—0
4—-1->0
5—0
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Figure 7: Pointer-paths of the example in Figure 5. Parent-pointers are marked by — (or
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black arrows), sibling-pointers are marked by — (or gray arrows).

Plane increasing tree ‘ Relaxed binary tree H EX, ‘ VX, ‘

L h of poi -path
Depth of node n [14] ength of ponter-pat tlogn + O(1) $logn + O(1)

from node n

Number of nodes without 1

2 n 1
sn+3 9t 18 ~ 6@t

Number of 1 15
umber of leaves [15] ingoing parent-pointer

Number of nodes in all
pointer-paths of length 1 /mn+O(1) (4= mn+0O(1)

Height [7,16] Longest pointer-path 2—18 logn + o(logn) O(1)

Root degree [2]

Table 1: Parameters of plane increasing trees and the corresponding parameters in relaxed
binary trees of right height at most one. The constant s &~ 0.27846 is the positive solution of
sestl =1.

converges in law to a standard Rayleigh distribution given by the density function ze=/2,

For details on the distribution of the height see [7, Section 6.4] and [4,6].

Remark 4.1: The Rayleigh distribution in the third case follows directly from the closed
form of the number of increasing trees of size n and root degree k given by

(2n —3 —k)!

k- .
2n—1-k(p —1 —k)!

This was derived in [2, Corollary 5], only the factor k is missing. n

A final interesting parameter is the distribution of out-degrees. Similar to the root degree,
the out-degree of a node i corresponds to the number of nodes in all pointer-paths of length 1
ending in i. Let Ay be the limiting probability that a random node has out degree d. Then,
in [2] it was shown that

4
(d+1)(d+2)(d+3)

Ad =



(conforming the
(this has to be a
parent-pointer). The case for Ay = % corresponds to either two parent-pointers whose source

Thus, the probability of a random node to have no ingoing pointer is

=W

proportion of number of leaves above) and to have one ingoing pointer is

nodes do not have sibling-pointers, or one parent-pointer whose source node has exactly one
sibling-pointer and this source node has no sibling-pointer.

5 Subclasses

At the end we want to consider some subclasses of relaxed binary trees of right height at
most one. We will show connections with certain sequences in the OEIS [18] and solve some
open conjectures therein. This adds new combinatorial interpretations to several of them.
We start with subclasses that have no initial and/or final sequence of nodes.

5.1 Variations of the initial and final sequences
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Figure 8: Left: Subclass Ry without initial sequence; Center: Ry without final sequence;
Right: R3 without initial and final sequence.

First, we consider the case of an empty initial sequence, see Figure 8. In other words all
such relaxed trees start with a branch node. By [10, Proposition 6.4] a multiplication by 1— z
of the generating function R(z) gives the generating function of this class:

n

1—=z2 n—1 z
R = — = m — 1N
1(2) = =52 §2n—1( n= DY

2 3 4 5 6
= L4 Sy 6oy 45 4205 4T 4
The sequence of coefficients is OEIS A001879 and counts the number of descents in all fixed-
point-free involutions of {1,2,...,2(n — 1)} (we have a shift of minus two). Comparing these
numbers to the total number (2n — 1)!! of relaxed binary trees of right height at most one,
we see that for large n half of all trees fall into this class.

The bijection transforms this class into the one of plane increasing trees where the leaf

with the highest label is not a maximal young leaf. Considering these trees we can give an

-1
ST
have 2n — 1 possible locations where n — 1 do not create a maximal young leaf.

alternative proof of the counting sequence (2n — 1)!: Inserting the leaf with label n we

Second, we consider the related subclass of relaxed binary trees of right height at most
one with where the final sequence on level 0 after the last branch node consists of only a single
leaf, see Figure 8. If there is no branch node then only the leaf belongs to this class. From
the explanations at the beginning of Section 3 we know that the final sequence corresponds

to the first term i in the functional equation (2). Thus, omitting this one and solving the
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corresponding equation gives the generating function

1 2n —1) ”z
RQ(Z) = —_ - = Z
3\/1 —22 3 =0
52 3 o 45 46
= 1+f+5§+35—+315§+3465§

This sequence is OEIS A051577 and has no combinatorial interpretation so far. Note that
RY(z) = (1 —22)~%/2. In this case we see that exactly one third of all trees have an empty
final sequence.

Trees of this class correspond to plane increasing trees where node 2 is at depth 1 and
right of node 1. As above, we can give an alternative proof of the counting sequence. In
particular, after 2 steps of the growth process we have a tree with root 0 and a single child 1.
Among the three possible places to insert node 2 only one puts it right of node 1. Inserting
more nodes will not change the relative position of nodes 1 and 2 at depth 1.

As a third class, we look at the combination of the last two classes. It is given by

52 53 4 5 6
R3(z):=(1—2)(Ra(2)— 1)+ 1= 1+7+2§+15E+140§+15757

The sequence of coefficients gives the new entry OEIS A288950.

5.2 Trees without sequences — Connections with Fibonacci numbers

U datndy 2y

Figure 9: Left: Subclass R4 with at most one node per branch (i.e., on level 1); Center: Rj
without sequences on level 0; Right: Rg is the intersection of R4 and Rs.

Fourth, let us consider relaxed trees where every sequence on level 1 consists of only one
element, see Figure 9. Adapting the functional equation (2) we see that the corresponding
generating function R4(z) satisfies

Raz) = - ! —+ %/z (2R(2)) dz, (3)

because the factor ﬁ in the integral would create these sequences. Solving this equation

with e.g., a computer algebra system like Maple gives

N
Ra(2) exp(\/gartanh(\[zw 1 VE4+1422\1
Z) = =
4 V1—2z—22 Vi—z—-22\V56-1-22
52 3 4 45 46
_1+Z+37+13§+797+603§+55936

The second expression is computed by the expression of the artanh function in terms of
logarithms. This sequence is OEIS A213527. It implies a different representation.

10
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Lemma 5.1. Let F,, be the n-th Fibonacci number, given by Fy = 0,F1 = 1 and F,, =
Fo_ 1+ Fh_9 forn > 2. Then, we have

Fi12™ 1 F_1z"
R4(z):exp(z ';1 ):1_z_z2exp(—z nl )

n>1 n>1

Proof. On the one hand we differentiate G(2) := >, 54 F"jllzn and get G'(z) = —2,. On

1—2—22

the other hand we get from (3) that the logarithmic derivative of Ry(z) is also equal to the
same expression. Thus, fixing the initial conditions it holds that R4(z) = exp(G(2)).
For the second expression note that Fj,_1 + Fj,4+1 = Ly4+1 which is the (n + 1)-st Lucas

number, OEIS A000032. They are defined by Lo = 2,L; = 1 and L, = L,_1 + Ly_o for

n > 2. Furthermore, integrating the known representation ), ~q Ln+12" = 1?;322 > gives

2n>1 Lz on — Nog (W) This proves the claim. n

n

These relaxed trees correspond bijectively to plane increasing trees where during the
growth process never two non-maximal young leaves are inserted after each other. In other
words, if k£ was not a maximal young leaf, then k 4+ 1 has to be one.

Finally, note that adding constraints like not allowing an initial sequence, not allowing
a final sequence, and the combination of both does not lead to any known sequences in the
OEIS nor to nice expressions for the generating functions.

As a fifth class, we consider the conjugate class with no sequences between branch nodes
on level 0, see Figure 9. These objects are strongly related to the previous ones. We get

Ra(z) = exp (—%artanh(\sz 1 <\/5_1_22>\1€

V1—2z—22 \/1—2—22 Vh+1+22
52 3 A 5
_1+§+2§+15—+92§+8356

This sequence was so far not known in the OEIS. It is now given by OEIS A288952.

Lemma 5.2. Let F,, be the Fibonacci number defined as in Lemma 5.1. Then, we have

R5(z) = exp (— Z anlzn) .

n>1

Proof. From the closed-form expressions we get the relation Ry(z)R5(z) = ﬁ Together
with the second representation of R4(z) in Lemma 5.1 this proves the claim. O

The corresponding plane increasing trees are such that a maximal young leaf has to be
followed by a non-maximal young leaf.

Sixth, let us consider a further restriction of the previous class by also not allowing any
sequences on level 0, see Figure 9. This class can be considered maximal with respect to its
branches per node. Its functional equation is obtained from (3) by replacing both terms é

by 1. Then, we get

Z

R = ((2 _1u2
6(2) ﬁ =3 ((n o)
2 2’4 26 8
—1+—+91+225E+11025§

11
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This sequence is OEIS A177145. We have Rg(2) = >_,>076,n5y = arcsin’(z). Here it is easy
to derive the counting formula directly: The only element of size 0 is the leaf, 769 = 1. To an
element of size 2k (which has to be even), we append a branch node connected with a node
on level 1 which has two pointers. These may point to all elements of the existing tree which
gives (2k + 1)? possibilities. This gives 762, = (2n — 1)? - 76.2—2.

From the previous consideration it is easy to identify the corresponding plane increasing
trees. Their growth process consists of alternating insertions of maximal and non-maximal
young leaves.

W TR By

Figure 10: Left: Subclass Ry is like Rg with a possible initial sequence on level 0; Center:
Rg is like Rg with a possible final sequence on level 0; Right: Rg is like Rg with a possible
initial and final sequence on level 0.

Seventh, we consider a variation of the previous class by allowing an initial sequence on
level 0, see Figure 10. This corresponds to a multiplication of Rg(z) by 1—; and we get

) 1 1 22 3 2 20 20

R7(z) := T =2 =1+z+ 3 + 95 + 451 + 2255 + 1575—
This sequence is OEIS A000246 and counts the number of permutations in the symmetric
group S, that have odd order. The equivalent class of plane increasing trees is like the
previous one except that we allow a sequence of maximal young leaves at the end of the
growth process. In other words the consecutive labels k, ..., n may be maximal young leaves.
Eighth, we consider the analogous variation of allowing a sequence only at the end of
level 0, see Figure 10. The generating function Rg(z) of this class is obtained by omitting

only the factor ﬁ in front of the integral in (3). This gives

1 z—2 22 3 2 2° 28
R = — =1 3 10— + 51— +280— 4+ 1995— +....
8(2) N A +2 435 + 1050 + 515 + 280 + ot
This sequence gives rise to the new entry OEIS A288953 of the OEIS. Again, the equivalent
plane increasing trees are like the one of case 7 but with a possible sequence of maximal
young leaves at the beginning of the growth process, i.e., the consecutive labels 1,..., k may
be maximal young leaves.

Ninth, we consider the combination of the previous two, i.e., allowing sequences at the
beginning and at the end only in level 0, see Figure 10. This gives

1 323 — 222242

3(1 — 2)V1 — 22 * 3(1+2)(1 - 2)3
2 3 4 5 6

—1+z+3z +13—+79z—+555%+4605%+....

This sequence corresponds to the new entry OEIS A288954 of the OEIS. The corresponding
plane increasing trees may have consecutive nodes of maximal young leaves 1,...,k at the

Rg(z) =

beginning and £, ..., n at the end. Otherwise maximal and non-maximal leaves alternate.

12
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Subclass ‘ EGF ‘ Sequence OEIS

One cherry pointer exp (1;) 1,1,3,13,73,501,4051, . .. A000262
No final sequence Long 1,0,1,5,29,201,1631,... A201203
No initial sequence (1— 2)exp (lfz) 1,0,1,4,21,136, 1045, .. . A052852
No sequence on level 0 f:zz 1,0,1,2,9,44,265,1854,... A000166
No sequence on level 1 ﬁ 1,1,3,11,53,309,2119,... A000255
+ no initial sequence f_ZZ 1,0,1,2,9,44,265,1854, ... A000166
4+ no final sequence % 1,0,1,3,15,87,597,4701, ... new
+ no initial and final seq. 367_72 -2 1,0,1,0,3,12,75,522, . .. A176408
No seq. on level 0 and 1 eé 1,0,1,0,3,0,15,0,105,0,... A123023
2
+ initial sequence TE 1,1,3,9,39,195,1185, ... A130905
+ final sequence Long 1,1,3,8,33,152,885,5952, . .. new
+ initial and final seq. Long 1,1,3,11,53,297,1947, . .. new

Table 2: Variations of case 10 where each cherry has only one pointer. The comment “Long”
marks generating functions which do not have a closed form or are too long to state.

5.3 Simplifying the pointer structure

Tenth, consider the adaption of relaxed trees where both pointers of a cherry are forced to
point to the same node (or alternatively the second one is fixed). The corresponding gener-
ating function Rjo(z) satisfies a functional equation given by (2) where (zR(z))" is replaced
by R(z). The reason is that at the end of the sequence on level 1 we create only one pointer
and let the second one point to the same location. Thus, this subclass is best pictured as the
one where cherries have just one pointer. This gives

3 4 5 6

z z z z
30 + 735 + 5015 + 405la

1

2
Rlo(z)::exp<1)21+z+3;+13 +....

This sequence is OEIS A000262 and counts the number of sets of lists and many other
combinatorial objects.

There are many interpretations of the corresponding plane increasing trees. For example a
non-maximal young leaf following a maximal young leaf has to be inserted immediately right
of it. Or alternatively, as last child of the root. In particular the location of this non-maximal
leaf can be chosen uniformly for the class and is fully determined.

Obviously the same subclasses as before can be considered for this class. The 11 additional
results are summarized in Table 2.

6 Conclusion

In this paper we provided a bijection between relaxed binary trees (a subclass of directed
acyclic graphs arising in the compactification of binary trees) with plane increasing trees.
With the latter being well-studied objects, we had access to a vast amount of results on shape
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parameters which gave us interesting results on the class of relaxed binary trees. Vice versa

we were also able to study new parameters on plane increasing trees, by the corresponding

parameters on relaxed binary trees. Furthermore, we considered more than 20 subclasses

of relaxed binary trees and showed that most of them also enumerate other combinatorial

structures. We want to point out, that in many cases these are the first non labeled structures.
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