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THE BEST-OR-WORST AND THE POSTDOC PROBLEMS

L. BAYÓN, P. FORTUNY AYUSO, J.M. GRAU, A. M. OLLER-MARCÉN, AND M.M. RUIZ

Abstract. We consider two variants of the secretary problem, the Best-or-
Worst and the Postdoc problems, which are closely related. First, we prove
that both variants, in their standard form with binary payoff 1 or 0, share
the same optimal stopping rule. We also consider additional cost/perquisites
depending on the number of interviewed candidates. In these situations the op-
timal strategies are very different. Finally, we also focus on the Best-or-Worst
variant with different payments depending on whether the selected candidate
is the best or the worst.
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1. Introduction

The secretary problem is one of many names for a famous problem of optimal
stopping theory. This problem can be stated as follows: an employer is willing
to hire the best secretary out of n rankable candidates. These candidates are
interviewed one by one in random order. A decision about each particular candidate
is to be made immediately after the interview. Once rejected, a candidate cannot
be called back. During the interview, the employer can rank the candidate among
all the preceding ones, but he is unaware of the quality of yet unseen candidates.
The goal is then to determine the optimal strategy that maximizes the probability
of selecting the best candidate.

This problem has a very elegant solution. Dynkin [4] and Lindley [13] inde-
pendently proved that the best strategy consists in a so-called threshold strategy.
Namely, in rejecting roughly the first n/e (cutoff value) interviewed candidates and
then choosing the first one that is better than all the preceding ones. Following this
strategy, the probability of selecting the best candidate is at least 1/e, this being
its approximate value for large values of n. This well-known solution was later
refined by Gilbert and Mosteller [11] showing that

⌊

(n− 1
2 )e

−1 + 1
2

⌋

is a better
approximation than ⌊n/e⌋, although the difference is never greater than 1.

This secretary problem has been addressed by many authors in different fields
such as applied probability, statistics or decision theory. In [5], [7] or [17] extensive
bibliographies on the topic can be found. On the other hand, different generaliza-
tions of this classical problem have been recently considered in the framework of
partially ordered objects [8, 9, 10] or matroids [1, 15]. It is also worth mentioning
the work of Bearden [2], where the author considers a situation where the employer
receives a payoff for selecting a candidate equal to the “score” of the candidate
(in the classical problem the payoff is 1 if the candidate is really the best and 0
otherwise). In this situation, the optimal cutoff value is roughly the square root of
the number of candidates.
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In this paper we focus on two closely related variants of the secretary problem.
The so-called Best-or-Worst and Postdoc variants. In the Best-or-Worst variant,
the classic secretary problem is modified so that the goal is to select either the best
or the worst candidate, indifferent between the two cases. This variant can only
be found on [6] as a multicriteria problem in the perfect negative dependence case.
Here we present it in greater detail. In the Postdoc variant, instead of selecting
the best candidate, the goal is to select the second best candidate. This problem
was proposed to Robert J. Vanderbei by Eugene Dynkin in 1980 with the following
motivating story that explains the name of the problem: we are trying to hire a
postdoc, since the best candidate will receive (and accept) an offer from Harvard,
we are interested in hiring the second best candidate. Vanderbei himself solved the
problem in 1983 using dynamic programming [18]. However, he never published his
work because he learned that Rose had already published his own solution using
different techniques [14]. Moreover, Szajowski had already solved the problem of
picking the k-th better candidate for 2 ≤ k ≤ 5 [16].

In the present paper, for these two variants, we study the standard problem
(binary payoff function 1 or 0), showing that both have the same optimal cutoff
rule strategy and also the problems considering payoff functions that depend on the
number of performed interviews, showing that in this case they have very different
optimal strategies.

The paper is organized as follows: in Section 2, we present some technical re-
sults, in Section 3, we revisit the classic secretary problem and also solve two new
situations with payoff functions that depend on the number of performed inter-
views. In Section 4 we focus on the Best-or-Worst variant, solving the problem for
three different payoff functions and also presenting a variant in which the choice of
the best or the worst candidate is no longer indifferent. In Section 5 we solve the
three versions of the Postdoc variant and, finally, we compare the obtained results
in Section 6.

2. Two technical results

The following result can be widely applied in different optimal stopping problems
and it will be extensively used throughout the paper. For a sequence of continuous
real functions {Fn}n∈N defined on a closed interval, it determines the asymptotic
behavior of the sequence {M(n)}n∈N, where M(n) is the value for which the func-
tion Fn reaches its maximum.

Proposition 1. Let {Fn} be a sequence of real functions with Fn ∈ C[0, n] and let
M(n) be the value for which the function Fn reaches its maximum. Assume that
the sequence of functions {gn}n∈N given by gn(x) := Fn(nx) converges uniformly
on [0, 1] to a function g and that θ is the only global maximum of g in [0, 1]. Then,

i) lim
n

M(n)/n = θ.

ii) lim
n
Fn(M(n)) = g(θ).

iii) If M(n) ∼ M(n) then lim
n
Fn(M(n)) = g(θ).

Proof. i) Let us consider the sequence {M(n)/n} ⊂ [0, 1] and assume that
{M(sn)/sn} is a subsequence that converges to α. Then,

gsn(θ) = Fsn(snθ) ≤ Fsn(M(sn)) = Fsn

(M(sn)

sn
sn

)

= gsn

(M(sn)

sn

)

.
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Consequently, since gn → g uniformly on [0, 1], if we take limits we get

g(θ) = lim
n
gsn(θ) ≤ lim

n
gsn

(M(sn)

sn

)

= g(α)

and since θ is the only global maximum of g, it follows that θ = α.
Thus, we have proved that every convergent subsequence of {M(n)/n}

converges to the same limit θ. Since {M(n)/n} is defined on a compact set
this implies that {M(n)/n} itself must also converge to θ.

ii) It is enough to observe that

lim
n
Fn(M(n)) = lim

n
Fn

(M(n)

n
n

)

= lim
n
gn

(M(n)

n

)

= g(θ),

where the last equality holds because gn → g uniformly on [0, 1].

iii) If M(n) ∼ M(n), then it also holds that lim
n

M(n)

n
= θ and we can reason

as in the previous point.
�

Remark. The condition of uniform convergence is required to ensure, for instance,

that lim
n
gsn

(M(sn)

sn

)

= g(α). In fact, it is easy to give counterexamples to

Proposition 1 if convergence is not uniform.

Observe that Proposition 1 implies that that lim
n
Fn(nθ) = g(θ). Moreover, it

also implies that lim
n
Fn(nθ + o(n)) = g(θ). This means that nθ is a good estimate

for M(n) and that, for large values of n, the maximum value of Fn approaches
g(θ).

Proposition 1 admits the following two-variable version that can be proved in
the same way.

Proposition 2. Let {Gn} be a sequence of two variable real functions with Gn ∈
C
(

{(x, y) ∈ [0, n]2 : x ≤ y}
)

and let (M1(n),M2(n)) be a point for which Gn

reaches its maximum. Assume that the sequence {hn}n∈N given by hn(x, y) :=
Gn(nx, ny) converges uniformly on T := {(x, y) ∈ R

2 : 0 ≤ x ≤ y ≤ 1} to a
function h and that (θ1, θ2) is the only global maximum of h in T . Then,

i) lim
n

Mi(n)/n = θi for i = 1, 2.

ii) lim
n
Gn(M1(n),M2(n)) = h(θ1, θ2).

iii) If Mi(n) ∼ Mi(n) for i = 1, 2, then lim
n
Gn(M1(n),M2(n)) = h(θ1, θ2).

3. A new look at the classic secretary problem

In the classical secretary problem, let n be the number of candidates and let
us consider a cutoff value r ∈ (1, n). If k ∈ (r, n] is an integer, the probability of

successfully selecting the best candidate in the k-th interview is Pn,r(k) =
r

n

1

k − 1
.

Thus, the probability function of succeeding in the classical secretary problem with
n candidates using r as cutoff value, is given by

Fn(r) :=

n
∑

k=r+1

Pn,r(k) =
r

n

n
∑

k=r+1

1

k − 1
.
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The goal is now to determine the value of r that maximizes this probability (i.e.,
to determine the optimal cutoff value) and to compute this maximum probability.
This can be done using Proposition 1 in the following way. First, we extend Fn to
a real variable function by

Fn(r) =
r

n
(ψ(n)− ψ(r)),

where ψ is the so-called digamma function. Then, it can be seen with little effort
that the sequence of functions {gn} defined by gn(x) := Fn(nx) converges uniformly
on [0, 1] to the function g(x) := −x log(x) and the remaining is just some elementary
calculus.

Remark. In [5] the following rather lax reasoning showing that M(n)/n tends to
1/e is given. If we let n tend to infinity and write x as the limit of r/n, then using
t for j/n and dt for 1/n, the sum becomes a Riemann approximation to an integral

Fn(r) → x

∫ 1

x

dt

t
= −x log(x).

Proposition 1 provides a more rigorous approach.

We introduce a more general situation. Let p : R → [0,+∞) be a function
(payoff function) and assume that a payoff of p(k) is received if the k-th candidate
is selected. In this setting, the expected payoff is

En(r) :=

n
∑

k=r+1

p(k)Pn,r(k) =
r

n

n
∑

k=r+1

p(k)

k − 1
.

Note that in the classical situation

(1) pB(k) =

{

1, if the k-th candidate is the seeked candidate;

0, otherwise.

and the expected payoff coincides with the probability of successfully selecting the
best candidate.

Now, let us modify the classical situation considering that performing each in-
terview has a constant cost of 1/n. Clearly, in this situation the payoff function is
given by

(2) pC(k) =

{

1− k/n, if the k-th candidate is the seeked candidate;

0, otherwise.

and the expected payoff is

EC
n (r) :=

r

n

n
∑

k=r+1

1− k
n

k − 1
.

The following result provides the optimal cutoff value and the maximum expected
payoff in this setting. In what follows, we denote by W the main branch of the
so-called Lambert-W function, defined by z =W (zez).

Proposition 3. Given an integer n > 1, let us consider the function

EC
n (r) :=

r

n

n
∑

k=r+1

1− k
n

k − 1
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defined for every integer 1 ≤ r ≤ n − 1 and let M(n) be the value for which the
function EC

n reaches its maximum. Then,

i) lim
n

M(n)/n = ρ := −1

2
W (−2e−2) = 0.20318 . . . .

ii) lim
n
EC

n (M(n)) = lim
n
EC

n (⌊ρn⌋) = ρ(1− ρ) = 0.16190 . . . .

Proof. First, we extend EC
n to a real variable function by

EC
n (r) =

r (−n+ r + (−1 + n) ψ(n)− (−1 + n) ψ(r))

n2
.

Now, it can be seen that gn(x) := EC
n (nx) converges uniformly in [0, 1] to g(x) :=

x (−1 + x− log(x)). To conclude the proof it is enough to apply Proposition 1
together with some straightforward computations. �

This result means that the optimal strategy in this setting consists in rejecting
roughly the first ρn interviewed candidates and then accepting the first candidate
which is better than all the preceding ones. Following this strategy, the maximum
expected payoff is asymptotically equal to ρ2 − ρ.

Remark. The constant ρ = − 1
2W (−2e−2) = 0.20318786 . . . (A106533 in OEIS)

appears in [7] (erroneously approximated as 0.20388) in the context of the Best-
Choice Duration Problem considering a payoff of (n − k + 1)/n. Furthermore, as
a noteworthy curiosity, it should be pointed out that this constant has appeared
in a completely different context from the one addressed here (the Daley-Kendall
model) and it is known as the rumour’s constant [3, 12].

Now, let us consider that performing each interview has an perquisite of 1/n.
Clearly, in this situation the payoff function is given by

(3) pP (k) =

{

1 + k/n, if the k-th candidate is the seeked candidate;

0, otherwise.

and the expected payoff is

EP
n (r) :=

r

n

n
∑

k=r+1

1 + k
n

k − 1
.

The following result provides the optimal cutoff value and the maximum expected
payoff in this setting.

Proposition 4. Given an integer n > 1, let us consider the function

EP
n (r) :=

r

n

n
∑

k=r+1

1 + k
n

k − 1

defined for every integer 1 ≤ r ≤ n − 1 and let M(n) be the value for which the
function EP

n reaches its maximum. Then,

i) lim
n

M(n)/n = µ :=
1

2
W (2) = 0.42630 . . . .

ii) lim
n
EP

n (M(n)) = lim
n
EP

n (⌊µn⌋) = µ(1 + µ) = 0.608037 . . . .

Proof. First, we extend EP
n to a real variable function by

EP
n (r) =

r (n− r + (1 + n) ψ(n)− (1 + n) ψ(r))

n2
.
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Now it can be seen that gn(x) := EP
n (nx) converges uniformly in [0, 1] to g(x) :=

−x (−1 + x+ log(x)). To conclude the proof it is enough to apply Proposition 1
together with some straightforward computations. �

This result means that the optimal strategy in this setting consists in rejecting
roughly the first µn interviewed candidates and then accepting the first candidate
which is better than all the preceding ones. Following this strategy, the maximum
expected payoff is asymptotically equal to µ2 + µ.

4. The Best-or-Worst variant

In this section we focus on the Best-or-Worst variant, as described in the in-
troduction, in which the goal is to select either the best or the worst candidate,
indifferent between the two cases. First of all we prove that, just like in the classic
problem, the optimal strategy is a threshold strategy.

Theorem 1. For the Best-or-Worst variant, if n is the number of objects, there
exists r(n) such that the following strategy is optimal:

(1) Reject the r(n) first interviewed candidates.
(2) After that, accept the first candidate which is either better or worse than

all the preceding ones.

Proof. For the sake of brevity, a candidate which is either better or worse than all
the preceding ones will be called a nice candidate.

Since the game under consideration is finite, there must exist an optimal strategy
(in the sense that it maximizes the probability of success). Hence, we can define
Prej(k) as the probability of success following an optimal strategy when rejecting
a candidate in the k-th interview (regardless of its being a nice candidate or not).
We can also define Pacc(k) as the probability of success accepting a nice candidate
in the k-th interview. Any optimal strategy will reject any non-nice candidate since
the probability of being a successful choice will be 0.

Probability Pacc(k) is k/n, which increases with k. On the other hand, the
function Prej(k) is non-increasing because

Prej(k) = p · (max{Pacc(k + 1), Prej(k + 1)}+ (1 − p)Prej(k + 1) ≥ Prej(k + 1).

Thus, since Pacc is increasing and Prej is non-increasing and given that Pacc(n) = 1
and Prej(n) = 0, there exists a natural number r(n) for which:

Pacc(k) < Prej(k) if k ≤ r(n),

Pacc(k) ≥ Prej(k) if k > r(n).

As a consequence of this fact, the following strategy must be optimal: for each
k-th interview with k ∈ {1, . . . , n} do the following:

• Reject the k-th candidate if k ≤ r(n) or if it is not a nice candidate.
• Accept the k-th candidate if k > r(n) and it is a nice candidate.

Note that the optimality of this strategy follows from the fact that, in each inter-
view, we are choosing the action with greatest probability of success. �

Once that we have determined the optimal strategy, we focus on determining
the probability of success in the k-th interview. To do so, let n be the number of
candidates and let us consider a cutoff value r ∈ (1, n). If k ∈ (r, n] is an integer,
the probability of successfully selecting the best or the worst candidate in the k-th
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interview is PBW
n,r (k) =

2

n

(

r
2

)

(

k−1
2

) . Thus, the probability function of succeeding in

the Best-or-Worst variant with n candidates using r as cutoff value, is given by

FBW
n (r) :=

n
∑

k=r+1

PBW
n,r (k) =

2r(r − 1)

n

n
∑

k=r+1

1

(k − 1)(k − 2)
=

2r(n− r)

n(n− 1)
,

where the last equality follows using telescopic sums.

Remark. Note that for n > r ∈ {0, 1}, it is straightforward to see that the proba-
bility of success is

FBW
n (0) = FBW

n (1) =
2

n
.

The goal is now to determine the value of r that maximizes the probability
FBW
n (i.e., to determine the optimal cutoff value) and to compute this maximum

probability. We do so in the following result.

Theorem 2. Given a positive integer n > 2, let us consider the function

FBW
n (r) =

2r(n− r)

n(n− 1)

defined for every integer 2 ≤ r ≤ n − 1 and let M(n) be the value for which the
function FBW

n reaches its maximum. Then,

i) M(n) = ⌊n/2⌋.
ii) The maximum value of FBW

n is:

FBW
n (M(n)) =

⌊ 1+n
2 ⌋

2⌊ 1+n
2 ⌋ − 1

=

{

n
2(n−1) , if n is even;
n+1
2n , if n is odd.

Proof.

i) Since FBW
n (r) = − 2

n(n−1)r
2 + 2

(n−1)r is the equation of a parabola in the

variable r, it is clear that

M(n) = min
{

r ∈ [2, n− 1] : FBW
n (r) ≥ FBW

n (r + 1)
}

.

Now,

FBW
n (r + 1)− FBW

n (r) =
2

n(n− 1)
(n− 2r − 1)

so it follows that

FBW
n (r + 1)− FBW

n (r) ≤ 0 ⇔ (n− 2r − 1) ≤ 0 ⇔ r ≥ n− 1

2
.

Consequently,

M(n) = min

{

r ∈ [2, n− 1] : r ≥ n− 1

2

}

= ⌊n/2⌋

as claimed.
ii) It is enough to apply the previous result.

If n is even, then n = 2N and

FBW
n (M(n)) = FBW

n (N) =
2N(n−N)

n(n− 1)
=

2N2

2N(2N − 1)
=

N

2N − 1
.
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Moreover, in this case
⌊

1 + n

2

⌋

=

⌊

1 + 2N

2

⌋

= N

so it follows that

FBW
n (M(n)) =

N

2N − 1
=

⌊

1+n
2

⌋

2
⌊

1+n
2

⌋

− 1

as claimed.
Otherwise, if n is odd, then n = 2N + 1 and

FBW
n (M(n)) = FBW

n (N) =
2N(n−N)

n(n− 1)
=

2N(2N + 1−N)

(2N + 1)2N
=

N + 1

2N + 1
.

In this case
⌊

1 + n

2

⌋

=

⌊

1 + 2N + 1

2

⌋

= N + 1

so we also have that

FBW
n (M(n)) =

N + 1

2N + 1
=

⌊

1+n
2

⌋

2
⌊

1+n
2

⌋

− 1

and the proof is complete.

�

This result means that, for n > 2, optimal strategy in this setting consists in
rejecting roughly the first ⌊n

2 ⌋ interviewed candidates and then accepting the first
candidate which is either better or worse than all the preceding ones. Following this

strategy, the maximum probability of success is
⌊ 1+n

2 ⌋
2⌊ 1+n

2 ⌋ − 1
. In the cases n ∈ {1, 2},

it is evident that an optimal cutoff value is r = 0, i.e. to accept the first candidate
that we consider The probability of success is 1 in both cases according to the fact
that FBW

1 (0) = FBW
2 (0) = 1.

Remark. Unlike in the classic secretary problem, the probability of success in
the Best-or-Worst variant is not strictly increasing in n. In fact, we have that
FBW
2n (M(2n)) = FBW

2n−1(M(2n− 1)) for every n.

We are now going to consider the Best-or-Worst variant with the payoff function
pC given in (2); i.e., we assume that performing each interview has a constant cost
of 1/n. Under this assumption it can be proved that the optimal strategy is the
same threshold strategy given in Theorem 1. Moreover, in this setting, the expected
payoff with n candidates and cutoff value r is given by

EBW,C
n (r) :=

n
∑

k=r+1

(

1− k

n

)

PBW
n,r (k) =

2r(r − 1)

n2

n
∑

k=r+1

n− k

(k − 1)(k − 2)
.

As usual, the goal is to determine the optimal cutoff value that maximizes the
expected payoff EBW,C

n and to compute this maximum expected payoff. We do so
in the following result.
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Theorem 3. Given an integer n > 1, let us consider the function EBW,C
n (r) defined

above for every integer 1 < r < n and let M(n) be the value for which the function
EBW,C

n reaches its maximum. Also, let

θ := − 1

2W
−1
(− 1

2
√
e
)
= e

1
2
+W−1(

−1

2
√

e
)

be the solution to the equation 2x log(x) = x− 1. Then, the following hold:

i) lim
n

M(n)/n = θ = 0.284668 . . . .

ii) lim
n
EBW,C

n (M(n)) = lim
n
EBW,C

n (⌊nθ⌋) = θ(1− θ) = 0.2036321 . . .

Proof. First, observe that

EBW,C
n (r) =

2r(r − 1)

n2

n
∑

k=r+1

(n− k)

(k − 1)(k − 2)
=

2r(r − 1)

n2

[

n− 2

r − 1
− n− 2

n− 1
−

n−1
∑

i=r

1

i

]

= 2
r

n

(

1− 2

n

)

− 2
r

n

(

r

n− 1
− 1

n− 1

)

− 2
r

n

(

r

n
− 1

n

) n−1
∑

i=r

1

i
.

Now, we can extend EBW,C
n to a real variable function by

EBW,C
n (r) = 2

r

n

(

1− 2

n

)

− 2
r

n

(

r

n− 1
− 1

n− 1

)

− 2
r

n

(

r

n
− 1

n

)

(ψ(n)− ψ(r)).

Furthermore, it can be seen that the sequence of functions gn(x) := EBW,C
n (nx)

converges uniformly in [0, 1] to the function g(x) = 2x (1− x+ x log x).
To conclude the proof it is enough to apply Proposition 1 together with some

straightforward computations. �

Remark. The constant θ = − 1
2W−1(− 1

2
√

e
)
= 0.284668 . . . also appears related to

rumour theory [3, 12] and to Gabriel’s Horn (see A101314 in OEIS).

Now, let us consider the Best-or-Worst variant with the payoff function pP given
in (3); i.e., we assume that performing each interview has an additional payoff
of 1/n. Under this assumption, since the payoff increases with the number of
interviews, it can be proved that the optimal strategy is again the same threshold
strategy given in Theorem 1. Moreover, in this setting, the expected payoff with n
candidates and cutoff value r is given by

EBW,P
n (r) :=

n
∑

k=r+1

(

1 +
k

n

)

PBW
n,r (k) =

2r(r − 1)

n2

n
∑

k=r+1

n+ k

(k − 1)(k − 2)
.

The optimal cutoff value that maximizes the expected payoff EBW,P
n and this max-

imum expected payoff are determined in following result.

Theorem 4. Given an integer n > 1, let us consider the function EBW,P
n (r) defined

above for every integer 1 < r < n and let M(n) be the value for which the function
EBW,P

n reaches its maximum. Also let

ϑ :=
1

2W ( e
3
2

2 )
= 0.552001 . . .

be the solution to the equation 1− 3 x− 2 x log(x) = 0. Then, the following hold:

i) lim
n

M(n)/n = ϑ.
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ii) lim
n
EBW,P

n (M(n)) = lim
n
EBW,P

n (⌊nϑ⌋) = ϑ(1 + ϑ) = 0.8567 . . .

Proof. First, observe that

EBW,P
n (r) =

2r(r − 1)

n2

n
∑

k=r+1

(n+ k)

(k − 1)(k − 2)
=

= 2
r

n

(

1 +
2

n

)

− 2
r

n

r − 1

n

(

1 +
3

n− 1

)

− 2
r

n

r − 1

n

n−1
∑

i=r

1

i
.

Now, we can extend EBW,P
n to a real variable function by

EBW,P
n (r) = 2

r

n

(

1 +
2

n

)

− 2
r

n

r − 1

n

(

1 +
3

n− 1

)

− 2
r

n

r − 1

n
(ψ(n)− ψ(r)).

Furthermore, it can be seen that the sequence of functions gn(x) := EBW,P
n (nx)

converges uniformly on [0, 1] to g(x) = −2x (−1 + x+ x log x).
To conclude the proof it is enough to apply Proposition 1 together with some

straightforward computations. �

So far, we have considered the Best-or-Worst variant in which the goal is to select
either the best or the worst candidate, indifferent between the two cases. To finish
this section we are going to further modify the Best-or-Worst variant. In particular
we are going to consider different payoff depending on whether we select the best
or the worst candidate. In paticular we are going to consider the following payoff
function, with m < M .

(4) pU (k) =











m, if the k-th candidate is the worst candidate;

M, if the k-th candidate is the best candidate;

0, otherwise.

In this new setting the optimal strategy has two thresholds, as stated in the
following result, whose proof is analogue to that of Theorem 1.

Theorem 5. For the Best-or-Worst variant, if n is the number of candidates and
the payments for selecting the worst and the best candidates are, respectively, m <
M , there exist r(n) ≤ s(n), such that the following strategy is optimal:

(1) Reject the r(n) first interviewed candidates.
(2) Accept the first candidate which is better than all the preceding ones until

reaching the s(n)-th candidate.
(3) After that, accept the first candidate which is either better or worse than

all the preceding ones.

Now, let n be the number of candidates and let us consider cutoff values 1 < r <
s < n. Then, if k ∈ (r, n] is an integer, the probability of successfully selecting the
best candidate in the k-th interview is given by

PBW,U
n,r,s (k) =

{

r
(k−1)n , if r < k < s;
r

k−1
s−1
k−2

1
n
, if k ≥ s.
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On the other hand, if k ∈ (r, n] is an integer, the probability of successfully
selecting the best or the worst candidate in the k-th interview is given by

P
BW,U

n,r,s (k) =

{

0, if r < k < s;
r

k−1
s−1
k−2

1
n
, if k ≥ s.

Because, according to the optimal strategy we can only select the worst candidate
if k ≥ s.

Consequently, the expected payoff with n candidates and cutoff values r < s is
given by

EBW,U
n (r, s) :=

n
∑

k=r+1

MPBW,U
n,r,s (k) +mP

BW,U

n,r,s (k) =

=

s
∑

k=r+1

M r

(k − 1) n
+

n
∑

k=s+1

(M +m)
r(s− 1)

(k − 1)(k − 2)n
.

The following result determines the cutoff values as well as the corresponding
maximum expected payoff.

Theorem 6. Given a positive integer n > 2, let us consider the function EBW,U
n (r, s)

defined above for every pair of integers in the set {(r, s) ∈ Z
2 : 0 ≤ r ≤ s < n} and

let (M1(n),M2(n)) be the point for which EBW,U
n reaches its maximum. Then,

i) lim
n

M1(n)

n
=
e−1+ n

MM

m+M
.

ii) lim
n

M2(n)

n
=

M

m+M
.

iii) lim
n
EBW,U

n (M1(n),M2(n)) =
e−1+ n

MM2

m+M
.

Proof. Let us define the sequence of functions {hn} by hn(x, y) = EBW
n (nx, xy).

Then,

lim
n
hn(x, y) = h(x, y) =

{

(M +m)x− (M +m)xy +Mx log(y/x), if x, y 6= 0;

0 otherwise.

and the convergence is uniform on T := {(x, y) ∈ R
2 : 0 ≤ x ≤ y ≤ 1}.

Hence, we can apply Proposition 2. To do so, observe that h is a concave function
on the convex set T with a negative definite hessian matrix. Since h has only one
critical point, namely

(

e−1+ m

M M

M +m
,

M

M +m

)

and

h

(

e−1+ m

MM

M +m
,

M

M +m

)

=
e−1+ m

MM2

M +m

the result follows. �

This result means that the optimal strategy in this setting consists in rejecting

roughly the first n
e−1+ m

MM

M +m
interviewed candidates, then accepting the first candi-

date which is better than all the preceding ones until reaching roughly the n
M

M +m
candidate and, finally accepting the first candidate which is either better or worse
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than all the preceding ones. Following this strategy, the maximum expected payoff

is asymptotically equal to
e−1+ m

MM2

M +m
.

Remark. If m≪M the cuttof values obtained in Theorem 6 are, approximately,
ne−1 and n. This means that the optimal strategy ignores the objective of obtaining
the worst candidate and we recover the original secretary problem. In addition, if
m = M , then both cutoff values coincide with n/2 and we recover the original
Best-or-Worst variant.

5. The Postdoc variant

In this section we focus on the Postdoc variant, as described in the introduction,
in which the goal is to select the second best candidate. First of all we have to
prove that, just like in classic problem, the optimal strategy is a threshold strategy.

In this variant it is not obvious that the optimal strategy has only one threshold.
This is because the candidate considered in a given interview could be selected both
if it is better or the second better than all the preceding ones and in both cases it
could end up being the second best candidate. However, we are going to see that
selecting a candidate which is better than all the preceding ones is never preferable
to waiting for a candidate which is the second better than all the preceding ones.

Assume for a moment that we are following a threshold strategy. Let n be the
number of candidates and let us consider a cutoff value r ∈ (1, n). If k ∈ (r, n] is
an integer, the probability of successfully selecting the best or the worst candidate

in the k-th interview is PPD
n,r (k) = r

k−1
1
k

(k2)
(n2)

. Thus, the probability function of

succeeding in the Postdoc variant with n candidates using r as cutoff value and
provided we are following a threshold strategy for the second best candidate, is
given by

FPD
n (r) :=

n
∑

k=r+1

PPD
n,r (k) =

n
∑

k=r+1

r
(

k
2

)

(−1 + k) k
(

n
2

) .

Note that the following holds:

FPD
n (r) := =

n
∑

k=r+1

r
(

k
2

)

(−1 + k) k
(

n
2

) =
r
(

r+1
2

)

(−1 + r + 1) (r + 1)
(

n
2

) +

n
∑

k=r+2

r
(

k
2

)

(−1 + k) k
(

n
2

) =

=

(

r+1
2

)

(r + 1)
(

n
2

) +
n
∑

k=r+2

(r + 1)r
(

k
2

)

(−1 + k) k (r + 1)
(

n
2

) =

=

(

r+1
2

)

(r + 1)
(

n
2

) +
r

r + 1

n
∑

k=r+2

(r + 1)
(

k
2

)

(−1 + k) k
(

n
2

) =

=

(

r+1
2

)

(r + 1)
(

n
2

) +
r

r + 1
FPD
n (r + 1).

On the other hand, let us denote by Tn(r) the probability of success after the r-th
interview provided we have already selected a candidate which is better than all the
preceding ones. Then, the probability of finding the second best candidate in the
(r+1)-th interview is 1

r+1 and, furthermore, the probability of not finding a better

candidate among all the remaining interviews is
(r+1

2 )
(n2)

. On the other hand, the
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probability of not obtaining the second best candidate in the (r + 1)-th interview
is r

r+1 and the probability of success in this case will be Tn(r + 1). Hence,

Tn(r) =
1

r + 1

(

r+1
2

)

(

n
2

) +
r

r + 1
Tn(r + 1).

Thus, we have seen that Tn(r) and F
PD
n (r) both satisfy the same recurrence relation

in r. Moreover, it holds that Tn(n− 1) = FPD
n (n− 1) = 1/n so, consequently, we

obtain that Tn(r) = FPD
n (r) for every r < n.

Note that this means that the optimal strategy can neglect if a given candidate
is better than all the preceding ones and focus only on whether the candidate is the
second better than all the preceding ones and thus the optimal strategy has only
one threshold.

Theorem 7. For the Postdoc variant, if n is the number of candidates, there exists
r(n) such that the following strategy is optimal:

(1) Reject the r(n) first interviewed candidates.
(2) After that, accept the first candidate which is the second best until then.

Proof. Just use the same ideas as in Theorem 1. �

Thus, the probability function of succeeding in the Postdoc variant with n can-
didates using r as cutoff value, is given by

FPD
n (r) :=

n
∑

k=r+1

PPD
n,r (k) =

r(n− r)

n(n− 1)
.

Observe that we have obtained that FPD
n (r) =

1

2
FBW
n (r). Consequently, if we

follow the previous strategy, the optimal cutoff value is the same as in the Best-or-
Worst variant; i.e., ⌊n

2 ⌋) and the maximum probability of success is one half of the
maximum probability of success in the Best-or-Worst variant (see Theorem 2).

We are now going to consider the Postdoc variant with the payoff function pC
given in (2); i.e., we assume that performing each interview has a constant cost of
1/n. Under this assumption it can be proved that the optimal strategy has two
thresholds.

Theorem 8. For the Postdoc variant, if n is the number of candidates and if the
payoff function is given by (2), there exist r(n) ≤ s(n), such that the following
strategy is optimal:

(1) Reject the r(n) first interviewed candidates.
(2) Accept the first candidate which is better than all the preceding ones until

reaching the s(n)-th candidate.
(3) After that, accept the first candidate which is either better or second better

than all the preceding ones.

Proof. Proceed as in Theorem 1 with each threshold separately. �

Under this strategy, the probability of successfully selecting the second best
candidate in the k-th interview is given by the function

PPD,C
n,r,s (k) =

{

r(n−k)
n(n−1)(k−1) , if r < k < s;

r(s−1)(n−k)
n(n−1)(k−1)(k−2) +

r(s−1)
n(n−1)(k−2) , if k ≥ s.
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Consequently, the expected payoff with n candidates and cutoff values r < s is
given by

EPD,C
n (r, s) =

n
∑

k=r+1

(

1− k

n

)

PPD,C
n,r,s (k).

In the following result we determine the optimal cutoff values and the maximum
expected payoff.

Theorem 9. Given a positive integer n > 2 let us consider the function EPD,C
n (r, s)

defined above for every (r, s) ∈ {(r, s) ∈ Z
2 : 0 ≤ r ≤ s < n} and let (M1(n),M2(n))

be the point for which EPD,C
n reaches its maximum. Then,

i) lim
n

M1(n)/n = 0.17248 . . .

ii) lim
n

M2(n)/n = 0.39422 . . .

iii) lim
n
EPD,C

n (M1(n),M2(n)) = 0.11811 . . .

Proof. First of all, observe that

EPD,C
n (r, s) =

r

n2

(

n+
n− 1

s− 1
− s+

(s− r) (3− 4n+ r + s)

2 (n− 1)

)

+

+
r

n2
((1− s) ψ(−1 + n)− (n− 1) ψ(r) + (n− 2 + s) ψ(s− 1)) .

Thus, if we define the sequence of functions {hn} by hn(x, y) = EPD,C
n (nx, ny), it

follows that

lim
n
hn(x, y) = h(x, y) :=

{

x(2−6y+y2+4x−x2+2(1+y) log y−2 log x)
2 , if x, y 6= 0;

0, otherwise.

and the convergence is uniform on {(x, y) ∈ R
2 : 0 ≤ x ≤ y ≤ 1}.

Using elementary techniques we get that h reaches its absolute maximum at the
point (α, β) with β := 0.39422 . . . is the solution to −2 + 1

β
+ β + log(β) = 0 and

α := 0.1724844 . . . is the solution to 1− 1
β
− 2 β − β2

2 + 4α− 3α2

2 − log(α) = 0.

The fact that h(α, β) = 0.11811 . . . concludes the proof. �

Finally, let us consider the Postdoc variant with the payoff function pP given in
(3); i.e., we assume that performing each interview has an additional payoff of 1/n.
Under this assumption, it is clear that no optimal strategy will accept a candidate
which is better than all the preceding ones because, if the search continues, the
probability of success is the same and the payoff will be greater. Hence, we must
only consider strategies with one threshold for the second best candidate, as in
Theorem 7, ignoring if the interviewed candidate in better than the preceding ones.
In this setting, the expected payoff with n candidates and cutoff value r is given by

EPD,P
n (r) :=

n
∑

k=r+1

(

1 +
k

n

)

PPD
n,r (k) =

r(n− r)(3n + 1 + r)

2n2(n− 1)
.

The optimal cutoff value that maximizes the expected payoff EPD,P
n and this max-

imum expected payoff are determined in the following result.

Theorem 10. Given an integer n > 1, let us consider the function EPD,P
n (r)

defined above for every integer 1 < r < n and let M(n) be the value for which the
function EPD,P

n reaches its maximum. Then, the following hold:



THE BEST-OR-WORST AND THE POSTDOC PROBLEMS 15

i) lim
n

M(n)

n
=

√
13− 2

3
= 0.53518 . . .

ii) lim
n
EPD,P

n (M(n)) =
13

√
13− 35

27
= 0.4397 . . .

Proof. Since EPD,P
n is a degree 3 polynomial, we can explicitly obtain the exact

value of M(n) by elementary methods. Namely,

M(n) =
−1− 2n+

√
1 + 7n+ 13n2

3
.

The result follows immediately. �

Remark. Note that we can further refine the previous result by noting that

M(n) =

(√
13− 2

3

)

n +
7− 2

√
13

6
√
13

+ o(n). In this case, [M(n)] is the optimal

cutoff value for all n up to 10000, without any exception.

6. Conclusions

In this paper, we have analyzed two variants of the secretary problem which
happen to be closely related: the Postdoc and the Best-or-Worst variants. Both of
them have the same optimal threshold strategy and the mean payoff for the first
one is twice as for the second one.

We now show a comparative table of the asymptotic optimal cutoff value (ACV)
given by lim

n
M(n)/n and the the asymptotic maximum expected payoff (AMP) in

the classical secretary problem, in the Best-or-Worst variant and in the Postdoc
variant with payoff functions pB, pC and pP . In the case of the Postdoc variant
with payoff function pP , in the cell corresponding to M(n)/n we show the two
thresholds related to the optimal strategy in that setting.

Payoff Classic Best-or-Worst Postdoc
ACV AMP ACV AMP ACV AMP

pB e−1 e−1 1/2 1/2 1/2 1/4

pC
ρ ≃

0.2031
ρ− ρ2 ≃
0.1619

θ ≃
0.2846

θ − θ2 ≃
0.2036

0.1724,
0.3942

0.1181

pP
η ≃

0.4263
η2 + η ≃
0.6080

ϑ ≃
0.5520

ϑ2 + ϑ ≃
0.8567

√
13−2
3 ≃

0.5351

13
√
13−35
27

≃ 0.4397
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