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Abstract. Recently, the study of patterns in inversion sequences was initiated by

Corteel-Martinez-Savage-Weselcouch and Mansour-Shattuck independently. Motivated

by their works and a double Eulerian equidistribution due to Foata (1977), we investi-

gate several classical statistics on restricted inversion sequences that are either known

or conjectured to be enumerated by Catalan, Large Schröder, Euler and Baxter numbers.

One of the two highlights of our results is an intriguing bijection between 021-avoiding

inversion sequences and (2413, 4213)-avoiding permutations, which proves a sextuple

equidistribution involving double Eulerian statistics. The other one is a refinement of

a conjecture due to Martinez and Savage that the cardinality of In(≥,≥,>) is the n-th

Baxter number, which is proved via the so-called obstinate kernel method developed by

Bousquet-Mélou.

Keywords: Inversion sequences, ascents, distinct entries, last entry, Schröder numbers,

Baxter numbers

1 Introduction

For each n ≥ 1, the set of inversion sequences of length n, denoted In, is defined by

In = {(e1, e2, . . . , en) : 0 ≤ ei < i}. It serves as various kind of codings for Sn, the set of

permutations of [n] := {1, 2, . . . , n}. By a coding of Sn, we mean a bijection from Sn to

In. For example, the map Θ(π) : Sn → In defined for π = π1π2 . . . πn ∈ Sn as

Θ(π) = (e1, e2, . . . , en), where ei := |{j < i : πj > πi}|,

is a natural coding of Sn. Clearly, the sum of the entries of Θ(π) equals the number of

inversions of π, i.e., the number of pairs i < j such that πi > πj. This is the reason why

In is named inversion sequences here.

Pattern avoidance in permutations has already been extensively studied in the liter-

ature (see the book by Kitave [9]), while the systematic study of patterns in inversion

∗Supported in part by the National Science Foundation of China grant 11501244.

http://arxiv.org/abs/1706.07208v1
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Cn In(132), In(123): classical result [9]; In(≥,−,≥): conjectured in [13]

Sn
Sn(2413, 3142),Sn(2413, 4213),Sn(3124, 3214): classical result [11]

In(021): proved in [5, 12]; In(≥, 6=,≥), In(>,−,≥), In(≥,−,>): proved in [13]

Bn Sn(2413, 3142): classical result [4]; In(≥,≥,>): conjectured in [13]

En+1 Simsun permutations of [n]: classical result [16]; In(000): proved in [5]

Figure 1: Sets enumerated by Cn, Sn, Bn or En+1.

sequences was initiated only recently in [5] and [12]. Since both permutations and in-

version sequences will be regarded as words over N = {0, 1, . . .}, their patterns can be

defined in a unified way as follows.

For two words W = w1w2 · · · wn and P = p1p2 · · · pk (k ≤ n) on N, we say that

W contains the pattern P if there exist some indices i1 < i2 < · · · < ik such that the

subword W ′ = wi1wi2 · · · wik
of W is order isomorphic to P. Otherwise, W is said to

avoid the pattern P. For example, the word W = 32421 contains the pattern 231, because

the subword w2w3w5 = 241 of W has the same relative order as 231. However, W is

101-avoiding. For a set of words W , the set of words in W avoiding patterns P1, . . . , Pr is

denoted by W(P1, . . . , Pr). One well-known enumeration result in this area, attributed to

MacMahon and Knuth (cf. [9]), is that |Sn(123)| = Cn = |Sn(132)|, where Cn := 1
n+1(

2n
n )

is the n-th Catalan number.

In [5, 12], inversion sequences avoiding patterns of length 3 are exploited, where a

number of familiar combinatorial sequences, such as large Schröder numbers (denoted Sn)

and Euler numbers (denoted by En), arise. Martinez and Savage [13] further considered

a generalization of pattern avoidance to a fixed triple of binary relations (ρ1, ρ2, ρ3).
For each triple of relations (ρ1, ρ2, ρ3) ∈ {<, >, ≤, ≥, =, 6=, −}3, they studied the set

In(ρ1, ρ2, ρ3) consisting of those e ∈ In with no i < j < k such that ei ρ1 ej, ej ρ2 ek and

ei ρ3 ek. Here the relation ′′−′′ on a set S is all of S × S, i.e., x ′′−′′ y for all x, y ∈ S.

For example, In(<,>,<) = In(021) and In(≥,−,≥) = In(000, 101, 110). In Fig. 1, we

summarize some of their enumeration results and conjectures, as well as corresponding

classical facts in permutation patterns. Based on these results, we will investigate more

connections between restricted permutations and inversion sequences by considering

several classical statistics that we recall below.

For each π ∈ Sn and each e ∈ In, let

DES(π) := {i ∈ [n − 1] : πi > πi+1} and ASC(e) := {i ∈ [n − 1] : ei < ei+1}

be the descent set of π and the ascent set of e, respectively. Another important property



Restricted inversion sequences 3

of the coding Θ is that DES(π) = ASC(Θ(π)) for each π ∈ Sn. Thus,

∑
π∈Sn

tDES(π) = ∑
e∈In

tASC(e), (1.1)

where tS := ∏i∈S ti for any set S of positive integers. Throughout this paper, we use the

convention that if “ST” is a set-valued statistic, then “st” is the corresponding numerical

statistic. For example, des(π) is the cardinality of DES(π) for each π. It is known

that An(t) := ∑π∈Sn
tdes(π) is the classical n-th Eulerian polynomial [7] and each statistic

whose distribution gives An(t) is called a Eulerian statistic. In view of (1.1), “asc” is a

Eulerian statistic on inversion sequences. Let dist(e) be the number of distinct positive

entries of e. This statistic was first introduced by Dumont [6], who also showed that

it is a Eulerian statistic on inversion sequences. Amazingly, Foata [7] later invented

two different codings of permutations called V-code and S-code to prove the following

extension of (1.1).

Theorem 1.1 (Foata 1977). For each π ∈ Sn let ides(π) := des(π−1) be the number of

inverse descents of π. Then,

∑
π∈Sn

sides(π)tDES(π) = ∑
e∈In

sdist(e)tASC(e). (1.2)

Partial results regarding the statistics “asc” and “dist” on restricted inversion se-

quences have already been obtained in [5, 12, 13]. In particular, the ascent polynomial

Sn(t) := ∑e∈In(021) tasc(e) was shown to be palindromic via a connection with some black-

white rooted binary trees in [5]. Inspired by Foata’s result, we will consider the joint

distribution of “asc” and “dist” on restricted inversion sequences and prove several re-

stricted versions of (1.2). Another interesting statistic for e ∈ In is the last entry of e, that

we denote last(e). This statistic turns out to be useful in solving some real root problems

in [14] and will also lead us to solve two enumeration conjectures.

The rest of this paper deals with refinements of Catalan, Schröder, Baxter and Euler

numbers. Two highlights of our results are: (i) a bijection from In(021) to Sn(2413, 4213)
(see Section 3.2.2); (ii) a refinement of a conjecture due to Martinez and Savage [13] that

asserts the cardinality of In(≥,≥,>) is the n-th Baxter number (denoted Bn), which is

proved via Bousquet-Mélou’s obstinate kernel method (see Section 4).

2 Catalan numbers

Let (ρ1, ρ2, ρ3) be a relation triple in {(≥,−,≥), (≥,−,>), (≥,≥,>)}. We introduce the

parameter cri(e) for each e ∈ In(ρ1, ρ2, ρ3), that we call the critical value of e, as the

minimal integer c such that (e1, . . . , en, c) ∈ In+1(ρ1, ρ2, ρ3). Note that “cri” depends on

the relation triple (ρ1, ρ2, ρ3). For example, if we consider e = (0, 1, 0, 2, 2, 4) as inversion
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sequence in I6(≥,−,>), then cri(e) = 2. However, cri(e) = 3 when e is considered

as an inversion sequence in I6(≥,−,≥). The reason to introduce “cri” is that if e ∈
In(ρ1, ρ2, ρ3), then (e1, . . . , en, k) is in In+1(ρ1, ρ2, ρ3) if and only if cri(e) ≤ k ≤ n. This

parameter will play an important role in our study of the Catalan, Schröder and Baxter

triangles induced by the statistic “last”.

As a warm-up, we will first show how the critical value can be used to prove that

| In(≥,−,≥)| = Cn, which was conjectured in [13]. Let us define the refinement Cn,k :=
|{e ∈ In(≥,−,≥) : last(e) = k}|. The following recurrence shows that the numbers Cn,k

generate the Catalan triangle that has already been widely studied (see OEIS: A009766).

Proposition 2.1. For 0 ≤ k ≤ n − 1, we have the three-term recurrence

Cn,k = Cn,k−1 + Cn−1,k.

Proof. Let Cn,k := {e ∈ In(≥,−,≥) : last(e) = k}. We divide Cn,k into the disjoint union

An,k ∪Bn,k, where An,k = {e ∈ Cn,k : cri(e1, e2, . . . , en−1) = k} and Bn,k = Cn,k \An,k. Since

cri(e1, e2, . . . , en−1) ≤ k − 1 for e ∈ Bn,k, the mapping that sends (e1, e2, . . . , en−1, k) to

(e1, e2, . . . , en−1, k − 1) is a bijection from Bn,k to Cn,k−1. Therefore, the cardinality of Bn,k

is Cn,k−1 and so it remains to show that |An,k| = Cn−1,k. Now, we are going to construct

a bijection g : An,k → Cn−1,k, which will complete the proof of the recurrence for Cn,k.

For each e ∈ An,k, there is a unique index i such that ei = k − 1 and ei+1 ≤ k − 1. Define

g(e) to be the inversion sequence obtained from e by deleting en−1, if en−1 = n − 2,

or by deleting ei, otherwise. For example, we have g(0, 1, 1, 3, 2) = (0, 1, 1, 2) while

g(0, 1, 1, 2, 2) = (0, 1, 2, 2). It is routine to check that g is actually a bijection.

Theorem 2.2. For n ≥ 1, we have the equidistribution

∑
π∈Sn(123)

tdes(π) = ∑
e∈In(≥,−,≥)

tdist(e).

Proof. Let e ∈ In(≥,−,≥). If t = max{i : ei = i − 1} < n, then it is straightforward to

show that e can be decomposed into two smaller inversion sequences: (e1, . . . , et−1, et+1)
in It(≥,−,≥) and (et+2 − t, et+3 − t, . . . , en − t) in In−1−t(≥,−,≥). Using this decomposi-

tion, one can show easily that ∑n≥1 xn ∑e∈In(≥,−,≥) tdist(e) =
−1+2tx(1+x−tx)+

√
1−4tx(1+x−tx)

2t2x(tx−1−x)
.

The desired result then follows by comparing this with the o.g.f. for ∑π∈Sn(123) tdes(π)

in OEIS: A166073.

3 Schröder numbers

3.1 A new Schröder triangle

Theorem 3.1. For n ≥ 1 and 0 ≤ k ≤ n − 1, we have

|{e ∈ In(≥,−,>) : last(e) = k}| = |{e ∈ In(021) : last(e) ≡ k + 1(mod n)}|. (3.1)

https://oeis.org/A009766
https://oeis.org/A166073
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Note that this result is obviously true for k = n − 1, n − 2, n − 3. Let us define the

Schröder triangle Sn,k := |{e ∈ In(≥,−,>) : last(e) = k}|. We have the following simple

recurrence for Sn,k.

Lemma 3.2. For 0 ≤ k ≤ n − 3, we have the four-term recurrence

Sn,k = Sn,k−1 + 2Sn−1,k − Sn−1,k−1.

Proof. As in the Catalan case, we divide the set Sn,k := {In(≥,−,>) : last(e) = k}
into the disjoint union An,k ∪ Bn,k, where An,k := {e ∈ Sn,k : cri(e1, . . . , en−1) = k} and

Bn,k = Sn,k \ An,k. Clearly, there is a natural bijection from Bn,k to Sn,k−1, which maps

(e1, . . . , en−1, k) to (e1, . . . , en−1, k− 1). Therefore, the cardinality of Bn,k is Sn,k−1 and so it

remains to show |An,k| = 2Sn−1,k − Sn−1,k−1, assuming k ≤ n − 3. To do this, we further

divide An,k into the disjoint union Cn,k ∪Dn,k, where

Cn,k := {e ∈ An,k : en−1 = n − 2, cri(e1, . . . , en−2) = k}

and Dn,k = An,k \ Cn,k. Obviously, we have {(e1, . . . , en−2, en) : e ∈ Cn,k} = An−1,k. Thus,

|Cn,k| = |An−1,k| = |Sn−1,k| − |Bn−1,k| = Sn−1,k − Sn−1,k−1, which will end the proof once

we can define a bijection from Dn,k to Sn−1,k.

For each e ∈ Dn,k, if ei is the left-most entry that equals cri(e) = k, then the entries

ei, ei+1, . . . , en−1 of e must satisfy: (i) ei = k and ei+1 ≤ k; (ii) k ≤ ei+2 ≤ ei+3 ≤ · · · ≤ en−1,

where the inequalities after the entries greater than k are strict. Now removing the

right-most entry ej, such that ej = k and i ≤ j ≤ n − 1, from e results in an inver-

sion sequence in Sn−1,k (since en−1 ≤ n − 3) that we denote f (e). For example, we

have f (0, 1, 2, 0, 2, 2) = (0, 1, 2, 0, 2), f (0, 1, 0, 2, 2, 2) = (0, 1, 0, 2, 2) and f (0, 1, 2, 1, 3, 2) =
(0, 1, 1, 3, 2). We claim that the map f : Dn,k → Sn−1,k is a bijection.

Proof of Theorem 3.1. It is not hard to show that the right-hand side of (3.2) satisfies the

same recurrence relation as Sn,k, which completes the proof of the theorem.

One may ask if there is any other interpretation of Sn,k in terms of pattern-avoiding

permutations. The following conjecture will answer this question completely, if true.

Conjecture 3.3. Let (σ, π) be a pair of patterns of length 4. Then,

Sn,k = |{π ∈ Sn(σ, π) : last(π)− 1 = k}|

for any 0 ≤ k < n if and only if (σ, π) is one of the following nine pairs:

(4321, 3421), (3241, 2341), (2431, 2341), (4231, 3241),

(4231, 2431), (4231, 3421), (2431, 3241), (3421, 2431), (3421, 3241).
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0 1 0 1 2 0 4

7→d

Figure 2: The outline of inversion sequence (0, 1, 0, 1, 2, 0, 4).

3.2 Double Eulerian equidistributions

3.2.1 Statistics

Let π ∈ Sn be a permutation. The values of inverse descents of π is

VID(π) := {2 ≤ i ≤ n : πi + 1 appears to the left of πi},

which is an important set-valued extension of “ides”. The positions of left-to-right maxima

of π is LMA(π) := {i ∈ [n] : πi > πj for all 1 ≤ j < i}. Similarly, we can define the

positions of left-to-right mixima LMI(π), the positions of right-to-left maxima RMA(π) and

the positions of right-to-left minima RMI(π) of π.

Let e ∈ In be an inversion sequence. The positions of the last occurrence of distinct

positive entries of e is DIST(e) := {2 ≤ i ≤ n : ei 6= 0 and ei 6= ej for all j > i}. The

positions of zeros in e is ZERO(e) := {i ∈ [n] : ei = 0}. The positions of the entries of e

that achieve maximum is EMA(e) := {i ∈ [n] : ei = i − 1} and the positions of right-to-left

minima of e is RMI(e) := {i ∈ [n] : ei < ej for all j > i}.

3.2.2 A sextuple equidistribution

Note that an inversion sequence avoids 021 if and only if its positive entries are weakly

increasing, which inspires the following geometric representation.

Definition 3.4 (Outline). Recall that a Dyck path of length n is a lattice path in N
2 from

(0, 0) to (n, n) using the east step (1, 0) and the north step (1, 0), which does not pass

above the line y = x. Here a Dyck path will be represented as d1d2 . . . dn, where di is the

height of its i-th east step. For each e ∈ In(021), we associate it with a two-colored Dyck

path d(e) = d1d2 . . . dn, where the red east steps indicate the positions of zero entries of

e like this:

di =

{
ei if ei 6= 0,

k if ei = 0 and k = max{e1, . . . , ei}.
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For example, if e = (0, 1, 0, 1, 2, 0, 4) ∈ I7(021), then d(e) is the two-colored Dyck path

in Fig. 2. The two-colored Dyck path d(e) is called the outline of e. We introduce the

exposed positions of e as

EXPO(e) := {i : i /∈ C(e) and i − di < j − dj for all j > i },

where C(e) = {i : ei = 0 and there is (a, b), a < i < b, satisfying ea = eb 6= 0}. Continu-

ing with our example, we have EXPO(e) = {2, 7}.

Theorem 3.5. There exists a bijection Ψ : In(021) → Sn(2413, 4213) such that

(DIST, ASC, ZERO, EMA, RMI, EXPO)e = (VID, DES, LMA, LMI, RMA, RMI)Ψ(e)

for each e ∈ In(021).

The idea of constructing Ψ is to draw lines parallel to the diagonal y = x in some

specified order and successively label the east steps (of the outline) touched by them.

The details are provided in [10]. Theorem 3.5 has two interesting applications: (i) the

calculation of the double Eulerian distribution (des, ides) on Sn(2413, 4213) using the

natural structure of two-colored Dyck paths; (ii) an interpretation of the γ-coefficients

of Sn(t) in terms of 021-avoiding inversion sequences via the so-called Foata–Strehl group

action, which implies the palindromicity and unimodality of Sn(t).

3.2.3 Two more equidistributions

Based on calculations, Martinez and Savage [13] suspected that

∑
e∈In(021)

tasc(e) = ∑
e∈In(≥, 6=,≥)

tasc(e) = ∑
e∈In(>,−,≥)

sasc(e).

This follows from Theorem 3.5, the palindromicity of Sn(t) and two more multivariate

equidistributions (Theorems 3.6 and 3.7) stated below.

First we introduce a set-valued extension of “dist” different from “DIST”:

ROW(e) := {e1, e2, . . . , en} \ {0}, for each e ∈ In.

Theorem 3.6. For n ≥ 1, we have

∑
e∈In(≥, 6=,≥)

sROW(e)tASC(e)ulast(e) = ∑
e∈In(>,−,≥)

sROW(e)tASC(e)ulast(e).

Proof. We can construct a bijection from In(≥, 6=,≥) to In(>,−,≥), which preserves the

triple statistics (ROW, ASC, last). Notice that In(≥, 6=,≥) = In(110, 101, 201, 210), while

In(>,−,≥) = In(100, 101, 201, 210). The idea is to replace iteratively occurrences of

pattern 100 in an inversion sequence in In(≥, 6=,≥) \ In(>,−,≥) with those of patterns

110, the details of which will be omitted here.
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Recently, Baril and Vajnovszki [1] constructed a new coding Φ : Sn → In satisfying

(VID, DES, LMA, LMI, RMA)π = (DIST, ASC, ZERO, EMA, RMI)Φ(π)

for each π ∈ Sn.

Theorem 3.7. For n ≥ 1, we have

∑
π∈Sn(3142,3124)

sVID(π)tDES(π) = ∑
e∈In(≥, 6=,≥)

sDIST(e)tASC(e).

Proof. We can show that the Baril–Vajnovszki coding Φ restricts to a bijection between

Sn(3124, 3142) and In(≥, 6=,≥). The details are omitted here.

Remark 3.8. Interestingly, we have also been able to show that Φ restricts to a bijection

between Sn(2413, 4213) and In(021). This restricted Φ does not transform “RMI” to

“EXPO”, while our bijection Ψ in Theorem 3.5 does.

4 Baxter numbers

A permutation avoiding both vincular patterns (see [9] for the definition) 2413 and 3142

is called a Baxter permutation. It is a result of Chung et al. [4] that

Bn = |Sn(2413, 3142)| = 1

(n+1
1 )(n+1

2 )

n−1

∑
k=0

(
n + 1

k

)(
n + 1

k + 1

)(
n + 1

k + 2

)
.

The number Bn is known as the n-th Baxter number. Martinez and Savage [13] conjectured

that | In(≥,≥,>)| = Bn, which can be refined as follows.

Theorem 4.1. For n ≥ 1, we have the equidistribution

∑
e∈In(≥,≥,>)

un+1−cri(e) = ∑
π∈Sn(2413,3142)

ulma(π)+rma(π). (4.1)

Corollary 4.2. Define the Baxter triangle as Bn,k := |{e ∈ In(≥,≥,>) : last(e) = k}|. Then,

Bn,k = |{π ∈ Sn−1(2413, 3142) : lma(π) + rma(π) ≥ n − k}|.

The rest of this section is devoted to a sketch of our proof of Theorem 4.1. For

each e ∈ In(≥,≥,>), introduce the parameters (p, q) of e, where p = m + 1 − cri(e)
and q = n − m with m = max{e1, . . . , en}. After a careful discussion we can obtain the

following new rewriting rule (see [3] for other known rewriting rules for Baxter families).
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Lemma 4.3. Let e ∈ In(≥,≥,>) be an inversion sequence with parameters (p, q). Exactly

p + q inversion sequences in In+1(≥,≥,>) when removing their last entries will become e, and

their parameters are respectively:

(p − 1, q + 1), (p − 2, q + 1), . . . , (1, q + 1),

(1, q + 1), (p + 1, q), (p + 2, q − 1), . . . , (p + q, 1).

The order in which the parameters are listed corresponds to the inversion sequences with last

entries from c to n, where c = n + 1 − (p + q).

Define the formal power series F(t; u, v) = F(u, v) := ∑n,p,q≥1 Fn,p,qtnupvq, where

Fn,p,q is the number of inversion sequences in In(≥,≥,>) with parameters (p, q). We can

turn the above lemma into a functional equation as follows.

Proposition 4.4. We have the following equation for F(u, v):

(
1 +

tv

1 − u
+

tv

1 − v/u

)
F(u, v) = tuv + tuv

(
1 +

1

1 − u

)
F(1, v) +

tv

1 − v/u
F(u, u). (4.2)

Let G(u, v) := ∑n≥1 tn ∑π∈Sn(2413,3142) ulma(π)vrma(π). This formal power series G(u, v)
was first introduced and studied by Bousquet-Mélou [2]. Now, Theorem 4.1 is equivalent

to G(u, u) = F(u, u), which will be established by solving (4.2).

Proof of Theorem 4.1. It will be convenient to set w = v/u in (4.2). The equation then

becomes
(

1 +
tuw

1 − u
+

tuw

1 − w

)
F(u, wu) = tu2w + tu2w

(
1 +

1

1 − u

)
F(1, wu) +

tuw

1 − w
F(u, u).

Further setting u = 1 + x and w = 1 + y in the above equation yields

xy − t(1 + x)(1 + y)(x + y)

t(1 + x)(1 + y)
F(1 + x, (1 + x)(1 + y))

= xy(1 + x)− (1 − x2)yF(1, (1 + x)(1 + y))− F̃(x), (4.3)

where F̃(x) := xF(1 + x, 1 + x). We call the numerator K(x, y) of the coefficient of

F(1 + x, (1 + x)(1 + y)) the kernel of the above equation:

K(x, y) = xy − t(1 + x)(1 + y)(x + y).

We are going to apply the so-called kernel method (cf. [2]) to this equation.

As a polynomial in y, the kernel has two roots:

Y(x) =
1 − t(1 + x)(1 + x̄)−

√
1 − 2t(1 + x)(1 + x̄)− t2(1 − x2)(1 − x̄2)

2t(1 + x̄)
,
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Y′(x) =
1 − t(1 + x)(1 + x̄) +

√
1 − 2t(1 + x)(1 + x̄)− t2(1 − x2)(1 − x̄2)

2t(1 + x̄)
,

where x̄ = 1/x. Only the first root can be substituted for y in (4.3), because the term

F(1 + x, (1 + x)(1 + Y′)) is not a well-defined power series in t (the taylor expansion of

Y′ in t does not exist).

Now, we will adopt the obstinate kernel method that was invented by Bousquet-Mélou [2,

Section 2.2] for producing all the pairs (x, y) that can be legally substituted in (4.3): those

are the pairs (x, Y), (x̄Y, Y), (x̄Y, x̄) and their dual (Y, x), (Y, x̄Y), (x̄, x̄Y), thanks to the

symmetry of the kernel K(x, y). Substituting these 6 pairs into (4.3) and after some

manipulations, we obtain




(x − xY2)F̃(x)− (Y − x2Y)F̃(Y) = (Y − Y3)(x2 + x3)− (x − x3)(Y2 + Y3),

(Yx̄ − Y3 x̄)F̃(Yx̄)− (Y − Y3 x̄2)F̃(Y) = (Y − Y3)(Y2 x̄2 + Y3 x̄3)− (Yx̄ − Y3 x̄3)(Y2 + Y3),

(Yx̄ − Yx̄3)F̃(Yx̄)− (x̄ − Y2 x̄3)F̃(x̄) = (x̄ − x̄3)(Y2 x̄2 + Y3 x̄3)− (Yx̄ − Y3 x̄3)(x̄2 + x̄3).

By eliminating F̃(Y) and F̃(Yx̄), we get a relation between F̃(x) and F̃(x̄):

F̃(x) + F̃(x̄) =
Y(1 + x)(x4 − 2Yx3 + 2Y2x − 2Y + 1)

x2(Y − 1)(Y − x)
. (4.4)

But F̃(x) = xF(1 + x, 1+ x) is a formal power series in t with coefficients in xN[x], while

F̃(x̄) is a formal power series in t with coefficients in x̄N[x̄]. Therefore, the positive part

in x of the right hand side of (4.4) is exactly F̃(x).
On the other hand, it has been showed in [2, Corollary 3] that if we let G̃(x) :=

xG(1 + x, 1 + x), then
x − 2t(1 + x)2

t(1 + x)2
G̃(x) = x2 − 2R(x), (4.5)

where R(x) = xG(1+ x, 1). Combining with the relation between R(x) and R(x̄) proved

in [2, Eq. (8)]:

R(x) + R(x̄) = x̄2Y(1 + x3 − xY),

we have

G̃(x) + G̃(x̄) =
t(1 + x)2

x − 2t(1 + x)2
(x2 + x̄2 − 2(R(x) + R(x̄)))

=
t(1 + x)2

x − 2t(1 + x)2
(x2 + x̄2 − 2x̄2Y(1 + x3 − xY)).

To check that t(1+x)2

x−2t(1+x)2 (x
2 + x̄2 − 2x̄2Y(1 + x3 − xY)) equals the right hand side of (4.4)

is routine by Maple, which proves that F̃(x) = G̃(x). This completes the proof of the

theorem.

Since the proof of equdistribution (4.1) uses the obstinate kernel method based on

the formal power series, it is natural to ask for a bijective proof.
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5 Euler numbers

5.1 Entringer–Eulerian statistics on In(000)

As introduced by Simion and Sundaram [16], a permutation π ∈ Sn is called a Simsun

permutation if it has no double descents, even after removing n, n − 1, . . . , k for any k. Let

RSn be the set of all Simsun permutations in Sn. Using the statistic “last”, we refine a

result [5, Corollary 2] by Corteel et al.

Theorem 5.1. Let asc(π) := n − 1 − des(π) for each π ∈ Sn. Then,

∑
π∈RSn

tasc(π)ulast(π) = ∑
e∈In(000)

tdist(e)ulast(e)+1.

Proof. By combining the simple bijection in [5, Theorem 7] from In(000) to 0-1-2-increasing

trees with n + 1 vertices and a special ordering of the increasing tree representation of per-

mutations due to Maria Monks (see [15, Page 198]).

It also follows from the simple bijection in [5, Theorem 7] and a result of Poupard [8,

Proposition 1] that the statistic “last + 1” is Entrianger. Can the generating function for

this Entrianger–Eulerian pair be calculated?

5.2 Double Eulerian distribution on In(000)

As an application of Foata’s V-code and S-code, we can prove the following double

Eulerian equidistribution.

Theorem 5.2. Let iasc(π) := asc(π−1) for each π ∈ Sn. Then,

∑
π∈RSn

siasc(π)tasc(π) = ∑
e∈In(000)

sasc(e)tdist(e).

The details for the proof of a set-valued extension of Theorem 5.2 will be reported in

a full version of this abstract.
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