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RESTRICTED INVERSION SEQUENCES AND ENHANCED

3-NONCROSSING PARTITIONS

ZHICONG LIN

Abstract. We prove a conjecture due independently to Yan and Martinez-Savage that
asserts inversion sequences with no weakly decreasing subsequence of length 3 and en-
hanced 3-noncrossing partitions have the same cardinality. Our approach applies both
the generating tree technique and the so-called obstinate kernel method developed by
Bousquet-Mélou. One application of this equinumerosity is a discovery of an intriguing
identity involving numbers of classical and enhanced 3-noncrossing partitions.

1. Introduction

Set partitions avoiding k-crossing and k-nesting have been extensively studied both from
the aspects of Combinatorics and Mathematical Biology; see [4, 5, 9] and the references
therein. The bijection between partitions and vacillating (resp. hesitating) tableaux due
to Chen, Deng, Du, Stanley and Yan [4] is now a fundamental tool for analyzing classi-
cal (resp. enhanced) k-crossings and k-nestings. In particular, these two bijections were
applied by Bousquet-Mélou and Xin [3] to enumerate set partitions avoiding classical or
enhanced 3-crossings. After their work, the sequence {C3(n)}n≥1 (resp. {E3(n)}n≥1) where
C3(n) (resp. E3(n)) is the number of partitions of [n] := {1, 2, . . . , n} avoiding classical
(resp. enhanced) 3-crossings has been registered as A108304 (resp. A108307) in OEIS:

{C3(n)}n≥1 = {1, 2, 5, 15, 52, 202, 859, 3930, . . .},

{E3(n)}n≥1 = {1, 2, 5, 15, 51, 191, 772, 3320, . . .}.

The main purpose of this paper is to show that the sequence {E3(n)}n≥1 also enumerates
inversion sequences with no weakly decreasing subsequence of length 3. As we will see, this
implies the following intriguing identity between {C3(n)}n≥1 and {E3(n)}n≥1:

(1.1) C3(n + 1) =
n∑

i=0

(
n

i

)
E3(i),

where we use the convention E3(0) = 1.
It is convenient to recall some necessary definitions. For each n ≥ 1, let In be the set of

inversion sequences of length n defined as

In := {(e1, e2, . . . , en) : 0 ≤ ei < i}.
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An inversion sequence e ∈ In is said to be (≥,≥,−)-avoiding if there does not exist i < j < k
such that ei ≥ ej ≥ ek. The set of all (≥,≥,−)-avoiding inversion sequences in In is denoted
by In(≥,≥,−). For example, we have

I3(≥,≥,−) = {(0, 0, 1), (0, 0, 2), (0, 1, 0), (0, 1, 1), (0, 1, 2)}.

Recently, Martinez and Savage [10] studied this class of restricted inversion sequences and
suspected the following connection with enhanced 3-noncrossing partitions.

Conjecture 1.1 (Yan [14] & Martinez-Savage [10]). The cardinality of In(≥,≥,−) is E3(n).

In fact, this conjecture has already been proposed by Yan [14] several years before in
proving a conjecture of Duncan and Steingrímsson [7]. We notice that in [14] there is
an interesting bijection between (≥,≥,−)-avoiding inversion sequences and 210-avoiding
primitive ascent sequences as we review below.

Recall that a sequence of integers x = x1x2 · · ·xn is called an ascent sequence if it satisfies
x1 = 0 and for all 2 ≤ i ≤ n, 0 ≤ xi ≤ asc(x1x2 · · ·xi−1) + 1, where

asc(x1x2 · · ·xi−1) = |{j ∈ [i− 2] : xj < xj+1}|

is the ascent number of x1x2 · · ·xi−1. Such an ascent sequence x is said to be

• 210-avoiding, if x does not have decreasing subsequence of length 3;
• primitive, if xi 6= xi+1 for all i ∈ [n− 1].

Denote by An(210) and PAn(210) the set of all 210-avoiding ordinary and primitive ascent
sequences of length n, respectively. For example, we have

A3(210) = {000, 001, 010, 011, 012} and PA4(210) = {0101, 0102, 0120, 0121, 0123}.

Via an intermediate structure of growth diagrams for 01-fillings of Ferrers shapes, Yan [14]
proved combinatorially the following equinumerosity, which was first conjectured in [7,
Conjecture 3.3].

Theorem 1.2 (Main result of Yan [14]). The cardinality of An(210) is C3(n).

In the course of her combinatorial proof to Theorem 1.2, she also showed that the mapping
φ : PAn+1(210) → In(≥,≥,−) defined for each x ∈ PAn+1(210) by

φ(x) = (e1, e2, . . . , en), where ei = i− 1 + xi+1 − asc(x1x2 · · ·xi+1),

is a bijection. Therefore, Conjecture 1.1 is equivalent to |PAn+1(210)| = E3(n), as was
originally suggested in [14, Remark 3.6].

The rest of this paper is laid out as follows. In section 2, we develop the generating tree
for ∪n In(≥,≥,−) and obtain a resulting functional equation. In Section 3, we solve this
function equation via the obstinate kernel method [2] and then apply the Lagrange inversion
formula and Zeilberge’s algorithm to finish the proof of Conjecture 1.1. In Section 4, we
show that how Conjecture 1.1 together with the results in [3] would provide an alternative
approach to Theorem 1.2. An extension of (1.1) to k-noncrossing is also conjectured. In
Section 5, we apply similar technique as in section 2 to enumerate another interesting class
of restricted inversion sequences introduced by Adams-Watters [1]. It is surprising that
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the resulting functional equation is hard, which we have no idea how to solve. Finally, we
conclude the paper with some further remarks.

2. The generating tree for (≥,≥,−)-avoiding inversion sequences

A left-to-right maximum of an inversion sequence (e1, e2, . . . , en) is an entry ei satisfying
ei > ej for any j < i. Similar to 321-avoiding permutations, (≥,≥,−)-avoiding inversion
sequences has the following important characterization proved by Martinez-Savage [10].

Proposition 2.1 (See [10], Observation 7). An inversion sequence is (≥,≥,−)-avoiding if

and only if both the subsequence formed by its left-to-right maximum and the one formed

by the remaining entries are strictly increasing.

For each e ∈ In(≥,≥,−), introduce the parameters (p, q) of e, where

p = α(e)− β(e) and q = n− α(e)

with α(e) = max{e1, e2, . . . , en} and β(e) is the greatest integer in the set

{ei : ei is non-left-to-right maximum} ∪ {−1}.

For example, the parameters of (0, 1, 2) is (3, 1), while the parameters of (0, 1, 1) is (0, 2).
We have the following rewriting rule for (≥,≥,−)-avoiding inversion sequences.

Lemma 2.2. Let e ∈ In(≥,≥,−) be an inversion sequence with parameters (p, q). Exactly

p+ q inversion sequences in In+1(≥,≥,−) when removing their last entries will become e,
and their parameters are respectively:

(p− 1, q + 1), (p− 2, q + 1), . . . , (0, q + 1)

(p+ 1, q), (p+ 2, q − 1), . . . , (p+ q, 1).

The order in which the parameters are listed corresponds to the inversion sequences with

last entries from β(e) + 1 to n.

Proof. In view of Proposition 2.1, the vector f := (e1, e2, . . . , en, b) is an inversion sequence
in In+1(≥,≥,−) if and only if β(e) < b ≤ n. We distinguish two cases:

• If β(e) < b ≤ α(e), then α(f) = α(e) and β(f) = b. These contribute the parame-
ters (p− 1, q + 1), (p− 2, q + 1), . . . , (0, q + 1).

• If α(e) < b ≥ n, then α(f) = b and β(f) = β(e). This case contributes the
parameters (p+ 1, q), (p+ 2, q − 1), . . . , (p+ q, 1).

These two cases together give the rewriting rule for (≥,≥,−)-avoiding inversion sequences.
Note that p = α(e)− β(e) may be 0, i.e. α(e) = β(e), and in this situation the first case is
empty. �

Using the above lemma, we construct a generating tree (actually an infinite rooted tree)
for (≥,≥,−)-avoiding inversion sequences by representing each element as its parameters
like this: the root is (1, 1) and the children of a vertex labelled (p, q) are those that generated
according to the rewriting rule in Lemma 2.2. See Fig. 1 for the first few levels of this
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(1, 1)

(0, 2) (2, 1)

(1, 2) (2, 1)

(0, 3) (2, 2) (3, 1) (1, 2) (0, 2) (3, 1)

(1, 2) (0, 2) (3, 1)

(0, 3) (2, 2) (3, 1) (1, 2) (2, 1) (2, 2) (1, 2) (0, 2) (4, 1)

Figure 1. First few levels of the generating tree for ∪n In(≥,≥,−).

generating tree. Note that the number of vertices in the n-th level of this tree is the
cardinality of In(≥,≥,−).

Define the formal power series E(t; u, v) = E(u, v) :=
∑

p≥0,q≥1Ep,q(t)u
pvq, where Ep,q(t)

is the size generating function for the (≥,≥,−)-inversion sequences with parameters (p, q).
We can turn this generating tree into a functional equation as follows.

Proposition 2.3. We have the following functional equation for E(u, v):

(2.1)

(
1 +

tv

1− u
+

tv

1− v/u

)
E(u, v) = tuv +

tv

1− u
E(1, v) +

tv

1− v/u
E(u, u).

Proof. In the generating tree for ∪n In(≥,≥,−), each vertex other than the root (1, 1) can
be generated by an unique parent. Thus, we have

E(u, v) = tuv + t
∑

p≥0,q≥1

Ep,q(t)

(
vq+1

p−1∑

i=0

ui +

q−1∑

i=0

up+1+ivq−i

)

= tuv + t
∑

p≥0,q≥1

Ep,q(t)

(
1− up

1− u
vq+1 + up+1vq

1− (u/v)q

1− u/v

)

= tuv +
tv

1− u
(E(1, v)− E(u, v)) +

tuv

v − u
(E(u, v)−E(u, u)),

which is equivalent to (2.1). �

Remark 2.4. It should be noted that the kernel 1+ tv
1−u

+ tv
1−v/u

of (2.1) is exactly the same

as that of the functional equation for Baxter inversion sequences in [8, Proposition 4.4.].

3. Proof of Conjecture 1.1

In this section, we will prove Conjecture 1.1 by solving (2.1). It is convenient to set
v = uw in (2.1). The equation then becomes

(
1 +

tuw

1− u
+

tuw

1− w

)
E(u, wu) = tu2w +

tuw

1− u
E(1, uw) +

tuw

1− w
E(u, u).
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Further setting u = 1 + x and w = 1 + y above we get

(3.1)
xy − t(1 + x)(1 + y)(x+ y)

t(1 + x)(1 + y)
E(1 + x, (1 + x)(1 + y))

= xy(1 + x)− yE(1, (1 + x)(1 + y))− Ẽ(x),

where Ẽ(x) = xE(1+x, 1+x). We are going to apply the obstinate kernel method developed
by Bousquet-Mélou [2] to this equation. The numerator

K(x, y) = xy − t(1 + x)(1 + y)(x+ y)

of the coefficient of E(1 + x, (1 + x)(1 + y)) in (3.1) is named the kernel of (3.1).
Observe that K(x, y) is also the kernel of the functional equation in [2, Corollary 3] for

Baxter permutations. It was shown in [2, Figure 3] that the three pairs (x, Y ), (x̄Y, Y ) and
(x̄Y, x̄) are roots of the kernel K(x, y) and can be legally substituted for (x, y) in (3.1),
where

x̄ :=
1

x
and Y =

1− t(1 + x)(1 + x̄)−
√
1− 2t(1 + x)(1 + x̄)− t2(1− x2)(1− x̄2)

2t(1 + x̄)
.

Note that the kernel K(x, y) is symmetric in x and y and so the dual pairs (Y, x), (Y, x̄Y )
and (x̄, x̄Y ) are also roots of K(x, y) which can be legally substituted for (x, y) in (3.1).
Substituting the pairs (x, Y ) and (Y, x) for (x, y) in (3.1) yields

{
xY (1 + x)− Y E(1, (1 + x)(1 + Y ))− Ẽ(x) = 0,

Y x(1 + Y )− xE(1, (1 + x)(1 + Y ))− Ẽ(Y ) = 0.

Eliminating E(1, (1 + x)(1 + Y )) we get

(3.2) Y Ẽ(Y )− xẼ(x) = xY (Y (1 + Y )− x(1 + x)).

Similarly, substitute (x̄Y, Y ), (Y, x̄Y ) and (x̄Y, x̄), (x̄, x̄Y ) into (3.1) and after some compu-
tation we get two equations, which together with (3.2) give the system of equations:





Y Ẽ(Y )− xẼ(x) = xY (Y (1 + Y )− x(1 + x)),

Y Ẽ(Y )− x̄Y Ẽ(x̄Y ) = x̄Y 2(Y (1 + Y )− x̄Y (1 + x̄Y )),

x̄Ẽ(x̄)− x̄Y Ẽ(x̄Y ) = x̄2Y (x̄(1 + x̄)− x̄Y (1 + x̄Y )).

By eliminating Ẽ(Y ) and Ẽ(x̄Y ), we get a relation between Ẽ(x) and Ẽ(x̄):

(3.3) x̄Ẽ(x)− x̄3Ẽ(x̄) = R(x, Y ),

where

(3.4) R(x, Y ) = Y (x+ 1− x̄5 − x̄6) + Y 2(x̄5 − x̄) + Y 3(x̄3 + x̄6 − x̄− x̄4) + Y 4(x̄3 − x̄5)

is a formal power series in t. Since in the left-hand side of (3.3):

• x̄Ẽ(x) = E(1 + x, 1 + x) is a power series in t with polynomial coefficient in x

• and x̄3Ẽ(x̄) is a power series in t with polynomial coefficient in x̄ whose lowest
power of x̄ is 4,
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we have the following result.

Theorem 3.1. Let Y = Y (t; x) be the unique formal power series in t such that

(3.5) Y = t(1 + x̄)(1 + Y )(x+ Y ).

The series solution E(u, v) of (2.1) satisfies

(3.6) E(1 + x, 1 + x) = PT
x

R(x, Y ),

where R(x, Y ) is defined in (3.4) and the operator PT
x

extracts non-negative powers of x in

series of Q[x, x̄][[t]].

Now we can apply the Lagrange inversion formula and Zeilberge’s algorithm to finish the
proof of Conjecture 1.1.

Proof of Conjecture 1.1. Let E(n) = | In(≥,≥,−)|. It follows from (3.6) that

(3.7) E(n) = [x−1tn]Y + [x0tn]Y − [x5tn]Y − [x6tn]Y + [x5tn]Y 2 − [x1tn]Y 2

+ [x3tn]Y 3 + [x6tn]Y 3 − [x1tn]Y 3 − [x4tn]Y 3 + [x3tn]Y 4 − [x5tn]Y 4.

Applying the Lagrange inversion formula [12, Theorem 5.4.2] to (3.5) gives:

[xmtn]Y k =
k

n
[xmtn−k]((x+ t)(1 + t)(1 + x̄))n

=
k

n

n−k∑

i=0

(
n

i

)(
n

k + i

)(
n

m+ i

)

for all k,m ∈ Z and n ∈ N. Substituting this into (3.7) we can express E(n) as E(n) =∑n−1
i=0 E(n, i), where

E(n, i) =
1

n

(
n

i

){(
n

i+ 1

)[(
n+ 1

i

)
−

(
n + 1

i+ 6

)]
+ 2

(
n

i+ 2

)[(
n

i+ 5

)
−

(
n

i+ 1

)]

+3

(
n

i+ 3

)[(
n

i+ 3

)
+

(
n

i+ 6

)
−

(
n

i+ 1

)
−

(
n

i+ 4

)]
+ 4

(
n

i+ 4

)[(
n

i+ 3

)
−

(
n

i+ 5

)]}
.

Applying Zeilberger’s algorithm [11] (or creative telescoping) with E(n, i) above as input,
the Maple package ZeilbergerRecurrence(E(n,i),n,i,E,0..n-1) gives the P-recursion:
for n ≥ 1,

(3.8) anE(n) + bnE(n+ 1) + cnE(n+ 2)− dnE(n + 3) = 0,

where

an = 8(3n+ 13)(n+ 3)(n+ 2)(n+ 1),

bn = 3(n+ 3)(n+ 2)(15n2 + 153n+ 376),

cn = 6(n+ 7)(3n3 + 38n2 + 156n + 212),

dn = (3n+ 10)(n+ 9)(n+ 8)(n+ 7).
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The initial conditions are E(1) = 1, E(2) = 2 and E(3) = 5.
On the other hand, Bousquet-Mélou and Xin [3, Proposition 2] showed that the number

E3(n) satisfies the P-recursion: E3(0) = E3(1) = 1, and for n ≥ 0,

(3.9) 8(n+ 3)(n+ 1)E3(n) + (7n2 + 53n+ 88)E3(n+ 1)− (n + 8)(n+ 7)E3(n+ 2) = 0.

It is then routine to check that the sequence defined by the above three term recursion
satisfies also the four term recursion in (3.8) obtained via Zeilberger’s algorithm. More
precisely, applying to (3.9) the operator

(3n+ 13)(n+ 2) + (3n+ 10)(n+ 7)N,

where N is the shift operator replacing n by n + 1, yields a four term recursion for E3(n)
which is exactly the same as that for E(n) in (3.8). This completes the proof of Conjec-
ture 1.1, since both sequences share the same initial values. �

Since our proof of Conjecture 1.1 uses formal power series heavily, it is natural to ask for
a bijective proof.

4. A new approach to Yan’s result and a conjecture

Let x = x1x2 · · ·xn+1 be a 210-avoiding ascent sequence of length n+1. It is apparent that
the ascent sequence x can be written uniquely as x̃c1

1 x̃
c2
2 · · · x̃

ci+1

i+1 , where x̃ := x̃1x̃2 · · · x̃i+1

is a 210-avoiding primitive ascent sequence of length i+ 1 and c1 + c2 + · · ·+ ci+1 = n+ 1
is a (i+1)-composition of n+1. For instance, the ascent sequence 0110212224 ∈ A10(210)
can be written as 01120121112341, so that x̃ = 0102124 ∈ PA7(210) and the corresponding
7-composition is 1 + 2 + 1 + 1 + 1 + 3 + 1 = 10. Since the number of (i + 1)-composition
of n+ 1 is

(
n
i

)
, the above decomposition gives the identity:

|An+1(210)| =
n∑

i=0

(
n

i

)
|PAi+1(210)| =

n∑

i=0

(
n

i

)
E3(i),

where the second equality follows from |PAi+1(210)| = E3(i) (by Conjecture 1.1). There-
fore, Theorem 1.2 is equivalent to identity (1.1). In the following, we will show how to
deduce (1.1) from the results in [3], which provides a new approach to Theorem 1.2.

Let C(t) =
∑

n≥1

∑n−1
i=0

(
n−1
i

)
E3(i)t

n and E(t) =
∑

n≥0E3(n)t
n. It then follows that

(4.1) C(t) =
∑

i≥0

E3(i)t
i+1

∑

m≥0

(
m+ i

i

)
tm =

∑

i≥0

E3(i)

(
t

1− t

)i+1

= zE(z),

where z = t
1−t

. As was shown in [3, Proposition 2], the generating function E(t) satisfies:

t2(1 + t)(1− 8t)
d2

dt2
E(t) + 2t(6− 23t− 20t2)

d

dt
E(t) + 6(5− 7t− 4t2)E(t) = 30.

Thus, if we denote F(t) = tE(t), then

(4.2) t2(1 + t)(1− 8t)
d2

dt2
F(t) + 2t(5− 16t− 12t2)

d

dt
F(t) + (20− 10t)F(t) = 30t.
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By (4.1), we have F(t) = C(x) with x = t
1+t

. Substituting F(t) = C(x) into (4.2) and using
the chain rule (in Calculus), we get

x2(1− 9x)(1− x)
d2

dx2
C(x) + 2x(5− 27x+ 18x2)

d

dx
C(x) + 10(2− 3x)C(x) = 30x

after some manipulation. Comparing with [3, Proposition 1] we conclude that C(t) =∑
n≥1C3(n)t

n, which is equivalent to (1.1), as desired.

4.1. Extension of (1.1) to k-noncrossing: a conjecture. For any k ≥ 2, let Ck(n)
(resp. Ek(n)) be the number of partitions of [n] avoiding classical (resp. enhanced) k-
crossings. It is known that C2(n) = Cn := 1

n+1

(
2n
n

)
, the nth Catalan number, and E2(n) =

⌊n/2⌋∑
i=0

(
n
2i

)
Ci is the nth Motzkin number [12, Exercise 6.38]. The Catalan numbers are related

to Motzkin numbers by (cf. [6])

(4.3) C2(n + 1) =

n∑

i=0

(
n

i

)
E2(i).

In other words, the binomial transformation of Motzkin numbers are Catalan numbers. In
view of identities (4.3) and (1.1), the following conjecture is tempting.

Conjecture 4.1. Fix k ≥ 2. The following identity holds:

Ck(n + 1) =
n∑

i=0

(
n

i

)
Ek(i).

It would be interesting to see if the bijections of Chen et al. [4] or Krattenthaler [9]
could help to prove this conjecture. If this conjecture is true, then the D-finiteness (see [12,
Theorem 6.4.10]) of

Ck(t) =
∑

n≥1

Ck(n)t
n and Ek(t) =

∑

n≥1

Ek(n)t
n

are the same.

5. Adams-Watters’ restricted inversion sequences

An inversion sequence e = (e1, e2, . . . , en) ∈ In is called a AW-inversion sequence (here
AW stands for Adams-Watters) if for every 2 < i ≤ n, there holds ei ≤ max{ei−2, ei−1}+1.
Let In(AW) denote the set of AW-inversion sequences of length n. For example, we have

I3(AW) = {(0, 0, 0), (0, 0, 1), (0, 1, 0)(0, 1, 1)(0, 1, 2)}.

The AW-inversion sequences were introduced by Adams-Watters [1] (see also A108307 in
OEIS) who also conjectured that | In(AW)| = E3(n). Unfortunately, this is not true as

{| In(AW)|}n≥1 = {1, 2, 5, 15, 191, 773, 3336, . . .}

https://oeis.org/A108307
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and this sequence now appears as A275605 in OEIS. We will show in the following how
to get a functional equation for the generating function of a two-variable extension of this
sequences.

In order to get a rewriting rule for AW-inversion sequences, we introduce the parameters

(p, q) for each e ∈ In(AW) by

p = en + 1 and q = max{en−1, en}+ 1− en.

For example, the parameters of (0, 1, 2, 3, 2) ∈ I5(AW) is (3, 2). The following result can
be checked routinely.

Lemma 5.1. Let e ∈ In(AW) be an inversion sequence with parameters (p, q). Exactly

p+ q inversion sequences in In+1(AW) when removing their last entries will become e, and

their parameters are respectively:

(1, p), (2, p− 1), . . . , (p, 1)

(p+ 1, 1), (p+ 2, 1), . . . , (p+ q, 1).

The order in which the parameters are listed corresponds to the inversion sequences with

last entries from 0 to max{en−1, en}+ 1.

Define the formal power series F (t; u, v) = F (u, v) :=
∑

p,q≥1 Fp,q(t)u
pvq, where Fp,q(t)

is the size generating function for the AW-inversion sequences with parameters (p, q). We
can translate Lemma 5.1 into the following functional equation.

Proposition 5.2. We have the following functional equation for F (u, v):

(5.1) F (u, v) = tuv +
tuv

v − u
(F (v, 1)− F (u, 1)) +

tuv

1− u
(F (u, 1)− F (u, u)).

Equivalently, if we write F (u, v) =
∑

n≥1 fn(u, v)t
n, then f1(u, v) = uv and for n ≥ 2,

(5.2) fn(u, v) =
uv

v − u
(fn−1(v, 1)− fn−1(u, 1)) +

uv

1− u
(fn−1(u, 1)− fn−1(u, u)).

Although we have not been able to solve (5.1), we note that recursion (5.2) can be applied
to compute | In(AW)| = fn(1, 1) easily.

6. Final remarks

Fix a positive integer k. The definition of AW-inversion sequences can be generalized to
k-AW-inversion sequences by requiring

ei ≤ max{ei−1, ei−2, . . . , ei−k}+ 1

for an inversion sequence e = (e1, e2, . . . , en) and every 1 ≤ i ≤ n, where we take the con-
vention em = 0 whenever m is nonpositive. It is apparent that k-AW-inversion sequences
of length n is enumerated by

• the nth Catalan number Cn, when k = 1;

https://oeis.org/A275605
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• the nth Bell number Bn, when k = n−1. Note that in this case, the k-AW-inversion
sequences are known as restricted growth functions, which are used to encode set
partitions.

The 2-AW-inversion sequences is just the AW-inversion sequences we have investigated
here. But even for enumeration of this special case, we obtain no explicit formula.

The longest decreasing and increasing subsequences and their variants in permutations
have already been studied from various aspects; see the interesting survey written by
Stanely [13]. We expect similar studies on inversion sequences and ascent sequences to
be fruitful. In particular, our results suggest that inversion sequences with no weakly
k-decreasing subsequence and ascent sequences, primitive or ordinary, avoiding strictly
k-decreasing subsequence for k > 3 may worth further investigation.
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