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CORRELATION FUNCTIONS OF COLOURED TENSOR MODELS
AND THEIR SCHWINGER-DYSON EQUATIONS

CARLOS 1. PEREZ SANCHEZ, RAIMAR WULKENHAAR

ABSTRACT. We analyze the correlation functions of coloured tensor models and use the Ward-
Takahashi identity in order to derive the full tower of exact Schwinger-Dyson equations. We
write them explicitly for ranks D = 3 and D = 4. Throughout, we follow a non-perturbative
approach. We propose the extension of this program to the Gurau-Witten model, a holographic
tensor model based on the Sachdev-Ye-Kitaev model (SYK model).

1. INTRODUCTION

Inspired by matrix models, and being initially in fact very similar to them, tensors models
are a natural way to extend the two dimensional random geometry of matrix models [3]
to higher dimensions. As an important application, tensor models aim at evaluating the
partition function of simplicial quantum gravity [1; 4; 11; 14; 16; 17] and could be seen,
under mild assumptions, as a generator of a family of graph-encoded discretizations of
the Einstein-Hilbert action, in whose continuum limit smooth geometries are expected to
emerge.

One of the initial differences between matrix and tensor models, which turned out to
impair the natural development of the latter, was the impossibility to derive their 1/N-
expansion. This problem was solved by Gurau [8], who introduced a unitary symmetry,
the “colouring” the tensors, that forbids some unwished contributions in the perturbative
expansion (see Sec. 2.1 here and [7]). He showed that the 1/N-expansion of rank-D
tensor models is controlled by an integer called Gurau’s degree associated to each Feynman
graph. This integer happens to be related to the value of the Einstein-Hilbert action on a
D-dimensional equilateral triangulation associated to that graph. The discrete spectrum of
Gurau’s degree is then the set of values that the Regge discretisation of the general relativity
action can take. Additional to the initial motivations of tensor models, new applications
to AdS/CFT (also admitting a 1/N-expansion [10]) via the Sachdev-Ye-Kitaev (SYK)
models have been found in [20]; along these lines the Gurau-Witten model [9] has been
newly proposed. This sets the foundations for the so-called holographic tensors.

All these new results enliven the physics of random tensors. Yet, the quantum theory
of these objects itself deserves a more thorough mathematical scrutiny, and, in this vein,
the present paper is a study of the correlation functions of coloured tensors, already begun
in [15], and of the equations they obey. There, the partition function Z[J,.J] of coloured
tensor models (CTM) has been shown to satisfy a constraint, namely the Ward-Takahashi
identity, is a byproduct of the colouring of the tensors. We ventured to anticipate that
this constraint would allow to derive an equation for each correlation function of coloured
tensor models, and the aim of this paper is to obtain those for arbitrary rank.
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The connected correlation 2k-point function of rank-D Tensor Field theories are usually
defined by

) _
— ) log(Z .y € ZP).
6in5in) og(Z[J,J]) o (xi,yi €Z7). (%)
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G(2k)(x17' s XEy Y1, JYk) = (H
=1

For CTM, this definition is redundant, when not equivocal (e.g. G (x;y) identically
vanishes outside the diagonal x = y). In [15] we proposed to split each function Gk in
sectors ng) that encompass all Feynman graphs indexed by so-called boundary graphs B
(see Sec. 2). Here 2k denotes the number of vertices of B and this integer coincides with
the number of external legs of the graphs summed in G(B%)

There are two reasons to classify correlation functions by boundary graphs: First, by
using these correlation functions one gains a clear geometric interpretation in terms of
bordisms. Feynman diagrams in CTMs are coloured graphs, and these represent graph-
encoded triangulations of PL-manifolds. The momentum flux between external legs of an
open graph G determines its so-called boundary, B = 0G. Boundary graphs are important
because they also triangulate a manifold, and this manifold coincides with the boundary,
in the usual sense, of the manifold that the original graph triangulates [11]. Also, by fixing
a boundary graph B, one can sum all connected Feynman graphs that contribute to G(%)
and these are interpreted as bordisms whose boundary is tr1angulated by B; for instance,

the connected components, & and 4 of (the graph indexing) G( N

and a torus, respectively, and (connected Feynman) graphs contmbutlng to this correlation
function are triangulations of bordisms S? — T? that are compatible with their boundary
being “triangulated by” & U &5.

Secondly, one must do the splitting of the correlations in boundary graphs, otherwise
the momenta of the sources interfere with one another. The correlation functions that
we propose here need only half the arguments of the functions from definition (x). For
k =1,2,3,4, the connected correlation functions indexed by connected boundary graphs
are

triangulate a sphere

2)
G@) (11&)
Gl@l’ Gv(ép Gz(ég’ (1.1b)
Gga G@u G?@: G%v G(G GQ:%7 GQ(:%; (].].C)
G® G® . G® G(S % a® (,,) and Gs-orbits thereof. (1.1d)
Himmr Riin nrdid = B v S @ & @ i

Also, functions like G| S| and G oI’ indexed by disconnected graphs, need to be

considered. None of these graphs is a Feynman graph: in fact we will not deal with them
here!, since we proceed non-perturbatively.

To these two reasons, we add as motivation the success that this treatment gave for matrix
models [6]. There, by splitting in boundary components, the matricial Ward identity was
exploited and combined with the Schwinger-Dyson equations. This allowed to derive an
integral equation for the quartic matrix models and, in the planar sector, finally solve for all
correlation functions in terms of the two point function [6] via algebraic recursions. Here,
we import these techniques to the CTM setting.

In this article we derive the full tower of equations that correspond to connected boundary
graphs. We also obtain the 2-point and some higher-point Schwinger-Dyson equations

1Except two Feynman diagram examples appearing in Sec. 2.1 and in Fig. 7.
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(SDE) in an explicit form rank-3 and rank-4 theories. Section 2 recalls the setting of
coloured tensor models in a condensed fashion, and the expansion of the free energy in
boundary graphs. The Ward-Takahashi Identity (WTI) [15] for coloured tensors, which
we recall in Section 2.3, is a fundamental auxiliary and bases on this boundary graph
expansion. There, we also introduce language to deal with the proper derivation of the full
SDE-tower in Section 3. We continue with the derivation of the SDE-equations for quartic
rank-3 theories (Sec. 4) and rank-4 theories (Sec. 5; moreover, rank-5 are shortly addressed
in App. B).

In order to derive the SDE for a certain 2k-point function it is necessary to know, also to
order 2k in the sources, the form of certain generating functional (for rank 3, Lemma 4.1,
with proof located in App. A) which appears in the Ward-Identity. This requires knowledge
of the free energy to order 2(k+1) (in the sources), which in turn needs information about all
the graphs with this number of vertices and their coloured automorphism groups. Later on,
in Section 5 we find the SDE for rank-4 theories with melonic quartic vertices. Explicitly,
only the two-point functions and 4-point functions are obtained, since the graph theory in
four colours is much more complicated. Section 6 presents a model that has simpler SDEs
and looks solvable, since, as shown there, it posses a very similar expansion in boundary
graphs. It is a tensor model that can be used to study the random geometry of 3-spheres.

A short section before the conclusions analyzes the boundary graphs of the Gurau-Witten
(SYK-like) model and sets a plan to extend to it the CTM-methods developed in previous
sections.

We motivate a non-linear reading of this article. The dependence of the sections is
sketched by means of lines in the next diagram, the dashed ones meaning weak dependence.

ACKNOWLEDGMENTS

Both authors thank the SFB 878 (Sonderforschungsbereich Groups, Geometry € Ac-
tions) for financial support. C.I.P.S. thanks the DAAD (Deutscher Akademischer Aus-
tauschdienst) for financial support in the beginning of this work, and the Mainz Institute
for Theoretical Physics (MITP), where this paper was concluded, for support, office hours
and hospitality during the workshop Foundational and structural aspects of gauge theories.



1.
2.

2.1.
2.2.
2.3.

3.
4.

4.1.
4.2.
4.3.
4.4.

d.

5.1.
5.2.
5.3.

6.
7.
8.

CONTENTS

Introduction
Boundary graph expansions
Coloured tensors and coloured graphs
Boundary graphs
Graph-generated functionals
The Schwinger-Dyson equation tower in arbitrary rank
Schwinger-Dyson equations for rank-3 theories
Four-point function SDEs for the ¢j-theory
The Schwinger-Dyson equation for Gggz (3.3)
The Schwinger-Dyson equation for G(QE?L
The Schwinger-Dyson equation for Ggi)
Four-coloured graphs and melonic quartic rank-4 theories
Two-point equation for rank-4 theories
Four-point equation for G](;t ) in rank-4 theories
Four-point equation for G/((Z?j in rank-4 theories
A simple quartic model
Outlook: Gurau-Witten SYK-like model

Conclusions

Appendix A. Proof of Lemma 4.1

Appendix B. Rank-five quartic theories

References

co N Ot Ot =

14
18
22
23
24
26
28
30
31
33
34
37
40
41
46
47



2. BOUNDARY GRAPH EXPANSIONS

This section rapidly introduces the notation in graph theory and recapitulates previous
results that are relevant in our present study. There are few examples in Fig. 1 that are
intended as support to rapidly grasp the next definitions. Also the rather panoramic Table
1 organizes the concepts introduced below.

2.1. Coloured tensors and coloured graphs. Let N be a (large) integer, thought of
as an energy scale, and consider D distinguished representations, (H1,p1),--.,(Hp,pp)
of U(N). A coloured tensor model is concerned with the quantum theory of tensor fields
0, p:HIR@Hs® ... Hp — C whose components transform under said D representations
as

Parap P Poyap = Zya [Pa(Wa)lzaya Por.parean

Par.wp 7 Poyap = Z [Pa(Wa)lauya Par..yaean »

Ya

for all W, € U(N) and being each z, and y, in suitable index-sets I, C Z, for each in-
teger (or colour) a = 1,...,D. Usually one sets H, = CV or H, = £2[—n,n] for suitable
n = n(N), and p, = idy, for each colour a. However, at the same time, one insists that
the representations are distinguished, so that indices are anchored to a spot assigned by its
colour. Thus, the indices of the tensors have no symmetries (e.g. @i = @ir; is forbidden)
and only indices of the same colour can be contracted.

A particular tensor model is specified by two additional data: a finite subset of interaction
vertices given by real monomials in ¢ and ¢ that are U(/V)-invariant under the chosen D
representations; the second data is a quadratic form

So(p, @) = Tra(@, Ep) = Z Oy Expx, for certain function B : I} x ... x Ip — RT,

determining the kinetic term Sy in the classical action. Sums are (implicitly) over the finite
lattice I1 x ... x Ip C ZP. These I, sets depend usually on a cutoff scale related to N and
we will assume, also implicitly, that throughout they are all Z, keeping in mind that one
needs to regularize.

In order to characterize the interaction vertices, one uses vertex-bipartite regularly edge-
D-coloured graphs, or, in the sequel, just “D-coloured graphs”. A graph G being vertex-
bipartite means that its vertex-set G(© splits into two disjoint sets G0 = gv(f ) g{f’). The
set QV(VO ) (resp. g{)o)) consists of white (resp. black) vertices. The set of edges, denoted by

¢ is split as G = uagﬁf) into D disjoint sets gé” of a-coloured edges, a = 1,...,D

Given any edge e, the white and black vertices e is attached at, are denoted by s(e) € QV(VO )

and t(e) € QS)), respectively. This defines the maps s,t : G — GO Regularity of
the colouring means that, for each v € Q‘E:) ) and each w € géo), both preimages s~ 1(v)
and t~!(w) consist precisely of D edges of different colours. By regularity, the number of
white and black vertices is the same and is equal to k(G) := # G /2. The set of (closed)
D-coloured graphs is denoted by GrphCDl.

The only way to obtain monomials in the fields ¢ and ¢ that are also invariants, is
contracting each coordinate index ¢_,_ . by a delta ¢, ,, with the coordinate ¢_,, . of the
respective colour of the field ¢. The imposed U(N)-invariance requires then D - k(G)
such coloured deltas. One thus associates to each occurrence of ¢ a white vertex v
and to each occurrence of ¢ a black vertex w. For each colour ¢, to each ¢, con-

tracting ¢ ... and ¢ _, . one draws a c-coloured edge which starts at v, v = s(e),
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(¢) Anatomy of a Feynman

(a) Example of the rela- (b) This graph is in Feyn3(p?), graph and how it deter-
tion between traces and i.e. it is a vacuum Feyn- mines boundary graph B,
monomials. This graph is man graph of the ¢i-model, which induces the map B
denoted by K.(3,3) V(p, @) = A0 + 252 + 503) (x5, ..., xF) = (yh ., 9h)

@@ @@
S
25 @@

(d) Open graph with () This graph R is an The amputation of R.
boundary K.(3,3) (in open graph in Feyns(¢*) C If one erases the O0-coloured
fact it is the cone of Grph:(fg1 C  Grphy,; with (or dashed) edges, one gets
K:(3,3)) but is not in IR = K.(3,3) (see explanation  connected  components in

Feyn;(¢%) in 1f) {150, 22, 313}

FiGure 1. Graph terminology of Sec. 2.1 and concerning examples

and ends at w, w = t(e). Thus, any invariant monomial Trg is fully determined by a
coloured graph B, and vice versa. For instance, the trace >y, . o o+ (Prirars Pargags Ppipaps) °
(50«1171 5(12T2 5(13% 5171 q1 5172172 51737“3 661 r1 502(12 503193 ) <90a1 aza3Pb1babsPeicacs ) is depicted in la.

Any model is then given by an interaction potential V (¢, p) = > gy AsTrs(p, @), for A a
finite subset of Grph‘j:l). For a fixed model S = Sy+V, one can write down the corresponding
partition function:

T T 5 - 5 d xd X
2(J,J) = Z / Dlp, g2/ -NTSlo gl Dl g = [] NP (2
7l
xeZb

Here Sy = Tra(@, ) is the only quadratic invariant, namely <. Later on, at the level of
propagator, we will allow this invariance to be broken (see Sec. 2).

Using Wick’s theorem one evaluates the contributions to the generating functional.
Wick’s contractions (propagators) are assigned a new colour, 0, which one commonly draws
as dashed line. For (complex) matrix models (D = 2), this 0 colour would be the ribbon
line propagator, thus, for tensors, this colour 0 substitutes a cumbersome notation of D
parallel lines. It is easy to see that Feynman vacuum graphs of rank-D coloured tensors are
vertex-bipartite regularly edge-(D + 1)-coloured graphs, now the colours being the integers
from 0 to D. Vacuum graphs can be connected or disconnected. The set of strictly discon-
nected graphs is denoted by = 41 and Grphlie D +1 denotes the set of possibly disconnected

graphs. We assume that any Feynman graph is connected and get rid of Feynman graphs
6



MAP OF THE GRAPH THEORY OF AN ARBITRARY RANK-D MODEL V (¢, @)

Number of Closed Open
of colours Connected Disconnected Connected Disconnected
D e Observables

e Traces B, Trp in e generic boundary
V =35 AsTrs(e, ¢) graph in 9(Feynp (V) 0 0
e boundaries G

Notation — Grph¢) 25 = GrphY® \ Grph¢ Grphp, =p
vacuum  Feynman  di- 0 (no contribution), for taking the generic Feynman

D+1 agrams, whose set we the logarithm of Z[J,J] gets graphs of the model, 0

denote by Feyn}, (V) rid of them Feynp (V)

Notation — Grph%., =3, = Grph}ys \ Grphth Grphp, Ep+1

TABLE 1. Terminology of Sec. 2, and why both graphs in D and D + 1 number
of colours appear in a rank-D models, and which their respective roles are. Here
“disconnected” strictly means “not connected”. The notation () stands for “no
contributions to/no role in the rank-D theory”.

in E%H by working with the free energy, W[J,J| = log(Z|[J, J]), rather than with the
partition function.

Since we are mainly interested in the connected correlation functions we have to consider
open Feynman graphs, i.e. graphs with n external legs, each of which is attached to a
tensorial source, J or J, that obeys the same transformation rules of the field ¢ or @,
respectively. The external legs are exceptional edges of valence-1 white (for the source
J) or black (for J) vertices. All external legs’ edges have colour 0. Clearly, because of
bipartiteness, this number has to be even, n = 2k. We denote by Grphg?1 the set of
Feynman diagrams with 2k external legs and further set

0 2k
Grphp, = Uk:lGrph(DJr)1 U Grph%Jrl

generically for open or closed (D + 1)-coloured graphs.

Importantly, not every graph in Grphp,  is a Feynman graph. The set of Feynman graphs
of a model V (¢, ®) = > gcp A8Trs(0, @) is denoted by Feynp,(V (o, ¢)) or Feynp (V). This
set consists of the graphs in Grphp,; that satisfy the following condition: after amputating
all external legs and removing all the O-coloured edges, the remaining graph has connected
components in the set of interaction-vertices A C Grph$ (see Figs. le,1f).

2.2. Boundary graphs. There is a boundary map 0 : Grphp_ | — Grph%’d, which for all
G € Grphp, is given by

(0G)® := {external legs of G},
(0G)) := {(0a)-bicoloured paths between external legs in G} .

The vertex set inherits the bipartiteness from G, to wit a vertex in (9G)© is black if it
corresponds from an external line attached to a white vertex, and white if it is attached to
a black vertex in G. The edge set is regularly D-coloured (9G)") = ua(ag)ﬁf).

For a fixed model V (¢, ¢), the image of the restriction Oy := O|feyn,(v) of 0 to Feynp (V)
is deemed boundary sector, and this set is, of course, model dependent. A graph in the
boundary sector is a boundary graph. For melonic quartic theories, as a matter of fact
[15], this boundary map is surjective, so all (possibly disconnected) D-coloured graphs are
boundaries. Thus, all the correlation functions we propose have non-trivial contributions.

Incidentally, this means that quartic coloured random tensor models are able to ponder
7



probabilities of triangulation of all bordisms, provided they exist, as in dimension d (d =
D — 1 = 2,3) as classical objects (oriented manifolds); in presence of obstructions, there
are pseudo-manifolds yielding those bordisms.

Given a closed coloured graph B, Aut.(B) denotes the set of its coloured automorphisms.
These are graph maps B — B that preserve adjacency, the bipartiteness of B and also its
edge-colouring. Each automorphism of B arises from a lifting of an element 7 of Sym(B‘(f )) =
S (s) to a unique map 7 : B — B, as one can easily see, determined by the preservation of
said structure. Figures 2 and 3 show all the automorphism groups for graphs having up to
8 vertices in D = 3 and up to 6 vertices for D = 4, respectively.

We shall assume that both the white vertex-set B(O) = (v',...,v"®)) as well as the black
vertex-set Béo) = (w',...,w*®) of a boundary graph B are given an ordering. Then e2",

the edge of colour a attached to a white vertex v € B‘(N), i.e. s(e") = v*, is denoted by eX.

Let B be a boundary graph and k = k(B). Then B induces a map” B, : Mpxi(Z) —
Mpxi(Z) by X = (x},...,x*) = B.(X) = (y',...,y"), where y& = ¥ (for a = 1,... k) if
and only if there exists an a-coloured edge starting at v* and ending at w”. Regularity of
the colouring and bipartiteness of the vertex set ensure that there is exactly one such edge,
thus rendering B, well-defined. This map B, is deduced by momentum transmission inside
any graph G for with 0G = B by following the a0-coloured paths in G between its external
vertices. One further associates to B and X a cycle of sources

I(B)(X) = Jga -+ Jyndyr - -+ Ty where B,(X) = (y',...,y"), (2.2)

y

which is evidently independent of the ordering given to Bg) ) and B}(DO). According to [15],
the free energy W|[J,J] = log(Z[.J, J]) can be expanded in these cycles indexed by all the
boundary graphs of a given model:

B> |At i 1(B) (2.3)

=1 B€im 8‘/
k(B)=l

where x is a pairing between a function f : Mpyp — C and a boundary graph B €
im 8y C Grphiy? given by f J(B) = ZXGMDM(B)(Z) F(X) - J(B)(X). To read off the the
correlation functions Ggl) from eq. (2.3), one takes graph derivatives, introduced in [15]

and recapitulated in the next section.

2.3. Graph-generated functionals. We also recall some results from [15]. Let
Fpj = {(yh...,¥") € Mpun(Z) |yS # ¢/ foralle=1,....,Dand a,v =1,... . k,a #v}.

Thus Fp is the set of matrices Mpy(Z) having all different entries on any fixed row.
We define the graph derivative of any functional X[.J, J] with respect to B at X € F D,k s

- H 5J X7,

J=0=J  o0—1

OX[J,J]  §*BIX[],J]
B(X) ~ 8(I(B))(X)

J=0=J

Let (y',...,y') € Mpy(Z). For closed, coloured graphs Q,C € Grph% one has [15]:

yo D yo)

09(y, ...,y > Ok O 2T if C~0Q -
aCQ(yl ) 7yk) — 6€Aut:(C) 5y1 (1) .._7Xk (k)d(Q’C)
O, 0 otherwise sEG),

(2.4)

2What this paper concerns, the use of matrices Mpx(Z), instead of plainly ZFP  merely eases the definition
of Fp,r below. No matrix multiplication is so far needed.
8



Ve
0
Aut( = {x} T Aut.(V,) = Zs g
V| V|
3 e
) 9§
O O 0 C
Auto(E,) = {*} g Auto(Q,) =
WV |
e WJ
ODII j
g Aut. (W)
Y |
Vi S
| ol 1
7 J ) . .ea
1 550 0
Aut (V) = {*} g Aut.(S) =0
Y | J
A A,
b O
A e
a al pla )
0 g 0 NI
Autc(I) = ZQ X Z2 T AUtc(Az) — Z4 g
V| V|

FIGURE 2. Enumeration of 3-coloured graphs with 2,4,6 and 8 vertices and
their Gurau-degree w and coloured automorphism group.
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M k=1 1Z k=2 Nij k=2
R
0 0 1 ==
Aut (M) = {x} 1 Aut.(V;) = Zs 4 Aut(N;j) = Zo 3
No counting For any colour Since Nj; = N
needed i€{1,2,3,4} one imposes i < j

AAHJBC (Cz) = Zg

Autc (&) = {*} 6 Aute(Q;5) = {*} 12

Eij =& 1<] Qi # Qji arbirary colour ¢
i,j €{1,2,3,4} arbirary colours i, j |

( (

f. k = 3 Dij/s‘ k = 3

oo}

Auto(F) =dependent |7 Aute(Dige) = {x} ¢

E =Ly, Lij = Ly ? Dijr = Djy, 1 < J,
{i,4,k,1} = {1,...,4}/
AutC(Ej) = Z;; E Alltc(f/k) = {*} Z
Fij = Fji,s01 < j k arbitrary, but
i,j €{1,2,3,4} pairwise i, # i,

FIGURE 3. This table shows the rank-4 graphs until 6 vertices. As before, # is the
number of graphs that are obtained by the action of &, in the edge-colouring and w is
Gurau’s degree of the graph in question. For graphs with k = 4 see [13, Fig. 8] (there,
only those marked with a B are bipartite). The graphs displayed there are neither given
a colouration nor classified by G4-orbits, though (Klebanov and Tarnopolsky treat them
as vacuum Feynman graphs; here our graphs are boundaries and we need to count them
and their Aut.-groups)
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where 0(Q,C) = 1 if the graphs Q and C are isomorphic, and 0 otherwise. We consider
functionals generated by a given family of closed D-coloured (non-isomorphic) graphs,
T C Grph%’d. That means that if

X[J, 0= le*J(C), for lo : (ZP)*C©) ¢, ce T, (2.5)
CceY

is known, we want to know the graph derivatives of X[J,J] with respect to connected
graphs. Here k(C) denotes the number #(CV(VO )) of white (or black) vertices of C.

Proposition 2.1. Let X be as in eq. (2.5). Then, for allC € T N Grph$, the functions l¢
satisfy

0X[J.J) _

* * 1 <Oy .= [L(xo D) oL (k(C))
9CX) > (0"1e)(X), where (o7le)(x!, ..., xMO) = 1o(x7 WL x ),

6€Aut:(C)
for all X = (x',...,x*0) ¢ FD.k(C)-
Proof. From formula (2. 4) one has

0X[J,J] _ Q(Y)
aex) ~ aex) 2 ID =2, 2, Mg

QeY Ye(ZP)*k

KQ)
=2 2 leY) ) 0[]

QET Ye(zP)*k(Q) €6 (0)
k(Q)
=2 2 ) 3 sl X7 0)
Q€T Y¢(ZP)xk(©) €6 (o)
=3 > rex W, x7T®)s(0,0).
Q€Y 0€6y (o)

Since YT consists only of graphs that are not isomorphic, the sum over Q yields, because
of the delta §(Q,C), only one term. Hence, the last expression is precisely the sum over
automorphisms of C. O

As a consequence of this, one can recover the correlation functions via
oW |[J,J]
0B(X)
Notice that X = (x!,...,x*) € Fp if and only if B.(X) € Fpy. Since W[J, J] is real-
valued, one has the relation

G () =

—2R(B)) 0 0 ——=
G (x) = T — J,J = G (B, (X X e F 2.6
where B is essentially the graph B after inverting vertex-colouration, B\(B ) = Bl()o) and

B](DO) = B&? ), but otherwise with the same adjacency and edge-colouration.

We now explain how this graph derivatives are relevant in the WTI. The WTTI is rather
a set of equations, one for each colour a = 1,2,..., D, in which a new generating functional
of the form

YOI =3 e, *3(C) (sa € Lo C 2) (2.7)

appears. Here, Oy : Feyn, (V) — Grph e ! denotes the boundary map in terms of which

we describe the graph family Qy as follows: If el is the a-coloured edge at the white
11



./_\_>O'\ g
xg(Tvi’a) O/ s 6; ® yf-c(r,v',,a) O/—\

(a) Locally, edge and vertex labelling in B before (b) Locally B& e
forming B © e,

FIGURE 4. Some notation concerning the definition of Afmr.

vertex v € B‘(S ), then the graph B © e denotes the graph that is obtained by the next
steps: first, remove the two end-vertices, v = s(el) and t(e!), of e; then, remove all their
common edges I(e¥) := s71(s(e?)) Nt~L(t(e?)); finally, glue colourwise the broken edges,
i.e. the each broken edge of the set s~!(v) \ I(e!) with the respective broken edge in

t=1(t(e?)) \ I(e¥). Then € is defined by
Q= {Bee|Becimdy,ve B}

Definition 2.2. Let a be a colour, F : (ZP)* — C a function and B € Grph%’d. For any
integer 7, 1 < r < k(B), we define the function AF | F: (ZP)*~! — C by

(A5 F)(Y) =) F(y',....y" "2 (50,0, Y),y",...,¥* 1),
dh

for each Y = (y!,...,y*™ ') € (Z")¥!, where the sum is over a dummy variable g, for
each element of the set h € I(e]) \ {a}. Before specifying z"(s,,q, Y), we stress that this
sum can be empty, in which case

(Afa,rF)(Y) = F(yl, Ly 2" (80, Y),y ... ,yk) )

The momentum z" € Z” has entries defined by:

Sa if i=a,
21 (80,0, Y) =% ¢ if iel(e)\{a},
yf(r’i’a) if 7 € colours of Ayry ={1,...,D}\ I(e€}),

where y*("5%) (1 < k(r,i,a) < k) is the white vertex B & ¢! defined by
. €(T7Z7a) if g(r7i7 a’) < T?
R(T7 L, CL) = . . .
&(ryiya) — 1 if&(ryiya) > r.
(see also Fig. 4). This definition depends on the labeling of the vertices. However, the

(2.8)

pairing ((ng),B»sa defined as follows does not, for it is a sum over over graphs after
removal of all a-coloured edges:

k
(GEY. B, =3 (88,GEY) xJBee). (2.9)

r=1

Remark 2.3. Unless otherwise stated, we set the convention of ordering the white-vertex-set
B‘(S ) in appearance from left to right.

Ezample 2.4. Let {a,b,c,d} = {1,2,3,4} and

(see also Fig. 2). For a fixed colour a and s, € I, C Z, we obtain <(G53,k), Fl)s,- According
to remark 2.3, the first white vertex is the left upper left white vertex, the second is
12



the lowermost, the third is the upper right. This orders the a-coloured edges {e!, €2, e3

a’~a’~al*

Explicitly

Fl = cc , thus, Floel = Floed = a@“ . Feoe,= (M’

hence

(G T, = Bera G * I ) + Ber 2GS * J(D) + 20369+ I(ED)

which, in turn, equals

S {21 GR (v, 2)I () ) (v, 2) + A, 2GR (v, 2) I((L10) ) (y. 2)

-
+ A, 3G]_-, (y, )J( “)(Ya Z)}
=Y {a¥) J, J. Ty Gl
{ F! Saa Zby 2y Ydy Y, 2 ) Ya2bYczd Y ZaYp2cyd !y V2 + ( F! (Y7 Sas Yb, Gc, 2d;, Z)
de
X JyaZbZGZdjzaybycdeyJZ) + G(ﬁé) (Y7 Z, Sa; Zbs Ye, yd>jya2byczdjzaybzcdeyJZ} :
We assume all the entries of momenta in Z* are ordered by colour, e.g. (z1y423y2) really

means (21Y223Y4).

We now recall the full Ward-Takahashi Identity, proven in [15].

Theorem 2.5. Consider a rank-D tensor model, S = So+V, with a kinetic form Tra(@, Ep)
such that the difference of propagators Ey,  p._imapais..o0 —Epr..pe_inapesipp = £ (Ma;Na)
is independent of the momenta ps = (p1,-.-,Das---,Pp). Then that model has a partition
function Z[J,J] that satisfies

802Z1J, J _
1/, J] - (5manay,,<;3[J J]) Z[J, J] (2.10)
Pa 6Jp1--~pa—1mapa+1~--pD6Jp1--~pa—1napa+1~~-pD
1 _ 1) 1) _
= J 1...Mg... - - J 1... Mg ~ T Z J7 J
pzd EP1~--ma-~-pD - EP1--~na~--pD < P e 5Jp1~--na-~~pD P Pp 6Jp1---ma---PD> [ ]
where
Z ST (GE B, - (2.11)
=1 B&im oy
k(B)=l

There is a subtlety regarding the ordering of the vertices. We associate an ordering
of the white vertices of a graph B in ng).
this vertex-ordering. But the edge-removal sometimes will yield a graph which should be
reoriented. To illustrate this, for D = 3, consider for instance the next graph &. The edge

contraction yields, for any ¢ = 1,2, 3, the following:

The k ZP-arguments of this function match

. b . .
As a graph, S © e} is just Qj%@, but when one considers f x J(S © e}), for some function
f:(Z3)*3 — C, the order of the vertices does matter:

C

F3((£0) = @21 30D

"¢

13



In going from the graph 2.12 to Q%EQ, one permuted the first and second white vertices.
Accordingly, one ‘corrects’ f and replaces it by (12)*(f). Notice that the cycle (12) € &3
does not lift to a coloured automorphism. If this was the case, we could just as well ignore
the correction.

The next definition is needed in order to describe some terms appearing in the SDEs.

Definition 2.6. Let B € Grph% and let v,w be vertices of the same colour (either both
black v, w € Bl()o) or both white v, w € BV(S)). We define the graph ¢, (B; v, w) as the coloured
graph obtained from B by swapping the a-coloured edges at v and w. Usually, vertices in
boundary graphs are indexed by numbered momenta v = x®, w = x” € Z”, in which case
we write ¢, (B;x%, x7) or just ¢,(B;a,7y). These graphs are, generally, disconnected.

b ¢
Ezample 2.7. For any colour a = 1,2, 3, one has ¢,(4%;u,v) = (| a4 ) =: &, for two black (or
white) vertices u, v of &. If x and y are the leftmost black vertices of &,, then ¢,(&,; z,y) =

@u@

3. THE SCHWINGER-DYSON EQUATION TOWER IN ARBITRARY RANK

We pick the following quartic model S = Sy + V, with interaction vertices Vi]p, ¢| =
A Za L Try, (¢, @), being each vertex V, the melonic vertex of colour a,

Moreover assume that the propagator obeys that, for each colour a, the following difference

—FE

pb1...8a---PD

E(tq,sq) = Ep

1.-.ta-.-PD

does not depend on p;, for each 7 # a. Such is the case for Tensor Group Field theories,
say with group U(1), being the origin of E is the Laplacian operator on U(1)? after taking
Fourier transform, and the tensors the Fourier modes [19]. We call this model the SO%);;{
theory®. Here, the subindex m denotes melonicity.

One observes that, if 6(V,)(b, c,x,y) is the invariant of the trace, that is

TrVa (90’ (15) = A Z @b@C(S(Va)(b, C, X, Y)¢y90x ’

b,c,x,y
one gets for s = (s1,...,sp) € ZP, the following expression:
oV (e, ) 0 0 0
( op =2 Z<Zéj b Z(SJb bp 0T by ba_154b b) ’
S QPbA)(S/(;Jﬁ a b, §1...8a—10aSa+1.--SD ba 1---0D 1---0a—18aY%a+41---OD

(3.1)

where b; = (bl,...ga,.. bp) = (b1...,ba_1,bas1...,bp) € ZP~1 and £ can either act

trivially on a ngriable or be complex conjugatlon, and ¢” = @ or ¢ = ¢ accord{ng to

whether J* = J or J* = J, respectively. The term (9V (p, @)/&bsuﬁé/&ﬂ)Z[J, J| can

be computed with aid of the WTI. We depart from the formally integrated form of the
partition function

Z1J, ) o< exp (<V (@, )| gy 0 (Do, JaBg'a)

3For D = 3 all quartic invariants are melonic, so we refer to it only as ¢i-theory.
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where we will ignore a (possibly infinite) constant and write equality and derive its loga-

rithm:
SW1[J,J] 1 7 1L JoES1.
= = — —V(6/0J,6/0J))JsE qezP “a%a “a 3.2
S = g O VG880 B e (32)
1 1 - s
= — — — Zq D JaEq " Jq
i J]{ESJSeXp( V(6/6J,0/0J))e*asz
oV (p,p) _ S ecsp JaBq g
* (8—905 ob—6/5J4 exp(_v((’p’wmwué/éﬂe <
1 1 D =
Lt (s )
Ls Z1J,J] Ops pb—8/6J
For sake of notation, we introduce the shorthands bss, = (b1 ...,bq—1, Sa,bat1 - --,bp) and,

similarly, s;b, = (S1..-,8a—1,b4,Sa41--.,8p), for any a = 1,...,D. By applying the
colour-a-WTT to the rightmost double derivative term appearing in (3.1), the following:

(M) Z1J,J) = QAZ{Z — ( b YOL ) (3.3)
s @ —5/8.J% Jeat
5 5 .
o) )2
+Zb E( ba,sa 6J basa Jb“5“5Jb)> 1, J]}
SYI [, T = ey 7 021
—2)\2{ L7, ] - Z1, )+ Y [T,] gjs ]
6 . 8 5 .
— T —) 2,
S B 3 s, 520}
Sy . 52, J
—QAZ{ } ] ZIT, T+ Y91, ] - %
1 6Z[J,J] Jb §2Z[J, J]
+ Z ba, Sa Js * zb: E(bcu Sa) 5jsaba5jb@sa
- Z 52Z[J, J|
b E ba,Sa b sa (SJS b 0Jb
=2)) (4 a(8) + Ca(s) + Da(s) + Fu(s)),
with
021, ]] 1 6°217,J]
_y(@ Rl S — - il
Aa(s) Y;;a [J7 J] 5<]s ) Ba(s) Zb E(ba, Sa) basa 6Js&ba6Jb ?
1 6Z[J,J] Jo  02Z[J,J)
Ca = = ) DCL = T T ?
(5) ; Eby5a) 07, ) =2 Bl 5] 6 e,
SY\ g, T ,
Fu(s) = % - Z[J,J].

One shall be interested in derivatives of W[J, J] of the following form:

s os _
( H 5%, 5in)W[‘]’ Il

for B € Grph%, and then use formula (3.3) with, say, the vertex s = y'. As said in the

introduction, deltas of the interaction vertices and the propagators (proportional to deltas)
15
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inside each Feynman diagrams render the definition of the 2k-multipoint function based on
(3.4) redundant, if one treats the x-variables and the y-variables as independent. In fact, all
the y’s can be expressed in terms of coordinates of X = (x!,...,x*) of the same colour, the
combinatorics of which uniquely determines a so-called boundary graph B with 2k vertices;
moreover, non-vanishing terms in the formula above are precisely a graph derivative of
W[J,J] with respect to B at X.

For the time being we pick only a connected boundary graph graph B and we want to
know what the rest of the derivatives ¢ /6Ji, 6/6jya({xi}i)7 (¢ =2,...,D) do to the expres-
sion (3.2). By using (3.3) with s = y! we analyze the five summands in the (lowermost)
RHS:

1 o 9

Zo
0 a>1
v=1,. .k

(m, M) € {(a, 4), (b, B), (c,C), (0, D), (f, F)} .

Actually s is a function of X —and so is any other y“— but the dependence of m, on it
only shows that s is the variable respect to which we firstly’ derived W[J, J]. Each m,
depends on the boundary graph B through {y®}%_, given by (2.2). Ignoring the common
(—2\/Es) prefactor:

e a,(X;s;B) be easily be seen to yield YS(:) [0,0] - ng)(X)

e also, derivatives on Cy(s), ¢.(X;s; B), readily give ), E(ba, Sa)fngk) (X)

e the term f,(X;s; B) is, according to Proposition 2.1, > :cx v (5) W*fg)(X)

m,(X;s; B) = M,(s)

for

The remaining two terms, b, and 0,, need a more detailed inspection, though:

_ 58 58 1 8221,
———— D = — — -
o+ ]I 5T 5 De®) al;l_y 3T ye 6 {Zb E(ba,sa)Jbéjsdbaéjbasj

6L, 8277, J|
Z H (SJ 5un |:Zb E<b:,; Sa) 6jsaba5jb@8a:|

p=2 a>1(a#p)

v=1,...k
—Ek: 1 5 6 [ 1 827[J, ]| } 35)
_ 0 - AL N Y
778 gy O O LW 50) ey,

v=1,...,

As for the derivatives on B,(s),

5 6 5 6 1 §2Z[J, J)
o(J — —— B,(s) = _ Ty s,
( ) + H 6Jyo¢ (5un (S> >1: 5Jyo¢ 5JX |:Zb E(ba7 Sa) ba, a(SJsaba(SJb:|

a>1 a>1v
v=1,...,k
k —
1 b, 02217, J] ]
Z Z 0% 0 ————
B=1a>1;v#p3 5J 5J |: b E(baa Sa) a g 5J5aba5Jb
: 0 . 02Z[J,J)
) H g 0Ty 5J ZE@ 50 5T 0
B=1a>1v xY as 2a Saba nga

1 §2Z[J, J]
H 5J 5J [Z E ba,fL‘a (5JS ba (5J “/b :| ’ (36)

a>1iv#Ey

4The order should play no role when one obtains closed equations for a single correlation function in each
sector of common Gurau-degree
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For the last equality, one uses the fact that B is regular. Thus, there exists precisely one
white vertex x7, v = y(a), such that 27 = s,. In turn, this means that §°% = 6°% d5-

e as evident in eq. (3.5), the derivatives on the D,-term give, after setting the sources
to zero, all the (coloured) graphs obtained from B by a swapping of the following
form (only a-colour and only the four implied vertices visible):

S = SaSa y* = (yoyh)
= 27 = («5)y") (@5sq)  (#3y2) = (sa¥7)
a a —
X7 = (27x]) ) x7 x"(P)

for p running over the black vertices which are not Js = j Hence the contribution
of this term is

dZ[J,J]
Zyt for p=2,...,k.
;Eya,sa " 0B LX)

Since y! = s, we also write ¢,(B;y',y?) = <u(B;1, p) for this new indexing graph
(p>1).

e concerning the derivatives of B, above in eq. (3.6), the only surviving term is
62Z[J, J))6Js,p, 0. x2ba> and is selected by 6°%, which is just, after taking info ac-
count the rest of the derivatives, the graph derlvatlve 0Z/0B(X)|,7_p, the single
coordinate z substituted by (the running) b,. If B is connected (as we assumed),
after setting the sources to zero, one has

1 2k - k
ba(X;SJg):ZmGg )(Xl;...;X“’ Ll ) 1,ba,xaﬂ,yﬂﬂ T X)),
b ’

From eqs. (3.3) one has

aavz—[é’ciﬂ -1 5}; 7 (ZEEJ] 2, (Aa(8) + Ca(s) + Dals) + Fuls) = Ba<s>>)
v=1,...,k
(=2))

=% Za(aa(X; s;B) + ¢o(X;8;B) +0,(X;8;B) + §o(X;8;8) — b, (X;8;8))

J=0
J=0

where each summand is now known. Because Y. [0,0] = Ag, 1 Gg we have proven:

Proposition 3.1 (Schwinger-Dyson equations). Let D > 3 and let B be a connected bound-
ary graph of the quartic melonic model, B € FeynD(¢;7D) = Grphg’d. Suppose that B has

2k wertices, k > 1. Let s = y', where B.(X) = (y',...,y*) for any X € Frm),p- The
17



(2k)-point Schwinger-Dyson equation corresponding to BB is

(1+—ZZG(2 (500 ) 6 () (37)

alqa

0717, J|
{ > o +Z Byl 5a) %o 8<a(8;1,p)(X)

deAutc(B) p>1

G2k 2k
—Z G 5" (X) - Gy ><X|xHa>]}
for all X € Fp ). Herey € {1, cee k:} is uniquely determined by s, = x) and (Sq,qa) s
abuse of notation for (q1,q2,...,qa—1,5a:9a+1,---,4D). Also E(uq,vs) = Ey,q, — Ev,q,-

We will ease the notation fgz)su = fg), when no risk of confusion arises, keeping in mind
the dependence of this function on s,. Notice that if the graph ¢,(B;1, p) is connected,
then the respective derivative on Z[.J, J] is just

1 o0z [J ,J ] (2K

Z8§a<8, 1, p)(X) T Y (Bsl,p) (X) ;

(2k

otherwise, the RHS of this expression contains, on top of G (Blp), also a product of
correlation functions indexed by the connected components of Sa(B; 1, p) with a number
of points which add up to 2k (see Sec. 4.1). Observe that the equation still depends
at this stage on the choice of the vertex Js, with respect to which we first derived. This
dependence is also a feature in matrix models that disappears when one splits the equations
in genus-sectors.

4. SCHWINGER-DYSON EQUATIONS FOR RANK-3 THEORIES

According to [15], the boundary sector imd of the y3-theory is all of 9(Feyns(p?)) =
Grph3H’d. Therefore W.J, J] = log Z|J, J| can be expanded in boundary graphs as:

i ) 1
Woall J) = G2« HD) + 56 0+ HS™) + 556, +3([7]) + 5 £6%

J(@) T3 G@*M@)J@Gw *J<m>+ LSS (S )43 ZG\@\@C
Jeul)+ T 222 (@p el *J(@'—'@)Jfﬁch@c i %9 (Q0ug0)

1

®) L
G\@l@@l@\ IS )+5, ngGl@\@lc@ l*J(@u@u@ T3 G@I@\*J(@u

%)+ LS J<@u@>+ZG|@|m|*J<@Um>+}Z,Gg§§m*

[ 7il<i
l j i
60 00+ B o -:O LSRN
RSN -
)+; i <IQ;/Z.Z)+17;£;‘ f*<, : l)+ @*()+

) +0(10).
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The WTI will be used for each colour a = 1, 2, 3, and it will be convenient to single out
a in this last expression. From here on® b = b(a) = min({1,2,3} \ {a}) and ¢ = c(a) =

max({1,2,3}\ {a}):

WoesJ, J] —
@ ) )
G IS)+ 2|G|@|@| Houo)+ 2G“@“*J () + Z:G@L*J (0
1 ) : L A0 i (©)
+§Gé*ﬂ(@)+§;G{,}*J(@)+3,G@l@|@l SIS ItS)
1 b ¢ a a b
+ 562 «3(90) + 6, *J(m)w%*ﬂ()w% JOER)
L ®)
+ 561y *I(E VD) + ;G@m sI(©&u()
+2' 52 Gl * I HLQ D) U 2QZG|m|m\*J(@U@)

i#a

QQZG |@\*JOZQ'—'. +22G|§z)g|m\*°”('—'@)
ol DU+l (O
*J(

+%G|(2@ @u@> +;G(Zifmil*J<@u >

bc 1
+G(Z|£f@|*°ﬂ(@ - 9‘.9 + ﬁZG%@\w*J(@U Su())

1 .
+ 5 5C Bloim (@u@u)+4lG|@\@\@l®l I(SHESINSIES)

b a ¢ ¢ b a
m *«J(a .n‘n. ) + G *J(bb)
. a J L a
G OEEEO O <300 ) 940¢)
(J;a;fn c
ol j e Q j
50 3 )+ X 0 #3( 0TI)

+1§G%*J() g <> S *ﬂ
T (1)) X 6 ([0)) + S,

i#a

SBeware this is only a notation for rank-3 theories; for rank 4 another notation shall be used
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+ZG (Qiipaz-)jLG%*J()ﬂL G%*J[?“;]

n .
7’7éa 1 a ac a9 "¢ b b

4ZG (@a)+iG%*J(;@i)+0(m)
7] Al a>—*"¢q

In [15], the term v [J, J] for the pi-theory to O(4) has been found. This expansion is
enough for deriving any of the 4-point SDEs. However, since we want the explicit 6-point

SDEs, we need to compute Y. )[J ,J] to O(6) in the sources, i.e. consider the free energy
to order O(J*, J*), to be precise.

Lemma 4.1. To order-6, Y. [J J] is given by:

Y9[7,J]

2
1
=ZGF§(sa,qb,qc )32 (A G35+ Aus G + 80, G0 + A, ,GD) (D)
byqc r=1

(% r . ASGTG%+ASG,TG§)+ASG G +A5a G(G + AsalG@‘@')*J()
(530 A G+ 8 G+ ) A6+ ASalc;'@@l)*J
+< Do B Gy D D Gy +;ASG1G|@@|>*J<EQ)
+ (3127‘ Asa, GI@\@I@\+ASa2G > +ZT 2.3 i _ A, Gf?@@&*ﬂ@'—'@)
+ {ip:(“ Asa pr@\@l@l +As, PGI@I@I@ZW

+
=] =
M»

(B0, G2 s oro) + BusCld, m} SO UO)

A, G + 2(123) (As, rG\@@m)) Z Z Ase, GI@I@I)

T:].,Q 7’23,4 z;éa r= 12

(8) 1 (8) (8) 3)
DougG 2 o + 2234 Bieabigpy T BrtCloippy T BreiCio)y

i
L

_l_

| = ,.Jk
—~
vl
o]
%
E
E

_|_

+

_l_
—~ N R A R R W
| =
—
P
8

(8) (8) * (8
Asa,rG|@‘6|@| + Asa,ZG + <123) (Asa 3G~ )} (6 U @)

®) ®) ®)
Gl + D (123) Buyr Gl ) + Z (123)"As p G 5 gy

r=1,2 r=3,4 p=3,4

(8) (8) (8) 1 (8)
(123)" A oG gz gy + hE;SASa tGloinp ¥ BreaCoinm T ;2 AsorGi 5 a1m)

_|_
hi
»
IS

_l_

—

BonGlle s + (123 (80,56, ) + A, QG_‘} IS U

(8)
(Y A, G|@|@|+ > (123) As”q@mﬁ Z (123)" s, Gl o)

r=1,2 r=3,4

+
OOI»—\

20



(8) ®) 1 (8)
ASa,'I'G|.|©zQ‘ Z Asa,hG‘@|m| +A8a,2G\@|m| 4 Z Ao, G\@I@H@l

r=1,2 r=1,2

(802G +(123) (A, 3G ) + A, QG} «JSU(D)

1 (8) ®) ®)
—+ 3A5a71G|@|%‘ + Asa,lG”@@” + Asa,lGng@”
+y ASQPG(S o ZAsa uG }*J(@)
p=3,4

1 8)
A, G® LA, G<8) A, GS)
H{FRG gy B ey T Sy T

L1 ZAsa G+ 3 AesGl) }*J(@)

r=1,2

1
+ {3AS“ G2 * 3 Z Beu ol

S 80 86 + X 86

r=1,2

1
+ {3AS“ 1G|@|‘<Z>H 3 Z BenCp

+5 ZASa TGfé + A, 1G 5+ Z A, TG} *J(@)

r=1

(8) * (8)
+ {ASale@\ml +; Baun Gy + (13 (AuaGR ) + (18)"(Bu, aGE )

D (AapGlE + (13) A0y Gl ) + (13) (A0 iGEL ) + (13) (As,2GEL )

p=3,4
1 (8) (8) * (8)
+ 5 (G, + 03 (801G 4. ) +03) (Ao aG Ry ) + 80iGls g, )

(As

1
+ ) (13) sarG(f’( ((23)*A,,. G(,(,) + A, 2G®)
T§2 ( @) 4( 1 u@‘ 2 [@l

b ¢
+(13)° Ay, 3G + (123)*A,, 4G }*.,]]( )
% ) 1 * 0L

+{a., 1Gl6‘m| BoiaGEL L+ A aGY %(Tzljg( 3)" (80, G)
+p§;4 Ay, GO+ A G 2- +(13)" A, G . Z A,, pG
+q2234(13 A, qG_. + (13)*A,, qG%@” +A8a,3(;%
+ %(ASQJG (123)*Asa72Ga + (23)*A5m3Ga (13)*As, 4 G )}*J(Qj)}iQ)
+ { Sa; 1GI@\ (BE] +(13)%(As,, 4G ) + (13)"(As,, 1G )
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1
SO 8 (A G )+ D A pG o +A,,,G0 (

r=1,2 p=3,4
+(13) A a G o Z DuGidy+ D0 (13)'A,, qG()
q=2,3,4 D@
+ 13)* Ay, (GO 4+ ) (13)* (A, ,G
Z ( g Q@ p234 »D ®)

1
+ (A, 1G®) + (123)*A,, 2G®) 4+ (23)* Ay, 3G, + (13)* A4, 4GP, )} + I(
1(AnerCy & & g

Proof. See Appendix A. O

Since we already derived the 2-point equation in [15], we immediately proceed with the
higher-point functions.

4.1. Four-point function SDEs for the ¢j-theory. We can use the colour symmetry

in order to write down the equations for G( )9 and G(@? from that for GI(IZ% .» which we now

compute. We will obtain, as stated by the proposition of previous section, the SDE for

@)
G

We need first, to compute the functions f(lgl for each colour a. To this end, Proposition
4.1 is used:

m _ Iy~ (6) 5 (©) % ®)
f B Z?‘Zl (Axl TG ) T3 Zr:l(AZI’TG ) <ACE1 G + Aw1 G ) + Aml lG

1 3 & lehgn!’
@ _ 1§ (6) (©) 2 6) 1
=3 Zrzl(AyQ’TG@) + Ay?’?’G@;@ * Zr:l(AyQ”"G@,%@) 2 (Ay%lG\@h@w)

(3 _ 13 (6) (©) 2 6y, 1 6)
8 = 5 20,y Punr G + DGl + 37 (B GiD) + 5 (Bna G2 -

Also notice that
a1 1,2y =aUe, «0;1,2) =202, «(15;1,2) = 3.
The derivatives with respect to these, evaluated in X = (x,y) are then
2 4)
GOx) - GAy) + G xy), G (xy), and G (xy).

respectively. Letting s = (x1,y2,y3) and t = (y1,x2,x3) and using Proposition 3.1, one
obtains

(+BEE, ) s "

C(=2)) 0217,
N Es Z{ Z 1@1 +Z ya,sa 891(1@'717[))()()

a=1 &GAutC(lgl) p>1

- g O 06 oqmn}

_ (=23 (6%6Y + 0%6%) - <1i A G 1i(A G(6))
- 3 gt 1, 3 1, %

E$1y2y3 r=1

(6) (6)
+ (Ag, 3G + A3 G ) + Ay, 1G|©|®‘

[

wl

3 2
1
+5 D (A, G O)+A,, 3G(6 +> (A, TG(G +5 (B, GO )
r=1 r=1
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3
1 1
- § Z Ay3 TG 6) + AZ/Z G(6 + Z A:L/:z, G(6 ) 2(Ay3 1G|@| i |> (ua V)
r=1 r=1
1 (2) ) @)

+ m(G@(X)'G@( Y)+ G35 (xY))

1
+ 0.5 y) + (% y)

E(xz3,y3) G@Q

B Zbl (El bl 1(@1 (X7y) o Gl(é?l(bl"z%m&Y))
(4) (4)
B Zb2 E y2 b2 Gﬁl ( ) G]@] (X, Y1, b27 y3))

4) 4
a Zba E(ys, b3 Gl(@( y) - Gl(g?l (%, y1,y2,bg))}

W
E($27y2) o8

4.2. The Schwinger-Dyson equation for Gég; . We now derive the whole set of six-point

function equations for the p3-theory. They hold for any model for which the boundary sec-
tor is the whole of Grph3H’Cl. From Prop. 4.1, one can read off the f(Ba) functions.

For the boundary graph 4%, one has, for each colour a =1, 2, 3,

4
f Ng, 1 G® A GY) +A5a1G + YA, G + A, oGP,
S| acS ;3:4 ? u=1 s

Departing from Proposition 3.1, this last very expression allows now for an explicit deriva-

tion of the equation for Gg. Namely, for X = (x!,x2,x3) = (x,y,z), and choosing

5= (LUl, Y2, 23)7

(e pi et w)em
_(2) ¢ 02[J, J]
‘EZ{Z@) RN e
—Z O <)—G§:§;<X|sﬁba>}}

One finds:

YARN
ZZ Bl 50) ea@er 1.p) O

a=1 p>1

1 1 1
= =——(23)"GY, + ——(13)"Gl®, + —(123)"G®
(E(yl,fﬂl)( ) L5 E(Zl,fﬂl)( ) L5 E(l’2,y2)( ) G5

+;(132)*G§%+ ! (13)*G©) + ! (12)*G<6>>(X).

E(22,92) s E(xs, 23) W E(ys, z3) 5

The meaning of the f(&g summed over colours a and over the automorphism group is

2.2 { o) T Ae 1G(§:1®, + AsmleZ%@

a TEZLs3
23



D Ayt Gy 42 A, G<8.}

p=3,4

N ® s 8 ; :
— Z T {g Za AszG'@‘@‘ —+ (AmhlGl(Q;@l + Awl,ng@z + AyQ,lGEQ;@3 + Ayz,ng@z

3

—|— AZSylGl(?;%l + A23,1G§%2 + Z AmhpG:EQé%s + Ayz pGl(l + Az3,PG 98:1@1)

p=3,4 !

4
1
IS (A GO AL GO AL LGE }
+ 32, (BanGig, + Ay +AanCigy)

u=

where Zs is generated rotation of & by 27/3, that is 7 is the liftings of the identity, of
(123) and (132) in &3. Finally, the difference-term is

1
22 B Ca )~ O Kl )] = 2 g 565 (30 = Gl o, sy
aa b1 ’
1 (6) (6) /. .
" Zb Flga, by) G (%) — G (51,2, 153 2)]
1 (6) (6) (4. v
+ 2 B (G ®) ~ g by b))

Explicitly

( 1y22s | Z xl, m,n) + Gg(m, y2,m) + Gg(m, n, 23)]> : Gg(X)

1
—(—t@3ra® 136, — (123 GO,
(E(yl,xl)( ) o E(Zl,xl)( ) o E(xz,yz)( y 5

1 1
+ ———(132)'G{Y), + ———(13)"G{%, + ——(12)*G{Y) )
E(Z27y2)( ) 3 E($3723)( ) 5 E(ys, 2’3)( a U )
(8)
+ %Z: [ Z 501G 511 (4.4)

+ (Am,lag@ + Ay, 4G ;{@ + Ay, G 8.‘ + Ay, G e T Az3,1G§§;® + Azg,lagé{@z
A

4
1
+ Z Axl pG(El@s + Y2 pG( + Azg pG + Z Z x1, u

p=3,4

; F(23,b3) [G@(X) G@(X,y,zl,z%bg))} ‘

4.3. The Schwinger-Dyson equation for G(S). First, we compute b,-terms for Q,, one
by one y are:
1 0Z[J,J]

el o gW X,Z .G¥ y) + (12 G X), 4.5a
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L 0z[J,J] @ 2) (

Zooa @13 G (y,2)- G5 (x) + Gé@\(X)

10211, J] iy (©) 1 0211, J] ey

20 96,(413;11,2) (28)"CenX), Z0 96,(413;11,2) U8y Gplx),
1 0211, J] iy (©) 1 0211, J] ey

20 965(A13; 1, 3) 2 Gzl 20 965(A1; 1, 3) el ¢

We stepwise collect the fg—terms from the expansion in Prop. 4.1:

f%; is the coefficient of J(i}) in v [J,J] with a = 1,b=2,c =2, (4.6)
f{g is the coefficient of J(é}) in ng [J,J] with a =2,b=1,c=3, and (4.7)
fg is the coefficient of J(é) in Y;J(:; [J,J] with a =3,b=1,¢c =2, (4.8)
namely
Do aGY 4 8GO A, Gy Ay, G Ay, G
fip 118 o T Sty T Ranbery g Z : +TZ;2 P
(8) (8)
f DGl 5 Z Ay, thg + - ZAW TG© + Ay, 10@@
+ YA, TG
r=1,2

@ _1 (®) (®)
Ter = 380G 2 oy + 5 Z Do Gy s + 7 ZAm TG@ + Ay, 1G®@

+ Z Ays TGS;@

r=1,2

Explicitly

( T1Y2Y3 _|_Z ;pl’m n —|—G (m,yz,n) +Gg(m7 n, y3)]) G%(X)

1

_ (4) 2) (4) 2)
- E(Zl,iUl)Gl@l(X Z) G@(y)+ E(yl,wl)Glgl(y7Z) G@( )
1 6) 1 (6 1 % ~(6)
— (12 2
* {E<zl,m1>( VClaimi ¥ By ) C1o1ml T Bz, g o) Cigp
1 1 1
+—(13)GY + —— (23)*GY) + — (13 *G(G)] X
Banyn) D it Bl ) S T Bl ) G| (X
1 )
“IZA, G A, GO A, GO
+§W [3 11 gy T Snabpry F Ba
TEL3
1 8)
+3 ZAmGg)+ZAmG“ + 28,060 S ZAmz
&5 eSO |SK VEREEY

(®) ®),
+= ZAW TG@ +2aGly + 3 A, TG Ay, 1Gl6|@|



4
+5 Z Y3, hG(S i Z yar G + Ay, 1G + Z Ay, TG } X)

h - r=1,2
_ Z GO (X) — GO (b, 3, 75: 3 2)]
xhbl @ ATttt A
1
-y ——[G9(X) - GO (x; _
% E(y27b2) [G@(X) G@(X7 y1>b2ay37z)]
1
-y ——[G9(X) - G (x; _
% E(y37b3) [G@(X) G@(X7 ?/1:3/27173,2)} .

O
ol

4.4. The Schwinger-Dyson equation for G Concerning the correlation function

G((ZX)Q’ the terms with swapping black vertices are

(132)*GY, G19,, (12)* G (4.10)

12 13 12

G(G GG G(6)

@ @)
w G Claimr s Gin

387

which need to be divided by differences of propagators. We now find the rest of the terms.
Since Aute(f13) is trivial, the contribution of the {3-derivative on 37, Y917, J] is given
by the sum ), fg where, for each colour a:

ffflfi = Aibl IG(; 23 + Z T1, hG ®) (13)*(Afv1 3G(8 ) (13) (A-Tl 4G 8) )

= I
+ ) (A, G +(13) A, GU ) (13)"(Az, 1G®) )+ (13)*(Ag, 2GB) )
S v EnoE:
+1(A GO (13) (A0 1GY )+ (13) (A uGY )+ A, 4G )
2 x1,l 2011 1201 x1,l 3 301 x1,4 3(011) 1301 1,4 3(d) 1301
1
+ 5 (13) (A0 G0 + = ((23)" A0, 0GB + A, .G 4 (13)* AMG@
7“;2 3 4< l@ ]l/]:; @
+ (123)*A,, 4G
%)
2 _ ®) ®8) 1 * ®)
b AyﬂG‘ 2y TGy + AnaGin L, + 5 ( 2 2(13) (B r Gy, )
(8) (8) * (8)
+p;4Ay27pG3ml + D1 Gyl + (13)" Ay u Gy )
(8)
+ > A, pG 3+ > (13)A,, qG 5 +(13)°4,, qao@
p=3,4 q=2,3,4
8 ]' * * *
+Ay2,3a<f + Z(AyQJG%ﬁ +(123) AWG% +(23) Ayz,gc;l +(13) AyQAG%i)
B3) 1oy (8) ) ) 1 . ®)
Fax = (13) A“JG\@M%%\ tBas 1 Gy + AesaGs o+ 2( ;;13) <A‘”3’TG2@3201)
+ 3 Ams,pq%ml +Aw371G§%@zQI +(13)* Ay, 4G + 3 A, pG
p=3,4 ) ) p=3,4
+ 3 (18) B0y G + (13) Ay GOl + Ary 4G
q=2,3,4 * Q:@ I3
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(A 1G®), +(123) A4, 2G®), + (23)"A,, 5GP, + (13)* A, 4G

@ @ @ Y

|

_l’_
Here s = (x1,y2, x3). Therefore the explicit equation is

( F142%8 Z :L'l, m,n) + Gg(m, Y2, m) + Gg(m, n, xs)}) - GC(Z%(X)

23

S

1 1 1 1
S T —el() R ) L —— | ) &1 () 411
{E<yl,xl> T Bgna) R T Blag ) 10l8 T Bz, gy ) Gy (41

1 1
GO
E(z3,x3) % E(ys,x3)

(8) *
{80 # 3 B 09 (06 ) + (19 (306

(12)*G5}%}(X)+ﬁ(Gg( )G (v.2))

€2, Y2

)

+p234 AxlpGE@ng) A”EIPG@)@) (13)*(Ax1,1G)+(13)*( - QG)

1 (8) * (8) « (8
+ 5 (DG g, + (13 (Aan Gy )+ (13 (AaaGy 1 )+ AenaGily )

* (8) (8) (8) (8)
+ ;2(13) (AILTG 13) + Ay%lG\@H}%ﬁ)\ + AyQ,lG + AyzAG

1
+ 2 ((28) 80, 1 G 4 Ay, 2G) + (13)" A, 3G+ (123)" A, 4G )

: i i T i
+ %( 21:2(13) (Byan G ) + Z L T VT cioey
+(13)*Ay24G- Z Ay2pG+ Z (13)*A,,. qG? (13)* Ays g Q:?@
q=2,3,4
+ Ay, 3G(?3 i(Ayz,lG%l + (123)*Ay2,2G% (23)*A,,. SG%?I +(13)*A,, 4G(8){1)
+ <13>*{<13>*Ax3,10<2 o TG+ ALGE) +§(H (19 (@G,

(8) (8) * (8)
! 2334 By oGy T+ Basa Gy, + (1) Ay a Gy, )
Z
+ 3 A, GE + (13)* Ay, qG + (13)" A oGO + AL, 5GP
p=3,4 ﬁ;@ q=2,3,4 * @@ @
1

n Z(Amﬁ%g + (123)*Ax3,2G%3 + (23)*Am,3G%3 + (13)*A13,4G%3>} }(X)

1
Y [GO(X) — GO (b1, 2, 733 y; 2
bZE(:L‘l,bl)[ Q?;Q( ) Q;g@(l 2 3y )]

1
Y G (X) — GO (x;y1, b2, y3; 2
%E(y%bz)[ Q;;Q( ) @5:@( Y1,02,Y3 )}

23

1
-y ——[GY(X) - GY beveg)]
zb:E(xg,b3)[ n(X) Q%Q(xl,xz, 5:Y:2)]
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5. FOUR-COLOURED GRAPHS AND MELONIC QUARTIC RANK-4 THEORIES

We count the graphs with 2k vertices for k < 4 in order to obtain free energy expansion
until O(J4, J*).

Figure 3 summarizes some properties of these graphs that the free energy expansion
depends on. Although they had been enumerated, neither had they been identified nor
their symmetry factors (the order of the coloured automorphism groups) found. We can
now expand the free energy until sixth oder, which would in theory allow the computation
of 4-point function’s equations starting from (2.3). For the ot -theory, the sum is over
all &Feynp(pt) = Grphy) as shown in [15]. For that model (and also for any other
model containing those interaction vertices and thus the same boundary sector), the free
energy Wp—4[J,J] to O(6) is then given by the following expansion, where b = b, . =
min({1,2,3,4} \ {a,c}) and d = d, . = max({1,2,3,4} \ {a,c}) and (i1(a),i2(a),iz(a)) is
the ordered set of {1,2,3,4} \ {a}:

WD:4[J’j]:Gg*J(@)+ GI@\@l Iole) +Z G(4 m)
1 _—
+;2G*J() + GI@I@\@\*J(@‘@|@)
BN 1 (6) =R
+§ZG@|M|*J<@’©:®)+§;G@J|*J<@|l7)

+ Lo =3(LI) + S0y - G(=D)

+ZZG@I*J() ZG ()

1<j k#i
k#j

+3- {0 (PN}

It is convenient to single a particular colour a we want to use the WTI for. Care has
been taken in order to colour the graph’s edges in non-redundant, but univocal way. In
particular, edges are labelled strictly by the closest letter next to them.

.- / & [ i
+3 Z;G ()+§;G%*J(®)

+O(J*, JY
{i1izsiz}={k}°

Wp=a[J, J]

= G2 3(©) + 5iGL o <1 DIS) + 30 560, <1(110) + 56, +3((0)

c#a

) —H L )
Y56 () + 6% e IOIOIS)

) G\@mzm (“@'.) |@|®\*J<@|@>



3 (M) + Z et (D)

+ 20 (D) + S0y -3 (-1C)

+ 209y (1) 2 2 ot <o)

iz () i <>§ *@>
+§f§d(;gﬂ“*£<@) ZG(G"*J J()
+;{ (z)}m@ - Lol T

For the sequel, we adopt the notation of writing entries of Z” as unordered sets, even
though we mean them having a colour-ordering (by the subindices). Hence, the D-tuple
(Gp1s Qs>+ - -+ 9pp 1+ 9pp ) actually means (g, gs, - - ., G, qu) Where r < s < ... <t < u, being
{rys,....,t,u} = {pi}2, as sets.

The simplified Yrgcfl)-term given by (2.7) and by the Ward Takahashi identity after taking
the (mgn,)-entry of a generator of the a-th summand of Lie(U(N)P), reads then:

2.

2
Gg (ma, i1y Gios ng)

Giq +9io ig
{ZA% G‘@‘@WZZAW G YD A oGl }*J(@) (5.1)
s=1,2 i=1 s=1,2 c#a s=1,2
{glema Gf§@|@|@\+ 22; Ma,s \@umﬁ %:[2;3 \@)\@I
(5.2)
Ama 2G +Ama 2G }}*J(@|©)

3
1 (6) 1 (6)
+{2Ama1G©|m+ ZAma G@Jrz:[ malG ;Ama,rG%

c#a

(©) (©)
+ A, 2G + A, ﬁ]}d(@)

E¥fomi]

3
+ Mg, 1G +Ama,aG() ) *J f
;{ } (070)

3
+§{[2Ama G +Ama1G(6 EZ: mar G

s=1,2

+ Ama,lG” + Ama’lc” ] «J(020)
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(6) i
* [BneaGEy + 3 ey | +3(OED)

#[AnaG + 3 Ama,stj *1 ()}

6

1 6 "
+Z{ 5 Bma1 G2 ey T Z e p +AmasC
Fa [2 S|l 2
3

1 6) R
o Ama,r u Ama G Ama7 G J a a
S DISNCIARES S ,+z e (,]*<>

r=1 & g 1,3

[AmsCL, + Ama,QGé@a + Ama,gagﬁa el

Pl
e Ll

+ |:Ama,3G(6 + Ama’sG%)ﬁa + Ama’QGig@” } *J( da,cda,c )} + O(J3, j3> .

Ul
el

5.1. Two-point equation for rank-4 theories. We think it is instructive to derive di-

rectly, without using Proposition 3.1 the SDE for the 2-point function:

62 (@) =5 { 57 [ow (-V(6/03.0/8) g ueZadera’sa) |

1 7 7 o1
- ZoEq {eXp (_V(5/5J’ 6/5<])) ezq JaEq qu|

1 - ) 7 g1
— _ Zq JaEq " Jq
+ Z.E. (exp (=V(6/6J,6/8J)) Ja&fae )JJO

J=J=0

J=J=0

Y

i

J=J=0

111 (o
= —+ = (Gan— (Vo > 21,7
E. ' ZFa (‘pa VD)) a2

YL

:—2)\{5 0 _5 Z 0 _5 (X€Z4)

Y1 5Jy1x2x3x4 Y2,Y3,Y4 5Jy1y2y3y4 6Jx1y2y3y4

o ) ) 0

5J$1I2SC314 Y2 5J1‘1y2{b3934 Y1,Y3,Y4 6Jy1y2y3y4 6Jy1x2y3y4

) ) ) )
T 257 5T yrymysys O,
T1T2T3LL g TIT2YZTL gy yyo gy © Y1Y2Y3Y4 U Y1y223Y4

5 9 5 9 }Z[J,J]

0. 0. 0, 0,
T1X2Tx3T4 Y4 T1X2T3Y4 Y1,Y2,Y3 Y1Y2Y3ya Y1Y2YsTa

Jw1x2x3x4

+

J=J=0

One uses the WTTI for the double derivatives of the form
5QZ[J, j] 5QZ[J,j]

0, 5J. Y
Y1Y2Y3ya T1Y2Y3yYa Y1,Y2,Y3

Y2,Y3,Y4 5‘]y1y2y3y46‘]y1y2y3$4

Then
_0(=V(p,9))

P —5/5J%
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+Y900,0]- G2 (x) (5.4)

4 (a) 7
62&5“ [J,J]
- ‘MO{ 2 {W

a=1

@) 2)
Z iz ,z " ,2 (G <X>—G@(yavIh(awﬂfz’a(a)v%s(a)))}} :

Recall that (qi,qj,qk,ql) implies an ordering of the entries, that is, reordering so that g
appears to the left of ¢, if and only if s < r, s,r € {3, j, k,1} = {1,2,3,4}. Twice the double
derivative appearing there, 252Yx(f) [J, J]/8Jx6J, is given by

(4) ) (4) )
Z <G|@‘@|($a, Gir(a)s Gia(a) Gis(a)i X) + G| 5| o (%5 Tar Qi () Bia(a)» Qig(a))>

Qil (a) 7qi2(a)aqi3(a)

+ Z Z <G?€£® (Tay Tey by Gd; X) + G?é%@ (X3 Za, Te, Qs Qd)>

c#a Qb(a,c):9d(a,c)

+2G?€£® X; X +ZZ( xa7xbaqcaxd> )+G(. (X xaaxb>QC>xd)> .

c#a qc
Thus, since Y,%Z) 0,0] = Zqil’qiz’qis Gg(ma, iy s Qiss Gis ), ONE has
L0 =+ g5 (P (V@) 2]
=4 Ex 0 Ex OPx oP—8/6J8 J=J=0
1 A [ <
- 2 2
=zt {Z 2. G% x) - ( Z Z Z Gg(xm%‘l(a):Qig(a)7Qi3(a)))
x a=1 Qiq (a) Qig(a) dig(a)
+ Z ( ool (Tar Gy (@) Giz(a)> Biz(a); X)

Qiq(a) dig(a) dig(a)
+ G (X3 Ty Gina)s G () Gin (o)
‘@|@| 1 Lay iy (a)s Qiz(a)s Dis(a)

DD ( xaafcwqba%;XHG%%@ (X;xa,xc,qb,Qd))

c#a 9b(a,c) 9d(a,c)

-+ Z Z ( xa,xba Gc, Xd; X) + G( <Xa LayTh, 4c, I’d)) + QG%%D (X;X)

c#a qc
- Z m( @(X) B @<ya’ﬁil(a)’miz(a)vxig(a)))
Ya

5.2. Four-point equation for GY  in rank-4 theories. Since V1 has Zs as automor-

15
phism group, according to Proposition 3.1, the equation satisfied by G%?l is the following:

(1+ 2 Sy (50 ) G2 () (55)

T1,Y2,Y3:94 41 qa

(=20 1 Z! 0Z[J, J]
N Es ;{ Z 7 flgl( ) ZlE(ytg;sa) 8§a(1g1;1,p)(X)

GELs

1 (4) (4)
_ZM%Mmém)qg\wm@
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for x,y € Z*, X = (x,y), and s = (21, 92,93, vy4). We write down the terms in the first line
of the RHS. The trivial part is

4 _
0Z[J,J] 1

Z E y:') Sa 8§a(1@1, 17 2)(X) - E(yl,.’L‘l) (G‘(;‘(@‘(X) T GE;)(X) ' Gg(y))

a=1
* Z E wca c 1. <X)

Less so is to find ), f%l The contributions to f%l , for fixed colour a, are all functions

occurring in front of a J(().() )-source term. These functions come from coefficients of the
following source terms in (5.1) J((.0) and J((.0) for the values” when a =1 or ¢ =1 (in
the sum over ¢), but also form the following values:

J(EED). tor a e (23,45 J(QD). for (a.6) € (2:3).(2:4).(3.2),(3.4). (4.2). (43))
none fromJ )

Hence
(1) 1 g ) g (6)
1 6 6
=N, 1GC +-3"A,, TG . G + Ay, G (5.6
Te {2 G2 3; 7 ;{ ! 3Z an OO
(6)
R R )

3
ApsGiliy (©6) A, GO EA N GO A, 09 LA, G
1g1 Z Y2, + y2,1 2@1@ + 3 ; Y2, @ + y2,1 .‘a\ + y2,1 2

s=1,2
(5.7)

1 (©) (©) (©)
+ §Ay2,1G|©I®I®I AyZ aG + CZ |: Y2, 3G IOH Z Ay2 SG ’2 ]

3
1
=5 A, e O+ ARG+ oY A CD A GO A, 1GC
3 r=1 @

1g1 s=1,2 ’ 3@@ @
(5.8)
1 (©6) (©) (6)
+§Ay3,lal©|ml+Ay3aG +C22:4[ Gy +521:2Ay35G .m

O +A,, 1G( b 8,,1GC

lg] Z Ay4 sG .m' Ay471 + Z Ay4 TG® ' 4
(5 9)
1 (6) (6 ©
T 380G g T Bw aG 7 cz;g B0, 3G ! szl:z Bus |

One inserts the sum of these four terms in equation (5.5).

6Recall that ¢ (c # a) in that expansion (5.1) is seen as running variable, while b < d are defined in terms of
a and ¢ by {a,b,c,d} ={1,2,3,4}. Also i1(a) < iz2(a) < i3z(a), and {i1,i2,i3,a} = {1,2,3,4}.
32



5.3. Four-point equation for Gi% in rank-4 theories. In order to get the equation
for G2 g e calculate first ), f(l(% .

= 1 (6) (6)

s=2,3

1o "
gZ:: 3:17" e ZAQ;L G:@)—FZAMZGZ]

(=1,3

+ ZC 3,4 |: T, 3G( D + Aml,ZG%él + A$173G%§l } ,

@ _ EA a® A .G© Y NE ) - 10b
iy = [32=1Clom) Z anc Rt v 0 (>:100)
1 ) 18 (
+ 3 Aa:erﬁ L+ Aw2rG6 —+ szEG
2 Ay +g 2 AnnGl) + 3 AiCiy |

T 261374 [sz,?)G({z + Am,ng + A12,3G2 } :

1 (6)
fre = [58u1G + Ay, sG + Ay, 3G (5.10c¢)
@[3@l|;2:33@;@ S )
+-3"A, TG(G +-3"1,,,G% + 3 A,,GY
Z (& Z &, 521:3 'Ziﬁ'
6) (6)
+Zc:2,4 [Ay373GC' + Ay, 3G +Ay3 2G 69 ]
W _Ia 6® S ALLGY A, 5.10d
f,@ [ Y4.1V | a5 w0 3—22, Y4,8 3 ( )
3
1 (6) (6
+ = Ay, G + = Ay, -G G )
P Ey@‘Zy}
+ GO 40,560+ A, .G
26—23[ ya,3 AL va,3 4 ya,2 @4]
The remaining terms from swapping edges are:
4 _
8Z[J, J] 1 (4) 1 (4)
= G (xy)+ ——-G (x,
;E 02,50) ea(lE) s L29)(X)  Blgnan) 2 Y By ) O 0)
1 (@) 1 o)
+ G (x,y)+ G (x
E(l'g, 93) 4g4 ( y> E($47 y4) gs ( y)
whence the SDE for G(] is
(1+—ZZG2> q) ¢ (X)
a=1 qa
(—2)) © +¢(a) 1 (4) 1 (4)
= - (X)+ ——G y)+ ———G , 5.11
Es CLE::I 622320' fl( ) E(yl,flh) z@z (X Y) E(y27x2) lgl (X Y) ( )
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e 1w - 1 @ @
+E(xs,y3)G4g4(X,y)+E($47y4)G@(x,y) bZ—E(sa,ba) [Gl (X) G@ (X|sﬁba)}}

a

with X = (x,y) and s = (21, 2, Y3, y4) with the functions f(l given by egs. (5.10).

6. A SIMPLE QUARTIC MODEL

In order to obtain a simpler set of SDE equations, we consider a model which has less
correlation functions. Its probability theory is expected to ponder only spherical geometries.
Nevertheless it is interesting because its equations are particularly simple. We consider the
rank-3 tensor model with action S|y, @] = So[p, @] + V], @] where

Sole, @] = Tra(@, Bp) = > @(m’ + [x[*)ox  and  V[p,@] =A- 11, (6.1)

Here |x|? = 22 + 23 + 23, x = (21,292,73) € Z3. In particular all the bordisms that
this theory triangulates are null-bordisms and bordisms between spheres. Notice that the
boundary graphs are all graphs having the following property: two edges are connected by
a 2-coloured edge, if and only if they are connected by a 3-coloured edge. We denote by
© (O C Grphs) the set of connected graphs with this property. Thus the boundary sector
imd g, of this model is determined by

x€Z3

O Feyns(11771) = {B € Grphy : B has connected components in ©}

©={e, 1], @, @, @, @,}

Let A5, be the graph in © with 2k vertices. That is to say, the set of correlation functions

is precisely indexed by © and we set G?%) := ng}j, ie.

@ —a® @ ¥ 6) — (6 ®) — ® (10) _ (»(10)
G7=G65, G _G@wG —G@,G —GQ,G —G®.
Any (2k)-point function with disconnected components can be labelled by integer partitions
(ny,...,ng) such that

being

B=AXx"uXxMu.. . Uy, (6.2)

being ¢ the maximum number of vertices that a connected component of B has. These

numbers n; satisfy
¢ ¢
k= 2'71 i-n; and B= 2'71 n;, (6.3)

where B is the number of connected components of B. Then the free energy boils down to
the expression

wir =S Y G «us), (6.4)
=1 Bed(Feyng(11))
k(B)=l
where the prime in the sum means that it is performed with the restrictions (6.3). More
concretely, writing any graph B as in eq. (6.2), one can rephrase the sum rather over ¢,
the largest number of black (or white) vertices found in a connected component of B. This
modification readily yields

00 L

7 1 (25)

WIJ,J] = G\ in Ung | aln LA UL LA

9271 = 3 (T ) Ol e 388 027 U020

To obtain the last line one observes that Aut.(Xs;) = (rotation by 27/k) = Zj, and

|[Autc(B)| = nq!...ngl - [Aute(Ao)|™ - - - |Autc(Xae)|™. Tt should be noticed that this form
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has already been found in the free energy expansion of (real) matrix models, here with
twice the number of sources of each monomial with respect to that [6, Sec. 2.3]. It is also
noteworthy that the Grosse-Wulkenhar model (¢j? self-dual theory) [6] was shown to be
solvable by using matrix techniques. Here we have shown that the 1[ji-model obeys the
very same expansion of the free energy and that the number of (2k)-point functions of both
theories is the same for any k.

The growth, as function of the number of vertices, of the number of correlation functions
of this model is milder than that of the models with full boundary sector. We further
simplify the notation and set faor s, = f()zhm. With this notation, the Schwinger-Dyson
equations in Section 3 can be derived for the connected boundary graphs of the 1[7]1-model.

Proposition 6.1 (Schwinger-Dyson equations for the 1[i-model). Let B be a connected
boundary graph of the quartic model with 2k wvertices (k > 1), B € Feyns(1]1). Let
s = y!, where (Xo1)«(X) = (y',...,y%) for any X € Fzp. The (2k)-point Schwinger-
Dyson equation corresponding to B is

(1 + #/\SP Z G (s,q, p)) - GPM(X) (6.5)

q,p €L

—1
:L{M_Za*f%mo{)_z CT— AT

mP P 2N & 2 [W))? — 53] Dor (X 1,)(X)

1
+ Z o [G(%)(X) _ G(Zk)(Xlqu)] } .
qE€Z 1

Proof. For k > 1, it is immediate by setting D = 3 and by cutting the sums over the
number of colours to only a = 1, since one does no longer have the vertices 2072 and 3[73
in the action. After using Aut.(Xor) = Zyg, and after inserting the form of the difference
of propagators, as given by (6.1), the result follows. If k& = 1, one additionally obtains
the pure propagator term (the d; y-term) that would be otherwise annihilated by fourth or
higher derivatives. For k = 1, the sum over p is empty (thus equal to zero). O

One can still work out the functions fo, and give the correlation functions implied in the
61(Xog; 1, p)-derivatives in eq. (6.5). Notice that the expansion of the term Y's(ll)[J, J] is

Z for,s; * J(Xak) + Z fc s *J(C) (6.6)

C disconnected
In order to determine fa 5, We ﬁnd the graphs B such that B & e] = Xy, for certain (say,
the r-th) vertex of B. The restrictions (6.3) with B > 2 and the connectedness of B after
edge-removal imply that either
nn=ny=1 and n;=0, ifi#1k,
or
ngr1 =1 and n; =0 ifi£k+1.

That is to say, any such B has 2(k + 1) vertices and, concretely, they might only be either
S U Xog or Xopio, when k > 2. Adding the obvious case when k£ = 1, one has:

_ 1N (4) (4)
f2751 - 5 Z’r‘:l (ASL G|©|@‘ + Asl,TG ) (6.7&)
1
fok,s1 = EASl’ G%CTQH +— ZASL G2 for k> 2. (6.7b)
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y” y’
FIGURE 5. Shows the splitting of Xy into the two components of ¢;(Xox; 1, p), p >0

Notice that ¢;(Xox; 1, p) = Xop—o U Xop_2,42, whence (see Fig. 5)
1 0z[J,J]

_— — G202 Xl’.”,xpfl .G (2k=2p+2) (P , e (2k) ey
Zo 051 (Xog; 1, p) (X) ( ) ( x*) (X)

[X2(p—1)|Xak—2(p—1)]
(6.8)

Using the last four equations one can easily prove

Corollary 6.2. The exact 2-point equation for the 1[Z1-model is given, for any x =
(IIZ’l,CL'Q,a:B) € ZS: bZ/

(1+L > GP(21,q, p)) G (x) (6.9)

2 2
meE ’ | q,pEL

_ 1 (—2)\) (4) W

N m?2 + ‘XP + m?2 + ’XP{ Z G|@\@|(x1a Q7p7x) +G (X, X)
D,qEL

_ Z x1, X9, T3) — G(Q)((LIQ, 1:3)] } )
.’L‘ _q

qEZ

For k > 2, the multipoint equation for G®*) | the single correlation function of connected
boundary graph, is given by

2A @) 2k) (4 1 k
(1+mZ—ZG )xl,qp)) G (x!, ... xF)

2
+s? 2=
(—24) 1 2k+2
= m2 + ’5’2 Z E Z Gf@‘;{) ‘(371,(] by X +l’ s 7Xk+l) (610)
=1 quZ
k +1 ZG (2k+2) ( 1+1 X2 o ’Xr—i—l 1 x%7$12~+l 1,1‘724“71,)(7""'1, o ’Xk—i-l)]
k
Z 7] (G(Z” 2)( LL,xPTh. G(2k72p+2)(xp, . ,xk)>
—2
G(2k) (x17 l’%? m37x27 ct ,Xk> B G(2k)(q7 x%’ x%? X27 M ,Xk)
Ey— '
for (x1,...,xF) € Fap, s = (a},25,2%), and x* = (24,28, 2%) for all i € {1,...,k}.

Moreover x7 = x' mod k, for and j € N with i € {1,...,k}.
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It is pertinent to stress that s = y! is a “chosen” black vertex, and this equation holds
for any other choice s = y', i # 1, (X)«(X) = (y!,...,y¥), after the pertinent changes
(e.g. the sum over p excludes not 1 but 7).

Proof. One uses the equations (6. 7) and (6.8), the triviality of the automorphisms group

Aut.(e), and the invariance of GW _ and GW:

fsSits]
Gl zy)=GL (v2)  and  GY(zy)=G"(y,z2).

This is enough to obtain the 2-point equation. For k > 2, on top of using (6.7) and (6.8)
one explicitly writes the action of o € Zj. This is rotation by 27l/k, 1 <1 <k, so

U*f(X) = f(xa_l(l)a st 7Xa_1(k)) = f(lerla cee 7Xk+l)
where x/ = x* mod k, for i € {1,...,k} and j € N and f any (appropriate) function. [
Remark 6.3. An analysis on the divergence degree as function of Gurau’s degree, and
the boundary components was done in [2; 19] for group field theories. It turns out that

graphs with a disconnected boundary are suppressed and therefore any graph contributing
to GI@I@\

G®. Also, by results of matrix theory [6], the term G (x,x) is expected to be analogously

is expected to be suppressed at least by N~!, with respect to those summed in

suppressed. Hence, conjecturally, for the 1[Z[1-model, the leading order a® ey Of the two-point
function (6.9) should satisfy the clearly more simple closed equation

<m + x4+ 22 Z Gmel x1, 4, p)) ijel( ) (6.11)

q,pEZ

mel(x17x27$3) - Gggl(QJx2vw3):| .

and by the same token, one could truncate the equation for the 2k-point function (6.10) to
the following one, where the equally suppressed terms o, s, also are suppressed:

2\ i
(1+ 2 2 Z mel (21,4, P)) Ggel)(xl7-~-axk) (6.12)
m? + |s]
q,p €Z
k
(—2)) 1 ( (2p0—2) 1 1y (2k—2p+2) k
_ G, ) G0 )
m? + |s|2 ; [(z0)2 = (z])2] \"'mel (x xP7) - G (x x")
2k 2k
B Z G;el)(x%,x%,xé,XQ, coxF) — Gl(nel)(q, o al x? .. ,Xk)}
CHEET
We warn the reader that these relations —what we could call the melonic limit and corre-
sponds to the planar limit in matrix models [6]— still must be Carefully proven (see Sec.

8). It is very encouraging to see, though, that after determining G )1, the “melonic 2k-
point SDE” (6. 12) for any k > 1 can now be entirely expressed in terms of already known
functions Gnﬂl, Gmel, e Gg§1_2) and constitutes an equation only for ijfl), which would

decouple the tower.

7. OUTLOOK: GURAU-WITTEN SY K-LIKE MODEL

We believe that some of the present methods can be extended to the so-called Gurau-
Witten model(s) based on work of Sachdev, Ye and Kitaev. We sketch here how.
Gurau-Witten model consists of fermions ¢)* that are tensorial of rank 3, transforming

in the trifundamental representation of Gup X Gye X Gog, where {a, b, c,d} = {0,1,2,3} and
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—
FIGURE 6. Gluing of tetrahedra caused by the Wick contraction 1%)?, ¢ = d¢p/dr

each G;; = Gj; is a copy of a Lie group, e.g. O(n). That is, in (¢)*)pq, each subindex
e, independently transforms under the fundamental representation of G.., e # a. The
new integer n is related to the old number of sites N (fermions in the original SYK-model
[12; 18]) by N = 4n3. The quartic monomial in Witten’s model is given by the O(n)-

invariant
n

Sint.[{wb}gzo] = —n(n) Z (wo)ugugug (wl)uéuéué (wQ)ugu?ug u‘”’#%% H‘Su N (7.1)

pl=1 i#]

which is also abbreviated as —n(n)y '3, being n(n) = non=22,1m9 € R. With his
action, the partition function is

Zeawltrn =25 [ Dwexp( [aY, L+ Y wbﬂ)

Here the propagator is the sum of the four quadratic O(n)-invariants, thus, for each b
Ydap? /AT stands actually for ZZ ug:1(wb)aw(d¢b/d7)aw- We use its complex version,
and in that case the partition function Z& w,; [{J%, J*}] reads

| pipuvess ( [y, B ) O+ PR + 3 P+ wab) .

The interaction-vertices of the last theory are graphically represented by

N N
POty = f 13(01 and PPyl = %\Bé

Triples of empty (resp. filled) dots marked by edges having the colour a in the bicolouration
represent a the field )¢ (resp. 1%). These edges are the deltas in eq. (7.1). Also, there are
four terms in the propagator (the four summands in the quadratic part; see the Feynman
diagram shown in Fig. 7)

Each quartic interaction vertex can be seen as a tetrahedron with fields ¢ at their
vertices and with marked (coloured) faces, being 1/ opposite to the face with colour d for
each d = 0,...,3. Thus, for the complex Gurau-Witten model, the Wick’s contraction of
zbd with 1) is, as in Figure 6, gluing the face coloured d (opposite to the vertex ¢ in that

figure), and any Feynman diagram results in certain simplicial complex, which, in case of
38



having external legs, has a boundary consisting of coloured triangles. If the number of
triangles of colour A € {0,...,3,0,...,3} at the boundary is denoted by k4, a boundary
graph consists then of 2k triangles and is specified not only by (ko, . .., k3, kg - - -, k3) € Z5
such that 2k =) , k4, but also by momentum transmission. To wit, connected bounda;y
graphs with 2k external legs have the following properties:

e the vertex set is octo-partite in colours in the set @ = {0,1,2,3,0,1,2,3}. One
writes p : @ — {0,1,2,3}, p(A) = a if either A = a or A = a We impose on the
‘bar’ operation = : @ — O the property A = A for each A € Q.

e there are x, vertices of colour a and these numbers satisfy 2k = > 4. K4

e the edge set is bicoloured, that is every edge is labelled by one of the six elements
in S, the set of unordered pairs of different colours in {0,1,2,3}

e Let A, B € O label two vertices of a graph. Either there is no edge joining them
or they are connected by an edge which, according to previous point, bears a bi-
colouration ¢ € S and one constrained to the following possibilities:

(i) p(A) = p(B) =: a and A = B, an in this case £ € S can be any of {(ai)|i # a}

00

(ii) a := p(A) # p(B) =: b. In this case, £ = (ab), that is

@abeoraabe

Disconnected boundary graphs have components that enjoy from all these properties.
This gives the following classification of correlation functions.

e two-point functions: for 2k = 2, the only possibilities is kK, = kg = 1 and kg = 0
for B € O\ {a,a}. Thus there are four 2-point functions:

ab

ao
0=0

ad

e four-point functions. One can have:
— Kq = kg = 2 for certain a, otherwise kg =0, B € O\ p~(a);

ab

Y
ab ab eve
oo TR
00020 “

ad ad QCQ

which have been called ‘broken’ and ‘unbroken’ in [10].
— Ol kg =K, =kKg =Kz =1and kg =0 B € (0\ p*{a,c}),

ab
ab ab GCG
00U 00 | |-

ad ad 0_0
ad
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—Kyg=...=Kz3=1lorkg=...=K3=1,
(e/\/a) or (e/\/@), respectively, called ‘exceptional’ in [10]
-0 0-0
This matches for £ = 1,2 the description given in [10] for the real case, in a
somehow more different notation than that of Fig. 3 there.

e six-point functions will be either classified by a disconnected boundary with compo-
nents in the graphs that classify the 2-point and/or 4-point functions adding up to
6-vertices or they will be connected. This latter case needs a more complicated anal-
ysis to be fully classified. Examples of connected boundary graphs are the known
ones for coloured tensor models with all the possible vertex-octo-colourations of the
melonic graphs in six edges, but also many new graphs are possible, e.g.

A program to extend the present methods to the Gurau-Witten model begins

e with the association of a cycle of sources J¢, J¢ for each boundary graph

e to expand the free energy of the model, log(Z&, w: [{J°, J°}]) in cycles of sources
for each graph B € im 85, w; in the boundary sector of this model. Developing a
graph-calculus and classify, modulo colour-orbits, multipoint functions

e the triviality of the Ward-Identity might be overcome by choosing a propagator that
does depend on the group-variables, since this is a first order derivative, making
“time” 7 related to momenta p (e.g. replacing the propagator by a momentum-
dependent propagator [dr >, >, D (T)(1)6(T — f(w)), for which the WTT would
be non-trivial)

e extend the SDE-techniques to interaction-vertices that, for any colour a, do not
have the following subgraph

which was essential for the use of the WTI when deriving the SDEs.

8. CONCLUSIONS

We studied the correlation functions of coloured tensor models and, mainly, presented
a collection of generating functionals that allowed to derive the exact Schwinger-Dyson
equations for CTMs of rank 3 and 4 (and in Appendix B, rank-5 theories). The symmetry
of the colours should be exploited in order to obtain a simplified version of them, which
shall lead to a solution. The path towards closed equations, i.e. equations where a single
unknown correlation function appears, is the analysis of Gurau degree w sectors:
G =GR+ T G, (G — e,

mel —
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FIGURE 7. Example of a Feynman graph of the (complex) Gurau-Witten model
that contributes to the correlation function indexed by the graph in the right,
where any edge from a to b coloured vertices is ab-bicoloured (not always the
case, as e.g. for a = b in another graphs).

This requires a rather deep combinatorial and topological analysis of the contractions of
the external lines for tensor models, similar to the one undertaken in [5], and condensed in
[6, Prop 3.3] for matrix models. This would prove the claims in remark 6.3 and will allow
to find the analogous equations for sectors of any higher value of Gurau’s degree w > 1.
That result would provide insight on the solvability of the 1Zji-model. We address both

problems in a next paper.
Additionally, in Section 7, the boundary sector of the complex Gurau-Witten model has

been characterized. This allowed us to write down there a plan that, we hope, would be
useful to implement non-perturbative techniques for holographic tensor models.

APPENDIX A. PROOF OF LEMMA 4.1

Proof. The proof is long but straightforward. We compute some terms as a matter of

example

L
2122 (Gl CO LD (A.la)
= g( > Aus G& S (123)*<ASQ,TG|(§%@|@|)) “I(S U )

r=1,2 r=3,4

222 i LU 00D, (A.1Db)

= —Z Z Ag, G|m| + Z (123)*Ag, . G’%'m')*qﬂ(@u @)

iZa r=1,2 r=3,4

222 RO (A.1c)

i#a
=12 (X 20rGy ) <A S L)
i#a r=12
+( 23:4(123) B G gy * HS U(1D))

41



1

2.

1

2.

2!

2!

(Gl DU Q0D (A.1d)

= i((z As, TG,%W )« J(EU(D))
r=1,2

+ (30 (128) A, Gl ey ) * I U ))

!
%<<G|(<8e)>|@| S U %» (A.le)
= 50Ol gy G0 + —q; DGl ¥ IS U(TD)
% ; (GRS T @»sa (A.1f)
- %;{ waG N +q§2;74Asaq ©) A U)
§<<G(2,@,7 S U@»Sa (A.lg)
— ;{ASQ1G|@@ @ q;4Asa G@'@l}*ﬂ (S U
;«Gglm“m’ ou m»% (A.1h)
= A, 1G\@|m| h%:g As. hG\@|m| JSu(r)
8160 W LD + T 8af o HS UL
+ (Asa,4G|(@‘ o +A0,4GY ggm) Nt N0
(G |e|mw@u (A.1i)

_ (8) Pt (8)
= 801Gy * WD)+ Aol g * S 0“0
(8)
+ 8,06 IS VS US) + Bl * HS U (K0

> ACL o © UL (A.1))

i#a
1 (8)
- Z{ Zi;éa Z BsarG 5 o m ¥ IO U 070
r=1,2
2. ASavPG%|@|ozo\ “UST)
p=3,4

i#a
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- %{ > BerGi gy * US V()

r=1,2

D IR C S (SIS IS )

p=3,4

<<Gf?@|@‘@|@‘ SINSIISIISHM (A.11)

I
-
M%

(Asav“G%\@le@I@\) RIS LASEES)

u

(G, Em Vs (A.1m)

a C

Il
SRR

a ¢ b ¢

_ (8) (8) \

- AsaylG *J( M) + A3a72G *"U( ’n.’
b a

b ¢
+ 2, 3G %I D)+ A6, aG® I() I D)

a C b ¢
= ) ) (8)
=2 1 GPL L ( 0o 0)+As,, G *J(() o 0)

C

FALGE I+ <13>*(Asa,40 )31 0)

c b a
(G, 0!9 s (A.1n)
a b
(13 ( ®) :
= (13) (85, aGE_ )% I(( () + A,z G ERICS RYIRN)
+[(13)*(Asa,3G)+(13)*( WGP 8> * J( m
a c b
(eliomy OEDQ D
b _c
= [(13)*(Asa,1G§g£m )+ (13)"(As,, 2G )] *J(() a) ()
+(123)" (A, 3G )+ IS UITD) + As, aGE) *J(Qi)i(})
, JO:}:}ZQ (A.10)
di;-’;i)
1 a
DI PIT-SRCSIES (BRI DRSS ({BN)]
i=b,c r=1,2 p=3,4
(ai#i)
= Ly (> (13) (A, GO )+ D A6l *J(-]
i=b,c r=1,2 p=3,4
(aj#i)
1 C
- 5 |:<T;2(13) AS“ mal p234 AS“ mal ( .n..
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a b

(3 (A G )+ S AGY ) I D)

r=1,2 p=3,4
,_, MD!O (A.1p)
j
- % ) [(Asaale( )+ A, 2G(8) NCSINEN()
i=b,c
(a£j#i)

j ot

S RTch N (| ERVTES Y- WTEA MRS ()]

[ENSRICHR L D)+ 802Gy * IS U
c b

+ A 3Gk T(TNU ) + A aGY I M)]

1
+ 5[(A WG+ CT0) + A, 2G D, * S U ()
b ¢

S E S (L [NRS RNl S ()]

N | —

1 (8) * (8)
T2 [{(AS“ 16, T (13) (ASaalG«“ )
b ¢
+ (13)7 (A5, aG ) + 80, aG i Y30 D)
(8) ®
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c

= 801Gy % IE_D) + A, 2G8 + H(E L[
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£ 3 (13) (8., G ) % 30 D)
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c b
L i) (A1y)
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4{( 3) 1G@+ SQQG@H:&) 503Gl

b
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One adds all the previous equations and associates by J(B), for 5 one of the 11 graphs with
O

+{A;,1GY

¢
[

6 vertices.

APPENDIX B. RANK-FIVE QUARTIC THEORIES

The generating function that enumerates the rank-5 connected boundary graphs (and
interaction vertices) is the OEIS A057007:

Zeomn. () = x + 1527 + 2352% 4+ 141202 + 17128452° + 37151545425 + ...

We will not classify the 235 connected graphs with six vertices, but, aiming only at obtaining
the 2-point function’s equation, we will compute the free energy up to O(J3, J3):

W7, 7] = G2 1(E) + G.;.@. (Sle)

Z G(4 +22G (

1<J

)+O(

- Gg () + 56 *J(@r@) + 5(;@ *3((L0)
(4) 4) e.

DI ; et ()

c#a
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+> G“S@ w() +O(J3, J?).

c,d#a
c<d

For an arbitrary model in rank 5 one has, up to O(J?, J?)-terms,

J] ~ Z Gg(maa%w%wqisﬂqM { Z Am‘l’ G|@|@| T Z Z Ama, G

Qi yeGiy s=1,2 c#a s=1,2

3D SRS 3 SUSICLIES SR SC LI SE =)
cd;ilas 1,2 @ c#a s=1,2 @ s=1,2
c<

One straightforwardly gets
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