
arXiv 1:1 June 27, 2017 2:04 a.m. WeirdMeanRelations-04-23-2017-arXiv.tex page 1

Universal Peculiar Linear Mean
Relationships in All Polynomials

Gregory Gerard Wojnar
Daniel Sz. Wojnar

Leon Q. Brin

Abstract. In any cubic polynomial, the average of the slopes at the 3 roots is the negation of
the slope at the average of the roots. In any quartic, the average of the slopes at the 4 roots
is twice the negation of the slope at the average of the roots. We generalize such situations
and present a procedure for determining all such relationships for polynomials of any degree.
E.g., in any septic f , letting fn denote the mean f value over all zeroes of the derivative f (n),
it holds that 37 f1 − 150 f3 + 200 f4 − 135 f5 + 48 f6 = 0; and in any quartic it holds
that 5 f1 − 6 f2 + 1 f3 = 0. Having calculated such relationships in all dimensions up to
40, in all even dimensions there is a single relationship, in all odd dimensions there is a two-
dimensional family of relationships. We come upon connections to Tchebyshev, Bernoulli, &
Euler polynomials, and Stirling numbers.

This paper is a spin-off from, and is material to, our recent Insights Via Represen-
tational Naturality: New Surprises Intertwining Statistics, Cardano’s Cubic Formula,
Triangle Geometry, Polynomial Graphs [13]. This paper started with (a) the realiza-
tion that the quadratic formula essentially provides the roots to be x = µ± σwhere
µ is the mean of the two roots and where σ is the standard deviation of the two
roots considered equally likely, (b) the realization that the slopes at the roots are
±
√

Discriminant = ±2 aσ, and (c) the trivial observation that the average of the
slopes at the roots equals the slope at the average of the roots. Curiosity took us next to
cubics, to find that the Cardano-Tartaglia cubic formula can be perceived as providing

the roots to be r
k

= E + ωk
⇀

T
+

+ ω− k
⇀

T− where ω = − 1
2

+ i
√
3
2

is a primitive cube

root of unity, k ∈ {0, 1, 2}, and where
⇀

T± :=
3

√
W
2
±
√(W

2

)2 − (V
2

)3
with V being

the variance of the 3 roots, W being the 3rd central moment (sometimes referred to
as the unscaled skewness), and E ≡ µ being the expectation of the roots, considered
as being equally likely. Moreover, the coordinates of the cubic’s inflection point are
(E, −aW), and the slope at the inflection point is the negation of the mean slope at
the 3 roots. Indeed, the inflection point slope will be − 3

2
aV. Next we saw that the

mean slope at the 4 roots of a quartic is the negation of twice the slope at the point
(E, f (E)) . . . and the hunt was on to find all such relationships! It was not just mean
slope relationships either– e.g., one can of course note that the mean of a cubic’s func-
tion values at the roots of the first derivative equals the ‘mean’ of the function’s (sole)
value at the root of the second derivative, viz. −aW. What other relationships lie
waiting to be discovered? Have we only seen the tip of an iceberg? Perhaps the reader
is starting to suspect that such relationships are really typical.

1. THE GENERAL QUESTION We establish some notations. For any degree D
polynomial f let R ≡ R

f
denote the family (≡ multiset) of D roots, and let R(ρ) ≡

R(ρ)
f

denote the family of (D − ρ) roots of the ρth derivative f (ρ) (sometimes using
primemarks [ ′] for lower orders); we also write |Rf | = D (even if some root(s) have
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multiplicity greater than 1). Denote the average value of the function on the ρth deriva-
tive roots family as f (R(ρ)), and similarly use f (δ) (R(ρ)) for the average value of
the δ th derivative of f over the same roots family. Sometimes we will emphasize the
degree of f by explicitly writing f

D
, and we put ϕ

Dδρ
:= f (δ)

D
(R(ρ)) .

Our initial results mentioned above suggest that we seek to determine ϕ
Dδρ

for
all D, δ,& ρ, and that we seek relationships among various ϕ

Dδρ
, of the form∑

ρ αρ ϕDδρ = 0. (Other linear combinations of the ϕ
Dδρ

that sum over D or over δ
are unnatural because of dimensionality considerations.)

Proof Routes
In cases where the cardinality of the roots family R(ρ) is 2 or 3, we can compute by
brute force since the values of the roots will be given by either the quadratic or cubic
formula. Perhaps this method could even be pushed to the case of a family of 4 roots
via the Ferarri quartic formula, but the level of complexity is greatly increased. In any
case, for root families of size 5 or greater, we need some alternative route.

Again we benefit from establishing notations. We shall use what we refer to as
the quasi-binomial representation of polynomials, expressing coefficients in terms
of averaged symmetric polynomials in the roots. For example, a general cubic
is represented as f (x) = a

(
x3 − 3 r x2 + 3 r x− r

)
where it turns out that r

is the average of the
(
3
1

)
roots, r is the average of the

(
3
2

)
products of pairs of

roots, and r is the ‘average’ of the
(
3
3

)
product of triplets of roots. With these,

the earlier-mentioned Cardano-Tartaglia cubic formula can be computed easily via
E = r, V = 2

(
r 2 − r

)
, and W = 2 r 3 − 3 r r + r. In general we write fD(x) =∑

i+ j =D
0≤ i, j ≤D

(−1)
i ( D
i j

)
r
i
xj where r

i
denotes that quasi-binomial parameter with

i-many bars,
(
D
i j

)
= D!

i! j!
, and we write

⇀

R for the ordered family
(
r, r, r, . . .

)
.

Notice that f ′ (x) = 3 · a
(
x2 − 2 r x+ r

)
is just 3 times the quasi-binomial repre-

sentation of a generic quadratic. This is typical: with quasi-binomial representations
of polynomials, f ′

D
= D · f

D− 1
, i.e. taking the derivative coincides with truncating

the highest order term from the quasi-binomial family
⇀

R; in other words, for a given

quasi-binomial parameter family
⇀

R, we obtain a finite Appell sequence of derived
functions. Also, in terms of the quasi-binomial parameters, the statistically-presented
version of the quadratic formula is simply x = r ±

√
r 2 − r .

It remains instructive to establish that the slope of a cubic at its inflection point is
the negated mean of the slopes at the three roots, via the route of brute force compu-

tation. We want to evaluate f ′ at the three roots r
k

= E + ωk
⇀

T
+

+ ω− k
⇀

T−(for k ∈
{0, 1, 2}): f ′

(
r
k

)
= 3 · a

(
r2
k
− 2 r r

k
+ r
)

. For this we will use

r2
k

=

(
E + ωk

⇀

T
+

+ ω− k
⇀

T−

)2

=

r 2 + ω2 k
⇀

T
+

2

+ ω−2 k
⇀

T−

2

+ 2

(
r

(
ωk

⇀

T
+

+ ω− k
⇀

T−

)
+ ωk

⇀

T
+
· ω− k

⇀

T−

)
.
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Now averaging over k ∈ {0, 1, 2} we encounter convenient terms such as

(ω2·0 + ω2·1 + ω2·2)
⇀

T
+

2

= (ω0 + ω2 + ω1)
⇀

T
+

2

= 0, and (ω0 + ω1 + ω2)
⇀

T
+

=

0, and three copies of 1 ·
⇀

T
+

⇀

T− . Hence we obtain r2
k

= r 2 + 2
⇀

T
+

⇀

T− . From the def-

initions, we further simplify
⇀

2T
+

⇀

T− = V. Of course r
k

= E = r. Together we now

have f ′
(
r
k

)
= 3 · a

(
E2 + V− 2 r r + r

)
= 3 · a

(
− r 2 + 2

(
r 2 − r

)
+ r
)

=
3 · a

(
r 2 − r

)
= 3

2
aV. Whereas the inflection point occurs at x = r, we also com-

pute f ′ (r) = 3 · a
(
r 2 − 2 r r + r

)
= − 3

2
aV, thus establishing our goal.

Looking back, our efforts were aided here by the fact that ω0+ω1+ω2

3
= 0, some-

thing particular to the case of cube roots– something that we won’t have available for
general cases. What we will have in the general case is computing means of powers of
the roots, and here is our key to higher degree proofs: we want to be able to express
powers of the roots in terms of the quasi-binomial parameters, i.e. in terms of the
mean elementary symmetric polynomials in the roots. Exemplifying this in the case of
3 roots, consider:(

1

3

∑
r
k

)2

=
1

3

{
1

3

∑
r 2

k
+

2

3

∑
r
k
r
k′

}
whence

r 2
k
≡ 1

3

∑
r 2

k
= 3 r 2 − 2 r = V + E2 . (1)

For any (multi)set Z of numbers, the elementary symmetric polynomials on Z are
defined as ei(Z) ≡ ei :=

∑
A⊆Z
|A|=i

∏
z∈A

z (for i = 0 . . . |Z|; e0 = 1); e.g. if Z = R

as above with |R| = 3, then e
2

is the sum of all
(
3
2

)
products of taking 2 roots at a

time, and e
1

is the sum of all
(
3
1

)
‘products’ of taking 1 root at a time. Also define

the power sums on Z per pi(Z) ≡ pi :=
∑
z∈Z

zi; p0 := |Z|. With these definitions,

equation (1) above is equivalent to p
2

=
∑
r 2
k

= e2
1
− 2e

2
. Such effort to determine

the sum of powers (or average of powers) is an established result, the Girard (1629)
and Waring (1762) formula [2] which is very closely connected to Newton’s identities
(ca. 1687) [10]. Both are based upon the fact that for a (multi)set Z with |Z| = n it
holds that

∑
i+ j =n

0≤ i, j ≤n

(−1)
j
p
j
(Z)e

i
(Z) = 0. (Note that e

i
(R) =

(
n
i

)
r
i

.) This rela-

tionship can either be solved for the e
i

or for the p
j
. Solving for e

i
one obtains New-

ton’s recursive identities e
i

= 1
i

∑
i+ j =n

0≤ i, j ≤n

(−1)
j+1

p
j
e
i
. Solving instead for p

j
, one

obtains the Girard-Waring formula. To state the Girard-Waring formula compactly, Put
n := {1, 2, . . . , n} and consider the n-tuples of natural numbers,

⇀
κ ≡ (k

i
)
i∈n
∈ Nn

(0 ∈ N), and define K
nj

:=
{
⇀
κ ∈ Nn

∣∣∣ ∥∥∥⇀κ∥∥∥ = j
}

with
∥∥∥⇀κ∥∥∥ :=

∑
i∈n

i k
i
, with n be-

ing the number of data (or root) values. Note that for n ≥ j, K
nj

is isomorphic to
K
jj

=: Kj which is the set of integer partitions of j; the only difference (which is
insignificant) is that elements of K

nj
may have trailing zeroes in the partition. E.g.,

(3, 0, 0, 1, 0, 0, 0) ∈ K7 denotes the partition 1 + 1 + 1 + 4 of 7. The Girard-Waring
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formula is that p
j

=
∑

⇀
κ ∈Kj

γ⇀
κ

∏
i∈n

e
i
ki , where γ⇀

κ
:= j (−1)

j (−1)|
⇀
κ |

|⇀κ |
(|⇀κ |
⇀
κ

)
,

where
∣∣∣⇀κ∣∣∣ :=

∑
i∈n

k
i

and where
(|⇀κ |
⇀
κ

)
=
|⇀κ | !∏
i∈n

ki !
is the multinomial coefficient over

the family of subindices k
i

in
⇀
κ . (See Gould [2]). (The γ⇀

κ
are given as sequence

A210258 in Sloane’s OEIS [12].) From our perspectives it will become more natural to
represent this relationship by replacing p

j
and e

i
by their normalized forms p

j
= p

j
/n

and e
i

= r
i

= e
i

/(
n
i

)
, admittedly superficial changes to Girard-Waring. We thus

obtain p
j

=
∑

⇀
κ ∈Kj

c⇀
κ

∏
i∈n

r
i ki where

c⇀
κ

:=
j (−1)

j

n

(−1)|
⇀
κ |∣∣∣⇀κ∣∣∣
(∣∣∣⇀κ∣∣∣

⇀
κ

) ∏
i∈n

(
n

i

)ki
. (2)

We emphasize that for any partition of the power j, i.e. ∀ (ki)i∈n ∈ Kj , the coeffi-
cient of the corresponding term

∏
i∈n

r
i ki is given by this formula for c⇀

κ
. By hold-

ing fixed all but one of the many parameters in equation (2), one obtains many se-

quences of coefficients. E.g., the coefficients of t
`
t
2

for a family of n = 3 gives
sequence (1, 7, 36, 162, . . .) (OEIS A080420 [12]) with formula j(j−5)

18
3j−5 (de-

gree j = ` + 6). E.g., the coefficients of u ` u for a family of n = 4 gives sequence
(3, 18, 96, 480, . . .) (not in OEIS) with formula 6 j 4j−3 (degree j = ` + 2). Tab-
ulated results are in Tables GW.n=2 through GW.n=7 and in Tables GW. deg=2
through GW.deg=7, at the end of the paper. We particularly note that the coefficients
in Table GW.n=2 are exactly the coefficients of the Tchebyshev polynomials of the
first kind. Thus our Tables GW.n are generalizations of these Tchebyshev polynomi-
als.

2. EXAMPLE An illustrative example is to consider the long-term goal of deter-
mining relationships among ϕ

4,0,ρ
≡ f

4
(R( ρ)) for ρ ∈ {1, 2, 3}. A better example

would address ϕ
6,0,ρ
≡ f

6
(R( ρ)) for ρ ∈ {1, 2, 3, 4, 5}, since with f ′ being a quintic

we have no hope of algebraically knowing those roots, but the larger example demands

much lengthier efforts. So begin with f
4

(x) = a
(
x4 − 4 r x3 + 6 r x2 − 4 r x+ r

)
.

For ρ = 3, we have the cardinality 1 familyR′′′ = (r), thus quickly we obtain

ϕ
4,0,3

= f
4

(r) = −a
(

3 r 4 − 6 r r 2 + 4 r r − r
)
.

For ρ = 2, let the family of the roots of the 2nd derivative be R′′ = (s
1
, s

2
), and to-

ward determining ϕ
4,0,2

≡ f
4

(R(2)) let us consider f
4

(s
i
) =

a
(
s4
i
− 4 r s3

i
+ 6 r s2

i
− 4 r s

i
+ r
)

. From our mean versions of the Girard-Waring

formula (presented as Table GW.n=2 at the end of the paper) we have:

s2 = 2 s 2 − 1 s, s3 = 4 s 3 − 3 s s, and s4 = 8 s 4 − 8 s 2 s + 1 s
2
.

4 ARXIV [ 1
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These give us

f
4

(s
i
) = a

((
8 s 4 − 8 s 2 s + 1 s

2
)
− 4 r

(
4 s 3 − 3 s s

)
+

6 r
(
2 s 2 − 1 s

)
− 4 r s+ r

)
.

We would be stuck here were it not for the fact that the s
i

are roots of a derivative of
f , and thus we are blessed with the facts that s = r and s = r. This is the key issue
enabling general degree success. Thus we substantively extend Girard-Waring by con-
sidering p

j

(
R(m)
f

)
and e

i

(
R
f

)
where R(m)

f
is the roots family of the derivative

f (m). Simplifying our current degree 4 expression, we now have

ϕ
4,0,2

= a
(
−8 r 4 + 16 r 2 r − 4 r r − 5 r

2
+ 1 r

)
.

For ρ = 1, let the family of the roots of the 1st derivative be R′ = (t
1
, t

2
, t

3
), and

toward determining ϕ
4,0,1

≡ f
4

(R(1)) let us consider f
4

(t
i
) =

a
(
t4
i
− 4 r t3

i
+ 6 r t2

i
− 4 r t

i
+ r
)

. From our mean versions of the Girard-Waring

formula (Table GW.n=3) we have t2 = 3 t
2 − 2 t, t3 = 9 t

3 − 9 t t + t, and

t4 = 27 t
4 − 36 t

2
t + 4 t t + 6 t

2
. These give us

f
4

(t
i
) = a

((
27 t

4 − 36 t
2
t + 4 t t + 6 t

2)
−

4 r
(

9 t
3 − 9 t t + t

)
+ 6 r

(
3 t

2 − 2 t
)
− 4 r t+ r

)
.

We would again be stuck here were it not for the fact that the t
i

are roots of a derivative

of f , and thus we are blessed with the facts that t = r , t = r, and t = r. Simplify-
ing, we now have

ϕ
4,0,1

= a
(
−9 r 4 + 18 r 2 r − 4 r r − 6 r

2
+ 1 r

)
.

Henceforward we shall assume that the leading coefficient is a = 1. We have summa-
rized our

(
ϕ
D,0,ρ

)
ρ∈{1,2,..., D−1}

results for other degrees in Tables ϕ.2 through ϕ.7

at the end of the paper.

We summarize the above procedure. For a given order ρ of derivative, consider
the (D − ρ) roots of the derivative, and express the normalized power sum means in
terms of the derivative family’s quasi-binomial parameters, making use of our normal-
ized variant of the Girard-Waring formulas. Then to evaluate the mean value of the
original degree D function over the derivative roots family, appropriately substitute
these mean power sum expressions in where the argument of the function occurs; this
takes advantage of the fact that averaging is a linear process, to wit, the mean value of
the polynomial function is the sum of the mean values of its monomial components.
Next, taking advantage of the fact that the quasi-binomial parameters of a family of
derivative roots is the same (albeit truncated) as the quasi-binomial parameters of the
degreeD function, we are able to simplify the expression of the ϕ

D,δ,ρ
to be entirely in

January 2017] WEIRD MEAN RELATIONSHIPS 5
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terms of the degree D function’s quasi-binomial (i.e. normalized symmetric function)
parameters.

With such procedure in hand, we are enabled to determine general degreeD results
ad libitum. Tabulated results are in Tables ϕ.D for D = 2 through D = 7, at the end
of the paper.

Let us look a bit more closely at the results thus far obtained in the above example.
We have:

ϕ
4,0,1

= −9 r 4 + 18 r 2 r − 4 r r − 6 r
2

+ 1 r,

ϕ
4,0,2

= −8 r 4 + 16 r 2 r − 4 r r − 5 r
2

+ 1 r ,

ϕ
4,0,3

= f
4

(r) = −3 r 4 + 6 r r 2 − 4 r r + 1 r.

Observe that all of these have common terms −4 r r + 1 r, so there is more struc-
ture here than what we have put our finger on. After sufficiently inspired inspection
we might realize the following unexpected relationship:

5 ϕ
4,0,1
− 6ϕ

4,0,2
+ 1 ϕ

4,0,3
= 0 ,

i.e.

5 f
4

(R′) − 6 f
4

(R′′) + 1 f
4

(R′′′) = 0 !

Remarks. (1) We desire a more systematic way, with less inspiration required, to
obtain such relationships. In effect we are striving to solve α

1
ϕ

4,0,1
+α

2
ϕ

4,0,2
+

α
3
ϕ

4,0,3
= 0, where the ϕ

4,0,ρ
are “vectors” of linear combinations of the five

“basis elements”
(
r 4, r 2 r, r r, r

2
, r
)

. Thus the matter of finding all triplet

(α
1
, α

2
, α

3
) solutions is a simple linear algebra issue involving row reduction.

(2) At first glance, trying to solve α
1
ϕ

4,0,1
+α

2
ϕ

4,0,2
+ α

3
ϕ

4,0,3
= 0 for the αρ

seems like a hopeless venture– for this degree 4 case, with 5 basis elements we are
essentially trying to solve 5 equations with only 3 degrees of freedom in our αs. But

the fact that all three of the ϕ
4,0,ρ

have common terms −4 r r + 1 r saves us: if we
can happen to satisfy the other three basis elements with αs such that

∑
ρ∈{1,2,3}

αρ = 0,

then the r r and r constraints will automatically be satisfied. Besides that, there is
further structure within our ϕ

4,0,ρ
results– observe that the coefficients of both r 4 and

r r 2 are in the proportion ϕ
4,0,1

: ϕ
4,0,2

: ϕ
4,0,3

:: 9 : 8 : 3. This again increases our
hope of finding at least one (α

1
, α

2
, α

3
) solution triplet.

(3) Observe that: (a) the coefficients within the ϕ
D,δ,ρ

are somewhat larger than the
coefficients in the eventual relationship 5ϕ

4,0,1
−6ϕ

4,0,2
+ 1 ϕ

4,0,3
= 0; and (b) the

number of basis elements inside eachϕ
D,δ,ρ

is greater than the number of meansϕ
D,δ,ρ

in our eventual relationship. These are typical situations. Indeed, for relationships in-
volving degrees up to 7, we sometimes see coefficients within some ϕ

D,δ,ρ
in the tens

of thousands, with as many as 15 basis elements, yet the eventual relationships remain
small, with coefficients near 100, and with 2 to 6 ϕ

D,δ,ρ
means involved. The number

6 ARXIV [ 1
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of basis elements for different degree polynomials is the number of integer partitions of
the degree (see OEIS A000041 [12]):

Degree 2 3 4 5 6 7 8 9 10 11 12 13
# Basis Elements 2 3 5 7 11 15 22 30 42 56 77 101

This all strongly suggests that our proof procedure is unnecessarily convoluted, and
that some more natural and simple proof path is yet to be found. Streamlined proofs
still elude us.

(4) Having noted in the chart above how quickly the number of basis elements in-
creases with increasing degree, we should be doubtful about the prospects of finding(
α

1
, α

2
, . . . , α

D−1

)
solution tuples for higher degree D cases. Our hope rests in

there being “special circumstances” similar to those noted in Remark (2) above. We
shall find that sometimes such circumstances do hold.

Before we give a resumé of our complete results, we feel compelled to present the
strikingly ‘weird’ degree 6 result: There is a unique solution to

∑
ρ∈{1,...,5}

αρ ϕ6,0,ρ
= 0,

namely

77ϕ
6,0,1
− 120ϕ

6,0,2
+ 60ϕ

6,0,3
− 20ϕ

6,0,4
+ 3ϕ

6,0,5
= 0 .

Perhaps equally surprising is that in degree 7, even though constraints from 15 basis
elements must be satisfied, we enjoy a 2-dimensional family of solution relationships.

3. GRAPHICAL EXAMPLE IN DEGREE 4 See Figure 1 at end of paper.

4. RESULTS The graphical example had us consider f ′ (R) which is the average of
the slopes at the roots, and this quantity is equal to the negation of twice the slope at the
average of the roots. Note that this latter quantity is invariant w.r.t. vertical translations,
hence the average of the slopes at the roots does not depend upon the polynomial’s
constant term. This is typical:

Proposition 1. If a horizontal line cuts a polynomial graph at as many points as the
degree of the polynomial, the average of the slopes at the points of intersection is
invariant w.r.t. modest vertical translations of the line.

Proof. (Sketch) Given a vertical translation ∆h, one can compute changes in the vari-
ous slopes, ignoring terms that are higher order in ∆h. Straightforward algebra shows
that the sum of all such slope changes is 0 for degrees 2 through 7, and we are confident
that the same method works in all degrees.

The interpretation of ”modest” in the proposition is that the vertical translation
should not cross an extremum. In fact when one accounts for multiplicities and com-
putes, if necessary, complex-valued derivatives for complex-value roots, it is seen that
the modesty condition is not a requirement.

Our attempts at an inductive proof of the general case above led to the following
confident conjecture (supported by strong numerical evidence). The general proof of
proposition 1 would follow as a corollary of the k = 2 case of the following. Note that
the conjecture gives statements in (reciprocal root units)k−1:

January 2017] WEIRD MEAN RELATIONSHIPS 7
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Conjecture 1. In any polynomial of degree ≥ 2 with roots set R having no repeated
roots, it holds that

∀k ≥ 2,
∑
r∈R

f (k)(r)

f ′(r)
= 0 .

Note that the above can be reinterpreted as: ∀` ≥ 1, the sum of relative rates is∑
s∈Sc

g(`)(s)

g(s)
= 0 where Sc is the roots family of any antiderivative

(∫ x
0
g
)

+ c pro-

vided that Sc has no repeated roots and that deg(g) ≥ 1.

We now present some of our results. More completely see Tablesα.4 throughα.6,
as well as Tables ϕ.2 through ϕ.7, at the end of the paper.

Proposition 2. The following is an exhaustive list of fundamental linear relationships
for degrees up to 7, among means of a polynomial’s values when evaluated at roots of
derivatives.

A. Degree(f) = 2 N/A

B. Degree(f) = 3

1 ϕ
3,0,1
− 1ϕ

3,0,2
= 0 (a)

C. Degree(f) = 4

5 ϕ
4,0,1
− 6ϕ

4,0,2
+ 1ϕ

4,0,3
= 0 (b)

D. Degree(f) = 5

1 ϕ
5,0,1
− 3ϕ

5,0,3
+ 2ϕ

5,0,4
= 0 (c)

2 ϕ
5,0,2
− 5ϕ

5,0,3
+ 3ϕ

5,0,4
= 0 (d)

3 ϕ
5,0,1
− 4ϕ

5,0,2
+ 1ϕ

5,0,3
= 0

5 ϕ
5,0,1
− 6ϕ

5,0,2
+ 1ϕ

5,0,4
= 0

1 ϕ
5,0,1
− 2ϕ

5,0,2
+ 2ϕ

5,0,3
− 1ϕ

5,0,4
= 0

(any 3 of the above are linearly dependent; any 2 are independent)

E. Degree(f) = 6

77 ϕ
6,0,1
− 120 ϕ

6,0,2
+ 60ϕ

6,0,3
− 20ϕ

6,0,4
+ 3ϕ

6,0,5
= 0

F. Degree(f) = 7

85 ϕ
7,0,1
− 144ϕ

7,0,2
+ 90ϕ

7,0,3
− 40ϕ

7,0,4
+ 9ϕ

7,0,5
= 0

82 ϕ
7,0,1
− 135ϕ

7,0,2
+ 75ϕ

7,0,3
− 25ϕ

7,0,4
+ 3ϕ

7,0,6
= 0

77 ϕ
7,0,1
− 120ϕ

7,0,2
+ 50ϕ

7,0,3
− 15ϕ

7,0,5
+ 8ϕ

7,0,6
= 0

67 ϕ
7,0,1
− 90ϕ

7,0,2
+ 50ϕ

7,0,4
− 45ϕ

7,0,5
+ 18ϕ

7,0,6
= 0

37 ϕ
7,0,1
− 150ϕ

7,0,3
+ 200ϕ

7,0,4
− 135ϕ

7,0,5
+ 48ϕ

7,0,6
= 0

111 ϕ
7,0,2
− 335ϕ

7,0,3
+ 385ϕ

7,0,4
− 246ϕ

7,0,5
+ 85ϕ

7,0,6
= 0

1 ϕ
7,0,1
− 3 ϕ

7,0,2
+ 5 ϕ

7,0,3
− 5 ϕ

7,0,4
+ 3 ϕ

7,0,5
− 1 ϕ

7,0,6
= 0

(any 3 of the above are linearly dependent; any 2 are independent)
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Notes: In all the cases in the above list, the sum of all positive coefficients equals the
sum of all negative coefficients. We have computed such relations up to degree 40,
observing that (1) in all even degrees (beyond 2) there is a single such fundamental
linear relationship, and (2) in all odd degrees beyond 3 there is a 2-dimensional family
of fundamental linear relationships.

Also, the alphabetical labels at the right margins in the preceding & following propo-
sitions indicate “derivative inheritance” relationships across different degrees.

There are two ways to augment the above fundamental relationships with more re-
lationships: (a) instead of considering values of the function f we can consider values
of its derivatives f (n) or its (repeated) antiderivatives, which we denote as f (−n); or
(b) we can expand the list of root families available by considering the root familes of
antiderivatives f (−n). When using antiderivatives, it turns out that there is no depen-
dence on the constant of integration; this is a consequence of proposition 1.

Proposition 3. Expressing polynomials as their quasi-binomial representations,∫
f
D

= 1
D+1

f
D+1

where the constant term of f
D+1

is the constant of integration c.

In other words,
⇀

R(−1) =
⇀

R] (c). Restated yet again, if
⇀

S is the quasi-binomial pa-

rameter vector of any antiderivative of fR , then
⇀

R ≤
⇀

S , i.e.
⇀

R is a (strict) subvector

of
⇀

S via extension by the constant(s) of integration. Further, if the domain variable of
the polynomial carries dimensional units, then the constant c is (D + 1)-dimensional.

Dually, if
⇀

S is the quasi-binomial parameter vector of any derivative of fR , then
⇀

S ≤
⇀

R, i.e.
⇀

S is a (strict) subvector of
⇀

R via truncation.

Example: Consider any polynomial fD, e.g. f3 (x) = x3 − 3x2 r + 3x1 r − r with
roots familyR, and consider averaging the values of the function over some setZ , x ∈
Z . We obtain f3 (Z) = x3 − 3 x2 r + 3 x1 r − r. The average values of the powers
xm are obtained by our mean-value modification of the Girard-Waring formulas. The
case of Z being the roots family of a derivative of f is straightforward, as noted in the
dual statement in the proposition, with

⇀

Z being a subvector of
⇀

R via truncation. The
case of Z being the roots family of an antiderivative of f requires greater attention: In
the example here, the highest power term present in f3 (x) is order 3 (& dimensionality
3 if x bears units), but the constant of integration in

∫
f is of dimensionality 4; hence

the constant of integration cannot enter into the computation of x3, etc., with similar
behavior in the general situation. Indeed, the values of x3, etc., only depend upon the
entries in

⇀

Z that were already present in
⇀

R. In the detail of the present example we
have, following our notation for a family of 4,Z = F

4
≡ U , u = r, u = r and u = r;

thus

f3 (Z) = 1u3 − 3 u2 r + 3 u1 r − 1 r

1
{

16 u 3 − 18u u + 3u
}
− 3

{
4 u 2 − 3u

}
r + 3

{
u 1
}
r − r

= r 3 {16− 12}+ r r {−18 + 9 + 3}+ r {3− 1}

= 4 r 3 − 6 r r + 2 r = 2W.

Note, in particular, that the average value ϕ
3,0,−1

≡ f
3

(R(−1)) does not at all involve
the constant of integration that affects the family R(−1). This behavior is typical. Let
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us emphasize: in the computation of mean function values f
D

(R(−m)), individual

mean powers such as uk only involve the quasi-binomial parameters of the original
⇀

R
and never involve the constant(s) of integration ofR(−m). Thus we have:

Proposition 4. The mean quantities ϕ
D,0,−m ≡ f

D
(R(−m)) and

ϕ
D,δ,−m ≡ f (δ)

D
(R(−m)) (with δ,m > 0) do not depend on constant(s) of integration.

Proposition 5. ϕ
D,1,0

= D · ϕ
(D−1),0,−1

ϕ
D,δ,0

= D!
(D− δ)! · ϕ(D−δ),0,−δ

Of course, the above proposition can be read in reverse as giving ϕ
D,0,−1

= 1
(D+1)

·
ϕ

(D+1),1,0
and ϕ

D,0,−ρ = D!
(D+ ρ)!

· ϕ
(D+ ρ),ρ,0

(with ρ > 0). These facts are substan-
tiated in our tables of ϕ

D,0,ρ
expressions by the fact that whenever ρ < 0, the highest

order quasi-binomial parameter r
i

is always only order D, never an order in excess
of D.

For the following five propositioons, see also Tables α.4 through α.6.

Proposition 6. The following is a partial list of linear relationships among means of
a polynomial’s derivative values when evaluated at roots of derivatives.

A. Degree(f) = 2 N/A

B. Degree(f) = 3

1 ϕ
3,1,0

+ 1 ϕ
3,1,2

= 0 (e)

C. Degree(f) = 4

1 ϕ
4,1,0

+ 2ϕ
4,1,2

= 0
1 ϕ

4,1,0
+ 2ϕ

4,1,3
= 0

1 ϕ
4,1,2
− 1ϕ

4,1,3
= 0

D. Degree(f) = 5

5 ϕ
5,1,2
− 6ϕ

5,1,3
+ 1ϕ

5,1,4
= 0

E. Degree(f) = 6

1 ϕ
6,1,2
− 3ϕ

6,1,4
+ 2ϕ

6,1,5
= 0

2 ϕ
6,1,3
− 5ϕ

6,1,4
+ 3ϕ

6,1,5
= 0

3 ϕ
6,1,2
− 4ϕ

6,1,3
+ 1ϕ

6,1,4
= 0

5 ϕ
6,1,2
− 6ϕ

6,1,3
+ 1ϕ

6,1,5
= 0

1ϕ
6,1,2
− 2ϕ

6,1,3
+ 2ϕ

6,1,4
− 1ϕ

6,1,5
= 0

(any 3 of the above are linearly dependent; any 2 are independent)

Proposition 7. The following is a partial list of linear relationships among means of
a polynomial’s 2nd derivative values when evaluated at roots of derivatives.

A. Degree(f) = 2 N/A
B. Degree(f) = 3 N/A

10 ARXIV [ 1
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C. Degree(f) = 4

1 ϕ
4,2,0
− 2ϕ

4,2,1
= 0

1 ϕ
4,2,1

+ 1ϕ
4,2,3

= 0
1 ϕ

4,2,0
+ 2ϕ

4,2,3
= 0

1 ϕ
4,2,0
− 1ϕ

4,2,1
+ 1ϕ

4,2,3
= 0

D. Degree(f) = 5

1 ϕ
5,2,0

+ 5ϕ
5,2,3

= 0
1 ϕ

5,2,1
+ 2ϕ

5,2,3
= 0

1 ϕ
5,2,3
− 1ϕ

5,2,4
= 0

1 ϕ
5,2,0
− 2ϕ

5,2,1
+ 2ϕ

5,2,3
− 1ϕ

5,2,4
= 0

E. Degree(f) = 6

5 ϕ
6,2,3
− 6ϕ

6,2,4
+ 1ϕ

6,2,5
= 0

Proposition 8. The following is a partial list of linear relationships among means of
a polynomial’s 3rd derivative values when evaluated at roots of derivatives.

A. Degree(f) = 2 N/A
B. Degree(f) = 3 N/A
C. Degree(f) = 4 N/A

D. Degree(f) = 5

1 ϕ
5,3,0
− 3ϕ

5,3,2
= 0

E. Degree(f) = 6

1 ϕ
6,3,0

+ 9ϕ
6,3,4

= 0
1 ϕ

6,3,1
+ 5ϕ

6,3,3
= 0

1 ϕ
6,3,2

+ 2ϕ
6,3,4

= 0
1 ϕ

6,3,4
− 1ϕ

6,3,5
= 0

Proposition 9. The following is a partial list of linear relationships among means of
a polynomial’s 4th derivative values when evaluated at roots of derivatives.

A. Degree(f) = 2 N/A
B. Degree(f) = 3 N/A
C. Degree(f) = 4 N/A
D. Degree(f) = 5 N/A

E. Degree(f) = 6
3 ϕ

6,4,0
− 4ϕ

6,4,1
= 0

1 ϕ
6,4,1
− 3ϕ

6,4,3
= 0

1 ϕ
6,4,2
− 2ϕ

6,4,3
= 0

1 ϕ
6,4,3

+ 1ϕ
6,4,5

= 0

Proposition 10. The following is a partial list of linear relationships among means of
a cubic polynomial’s function, derivatives, and/or antiderivatives values when evalu-
ated at roots of derivatives and antiderivatives.
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Degree(f) = 3:
2 ϕ

3,−2,0
−5 ϕ

3,−2,1
+ 3 ϕ

3,−2,2
= 0

1 ϕ
3,−2,−1

− 3 ϕ
3,−2,1

+ 2 ϕ
3,−2,2

= 0
5 ϕ

3,−1,0
− 6 ϕ

3,−1,1
+ 1ϕ

3,−1,2
= 0

1 ϕ
3,0,−1

+ 2 ϕ
3,0,1

= 0
1 ϕ

3,0,−2
+ 5 ϕ

3,0,1
= 0

1 ϕ
3,0,−3

+ 9 ϕ
3,0,1

= 0
1 ϕ

3,1,−1
− 2 ϕ

3,1,0
= 0

1 ϕ
3,1,−2

− 3 ϕ
3,1,0

= 0
3 ϕ

3,1,−3
− 4 ϕ

3,1,−2
= 0

The last six of the above deserve particular comment. In the middle three above, in
the first terms (with coefficient 1) the cubic function f is being averaged over the root
familiesR(−1),R(−2),R(−3), which are the root families of

∫
f,
∫∫
f, and

∫∫∫
f . As

noted in an earlier proposition, these results are independent of choice of constants of
integration.

The following essentially restate above results with a different perspective. See
Tables α.4 through α.6,

Note: Regarding the alphabetical labels to the right of some relationships, we have
used double-letter hybrid labels to indicate that the relationship is linearly dependent
upon the denoted pair of preceding relationships, in cases of worthy of attention since
the relationship coefficients vector is highly symmetric,

Proposition 11. In any quartic polynomial the following relations hold:

(0) 5 ϕ
4,0,1
− 6ϕ

4,0,2
+ 1ϕ

4,0,3
= 0 (b)

(1) 1ϕ
4,1,0

+ 2ϕ
4,1,2

= 0 (f)
1 ϕ

4,1,2
− 1 ϕ

4,1,3
= 0 (a’)= D(a)

(2) 1ϕ
4,2,0
− 2 ϕ

4,2,1
= 0 (g)

1ϕ
4,2,1

+ 1ϕ
4,2,3

= 0 . (e’)= D(e)

Proposition 12. In any quintic polynomial the following relations hold:

(0) 1 ϕ
5,0,1
− 3ϕ

5,0,3
+ 2ϕ

5,0,4
= 0 (c)

2 ϕ
5,0,2
− 5ϕ

5,0,2
+ 3ϕ

5,0,4
= 0 (d)

1 ϕ
5,0,1
− 2ϕ

5,0,2
+ 2ϕ

5,0,3
− 1ϕ

5,0,4
= 0 (cd)

(1) 5 ϕ
5,1,2
− 6ϕ

5,1,3
+ 1ϕ

5,1,4
= 0 (b’)= D(b)

(2) 1 ϕ
5,2,0

+ 5ϕ
5,2,3

= 0 (h)
1 ϕ

5,2,1
+ 2ϕ

5,2,3
= 0 (f’)= D(f)

1 ϕ
5,2,3
− 1ϕ

5,2,4
= 0 (a”)= D(a’)= D2(a)

(3) 1 ϕ
5,3,0
− 3ϕ

5,3,2
= 0 (i)

1 ϕ
5,3,1
− 2ϕ

5,3,2
= 0 (g’)= D(g)

1 ϕ
5,3,2

+ 1ϕ
5,3,4

= 0. (e”)= D(e’)= D2(e)
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Also note that item (0f) states that for any quintic f , the average of the function values
at the two roots of f ′′′ equals the 2 : 1 weighted average of (i) the value of the function
at the sole root of f (4) and (ii) the average of the value of the function at the four roots
of f ′. Item (0g) states that for any quintic f , the average of the function values at the
two roots of f ′′′ also equals the 3 : 2 weighted average of (i) the value of the function
at the sole root of f (4) and (ii) the average of the value of the function at the three
roots of f ′′. We leave the remaining interpretations to the reader.

Proposition 13. In any sextic polynomial the following relations hold:

(0) 77 ϕ
6,0,1
− 120ϕ

6,0,2
+ 60ϕ

6,0,3
− 20ϕ

6,0,4
+ 3ϕ

6,0,5
= 0 (j)

(1) 1 ϕ
6,1,2
− 3ϕ

6,1,4
+ 2ϕ

6,1,5
= 0 (c’)= D(c)

2 ϕ
6,1,3
− 5ϕ

6,1,4
+ 3ϕ

6,1,5
= 0 (d’)= D(d)

(2) 5 ϕ
6,2,3
− 6ϕ

6,2,4
+ 1ϕ

6,2,5
= 0 (b”)= D(b’)= D2(b)

(3) 1 ϕ
6,3,0

+ 9ϕ
6,3,4

= 0 (k)
1 ϕ

6,3,1
+ 5ϕ

6,3,4
= 0 (h’)= D(h)

1 ϕ
6,3,2

+ 2ϕ
6,3,4

= 0 (f”)= D(f’)= D2(f)
1 ϕ

6,3,4
− 1ϕ

6,3,5
= 0 (a”’)= D(a”)= D2(a’)= D3(a)

(4) 3 ϕ
6,4,0
− 4ϕ

6,4,1
= 0 (l)

1 ϕ
6,4,1
− 3ϕ

6,4,3
= 0 (i’)= D(i)

1 ϕ
6,4,2
− 2ϕ

6,4,3
= 0 (g”)= D(g’)= D2(g)

1 ϕ
6,4,3

+ 1ϕ
6,4,5

= 0 (e”’)= D(e”)= D2(e’)= D3(e)

Proposition 14. In any septic polynomial the following relations hold:

(0) 85 ϕ
7,0,1
− 144ϕ

7,0,2
+ 90ϕ

7,0,3
− 40ϕ

7,0,4
+ 9ϕ

7,0,5
= 0 (m)

82 ϕ
7,0,1
− 135ϕ

7,0,2
+ 75ϕ

7,0,3
− 25ϕ

7,0,4
+ 3ϕ

7,0,6
= 0 (n)

1 ϕ
7,0,1
− 3ϕ

7,0,2
+ 5ϕ

7,0,3
− 5ϕ

7,0,4
+ 3ϕ

7,0,5
− 1ϕ

7,0,6
= 0 (mn)

We find these relationships distinctively impressive. There are many more identi-
ties, not recorded above, that are present when we open up the limitless world of roots

R(−n) of f (−n) :=

∫∫
· · ·
∫

︸ ︷︷ ︸
ncopies

f , i.e. when we consider the limitless world of mean

values ϕ
D,δ,ρ

where ρ < 0.

Ancillary Computational Results Consider the following observations regarding
the coefficients of r

max ≡ r
D

in ϕ
D,0,ρ

. Let hD(n) be the polynomial in n pre-

dicting the coefficient of r
D

for the ϕ.D family
(
ϕ
D,0,ρ

)
ρ<D−1

. This polyno-

mial hD(n) is always of the form hD(n) = (−1)DD
D!

ρ nχgD(n) where gD(n) is
a monic irreducible (over Z) polynomial of degree M := D − (2 + χ) with in-
teger coefficients, where χ = 1 when D is odd and χ = 0 when D is even. Let
gD(n) =

∑
k=2...D

tk(D)nD−(k+χ). Note that t2(D) ≡ 1 (monic condition); also for

odd k, it holds that tk(D) = 0 & tk+1(D) = 0 if D ≤ k. The tk(D) are of the form
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1
Qk
uk(D) where Qk is the least common denominator of the terms in tk(D), such

that uk(D) is a (generally not monic) polynomial in D with integer coefficients, with
leading coefficient denoted as Nk. Curiously, denominators Qk are the OEIS [12] se-
quence A053657, described in OEIS as “Denominators of integer-valued polynomials
on prime numbers (with degree n): 1/a(n) is a generator of the ideal formed by the
leading coefficients of integer-valued polynomials on prime numbers with degree less
than or equal to n”, or equivalently ”Also the least common multiple of the orders
of all finite subgroups of GLn(Q) [Minkowski]”. Strikingly, the leading coefficients
Nk of the polynomials uk(D) are coefficients of Nørlund’s polynomials, see OEIS
A260326 (which lists only 7 values), described there as “Common denominator of
coefficients in Nørlund’s polynomial D 2n(x).” [The OEIS citation refers to Nørlund’s
1924 book [8] (which discusses the higher order Bernoulli & Euler polynomials),
Table 6 (p. 460), which only lists 7 values, for even indices 0 through 12, but Table
5 (p. 459) includes both even & odd entries as the leading coefficients of the primary
components of the numerator polynomials. Our work has produced 198 entries with
values eventually exceeding 5.8× 1040.]

Here is a summary of our tabulated results.

Tables ϕ.D: Function value means ϕ
D,δ,ρ

in terms of the polynomial representation

parameters r
i

. These tables extend the Girard-Waring formula.

Tablesα.D: Linear Relationship Coefficients α
D,δ,ρ

such that
∑
ρ

α
D,δ,ρ

ϕ
D,δ,ρ

= 0 .

Some (D, δ, ρ) triplets admit more than one
(
α
D,δ,ρ

)
family.

Tables GW.n=2 through GW.n=7: Normalized Girard-Waring coefficients c⇀
κ

:=

j (−1)j
n

(−1)|
⇀
κ |

|⇀κ |
(|⇀κ |
⇀
κ

) ∏
i∈n

(
n
i

)ki where j = degree and where
⇀
κ ≡ 〈k1, k2, . . . , kn〉

is an integer partition vector of j, i.e.
∑

i ki · i = j.

Tables GW.deg=2 through GW.deg=7: Normalized Girard-Waring coefficients

c⇀
κ

:= j (−1)j
n

(−1)|
⇀
κ |

|⇀κ |
(|⇀κ |
⇀
κ

) ∏
i∈n

(
n
i

)ki as above.
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(b) 1f ′ (R′′′)− 1f ′ (R′′) = 0

(c) 2f ′ (R′′′) + 1f ′ (R) = 0
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Supportive Results: Function Value Means ϕ
D δ ρ

in Terms of Polynomial
Representation Parameters r

i
.

Table ϕ.2
# roots
n

ρ ϕ
D δ ρ

= ϕ
2 0 ρ

∑
coef>0

1 1 −
(
r 2 − r

)
1

2 0 0 0
3 −1 r 2 − r 1
4 −2 2

(
r 2 − r

)
2

5 −3 3
(
r 2 − r

)
3

6 −4 4
(
r 2 − r

)
4

7 −5 5
(
r 2 − r

)
5

8 −6 6
(
r 2 − r

)
6

9 −7 7
(
r 2 − r

)
7

10 −8 8
(
r 2 − r

)
8

Table ϕ.3
# roots
n

ρ ϕ
D δ ρ

= ϕ
3 0 ρ

∑
coef>0

1 2 −
(

2 r 3 − 3 r r + r
)

3

2 1 −
(

2 r 3 − 3 r r + r
)

3

3 0 0 0

4 −1 2
(

2 r 3 − 3 r r + r
)

6

5 −2 5
(

2 r 3 − 3 r r + r
)

15

6 −3 9
(

2 r 3 − 3 r r + r
)

27

7 −4 14
(

2 r 3 − 3 r r + r
)

42

8 −5 20
(

2 r 3 − 3 r r + r
)

60

9 −6 27
(

2 r 3 − 3 r r + r
)

81

10 −7 35
(

2 r 3 − 3 r r + r
)

105

16 ARXIV [ 1
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Table ϕ.4 Tables α.4
# roots
n

ρ ϕ
D δ ρ

= ϕ
4 0 ρ

∑
coef>0

1 3 −3 r 4 + 6 r 2 r − 4 r r − 0 r
2

+ 1 r 7

2 2 −8 r 4 + 16 r 2 r − 4 r r − 5 r
2

+ 1 r 17

3 1 −9 r 4 + 18 r 2 r − 4 r r − 6 r
2

+ 1 r 19
4 0 0 0

5 −1 25 r 4 − 50 r 2 r + 12 r r + 16 r
2 − 3 r 53

6 −2 72 r 4 − 144 r 2 r + 36 r r + 45 r
2 − 9 r 153

7 −3 147 r 4 − 294 r 2 r + 76 r r + 90 r
2 − 19 r 313

8 −4 256 r 4 − 512 r 2 r + 136 r r + 154 r
2 − 34 r 546

9 −5 405 r 4 − 810 r 2 r + 220 r r + 240 r
2 − 55 r 865

10 −6 600 r 4 − 1200 r 2 r + 332 r r + 351 r
2 − 83 r 1283

ρ α4,0,ρ

3 615

2 615

1 205

0

–1 123

–2 205

–3 205

–4 615

–5 –351 64 49 –55 –192 –267 –848

–6 240 –35 –30 32 105 130 310

ρ α
4,0,ρ

3 1 1 9 1 67 155
2 –6 2 9 9 134 310
1 5 8 1 9 15 67 31
0
–1 3 1 –45 9 45 67 155
–2 16 1 –2 –2 1 8 –34 134 310
–3 1 9 –77 16 25 41 –144 155
–4 45 –5 –12 17 45 –120 35 9 –80 –315 –195
–5 77 –16 –5 41 144 67
–6
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Tables ϕ.5
# roots
n

ρ ϕ
D δ ρ

= ϕ
5 0 ρ

∑
coef>0

1 4 −4 r 5 + 10 r 3 r − 10 r 2 r − 0 r r
2

+ 5 r r + 0 r r − 1 r 15

2 3 −24 r 5 + 60 r 3 r − 20 r 2 r − 30 r r
2

+ 5 r r + 10 r r − 1 r 75

3 2 −54 r 5 + 135 r 3 r − 35 r 2 r − 75 r r
2

+ 5 r r + 25 r r − 1 r 165

4 1 −64 r 5 + 160 r 3 r − 40 r 2 r − 90 r r
2

+ 5 r r + 30 r r − 1 r 195
5 0 0 0

6 −1 216 r 5 − 540 r 3 r + 140 r 2 r + 300 r r
2 − 20 r r − 100 r r + 4 r 660

7 −2 686 r 5 − 1715 r 3 r + 455 r 2 r + 945 r r
2 − 70 r r − 315 r r + 14 r 2100

8 −3 1536 r 5 − 3840 r 3 r + 1040 r 2 r + 2100 r r
2 − 170 r r − 700 r r + 34 r 4710

9 −4 2916 r 5 − 7290 r 3 r + 2010 r 2 r + 3960 r r
2 − 345 r r − 1320 r r + 69 r 8955

10 −5 5000 r 5 − 12500 r 3 r + 3500 r 2 r + 6750 r r
2 − 625 r r − 2250 r r + 125 r 15375
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Tables α.5

ρ α
5,0,ρ

4 –1 1 2 28 26 171
3 2 1 1 28 182 38
2 –2 –6 –4 4 4 182 228
1 1 5 3 3 10 28 182 342
0
–1 1 1 3 21 1 –35 –63 91 57
–2 –4 12 20 −60 64 30 –72 –20 684
–3 14 –21 –7 35 9 –651 –27 75 27 –7 –66
–4 182 10 –32 –10 4 35
–5

ρ α
5,0,ρ

4 325
3 975
2 1950
1 13
0

–1 975
–2 650
–3 975
–4 –1100 –525 –350 2 175 –300 –75
–5 342 217 162 –1 –81 63 44
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Table ϕ.6
# roots
n

ρ ϕD δ ρ = ϕ6 0 ρ

∑
coef>0

1 5 −5 r 6 + 15 r 4 r − 20 r 3 r + 0 r2 r
2
+ 15 r 2 r + 0 r r r − 6 r r + 0 r 3 + 0 r r + 0 r

2
+ 1 r 31

2 4 −64 r 6 + 192 r 4 r − 80 r 3 r − 132 r2 r
2
+ 30 r 2 r + 60 r r r − 6 r r + 14 r 3 − 15 r r + 0 r

2
+ 1 r 297

3 3 −243 r 6 + 729 r 4 r − 216 r 3 r − 567 r2 r
2
+ 45 r 2 r + 234 r r r − 6 r r + 72 r 3 − 30 r r − 19 r

2
+ 1 r 1081

4 2 −512 r 6 + 1536 r 4 r − 416 r 3 r − 1224 r2 r
2
+ 66 r 2 r + 492 r r r − 6 r r + 162 r 3 − 51 r r − 48 r

2
+ 1 r 2257

5 1 −625 r 6 + 1875 r 4 r − 500 r 3 r − 1500 r2 r
2
+ 75 r 2 r + 600 r r r − 6 r r + 200 r 3 − 60 r r − 60 r

2
+ 1 r 2751

6 0 0 0

7 −1 2401 r 6 − 7203 r 4 r + 1960 r 3 r + 5733 r2 r
2 − 315 r 2 r − 2310 r r r + 30 r r − 756 r 3 + 240 r r + 225 r

2
− 5 r 10589

8 −2 8192 r 6 − 24576 r 4 r + 6784 r 3 r + 19488 r2 r
2 − 1140 r 2 r − 7896 r r r + 120 r r − 2548 r 3 + 840 r r + 756 r

2
− 20 r 36180

9 −3 19683 r 6 − 59049 r 4 r + 16524 r 3 r + 46656 r2 r
2 − 2889 r 2 r − 19008 r r r + 330 r r − 6048 r 3 + 2064 r r + 1792 r

2
− 55 r 87049

10 −4 40000 r 6 − 120000 r 4 r + 34000 r 3 r + 94500 r2 r
2 − 6150 r 2 r − 38700 r r r + 750 r r − 12150 r 3 + 4275 r r + 3600 r

2
− 125 r 177125

Table α.6
ρ α

6,0,ρ

5 3 1 1 3 125
4 –20 2 1 4 125
3 60 –30 –15 3 2 125
2 –120 160 60 –140 –45 –30 12 125
1 77 –81 –32 –161 –36 –8 1372 651 83 53 125
0 –15

–1 –10 3 –140 –36 2 1680 756 90 60 67200 –25200 –6825 –700 300
–2 20 5 –640 –280 –32 –20 64800 23800 6300 675 –200
–3 105 45 5 3 –29925 –10800 –2800 –300 75
–4 5488 1953 498 53 –12
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Table ϕ.7
n ρ ϕ

D δ ρ
= ϕ

7 0 ρ

∑
coef>0

1 6
−6 r 7 + 21 r 5 r− 35 r 4 r+ 0 r 3 r

2
+ 35 r 3 r+ 0 r 2 r r− 21 r 2 r+

0 r r 3 + 0 r r r+ 0 r r
2

+ 7 r r+ 0 r
2
r− 0 r r+ 0 r r− 1 r

63

2 5
−160 r 7 + 560 r 5 r− 280 r 4 r− 490 r 3 r

2
+ 140 r 3 r+ 280 r 2 r r− 42 r 2 r+

105 r r 3− 105 r r r+ 0 r r
2

+ 7 r r− 35 r
2
r+ 21 r r+ 0 r r− 1 r

1113

3 4
−972 r 7 + 3402 r 5 r− 1134 r 4 r− 3402 r 3 r

2
+ 315 r 3 r+ 1638 r 2 r r− 63 r 2 r+

882 r r 3− 315 r r r− 140 r r
2

+ 7 r r− 294 r
2
r+ 42 r r+ 35 r r− 1 r

6321

4 3
−3072 r 7 + 10752 r 5 r− 3136 r 4 r− 11088 r 3 r

2
+ 616 r 3 r+ 5040 r 2 r r− 84 r 2 r+

3024 r r 3− 714 r r r− 532 r r
2

+ 7 r r− 1008 r
2
r+ 63 r r+ 133 r r− 1 r

19635

5 2
−6250 r 7 + 21875 r 5 r− 6125 r 4 r− 22750 r 3 r

2
+ 1050 r 3 r+ 10150 r 2 r r− 112 r 2 r+

6300 r r 3− 1295 r r r− 1120 r r
2

+ 7 r r− 2100 r
2
r+ 91 r r+ 280 r r− 1 r

39753

6 1
−7776 r 7 + 27216 r 5 r− 7560 r 4 r− 28350 r 3 r

2
+ 1260 r 3 r+ 12600 r 2 r r− 126 r 2 r+

7875 r r 3− 1575 r r r− 1400 r r
2

+ 7 r r− 2625 r
2
r+ 105 r r+ 350 r r− 1 r

49413

7 0 0 0

8 −1
32768 r 7− 114688 r 5 r+ 32256 r 4 r+ 11968 r 3 r

2− 5600 r 3 r− 53312 r 2 r r+ 616 r 2 r−

32928 r r 3 + 6860 r r r+ 5880 r r
2
− 42 r r+ 10976 r

2
r− 490 r r− 1470 r r+ 6 r

208530

9 −2
118098 r 7− 413343 r 5 r+ 117369 r 4 r+ 428652 r 3 r

2− 20979 r 3 r− 192780 r 2 r r+ 2457 r 2 r−

117936 r r 3 + 25326 r r r+ 21168 r r
2
− 189 r r+ 39312 r

2
r− 1890 r r− 5292 r r+ 27 r

752409

10 −3
300000 r 7− 1050000 r 5 r+ 301000 r 4 r+ 1086750 r 3 r

2− 55300 r 3 r− 491400 r 2 r r+ 6846 r 2 r−

297675 r r 3 + 65385 r r r+ 53760 r r
2
− 581 r r+ 99225 r

2
r− 5103 r r− 13440 r r+ 83 r

1913499

January
2017]

W
E

IR
D

M
E

A
N

R
E

L
A

T
IO

N
SH

IPS
21



arXiv 1:1 June 27, 2017 2:04 a.m. WeirdMeanRelations-04-23-2017-arXiv.tex page 22

Sub-Supportive Normalized Girard-Waring Results
To present our results, let S := {s

1
, s

2
} = R(D− 2)

f
where D is the degree of f ;

let T := {t
1
, t

2
, t

3
} = R(D− 3)

f
; let U := R(D− 4)

f
etc. We have the following

results.
N.B.: The coefficients in Table GW.n=2 are exactly the coefficients of Tchebyshev
polynomials of the first kind. Thus these tables generalize Tchebyshev polynomials.

Table GW.n=2
Sum of Positive
Coefficients Data Family F

2
≡ S = {s1, s2}

1 : s1 = s 1

2 : s2 = 2 s 2 − 1 s

4 : s3 = 4 s 3 − 3 s s

9 : s4 = 8 s 4 − 8 s 2 s + 1 s
2

21 : s5 = 16 s 5 − 20 s 3 s + 5 s s
2

50 : s6 = 32 s 6 − 48 s 4 s + 18 s 2 s
2 − s 3

120 : s7 = 64 s 7 − 112 s 5 s + 56 s 3 s
2 − 7 s s

3

289 : s8 = 128 s 8 − 256 s 6 s + 160 s 4 s
2 − 32 s 2 s

3
+ 1 s

4

Table GW.n=3
Sum of Positive
Coefficients Data Family F

3
≡ T = {t1, t2, t3}

1 : t1 = t
1

3 : t2 = 3 t
2 − 2 t

10 : t3 = 9 t
3 − 9 t t + t

37 : t4 = 27 t
4 − 36 t

2
t + 4 t t + 6 t

2

141 : t5 = 81 t
5 − 135 t

3
t + 15 t

2
t + 45 t t

2
− 5 t t

541 :
t6 = 243 t

6 − 486 t
4
t + 54 t

3
t + 243 t

2
t
2
−

36 t t t − 18 t
3

+ 1 t
2

2080 :
t7 = 729 t

7 − 1701 t
5
t + 189 t

4
t + 1134 t

3
t
2
−

189 t
2
t t − 189 t t

3
+ 7 t t

2

+ 21 t
2
t
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Table GW.n=4
Sum of Positive
Coefficients Data Family F

4
≡ U = {u1, u2, u3, u4}

1 : u1 = u 1

4 : u2 = 4 u 2 − 3u

19 : u3 = 16 u 3 − 18u u + 3u

98 : u4 = 64u 4 − 96u 2 u + 16uu + 18u
2 − u

516 :
u5 = 256u 5 − 480u 3 u + 80u 2 u + 180uu

2−
30u u − 5u u

2725 :
u6 = 1024u 6 − 2304u 4 u + 384u 3 u + 1296u 2 u

2−
288u u u − 108u

3 − 24u 2 u + 9u u + 12u
2

14400 :

u7 = 4096u 7 − 10752u 5 u + 1792u 4 u+

112 · 72u 3 u
2 − 2016u 2 u u − 1512u u

3
+

112u u
2

+ 252u
2
u− 112u 3 u + 84uuu − 7u u

Table GW.n=5
Sum of Positive
Coefficients Data Family F

5
≡ V = {v1, v2, v3, v4, v5}

1 : v1 = v 1

5 : v2 = 5 v 2 − 4 v

31 : v3 = 25 v 3 − 30 v v + 6 v

205 : v4 = 125 v 4 − 200 v 2 v + 40 v v + 40 v
2 − 4 v

1376 :
v5 = 625 v 5 − 1250 v 3 v + 250 v 2 v + 500 v v

2−

100 v v − 25 v v + 1 v

9251 :

v6 = 3125 v 6 − 7500 v 4 v + 1500 v 3 v+

4500 v 2 v
2 − 1200 v v v − 400 v

3−

150 v 2 v + 60 v v + 60 v
2

+ 6 v v66

62210 :

v7 = 15625 v 7 − 43750 v 5 v + 8750 v 4 v + 35000 v 3 v
2−

10, 500 v 2 v v − 7000 v v
3

+ 700 v v
2

+ 1400 v
2
v−

875 v 3 v + 700 v v v − 70 v v + 35 v 2 v − 14 v v
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Table GW.n=6
Sum of Positive
Coefficients Data Family F

6
≡ W = {w1, w2, w3, w4, w5, w6}

1 : w1 = w 1

6 : w2 = 6 w 2 − 5w

46 : w3 = 36 w 3 − 45w w + 10w

371 : w4 = 216w 4 − 360w 2w + 80w w + 75w
2 − 10w

3026 :
w5 = 1296w 5 − 2700w 3w + 600w 2w + 1125w w

2−

250w w − 75w w + 5w

24707 :

w6 = 7776w 6 − 19440w 4w + 4320w 3 w+

12150 w 2 w
2 − 3600w w w − 1125w

3−

540w 2 w + 225w w + 200w
2

+ 36ww − 1w

201748 :

w7 = 46656w 7 − 136080w 5 w + 30240w 4w+

113400w 3w
2 − 37, 800w 2 w w − 23625w w

3
+

2800w w
2

+ 5250w
2
w − 3780w 3w+

3150www − 350w w + 252w 2w − 105w w − 7w w

Collated, instead, along powers, the same information is:

Table GW.deg=2

|Fn |
Sum of Positive
Coefficients Quadratic

2 2 s2 = 2 s 2 − 1 s

3 3 t2 = 3 t
2 − 2 t

4 4 u2 = 4 u 2 − 3u

5 5 v2 = 5 v 2 − 4 v

6 6 w2 = 6 w 2 − 5w

24 ARXIV [ 1
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Table GW.deg=3

|Fn |
Sum of (+)
Coefficients Cubic

2 4 s3 = 4 s 3 − 3 s s

3 10 t3 = 9 t
3 − 9 t t + t

4 19 u3 = 16 u 3 − 18u u + 3u

5 31 v3 = 25 v 3 − 30 v v + 6 v

6 46 w3 = 36 w 3 − 45w w + 10w

Table GW.deg=4

|Fn |
Sum of (+)
Coefficients Quartic

2 9 s4 = 8 s 4 − 8 s 2 s + 1 s
2

3 37 t4 = 27 t
4 − 36 t

2
t + 4 t t + 6 t

2

4 98 u4 = 64u 4 − 96u 2 u + 16uu + 18u
2 − u

5 205 v4 = 125 v 4 − 200 v 2 v + 40 v v + 40 v
2 − 4 v

6 371 w4 = 216w 4 − 360w 2w + 80w w + 75w
2 − 10w

Table GW.deg=5

|Fn |
Sum of (+)
Coefficients Quintic

2 21 s5 = 16 s 5 − 20 s 3 s + 5 s s
2

3 141 t5 = 81 t
5 − 135 t

3
t + 15 t

2
t + 45 t t

2
− 5 t t

4 516
u5 = 256u 5 − 480u 3 u + 80u 2 u +

180uu
2 − 30u u − 5u u

5 1376
v5 = 625 v 5 − 1250 v 3 v + 250 v 2 v +

500 v v
2 − 100 v v − 25 v v + 1 v

6 3026
w5 = 1296w 5 − 2700w 3w + 600w 2w +

1125w w
2 − 250w w − 75w w + 5w
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Table GW.deg=6

|Fn |
Sum of (+)
Coefficients Sextic

2 50 s6 = 32 s 6 − 48 s 4 s + 18 s 2 s
2 − s 3

3 541
t6 = 243 t

6 − 486 t
4
t + 54 t

3
t−

243 t
2
t
2
− 36 t t t − 18 t

3

4 2725

u6 = 1024u 6 − 2304u 4 u + 384u 3 u+

1296u 2 u
2 − 288u u u −

108u
3 − 24u 2 u + 9u u + 12u

2

5 9251
v6 = 3125 v 6 − 7500 v 4 v + 1500 v 3 v+

4500 v 2 v
2 − 1200 v v v − 400 v

3−

150 v 2 v + 60 v v + 60 v
2

+ 6 v v

6 24707

w6 = 7776w 6 − 19440w 4w + 4320w 3 w+

12150 w 2 w
2 − 3600w w w − 1125w

3−

540w 2 w + 225w w + 200w
2

+ 36ww − 1w

Table GW.deg=7

|Fn |
Sum of (+)
Coefficients

Septic

2 120 s7 = 64 s 7 − 112 s 5 s + 56 s 3 s
2 − 7 s s

3

3 2080
t7 = 7294 t

7 − 1701 t
5
t + 189 t

4
t + 1134 t

3
t
2
−

189 t
2
t t − 189 t t

3
+ 7 t t

2

+ 21 t
2
t

4 14400

u7 = 4096u 7 − 10752u 5 u + 1792u 4 u+

112 · 72u 3 u
2 − 2016u 2 u u − 1512u u

3
+

112u u
2
+ 252u

2
u− 112u 3 u + 84uuu − 7u u

5 62210

v7 = 15625 v 7 − 43750 v 5 v + 8750 v 4 v + 35000 v 3 v
2−

10, 500 v 2 v v − 7000 v v
3
+ 700 v v

2
+ 1400 v

2
v−

875 v 3 v + 700 v v v − 70 v v + 35 v 2 v − 14 v v

6 201748

w7 = 46656w 7 − 136080w 5 w + 30240w 4 w+

113400w 3 w
2 − 37, 800w 2 w w − 23625w w

3
+

2800w w
2
+ 5250w

2
w − 3780w 3 w+

3150www − 350w w + 252w 2 w − 105w w − 7w w
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