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ON ALGORITHMS TO CALCULATE INTEGER COMPLEXITY

KATHERINE CORDWELL, ALYSSA EPSTEIN, ANAND HEMMADY, STEVEN J. MILLER, EYVINDUR A. PALSSON,

AADITYA SHARMA, STEFAN STEINERBERGER, AND YEN NHI TRUONG VU

ABSTRACT. We consider a problem first proposed by Mahler and Popken in 1953 and later developed by

Coppersmith, Erdős, Guy, Isbell, Selfridge, and others. Let f(n) be the complexity of n ∈ Z+, where f(n)
is defined as the least number of 1’s needed to represent n in conjunction with an arbitrary number of +’s, ∗’s,

and parentheses. Several algorithms have been developed to calculate the complexity of all integers up to n.

Currently, the fastest known algorithm runs in time O(n1.230175) and was given by J. Arias de Reyna and J.

Van de Lune in 2014. This algorithm makes use of a recursive definition given by Guy and iterates through

products, f(d)+f
(

n

d

)

, for d | n, and sums, f(a)+f(n−a) for a up to some function of n. The rate-limiting

factor is iterating through the sums. We discuss improvements to this algorithm by reducing the number of

summands that must be calculated for almost all n. We also develop code to run J. Arias de Reyna and J. van

de Lune’s analysis in higher bases and thus reduce their runtime of O(n1.230175) to O(n1.222911236).

1. INTRODUCTION

1.1. Introduction. In this paper, log denotes ln, and logb denotes the logarithm in base b. Given n ∈ N,

the complexity of n, which we denote f(n), is defined as the least number of 1’s needed to represent n
using an arbitrary number of additions, multiplications, and parentheses. For example, because 6 may be

represented as (1 + 1)(1 + 1 + 1), f(6) ≤ 5. Calculating f(n) for arbitrary n is a problem that was posed

in 1953 by Mahler and Popken [MP]. Guy [G] drew attention to this problem in 1986 when he discussed

it and several other simply stated problems in an Am. Math. Monthly article. The following recursive

expression for integer complexity highlights the interplay of additive and multiplicative structures:

f(n) = min
d | n

2≤d≤√
n

1≤a≤n/2

{

f(d) + f
(n

d

)

, f(a) + f(n− a)
}

. (1.1)

Some unconditional bounds on f(n) are known. In particular, [G] attributes a lower bound of f(n) ≥
3 log3(n) to Selfridge. Also, an upper bound of f(n) ≤ 3 log2(n) is attributed to Coppersmith. Extensive

numerical investigation (see [IBCOOP]) suggests that f(n) ∼ 3.3 log3(n) for n large but it is not even

known whether f(n) ≥ (3 + ε0) log3 n for some ε0 > 0. As a step towards understanding these problems

Altman and Zelinsky [AZ] introduced the discrepancy δ(n) = f(n) − 3 log3(n) and provided a way to

classify those numbers with a small discrepancy. This classification was taken further by Altman [A1, A2]

where he obtained a finite set of polynomials that represent precisely the numbers with small defects. As a

consequence Altman [A3] was able to calculate the integer complexity of certain classes of numbers. Any

progress on these difficult questions likely requires a substantial new idea; the main difficulty, the interplay

between additive and multiplicative structures, is at the core of a variety of different open problems, which

we believe adds to its allure.

1.2. Algorithms. Much of the progress on this problem has been algorithmic. Using the above recursive

definition, it is possible to write algorithms to calculate f(n) for large values of n where the rate-limiting

step of the algorithm is iterating through the summands, f(a) + f(n − a), for many values of a. In par-

ticular, the brute-force algorithm that iterates over all a′s such that 1 ≤ a ≤ n/2 runs in time O(n2), but

there are ways to bound the number of summands that must be checked so as to significantly decrease the

computational complexity. Srinivar and Shankar [SS] used the unconditional upper and lower bounds on

Date: June 30, 2017.

2010 Mathematics Subject Classification. 11Y55, 11Y16 (primary) 11B75, 11A67, 68Q25 (secondary).

Key words and phrases. Integer Complexity.

1

http://arxiv.org/abs/1706.08424v2


2

f(n) to bound the number of summands, obtaining an algorithm that runs in time O(nlog2(3)) < O(n1.59).

The fastest known algorithm runs in time O(n1.230175) and is due to J. Arias de Reyna and J. van de

Lune [AV]. Also, the experimental data in [IBCOOP] is based on an algorithm that calculates f(n) for

n up to n = 1012. They derive many interesting results from their data, but they do not analyze the

runtime of their algorithm. We obtain both an overall improvement on the runtime of the J. Arias de

Reyna and J. van de Lune algorithm and an internal improvement to the workings of the algorithm. The

overall improvement is derived from running the analysis of [AV] in much higher bases, while the internal

improvement reduces the number of summands f(a) + f(n− a) that must be calculated for almost all n.

We detail these improvements in Sections 2 and 3, test the internal improvement in section 4, and end the

paper by proposing a new approach for improving the current unconditional upper bound on f(n).

2. ALGORITHMIC ASPECTS

2.1. The de Reyna & van de Lune algorithm. J. Arias de Reyna and J. van de Lune [AV] developed

code in Python to perform the analysis of their algorithm, which they have generously shared with us.

Additionally, Fuller has published open-source code [F] written in C to calculate integer complexities.

Using these, we have developed code in C (see Appendix A) that is comparable to J. Arias de Reyna and J.

van de Lune’s Python code. The heart of the code is the calc_count method, which calculates D(b, r) for

varying values of b and r, where D(b, r) is the smallest integer satisfying

f(r + bn) ≤ f(n) +D(b, r) (2.1)

for all n. These integers D(b, r) are useful for bounding f(n) in the following way: [AV] defined Cavg as

the infimum of all C such that f(n) ≤ C log(n) for a set of natural numbers of density 1 and showed that

Cavg ≤
1

b log(b)

b−1
∑

r=0

D(b, r). (2.2)

In this calculation, we refer to b as the base in which we are working. Our code closely follows the logic

of J. Arias de Reyna and J. van de Lune’s program, making the following slight optimization.

Theorem 2.1. Take b = 2i3j where b < 1012 and i + j > 0. If mod (b, r) = 0 for 2 ≤ r < b, then

D(b, r) = f(b) + 1.

Proof. Write r(1+ b
r ). From [IBCOOP], we know that f(2a3b) = 2a+3b for 2a3b < 1012 and a+ b > 0.

We know that b = 2i3j , so r | b is of the form 2x3y for x ≤ i, y ≤ j. This means that b/r is of the form

2i−x3j−y . Since r > 0, x+ y > 0 and since r < b, (i − x) + (j − y) > 0.

Then we obtain

1 + f(r) + f

(

b

r

)

= 1 + 2x+ 3y + 2(i− x) + 3(i− y) = 1 + 2i+ 3j = 1 + f(b). (2.3)

This shows that D(b, r) ≤ f(b) + 1. It is evident that D(b, r) > f(b), because if we multiply n ∈ N by

b, then we have to use at least f(b) 1’s. If we multiply by b and also add r where r > 1, then we have to

use at least one additional 1 for the addition step (because at some point we need something of the form

k(x+ y(z)), where kx = r, ky = b, and z is any number). �

J. Arias de Reyna and J. van de Lune [AV] suggest that their algorithms will be more powerful when

implemented in C and Pascal. [AV] calculated the runtime of their algorithm for bases 2n3m up to 3188246,

and found the best value O(n1.230175) in base 21037 = 2239488. Using C is advantageous because it runs

much faster than Python, and so we are able to calculate values for higher bases. We calculate values for

bases 2n3m ≤ 57395628. In base 21338 = 53747712, we find that the runtime is O(n1.222911236).

2.2. Optimal asymptotic results. Guy [G] was the first to remark that while pointwise bounds seem

difficult, it is possible to establish bounds that are true for almost all (in the sense of asymptotic density

1) numbers. His method showed that f(n) ≤ 3.816 log3 n for a subset of integers with density 1. As a

consequence of out computations, it follows that we can improve this result to f(n) ≤ 3.61989 log3(n) by

performing the computations in base 21139.
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3. IMPROVED RESULTS VIA BALANCING DIGITS

3.1. Balancing Digits. We improve the algorithm for calculating complexity given in [AV]. The rate-

limiting factor in this algorithm is checking, for all n ≤ N , f(a)+ f(n− a) for all 1 ≤ a ≤ kMax for some

kMax that is a function of n. We will show that we can reduce the number of summands that must be checked

for almost all n. We say that n ∈ Z is digit-balanced in base b if each of the digits 1, . . . , b − 1 occurs

roughly 1/b times in the base b representation of n, or digit-unbalanced if some digits occur significantly

more often than others. We will show that almost all numbers are digit-balanced, although the exact

threshold of variation that we allow will depend on the base b. Finally, assuming that we have a set S of

digit-balanced numbers in base b, we will use Guy’s method to find that for any n ∈ S, f(n) ≤ c log3(n)
for some c. Then, using this bound on f(n) and assuming that f(n) = f(a) + f(n − a), we are able to

bound a, which, in turn, narrows the search space that a reasonable algorithm has to cover.

3.2. Bounds on Digit-Balanced Numbers. Our main result is as follows.

Proposition 3.1. There exists a constant cb > 0 only depending on the base b such that

#

{

1 ≤ n ≤ N : max
1≤i≤b

∣

∣

∣

∣

number of digits of n in base b that are i

number of digits of n in base b
−

1

b

∣

∣

∣

∣

≥ ε

}

≤ N1−cbε
2

.

Proof. The main idea behind the argument is to replace a combinatorial counting argument by the prob-

abilistic large deviation theory. Let N = bk, and consider all k-digit numbers in base b, let Xi be a

random variable such that Xi = 1 with probability 1/b and 0 otherwise for 1 ≤ i ≤ k. For any given

digit 0 ≤ d < b, each Xi gives the probability that this digit will appear in a fixed position i in the base b
representation of a number. Since we are considering k-digit numbers, we need to understand the average

value of X1 + · · ·+Xk and to analyze how close this average is to 1
b . Let X = 1

k (X1 + · · ·+Xk). Next,

we can use Hoeffding’s inequality, which gives

P (X −
1

b
≥ ǫ) ≤ e−2kǫ2 . (3.1)

We know that k ≈ logb(N) = log(N)
log(b) , so:

e−2kǫ2 = e−2ǫ2 log(N)
log(b) = (elog(N))−2ǫ2 1

log(b) = N
−2ǫ2

log(b) . (3.2)

So, the probability that a number with k digits in its base b representation has some digits that appear more

often than average is less than or equal to N
−2ǫ2

log(b) , meaning that |S| ≤ N ·N
−2ǫ2

log(b) = N1− 2ǫ2

log(b) . �

3.3. Bound on Number of Summands. Assume now that f(n) = f(n− a) + f(a) and that this is the

optimal representation using the least number of 1’s. We abbreviate f(n) = c log3(n)and want to derive

a bound on a. The main idea is to show that the logarithmic growth implies that a cannot be very large

(otherwise the growth of f(n) would be closer to linear). Using the lower bound due to Selfridge [G], we

attain:

c log3(n) ≥ 3(log3(n− a) + log3(a)). (3.3)

This is equivalent to:

log3(n
c/3) ≥ log3(n− a) + log3(a). (3.4)

Say that a = qn, where necessarily q ≤ 1
2 . Then we have:

log3(n
c/3) ≥ log3((1 − q)n · a). (3.5)

Exponentiating both sides and simplifying gives

nc/3−1

1− q
≥ a. (3.6)

Since q ≤ 1
2 , then 1− q ≥ 1

2 , and so
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nc/3−1

1/2
≥

nc/3−1

1− q
≥ a, (3.7)

or:

2nc/3−1 ≥
nc/3−1

1− q
≥ a. (3.8)

Thus, we need only check for values of a at most 2nc/3−1.

3.4. Binary Analysis. To see how our improvement works, we analyze it in the simplest possible base,

which is binary. Consider k-digit numbers less than N (so that k ≈ log2(N)). The average case in

Guy’s method, illustrated in [G] and based on Horner’s scheme of representing binary numbers, gives

f(n) ≤ 5 log2(n)/2, or f(n) < 3.962407 log3(n). “Bad” numbers in base 2 are those that have many 1’s,

as that is when the representation is rather inefficient. If we move away from the average case to numbers

which have, say, 75% 1’s and 25% 0’s, then the constant in Guy’s method is

1

ln(2)
(3 · .75 + 2 · .25) ln(3) < 4.358647. (3.9)

This is already much worse than the original average case constant of 3.962407, and so we need to stay

much closer to the average case. In particular, the following percentages of 1’s and 0’s give the following

values for the constant in Guy’s method:

Percent 0’s Percent 1’s Constant

46 54 4.02581

47 53 4.00997

48 52 3.99411

49 51 3.97826

49.9 50.1 3.96399

49.99 50.01 3.962565

In fact, we have an improvement on the original algorithm on numbers with at most 46% 0’s and 54%

1’s, because the analysis from the previous section affords a bound of a ≤ 2n4.02581/3−1 ≤ 2n0.342 for

such numbers. Next we want to understand how often this case occurs. We need to bound the number of

times that 0 occurs at most 46N
100 times. So, letting n− d = 46N

100 , we need to bound

B(n, 0) + · · ·+B(n, n− d), (3.10)

where B denotes the binomial distribution. We can bound this by

B(n, 0) + · · ·+B(n, n− d) ≤ e−nD(n−d

n
|| 12 ) (3.11)

where

D

(

n− d

n
||
1

2

)

=
n− d

n
log

(

2

(

n− d

n

))

+

(

1−
n− d

n

)

log

(

2

(

1−
n− d

n

))

. (3.12)

Because n ≈ log2(N), we get that

B(n, 0) + · · ·+B(n, n− d) ≤ N−D(n−d

n
|| 1

2 )
1

log 2 . (3.13)

In particular, then, there are at most N1−D(n−d

n
|| 12 ) “bad” numbers, where here n−d

n = 46
100 . Plugging

this in yields < N1−.003203 bad numbers, i.e. we have improved the other > N .003203 numbers, which

is significant as N grows large. This is the analysis for the binary case. The ideal bases are, of course,

much larger than binary, which makes analysis complicated. Accordingly, to understand how our algorithm

works in the general case, we performed a number of empirical tests.
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4. EMPIRICAL CALCULATIONS

To see whether our method improves J. Arias de Reyna and J. van de Lune’s algorithm in practice, we

modified J. Arias de Reyna and J. van de Lune’s code by adding various precomputations and calculating

how many numbers would be improved with these precomputations.

The first precomputation uses a greedy algorithm due to Steinerberger [St], which gives that f(n) ≤
3.66 log3(n) for most n. The recursive algorithm works as follows: if n ≡ 0 mod 6 or n ≡ 3 mod 6,

take n = 3(n/3) and run the algorithm on n/3. If n ≡ 2 mod 6 or n ≡ 4 mod 6, take n = 2(n/2) and

run the algorithm on n/2. If n ≡ 1 mod 6, take n = 1+ 3(n− 1)/3 and run the algorithm on (n− 1)/3.

If n ≡ 5 mod 6, take n = 1 + 2(n− 1)/2 and run the algorithm on (n− 1)/2.

The method is as follows: First, run the greedy algorithm on all of the numbers up to some limit and

store the results in a dictionary. Then, use these values to compute a bound on the number of summands

for each number (using the formula derived in Section 3.3). Store a counter that is initialized to 0. Next,

run J. Arias de Reyna and J. van de Lune’s algorithm. For each number, test whether the precomputed

summand bound is better than the summand bound in the original algorithm. If an improvement is found,

increment the counter. When we use this algorithm to precompute summands, we improve 7153 numbers

out of the first 200000, or less than 3.6% of numbers. If we compute complexities further, up to 2000000,

we improve 60864 numbers, or less than 3.05% of numbers. See Appendix B for the code.

We can also combine Steinerberger’s algorithm with a stronger algorithm, due to Shriver [Sh]. Shriver

developed a greedy algorithm in base 2310. If we use the best upper bound on complexities from Shriver

and Steinerberger’s greedy algorithm, we improve 11188 numbers out of 200000, or about 5.6% of num-

bers. If we compute complexities up to 2000000, we improve 107077 numbers, or less than 5.36% of

numbers.

Shriver conjectures that his best algorithm, which uses simulated annealing, produces a bound of

f(n) ≤ 3.529 log3(n) for generic integers. In fact, only 824 numbers up to 2000000 would be improved

by assuming a uniform bound of f(n) ≤ 3.529 log3(n). Of course, this is a purely theoretical result—if we

were to actually introduce a uniform bound, then we would not be able to accurately calculate complexities.

If we become even more optimistic and use a uniform bound of f(n) ≤ 3.5 log3(n), we would only poten-

tially improve 4978 numbers out of the first 2000000. Similarly, using f(n) ≤ 3.4 log3(n) would improve

124707 numbers of 2000000, which is about 6.23%. If we venture significantly below Shriver’s conjecture

of 3.529 log3(n) and use f(n) ≤ 3.3 log3(n) uniformly, then we start to see a significant difference—we

would improve 726756 numbers of 2000000, or about 36%.

Overall, it seems that Arias de Reyna and van de Lune’s algorithm already has a strong bound on the

number of summands that are computed. It is possible that the complexity of J. Arias de Reyna and J. van

de Lune’s algorithm is significantly lower than O(n1.223). Thus, while summand precomputing improves

the complexity computation for some numbers, given the overhead for performing precomputations and

the current speed of J. Arias de Reyna and J. van de Lune’s algorithm, introducing a precomputation does

not seem to yield an overall improvement to the algorithm.

5. PROGRESS TOWARDS AN UNCONDITIONAL UPPER BOUND

The current unconditional upper bound on complexity, f(n) ≤ 3 log2(x), is derived from applying

Guy’s method in base 2 to n. In particular, the most complex numbers have binary expansions of the form

11 · · · 12 so that at each step, Guy’s method requires three 1’s. The resulting representation is of the form

1 + (1 + 1)[1 + (1 + 1)[· · · ]].
Say that n mod 3 ≡ k. Instead of applying Guy’s method to n, what if write n = k+(1+1+1)(n−k)/3

and then apply Guy’s method to (n − k)/3? Then in the case where n = 11 · · · 12, (n − k)/3 is either

of the form 1010 · · ·1 or 1010 · · ·0, and applying Guy’s method to (n − k)/3 gives f((n − k)/3) ≤
1 + 2.5 log2(n). Using this, we find that f(n) ≤ 6 + 2.5 log2(n), which is a significant improvement over

f(n) ≤ 3 log2(n).
This suggests the following method: If the binary representation of n contains more than a certain

percentage of 1’s, then write n as k+(1+1+1) · (n−k)/3 and apply Guy’s method instead to (n−k)/3.

Empirically, in most cases, when the binary expansion of n contains a high percentage of 1’s, (n−k)/3 has

a significantly lower percentage of 1’s. However, there are some examples where this fails. For example,

if n = 2102 − 2100 − 2, then both the binary expansion of n and the binary expansion of (n − 1)/3 have
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a high percentage of 1’s. Notably, if we repeat this division process and consider ((n − 1)/3)/3, then we

will obtain a number with a nice binary expansion. Accordingly, we say that 2102 − 2100 − 2 requires two

iterations of division by 3.

Some numbers require numerous iterations of division by 3 before their binary expansions are nice. For

example, n = 23000 − 22975 − 22807 − 1 requires nine iterations. These sorts of counterexamples seem to

follow some interesting patterns. Let ni denote the number obtained after i iterations of division by 3 so

that n0 = n, n1 = (n0 − (n0 mod 3))/3, etc. In general, it seems that the number of iterations that are

necessary to produce a “nice” binary expansion is tied to the number of iterations for which n ≡ 2 mod 3.

For example, when n = 23000 − 22975 − 22807 − 1, then n0 ≡ n1 ≡ n2 ≡ · · · ≡ n7 ≡ 2 mod 3, but

n8 ≡ 0 mod 3, and n9 has the first “nice” binary expansion.

It should be noted that there is no reason to only employ division by 3. For example, when n =
23000 − 22975 − 22807 − 1, n mod 11 ≡ 5, and (n− 6)/11 has a nice binary expansion. It should be noted

that n ≡ 4 mod 5 and n ≡ 6 mod 7, and the binary representations of (n−4)/5 and (n−6)/7 both contain

a large percentage of 1’s.

In general, then, performing this process of division by appropriate numbers before applying Guy’s

method is a promising strategy for obtaining an improvement on the unconditional upper bound on f(n).
We believe that it could be an interesting problem to make these vague heuristics precise and understand

whether this could give rise to a new effective method of giving explicit constructions of n with sums and

products that use few 1′s.
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APPENDIX A. IMPLEMENTATION OF THE ALGORITHM IN C

/* A significant portion of this code is due to Fuller; see

http://oeis.org/A005245/a005245.c.txt */

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

typedef unsigned char A005245_value_t;

typedef struct { unsigned size; A005245_value_t *array; } A005245_array_t;

A005245_array_t * A005245_arr;

int powarrlen = 286;

/* Store all powers 2^m 3^n where 2^m*3^n < 500000000 */

int powarr[286] = {2, 3, 4, 6, ..., 483729408};

#define MAX_A005245_VALUE 127

/* Keep a safety factor of 2 to avoid overflow */

unsigned A000792(A005245_value_t n)

{

unsigned result = 1;

while (n >= 5 || n == 3)

{

result *= 3;

n -= 3;

}

return result << (n/2);

}

/* Helper method, specific to powarr */

int index_of(int val) {

for (int i = 0; i < powarrlen; i++) {

if (powarr[i] == val) {

return i;

}

}

/* if the element is not found */

return -1;

}

void A005245_free(A005245_array_t *a)

{

a->size = 0;

free(a->array);

a->array = NULL;

}

/* Thanks to http://stackoverflow.com/questions/5666214/

how-to-free-c-2d-array */

void COMPL_free(int **a)

{

for (int i = 0; i < powarrlen; i++)

{

int* currRowPtr = a[i];
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free(currRowPtr);

}

free(a);

a = NULL;

}

int A005245_init(A005245_array_t *a, unsigned size)

{

unsigned i;

/* This line was in Fuller’s original code but seemed to cause problems */

// A005245_free(a);

a->array = (A005245_value_t*)malloc(size * sizeof(A005245_value_t));

if (a->array)

{

a->size = size;

a->array[1] = 1;

for (i = 2; i < size; i++)

a->array[i] = MAX_A005245_VALUE;

}

return (a->array != 0);

}

/* Thanks to https://www.eskimo.com/~scs/cclass/int/sx9b.html */

int ** COMPL_init()

{

int ** a;

int i, j, val_at_index;

/* COMPL_free(a); */

/* There are powarrlen rows */

a = (int**) calloc(powarrlen, sizeof(int *));

if (a == NULL) {

fprintf(stderr, "out of memory\n");

exit(1);

}

for (i = 0; i < powarrlen; i++) {

val_at_index = powarr[i];

a[i] = (int*) calloc(val_at_index, sizeof(int));

if (a[i] == NULL) {

fprintf(stderr, "out of memory\n");

exit(1);

}

}

/* initialize D(2, 0) and D(2, 1) specially */

a[0][0] = 2;

a[0][1] = 3;

return a;

}
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void A005245_additions_to_n(A005245_array_t *a, unsigned n)

{

unsigned limit_m, m;

A005245_value_t target, k;

if (a->array[n] > a->array[n-1] + 1)

a->array[n] = a->array[n-1] + 1;

target = a->array[n-1];

k = target / 2;

while (A000792(k) + A000792(target - k) < n)

k--;

limit_m = A000792(k);

/* Already used m=1 earlier, and don’t need m=2..5 as they cannot be better

than m=1 */

for (m = 6; m <= limit_m; m++)

{

if (a->array[n] > a->array[m] + a->array[n-m])

{

printf("Counterexample to [3]: A(%u) + A(%u) = %u < conjecture(%u)

= %u\n", m, n-m, (unsigned)(a->array[m] + a->array[n-m]), n,

(unsigned)a->array[n]);

a->array[n] = a->array[m] + a->array[n-m];

}

else if (a->array[n-1]+1 > a->array[m] + a->array[n-m])

printf("Counterexample to [2]: A(%u) + A(%u) = %u < A(%u-1)+1 = %u\n",

m, n-m, (unsigned)(a->array[m] + a->array[n-m]), n,

(unsigned)a->array[n-1]+1);

}

}

void A005245_multiplications_from_n(A005245_array_t *a, unsigned n)

{

unsigned m, mn;

for (m = 2, mn = 2*n; (m <= n) && (mn < a->size); m++, mn += n)

if (a->array[mn] > a->array[m] + a->array[n])

a->array[mn] = a->array[m] + a->array[n];

}

/* Thanks to http://stackoverflow.com/questions/213042/

how-do-you-do-exponentiation-in-c */

int power(int base, unsigned int exp) {

int i, result = 1;

for (i = 0; i < exp; i++)

result *= base;

return result;

}

/* Thanks to http://stackoverflow.com/questions/5281779/

c-how-to-test-easily-if-it-is-prime-number */

int is_prime(int num)

{

if (num <= 1) return 0;

if (num % 2 == 0) return 0;
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for(int i = 3; i <= num/2; i+= 2)

{

if (num % i == 0)

return 0;

}

return 1;

}

/* This function should update count */

int calc_count(int b, int r, int calc, A005245_array_t *a, int ** COMPL_arr) {

int i, j, calc1, calc2, calc3, pow, base_index;

base_index = index_of(b);

/* Update calc with complexity of b + complexity of r, if appropriate */

if (is_prime(b) == 1) {

calc = a->array[b] + a->array[r];

}

else {

if (r == 0) {

calc = a->array[b];

}

else if (r == 1) {

calc = a->array[b] + 1;

}

else if ((b % r) == 0) {

calc = a->array[b] + 1;

}

/* Recursive step--access COMPL_arr */

else if (COMPL_arr[base_index][r] != 0) {

calc = COMPL_arr[base_index][r];

}

else {

if (a->array[b] + a->array[r] < calc) {

calc = a->array[b] + a->array[r];

}

/* We are trying to run up to a large base so we check under large

powers of 2, 3 */

for (i = 0; i < powarrlen; i++) {

pow = powarr[i];

if (pow < b) {

if ((b % pow == 0) && (pow > 1)) {

calc1 = calc_count(pow, r%pow, calc, a, COMPL_arr);

calc2 = calc_count(b/pow, floor(r/pow), calc, a, COMPL_arr);

/* Add the two together */

calc3 = calc1 + calc2;

/* Test this against the original calc */

if (calc > calc3) {

calc = calc3;

}

}

}

}

}
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}

return calc;

}

int main(int argc, char *argv[]) {

int ret, r, i, j, arr_base, n = 483729409;

unsigned long int p = 0, m0 = 0, m1 = 0, m2 = 0;

A005245_array_t A005245;

int ** COMPL_arr = COMPL_init();

FILE *f = fopen("fuller_beyond.txt", "w");

if (!A005245_init(&A005245, n)) {

A005245_free(&A005245);

printf("Not enough memory\n");

return 2;

}

for (n = 2; n < A005245.size; n++)

{

A005245_additions_to_n(&A005245, n);

A005245_multiplications_from_n(&A005245, n);

}

/* We have already initialized powarr[2, 0] and powarr[2, 1] */

for(i = 1; i < powarrlen; i++) {

arr_base = powarr[i];

for (j = 0; j < arr_base; j++) {

r = calc_count(arr_base, j, 1000000, &A005245, COMPL_arr);

COMPL_arr[i][j] = r;

if (4294967294 - p < r) {

printf("Unsigned int limit is about to overflow; output past this

point is unreliable");

}

p += r;

if (r%3 == 0) {

m0 += pow(3, (r/3));

}

if (r%3 == 1) {

m1 += pow(3, ((r-1)/3));

}

if (r%3 == 2) {

m2 += pow(3, ((r-2)/3));

}

}

/* Write output to the terminal */

printf("p is: %lu, base is: %d\n", p, arr_base);

printf("Base is: %d, %lu, %lu, %lu\n", arr_base, m0, m1, m2);

/* Write output to a file */

fprintf(f, "p is: %lu, base is: %d\n", p, arr_base);

fprintf(f, "Base is: %d, %lu, %lu, %lu\n", arr_base, m0, m1, m2);

fflush(f);

p = 0;

m0 = 0;
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m1 = 0;

m2 = 0;

fflush(stdout);

}

fclose(f);

A005245_free(&A005245);

COMPL_free(COMPL_arr);

return 0;

}

APPENDIX B. EMPIRICALLY TESTING SUMMAND PRECOMPUTATION

/* Much of this code is due to Arias de Reyna and van de Lune. In particular,

their code has been modified to include a precomputation in order to test how

often a better summand bound is obtained. This particular piece of code uses

Steinerberger’s Markov chain algorithm in the precomputation.*/

from __future__ import division

import sys

sys.path.insert(0,’/Volumes/RIEMANN/Todo/Matematicas/Python’)

from A000792 import *
from fractions import Fraction

from math import ceil

from math import log

from math import floor

from math import *

markov_dict = {}

def markovbound(n):

count = 0

if n <= 5:

count = n

else:

if n%6 == 0 or n%6 == 3:

count = 3 + markov_dict[n/3]

if n%6 == 1:

count = 4 + markov_dict[(n-1)/3]

if n%6 == 2 or n%6 == 4:

count = 2 + markov_dict[n/2]

if n%6 == 5:

count = 3 + markov_dict[(n-1)/2]

markov_dict[n] = count

for i in range (1, 2000001):

markovbound(i)

def precompute_summands(n):

c = markov_dict[n]

# need to make sure it never rounds down

log_bound = c/float(log(n, 3)) + 1/float(100000000000)

bound = float(log_bound)/3 - 1
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return bound

def compute_complexities(num):

# count how often the new summand bound kicks in

numImproved = 0

nMax = num

cMax = int(ceil(3.*log(nMax)/log(2)))

print ’cMax = ’, cMax

# initialize the dictionary

Compl={}

for n in range(2,nMax+1):

Compl[n]=cMax

Compl[1]=1

# now Compl[n] is always greater or equal to the true complexity

for n in range(2,nMax+1):

# test the sums

a = Compl[n-1]+1

if a < Compl[n]:

Compl[n]=a # the usual best value

target = Compl[n-1]

k=target/2

while (A000792(k)+A000792(target-k)<n):

k=k-1

limitm = A000792(k)

# do the summand precomputation

markov_sumbound = precompute_summands(n)

up_to = int(ceil(n**markov_sumbound))

# check how many numbers are improved

if (up_to < limitm):

numImproved += 1

# now test for sums

limitm = min(limitm, up_to)

for m in range(6,limitm+1):

sumvalue = Compl[m]+Compl[n-m]

if sumvalue < Compl[n]:

Compl[n] = sumvalue

# test for the products

for k in range(2, min(n,nMax/n)+1):

prodvalue = Compl[k]+Compl[n]

if prodvalue <Compl[k*n]:

Compl[k*n]=prodvalue

# end of computation of complexities

print "Computed complexities upto nMax Compl[",nMax,"] = ", Compl[nMax]

print "Num improved ", numImproved

# run the program

compute_complexities(2000000)
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