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We revisit the relations between open and closed string scattering amplitudes discovered by Kawai,

Lewellen, and Tye (KLT). We show that they emerge from the underlying algebro-topological identities

known as the twisted period relations. In order to do so, we formulate tree-level string theory amplitudes

in the language of twisted de Rham theory. There, open string amplitudes are understood as pairings

between twisted cycles and cocycles. Similarly, closed string amplitudes are given as a pairing between

two twisted cocycles. Finally, objects relating the two types of string amplitudes are the α′-corrected

bi-adjoint scalar amplitudes recently defined by the author [1]. We show that they naturally arise as

intersection numbers of twisted cycles. In this work we focus on the combinatorial and topological

description of twisted cycles relevant for string theory amplitudes. In this setting, each twisted cycle

is a polytope, known in combinatorics as the associahedron, together with an additional structure

encoding monodromy properties of string integrals. In fact, this additional structure is given by

higher-dimensional generalizations of the Pochhammer contour. An open string amplitude is then

computed as an integral of a logarithmic form over an associahedron. We show that the inverse of the

KLT kernel can be calculated from the knowledge of how pairs of associahedra intersect one another in

the moduli space. In the field theory limit, contributions from these intersections localize to vertices of

the associahedra, giving rise to the bi-adjoint scalar partial amplitudes.
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Section 1

Introduction

Recent years have seen a vast improvement in our understanding of quantum field theories through

the study of scattering amplitudes [3]. Such advancements were often made possible by considering a

generalization of ordinary field theories into string theories. The main advantage of this approach is

that strings—as extended objects—provide a way of smoothing out interactions between the scattering

states. More precisely, the moduli space of a string worldsheet continuously connects its different

factorization channels. As a result, a sum over discrete objects—such as Feynman [4] or on-shell [5]

diagrams—in field theory is replaced by an integral over a continuous worldsheet in string theory. In

the infinite tension limit, where strings become point-like, this integral localizes to disconnected corners

of the moduli space, which give rise to the field theory amplitudes. In this way, thinking of field theory

amplitudes as a limit of the string theory ones provides a way of unifying all factorization channels

under a single object.

The prime example of usefulness of string theory in the study of field theory amplitudes are the

Kawai–Lewellen–Tye (KLT) relations discovered in 1985 [6]. They give a way of writing the amplitudes

for scattering of closed strings entirely in terms of a quadratic combination of open string amplitudes.

In the field theory limit, where closed strings reduce to gravitons—particle excitations of General

Relativity—and open strings reduce to gluons—excitations of the Yang–Mills theory—KLT relations

give a connection between graviton and gluon scattering amplitudes. Such a relationship not only hints

at a fundamental interplay between the two types of theories, but also provides enormous simplifications

for practical calculations, both in string and field theory.

KLT relations have been most thoroughly studied in the field theory limit. In its modern form

found by Cachazo, He, and Yuan (CHY) they read [7]:

AGR =
∑
β,γ

AYM(β) m−1(β|γ) AYM(γ). (1.1)

Here, AGR is an n-point graviton amplitude, while AYM(β) is an n-point gluon partial amplitude with

ordering β. The sum proceeds over two sets of (n− 3)! permutations β and γ forming a basis for the

Yang–Mills amplitudes. The object m(β|γ) is a double-partial amplitude of a bi-adjoint scalar theory

[7, 8]. It is convenient to think of the relation (1.1) as a matrix product of a transposed vector, inverse

of a matrix, and another vector, where rows and columns are labelled by permutations.

It was not always clear that coefficients of the KLT expansion can be written in the form (1.1) as

the inverse of a matrix. In their original work, Kawai, Lewellen, and Tye used contour deformation

arguments to arrive at these coefficients as coming from monodromy factors around vertex operators on

the boundary of a worldsheet [6]. They evaluated explicit form of the quadratic relations for low-point

examples. A closed-form expression for the KLT relations to arbitrary number of particles in field

theory was later given in Appendix A of [9] by Bern, Dixon, Perelstein, and Rozowsky. Properties of

this expansion were systematically studied and proven in a series of papers [10–13] by Bjerrum-Bohr,

Damgaard, Feng, Søndergaard, and Vanhove, who also generalized the allowed bases of permutations

to a larger set. They introduced the matrix S[β|γ] called a KLT kernel, which allows to write the KLT

relations as a matrix product. Finally, Cachazo, He, and Yuan recognized [7] that the KLT kernel can

be understood as the inverse matrix of bi-adjoint scalar amplitudes, i.e., S[β|γ] = m−1(β|γ), ultimately

leading to the form given in (1.1). This also allowed to construct the kernel from the most general sets
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of permutations labelling the columns and rows of m(β|γ), so that coefficients of the KLT expansion

are not necessarily polynomials in the kinematic invariants.

At this point one could ask: Where do KLT relations come from? It turns out that a fruitful

path to consider is to go back to the string theory case, where these relations were first conceived. It

was proposed by the author [1] that the full string theory KLT relations can be rewritten in a form

analogous to (1.1) as follows:

Aclosed =
∑
β,γ

Aopen(β) m−1
α′ (β|γ) Aopen(γ). (1.2)

Here, Aclosed and Aopen(β) are the n-point closed and open string amplitudes respectively. The role

of the string theory KLT kernel is played by the inverse of a matrix mα′(β|γ), which is constructed

out of the bi-adjoint scalar amplitudes with α′ corrections. Recall that α′ is a parameter inversely

proportional to the string tension, such that α′ → 0 corresponds to the field theory limit. In this

way, (1.2) is a direct analogue of (1.1), where every piece of the puzzle receives string corrections. By

evaluating explicit examples of mα′(β|γ), which from now on we will refer to as the inverse KLT kernel,

we found that they have a surprisingly simple structure, giving rise to compact expressions in terms of

trigonometric functions. Moreover, they can be calculated using Feynman-like diagrammatic rules [1],

hinting at an underlying combinatorial underpinnings. In this work we show that string theory KLT

relations in the form (1.2) are in fact a result of a deep connection between string theory amplitudes,

algebraic topology, and combinatorics.

Practically at the same time as the initial work on the KLT relations, on the other side of the

globe, mathematicians Aomoto, Cho, Kita, Matsumoto, Mimachi, Yoshida, and collaborators were

developing a seemingly unrelated theory of hypergeometric functions [14, 15]. It eventually led to the

formulation of twisted de Rham theory, which is a generalization of the conventional de Rham theory

to integrals of multi-valued functions [14]. Let us first intuitively explain its key ingredients, leaving

precise definitions for later sections. A twisted homology group Hm(X,Lω) on some manifold X is a

space of twisted cycles, which are regions of X together with an additional information about branches

of a multi-valued function. Similarly, a twisted cohomology group Hm(X,∇ω) is a space of twisted

cocycles, which are differential forms on X satisfying certain conditions. A pairing between a twisted

cycle and a cocycle is then simply an integral of a differential form over a given region of X which is

sensitive to the branch structure of the integrand. Twist measures multi-valuedness of the integrand.

One can also define a natural set of a dual twisted homology Hm(X,L∨ω) and a dual twisted

cohomology Hm(X,∇∨ω). For the purpose of this work, the duality is roughly speaking given by

complex conjugation. One can define a pairing between these two dual spaces too, giving rise to

another integral of a multi-valued function. Having defined two different pairs of twisted homologies

and cohomologies, we would like to calculate invariants between them as well. As it turns out, it is

possible to pair two twisted cycles belong to a twisted homology and its dual. The resulting object is

called an intersection number of twisted cycles [16–20]. It is computed from the information of how

these cycles intersect one another in X, as well as their associated branch structure. Similarly, one can

also define an intersection number of twisted cocycles [21]. What is more, in 1994 Cho and Matsumoto

found identities—known as the twisted period relations—between pairings computed from different

twisted homologies and cohomologies described above [21].

In this work we show that Kawai–Lewellen–Tye relations are a consequence of twisted period

relations. In order to do so, we first formulate string theory tree-level amplitudes in the language of

twisted de Rham theory. Open string partial amplitudes Aopen(β) are given as pairings between twisted
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cycles and twisted cocycles, while closed string amplitudes Aclosed come from intersection numbers of

twisted cocycles. Finally, inverse of the KLT kernel mα′(β|γ) is calculated from intersection numbers

of twisted cycles. We can schematically summarize these pairings in the following diagram:

Hm(X,∇ω) Hm(X,∇∨ω)

Hm(X,Lω) Hm(X,L∨ω)

Aclosed

Aopen(β) Aopen(γ)

mα′(β|γ)

Twisted period relations for the above pairings become KLT relations in exactly the same form as

(1.2). We give a proof of this statement in Section 3, where we also define bases of twisted cycles and

cocycles relevant for string amplitudes.

These twisted cycles and cocycles turn out to have interesting combinatorial properties. It is known

that an n-point tree-level open string partial amplitude is given by an integral of a differential form

over a simplex ∆n−3, belonging to the moduli space of genus-zero Riemann surfaces with n punctures

[22]. However, in order to resolve degenerate points close to the vertices of the simplex, one considers a

blowup of the moduli space, π−1(M0,n) = M̃0,n [23–27]. On this space, the simplex becomes a different

polytope known as the associahedron, Kn−1 [28]. An example of this procedure is given below:

π−1

7−−−→

∆n−3 ∈M0,n Kn−1 ∈ M̃0,n

Twisted cycles are then given by (n− 3)-dimensional associahedra with an additional structure keeping

track of the branches of the integrand. This structure is most conveniently summarized by introducing

an additional regularization of twisted cycles based on the Pochhammer contour [29] and its higher-

dimensional generalizations. We give details of this construction in Section 4.1. In Section 3.2 we

also find a basis of twisted cocycles for string amplitudes and show they are given by logarithmic

(n − 3)-forms. With these constructions, an open string partial amplitude becomes an integration

of a logarithmic form over an associahedron. It is interesting to see how physical properties arise

in this formulation. Unitarity is made manifest from the fact that facets of the associahedra are

given by products of two lower-dimensional associahedra. Locality is manifest from the fact that a

higher-dimensional Pochhammer contour yields only simple poles in all factorization channels. Similarly,

each lower-dimensional face of the associahedron has an associated factorization diagram. For instance,

contact terms come from the bulk of the polytope, while trivalent diagrams come from its vertices.
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Since each propagator comes with a power of α′, it means that in the field theory limit only the regions

of the moduli space around the vertices of the associahedra contribute. We show how to construct this

limit explicitly in Appendix A.

The most novel concept studied in this work, however, is the evaluation of the intersection numbers

of twisted cycles. We show how to calculate them on explicit examples and in general in Section 4.

There, we also prove that combinatorial rules for finding intersection numbers are equivalent to the

diagrammatic expansion found empirically in [1], establishing that the α′-corrected bi-adjoint scalar

amplitudes mα′(β|γ) are given by intersection numbers of twisted cycles. Geometric and topological

meaning of these objects can be easily pictured. The real section of the moduli space M̃0,n is tiled

by (n− 1)!/2 associahedra Kn−1(β) [28, 30], each labelled with some permutation β. The problem of

calculating mα′(β|γ) reduces to finding the intersection of two associahedra Kn−1(β) and Kn−1(γ) in

the moduli space:

Kn−1(β) ∩Kn−1(γ)Kn−1(β)

Kn−1(γ)

The intersection number then receives contributions from all the (0, 1, 2, . . .)-dimensional faces belonging

to the intersection Kn−1(β) ∩Kn−1(γ). In the above example, these are five vertices, five edges, and

one polygon. Once again, in the field theory limit these contributions localize to vertices only, and

hence can be written as a sum over trivalent diagrams. Since the intersection region belongs to both

associahedra Kn−1(β) and Kn−1(γ) at the same time, the trivalent diagrams have to be compatible

with both planar orderings β and γ. This is indeed the standard definition of the field theory bi-adjoint

scalar double-partial amplitude m(β|γ). It is quite surprising that a scattering amplitude in a quantum

field theory can be understood as arising from such an abstract mathematical object as an intersection

number of twisted cycles.

Outline. This paper is structured as follows. In Section 2 we give an introduction to the topics of

twisted de Rham theory, as well as string theory amplitudes. In Section 3 we define the twisted cycles

and cocycles that are relevant for string theory amplitude computations. There, we also establish

the equivalence between Kawai–Lewellen–Tye relations and twisted period relations. In Section 4 we

discuss the interpretation of the inverse KLT kernel as intersection numbers of twisted cycles. We

give a combinatorial description of the blowup procedure leading to the associahedron, and present the

regularization of twisted cycles using a generalized Pochhammer contour. After giving explicit examples

of the evaluation of intersection numbers for lower-point cases, we prove that they are equivalent to the

diagrammatic rules for the computation of mα′(β|γ) in general. We conclude with the summary of

the results and a discussion of open questions in Section 5. In Appendix A we discuss how to obtain

the field theory limit of open string amplitudes from contributions localized around the vertices of the

associahedra.
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Section 2

Mathematical & Physical Preliminaries

This section is meant to give an informal introduction to both mathematics of twisted de Rham

theory and physics of string theory amplitudes for the readers not familiar with these topics.

2.1 Twisted de Rham Theory

In the study of hypergeometric functions one encounters integrals of multi-valued functions.

In order to analyze properties of such objects, it is useful to reformulate the problem in the language

of algebraic topology, where integrals are understood as pairings between integration cycles and

corresponding cocycles as the integrands. In the case when the integrand is a single-valued object, the

problem is governed by de Rham theory and its homology and cohomology groups [31]. In the case of

multi-valued integrands, one needs to keep track of additional information about the branch structure

along the integration region. Study of such objects leads to a generalization of de Rham theory into its

twisted version.

Twisted de Rham theory dates back to the work of Aomoto [32–37], Deligne [38], Kita [39–42],

and Gelfand [43, 44] who laid out foundations for this theory, which later grew into a field of research

developed by various authors, see, e.g., [16–21, 45, 46]. Overview of these results is presented in

textbooks by Aomoto and Kita [14], as well as Yoshida [15].1 In this section we outline the basics of

twisted de Rham theory that should serve as intuition for the remainder of the paper. We follow the

discussion in [14].

Despite initial motivation coming from hypergeometric functions, twisted de Rham theory extends

to more general objects. We will consider integrals of the form:∫
γ

u(z)ϕ(z), (2.1)

where u(z) and ϕ(z) are a multi-valued function and a single-valued differential form respectively. Let

us define the function u(z) as

u(z) :=

k∏
i=1

fi(z)
αi with αi ∈ C \ Z,

where fi(z) = fi(z1, z2, . . . , zm) are linear polynomials defined on an m-dimensional complex space

minus the singular locus of u(z), called a divisor, D:

X := Cm\D with D :=

k⋃
i=1

{fi(z) = 0}.

The function u(z) and the m-form ϕ(z), together with the m-dimensional region γ are defined on the

same manifold X. We demand that γ has endpoints only on the divisor D, which implies that it does

not have any boundaries on X. Hence, γ can be called a topological cycle.

In order to give a more precise definition of (2.1) let us introduce a smooth triangulation of X

that will serve as an intuitive example. We take the cycle γ to be an m-simplex ∆. Since u(z) is

1See also textbooks by Haraoka [47] and Kimura [48] in Japanese, as well as one by Orlik and Terao [49], who discuss
hypergeometric functions from the viewpoint of arrangements of hyperplanes.
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multi-valued, we need to specify its branch on ∆. We use the notation ∆⊗ u∆(z) to signify the choice

of a branch u∆(z) of u(z) on ∆. With this definition (2.1) becomes:∫
∆⊗u∆

ϕ(z) :=

∫
∆

{
u(z) on the branch u∆(z)

}
ϕ(z).

We say that ∆ is loaded with u∆(z). Since on a small neighbourhood around ∆ the form u∆(z)ϕ(z) is

single-valued, we can apply the ordinary Stokes theorem to find:∫
∂∆

u∆(z)ϕ(z) =

∫
∆

d (u∆(z)ϕ(z)) =

∫
∆

u∆(z)
(
d+ ω ∧

)
ϕ(z), (2.2)

where

ω := d log u(z) =

k∑
i=1

αi
dfi(z)

fi(z)

is a single-valued 1-form on ∆. The combination in the brackets defines a differential operator

∇ω := d+ ω ∧ , called a connection. It is straightforward to check that ∇ω · ∇ω = 0, which makes ∇ω
an integrable connection [38]. With these definitions, (2.2) becomes:∫

∆⊗u∆

∇ωϕ(z) =

∫
∂ω(∆⊗u∆)

ϕ(z), (2.3)

where the remaining part is to specify how the boundary operator ∂ω acts on ∆⊗u∆(z). Let us illustrate

it with a couple of examples. We use the standard notation [50] for an m-simplex, ∆ = 〈01 · · ·m〉. In

the one-dimensional case ∆ = 〈01〉 we have:

∂〈01〉 = 〈1〉 − 〈0〉 and similarly ∂ω
(
〈01〉 ⊗ u〈01〉(z)

)
= 〈1〉 ⊗ u〈1〉(z)− 〈0〉 ⊗ u〈0〉(z).

Here the branch u〈1〉(z) is induced from u〈01〉(z) at the boundary of 〈1〉 of 〈01〉, and similarly for

u〈0〉(z). Therefore, the twisted Stokes theorem (2.3) in this case becomes:∫
〈01〉⊗u〈01〉

∇ωϕ(z) =

∫
〈1〉⊗u〈1〉

ϕ(z) −
∫
〈0〉⊗u〈0〉

ϕ(z),

where each contribution gives u(z)ϕ(z) evaluated at an appropriate branch at points z = 〈0〉 and 〈1〉.
Similarly, in the two-dimensional case, where ∆ = 〈012〉 we have:

∂ω
(
〈012〉 ⊗ u〈012〉(z)

)
= 〈12〉 ⊗ u〈12〉(z) + 〈20〉 ⊗ u〈20〉(z) + 〈01〉 ⊗ u〈01〉(z).

Here, the twisted cycles associated to the boundaries 〈12〉, 〈20〉, and 〈01〉 are determined by u〈012〉(z),

which naturally translates to the twisted Stokes theorem:∫
〈012〉⊗u〈012〉

∇ωϕ(z) =

∫
〈12〉⊗u〈12〉

ϕ(z) +

∫
〈20〉⊗u〈20〉

ϕ(z) +

∫
〈01〉⊗u〈01〉

ϕ(z).

A generalization to higher-dimensional simplices is now clear. The twisted boundary operator acts on
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an m-simplex as:

∂ω
(
〈01 · · ·m〉 ⊗ u〈01···m〉(z)

)
=

m∑
i=0

(−1)i〈01 · · · î · · ·m〉 ⊗ u〈01···̂i···m〉(z), (2.4)

where the hat denotes a removed label. For every triangulable manifold this definition can be used to

compute the action of the boundary operator by gluing simplices together.

Let us interpret the above analysis in the language of algebraic topology. In order to track the

information about branches we define homology with coefficients in a local system L∨ω defined by the

differential equation

∇ωξ = dξ + ω ∧ ξ = 0. (2.5)

It admits a formal solution for ξ of the form ξ(z) = c/u(z), where c ∈ C is a constant. The space

generated by local solutions of (2.5) is therefore one-dimensional. Let us cover the manifold X with a

locally finite open cover, such that X =
⋃
i Ui, and fix a solution ξi on each of the open sets Ui. On

the intersection of two of them, Ui and Uj , we have:

ξi(z) = ζij ξj(z) for z ∈ Ui ∩ Uj ,

where ζij is a constant on Ui ∩ Uj . Given that a solution ξ(z) on Ui ∩ Uj can be expressed as

ξ(z) = c̃iξi(z) = c̃jξj(z) for constants c̃i, c̃j ∈ C, we have c̃i = ζ−1
ij c̃j . Therefore, the set of local

solutions of (2.5) defines a flat line bundle, denoted by L∨ω , obtained by gluing the fibers {c̃i} by

transition functions {ζ−1
ij }. Similarly, we can define a dual line bundle Lω, which corresponds to the

transition functions {ζij}. It is generated by local solutions of the differential equation

∇−ωξ = dξ − ω ∧ ξ = 0.

Since the boundary operator (2.4) coincides with the above system generated by Lω, we can define a

twisted chain group Cm(X,Lω) with the basis of ∆⊗u∆(z). The boundary operator is given by a map:

Cm(X,Lω)
∂ω−−→ Cm−1(X,Lω),

for which one can show ∂ω ◦ ∂ω = 0. The definition of the m-th twisted de Rham homology group is

given by a natural generalization the usual homology group:2

Hm(X,Lω) := ker ∂ω/ im ∂ω. (2.6)

In other words, twisted homology is a space of boundary-less topological cycles with a loading, γ⊗uγ(z),

which are not boundaries themselves. We call these elements twisted (or loaded) cycles.

Let us turn to the associated twisted cohomology, which now has a straightforward definition. Since

the function u(z) vanishes at the boundaries of the cycles, the right-hand side of (2.3) is equal to zero.

This implies that adding a combination ∇ωξ(z) to ϕ(z) does not affect the result of the integration. In

other words, ϕ(z) and ϕ(z) +∇ωξ(z) are in the same cohomology class for any smooth (m− 1)-form

ξ(z). This leads to the definition of the m-th twisted cohomology:

Hm(X,∇ω) := ker∇ω/ im∇ω, (2.7)

2Twisted homology groups Hk(X,Lω) with k < m generically vanish [14, 35, 41]. For the purpose of this work, we
will be only interested in top homologies and cohomologies.
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which means it is a space of cocycles which are closed but not exact with respect to ∇ω. We call

these elements twisted cocycles. In similarity to the twisted homology case, one can also define a dual

twisted cohomology with the connection ∇∨ω = ∇−ω. We will make use of this fact in the remainder

of the paper. We can now use the twisted homology (2.6) and twisted cohomology (2.7) to define a

non-degenerate pairing:

Hm(X,Lω)×Hm(X,∇ω) −→ C,

given by

〈γ ⊗ uγ , ϕ(z)〉 :=

∫
γ⊗uγ

ϕ(z).

This is a way of formulating the initial integral (2.1) in the language of twisted de Rham theory.

Manifolds considered in this work will generically be non-compact. In this case, one ought to

consider the locally finite twisted homology group H lf
m(X,Lω) defined using a locally finite cover of X.

Pairings between different twisted cycles and cocycles require at least one of them to be compact or

with compact support [14]. We will explicitly construct a map from H lf
m(X,Lω) to the space of compact

twisted cycles, Hm(X,Lω), in Section 4.1. We will discuss the use of an inclusion map from Hm(X,∇ω)

to the compactly supported twisted cohomology Hm
c (X,∇ω) in Section 5. For mathematically rigorous

definitions of these statements see, e.g., [14].3

2.2 String Theory Scattering Amplitudes

Much of the structure of quantum field theories and their generalizations are encapsulated in

scattering amplitudes. Physically, they calculate the probabilities of given scattering states—such as

particles or strings—to interact with each other. Despite the fact that efficient calculation of scattering

amplitudes is indispensable in experimentally testing predictions of current models of physics at particle

colliders [52], we will be mainly interested in their mathematical structure. Let us focus the discussion

on string theory amplitudes.

The very first examples of string amplitudes appeared in the pioneering papers of Veneziano [53],

Virasoro [54], Shapiro [55], as well as Koba and Nielsen [56, 57], long before the formulation of string

theory. Since then, calculation of string theory scattering amplitudes developed into a rich field of

research of its own, see, e.g., [58–62]. For historical account of the developments of string theory see

[63]. Here, we will give a brief review of the topics relevant for this paper. Great introduction to the

subject is given in the classic textbooks by Green, Schwarz, and Witten [22, 64], as well as Polchinski

[65, 66].

Strings come in two types: open and closed. Evolution of strings in spacetime creates a two-

dimensional surface called the worldsheet. Using the underlying conformal symmetry, we can map the

worldsheet into a Riemann surface, which takes the scattering states into vertex operators. Scattering

amplitude is then given as an integration of vertex operator correlation function over all their inequivalent

positions. The n-point open string amplitude takes the form:

Aopen
full = Tr(T a1T a2 · · ·T an)

∫
D(12···n)

dnz

vol SL(2,R)

∏
i<j

(zj − zi)α
′sij F (z) + . . . . (2.8)

Let us dissect this formula one-by-one. Each string has an associated spacetime momentum kµi for

µ = 0, 1, . . . , d, where d+1 is the spacetime dimension. We take all momenta to be incoming and impose

momentum conservation
∑
i k
µ
i = 0. Each string also has a colour ai associated to a generator T ai of

3For a treatment of non-compact topological spaces in general, see the textbooks on algebraic topology [31, 51].
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the unitary group U(N). Other possible quantum numbers, such as polarization vectors, are all enclosed

in the rational function F (z). In fact, F (z) is a part of the correlation function of vertex operators

which depends on the type of string theory used. The multi-valued function
∏
i<j(zj − zi)α

′sij , called

the Koba–Nielsen factor [56], is common to all types of strings. In the exponent we used the parameter

α′, which is proportional to the inverse of the string tension and serves as a coupling constant of the

string amplitude (2.8). Here sij = ki · kj is an inner product of the momenta known as the Mandelstam

invariant [67]. The integration variables {z1, z2, . . . , zn} are the positions of the vertex operators, which

we associate to marked points—or punctures—on the boundary of a genus-zero Riemann surface. Due

to the inherit SL(2,R) redundancy of the correlator, one needs to quotient out the action of this group,

which is denoted by division by vol SL(2,R). In practice, it boils down to fixing positions of three

punctures, which by convention is taken to be (z1, zn−1, zn) = (0, 1,∞). In doing so, one picks up a

constant factor (z1 − zn−1)(zn−1 − zn)(zn − z1) due to the Faddeev–Popov Jacobian [68]. The disk

ordering D(12 · · ·n) denotes a region of integration given by {z1 < z2 < . . . < zn} after gauge-fixing.

It comes with the associated trace Tr(T a1T a2 · · ·T an) of Chan–Paton factors [69] due to the colour

structure of the strings. The ellipsis in (2.8) denote a sum over all (n − 1)! cyclically-inequivalent

permutations of the vertex operators, each decorated with a trace factor.

It is important to mention that in (2.8) we have only displayed contributions from the genus-zero

Riemann surface. In order to obtain the full string theory amplitude, one sums over all possible

genera of Riemann surfaces. Genus-zero terms correspond to the tree-level—or classical—scattering

amplitudes, while the genus-one and higher terms give quantum corrections. For the purpose of this

work we will restrict ourselves to tree-level amplitudes only.

The amplitude (2.8) admits a natural splitting into partial (or colour-ordered) amplitudes Aopen(β)

defined as coefficients of a Chan–Paton trace with the permutation β. These will be the objects of our

interest. We have:

Aopen(β) :=

∫
D(β)

dnz

vol SL(2,R)

∏
i<j

(
zβ(j) − zβ(i)

)α′sβ(i),β(j) F (z), (2.9)

where the only information about the permuation β comes from the disk ordering D(β) and the choice

of the branch for the Koba–Nielsen factor. Scattering amplitudes of closed strings are defined similarly.

For their n-point scattering we have:

Aclosed :=

∫
d2nz

vol SL(2,C)

∏
i<j

|zi − zj |2α
′sij F (z)F (z̄). (2.10)

Here, the integration proceeds over the full moduli space of a genus-zero Riemann surface with n

punctures, M0,n. The SL(2,C) redundancy is fixed by choosing positions of three punctures. The

integrand of (2.10) factors into two functions, a holomorphic and an anti-holomorphic one, which once

again depend on the type of string theory under consideration. The common piece is given by the

Koba–Nielsen factor. Note that in both (2.9) and (2.10) we have omitted coupling constants that give

rise to an overall normalization factor, see, e.g., [22].

The precise form of the integrands of (2.9) and (2.10) will not be important for our purposes and

can be found, for instance, in [22]. It was shown by Mafra, Schlotterer, and Stieberger [61, 62] that

open string partial amplitudes can be expanded in a basis of the so-called Z-theory amplitudes [70] as

follows:

Aopen(β) =
∑
γ∈C

n(γ)Zβ(γ), (2.11)
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where

Zβ(γ) :=

∫
D(β)

dnz

vol SL(2,R)

∏
i<j

(
zβ(j) − zβ(i)

)α′sβ(i),β(j)(
zγ(1) − zγ(2)

) (
zγ(2) − zγ(3)

)
· · ·
(
zγ(n) − zγ(1)

) . (2.12)

The coefficients of the expansion, n(γ), are only a function of kinematic invariants, polarization vectors,

and possibly Grassmann variables in the supersymmetric case. The entire dependence on the string

parameter α′ and the colour ordering β is encapsulated in the Z-theory amplitude (2.12). The sum is

over a set C of (n− 3)! permutations.4 Such a set is called a Bern–Carrasco–Johansson (BCJ) basis [71]

originally found for Yang–Mills amplitudes and later generalized to the open string ones by Stieberger

[60]. The Z-integral (2.12) depends on two permutations, β serving as a disk ordering, and γ which

determines the form of the integrand function. Because all the string theoretic properties of open string

amplitudes are determined by the Z-theory amplitudes, it will be sufficient to study the integrals (2.12)

as the primary ingredients in our work. A similar decomposition can be performed in the closed string

case (2.10). It reads:

Aclosed =
∑

β∈B, γ∈C

n(β)n(γ) J(β|γ), (2.13)

where

J(β|γ) :=

∫
d2nz

vol SL(2,C)

∏
i<j |zi − zj |2α

′sij(
zβ(1) − zβ(2)

)
· · ·
(
zβ(n) − zβ(1)

) (
zγ(1) − zγ(2)

)
· · ·
(
zγ(n) − zγ(1)

) . (2.14)

The sum in (2.13) proceeds over two sets of permutations B and C, each of length (n − 3)!. The

coefficients n(γ) are the same as in the open string case (2.11). The object (2.14) is an integral over the

moduli space M0,n [72], with the integrand composed of two pieces called the Parke–Taylor factors5

which also appear in (2.12). In contrast with (2.12), however, (2.14) is symmetric under the exchange

of the two permutations β and γ.

Calculation of the above string integrals is a difficult problem that has been approached in many

different ways, see, e.g. [61, 62, 70, 74, 75]. The general approach is to perform an expansion around

α′ = 0. In particular, it is known that in the α′ → 0 limit, the integrals Zβ(γ), J(β|γ), as well as

entries of the inverse of the string theory KLT kernel mα′(β|γ) all approach the same answer, up to

global scaling:

lim
α′→0

Zβ(γ) = lim
α′→0

J(β|γ) = lim
α′→0

mα′(β|γ) = α′
3−n

m(β|γ).

Here m(β|γ) are double-partial amplitudes of the so-called bi-adjoint scalar [7, 8]. This amplitude is

given by a sum over all trivalent Feynman diagrams T which are planar with respect to both β and γ:

m(β|γ) := (−1)w(β|γ)+1
∑

T ∈Gβ∩Gγ

1∏
e∈T se

,

where Gβ denotes the space of all trivalent Feynman diagrams planar with respect to the ordering

β, and e ∈ T means the set of internal edges of a given diagram T . The Mandelstam invariant se
equals p2

e/2, where pe is the momentum flowing through the edge e. We have included a sign factor [1]

featuring the relative winding number between the two permutations, w(β|γ). The amplitudes m(β|γ)

are the entries of the inverse of the field theory KLT kernel matrix.

4In fact, (2.11) is another instance of a field theory KLT relation [61, 62]. This fact, however, will not play any role in
this work.

5The name comes due to the resemblence to the scattering amplitude of gluons with MHV helicity configuration
found by Parke and Taylor [73].
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Section 3

Kawai–Lewellen–Tye Relations as Twisted Period Relations

Twisted de Rham theory developed primarily in Japan towards the end of twentieth century has

been motivated by trying to understand properties of hypergeometric functions. In particular, an

interest lies in finding algebraic relations between different hypergeometric functions. The simplest

instance of such an identity is a quadratic relation between Euler beta functions, B(a, b):

B(a, b)B(−a,−b) = −π
(

1

a
+

1

b

)(
1

tanπa
+

1

tanπb

)
, where B(a, b) :=

∫ 1

0

za−1(1−z)b−1dz.

In pursuit of generalizing this relation to other integrals of multi-valued functions, Cho and Matsumoto

discovered identities called the twisted period relations [21]. In this section we discuss how to apply

these relations to the case of string theory scattering amplitudes and show their equivalence with the

Kawai–Lewellen–Tye relations [6].

We first review the statement of twisted period relations. Let us consider a twisted homology

Hm(X,Lω) and the associated twisted cohomology Hm(X,∇ω) on an m-dimensional manifold X and

choose a basis of twisted cycles γi ⊗ uγi(z) and twisted cocycles ϕj(z) with i, j = 1, 2, . . . , d. Recall

that due to a twisted version of de Rham theorem, dimensions of both spaces are equal [14], i.e.,

d := dimHm(X,Lω) = dimHm(X,∇ω). We can organize the bilinears between the bases of twisted

cycles and cocycles into a d× d matrix with elements:

Pij := 〈γi ⊗ uγi , ϕj(z)〉 =

∫
γi⊗uγi

ϕj(z). (3.1)

This defines a twisted period matrix P.6 Similarly, we can choose the dual twisted homology Hm(X,L∨ω)

together with its associated twisted cohomology Hm(X,∇∨ω) on the same manifold. Recall that that

dual here means that the homology is defined with a multi-valued function u−1(z) insted of u(z).

Once again, we choose bases of twisted cycles γ∨i ⊗ u
−1
γ∨i

(z), as well as twisted cocycles ϕ∨j (z) with

i, j = 1, 2, . . . , d of the same dimension d as above. This leads to the definition of a dual twisted period

matrix P∨ with elements:

P∨ij := 〈γ∨i ⊗ u−1
γ∨i
, ϕ∨j (z)〉 =

∫
γ∨i ⊗u

−1

γ∨
i

ϕ∨j (z). (3.2)

Relating these two matrices requires a definition of additional pairings between twisted homology and

cohomology groups. It turns out one can define a non-degenerate pairing

Hm(X,Lω)×Hm(X,L∨ω) −→ C, (3.3)

called the intersection number of twisted cycles [16]. In (3.3) at least one of the twisted cycles ought to

be compact. It owes its name to the fact that evaluation of this pairing requires the knowledge of how

twisted cycles intersect one another topologically, aided with an information of the branch structure of

both twisted cycles. Intersection theory of twisted cycles was originally developed by Kita and Yoshida

[16, 17]. We will give precise definition of (3.3) in Section 4, together with the discussion of how to

6Recall that a period is an integral of an algebraic function over a domain specified by polynomial inequalities [76].
Twisted period is a natural extension of this definition [14].
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construct a regularization map from H lf
m(X,Lω) to Hm(X,Lω). For the time being, let us define a

d× d matrix H built out of the pairings (3.3):

Hij = 〈γi ⊗ uγi , γ∨j ⊗ u−1
γ∨j
〉.

Similarly, there exists a pairing between the two twisted cohomologies,

Hm(X,∇ω)×Hm(X,∇∨ω) −→ C, (3.4)

known as the intersection number of twisted cocycles [21]. In (3.4) at least one of the twisted cocycles

needs to be with compact support. Different ways of evaluating this pairing were given by Deligne and

Mostow [77], Cho and Matsumoto [21, 78–80], as well as Ohara [81]. We can now define another d× d
matrix C with elements:

Cij = 〈ϕi(z), ϕ∨j (z)〉. (3.5)

Cho and Matsumoto showed [21] that the matrices defined above can be related by:

C = Pᵀ(H−1)ᵀP∨ or equivalently H = P(C−1)ᵀ(P∨)ᵀ (3.6)

These are the twisted Riemann period relations.7 As long as the matrices P,P∨,H,C are defined

by bases of their respective homologies and cohomologies, they are invertible. By Pᵀ we denote a

transpose of the matrix P. The relations (3.6) hold under the condition that the cocycles in the bases

ϕi(z) and ϕ∨j (z) are logarithmic [21].

Note that the dual twisted homology and cohomology are defined with a multi-valued function

u−1(z). In order to apply the above relations to string theory amplitudes, we need to consider a

different set of spaces defined with a complex conjugate function u(z) instead. Such a setting was first

considered by Hanamura and Yoshida [84], and later studied in the context of Selberg-type integrals by

Mimachi and Yoshida [2, 85], see also [86]. Indeed, a canonical isomorphism L−ω ∼= Lω can be defined

when the exponents αi in u(z) are real and sufficiently generic. From now on we will implicitly use such

an isomorphism and work with the dual twisted homology defined by the system L∨ω = Lω and a dual

twisted cohomology defined with the connection ∇∨ω = ∇ω. See [85] for details of this construction.

The pairing (3.5) then takes the form:8

〈ϕi(z), ϕ∨j (z)〉 :=

∫
X

|u(z)|2 ϕi(z) ∧ ϕ∨j (z), (3.7)

such that the integral converges. Study of the Hodge structure of such integrals was initiated in [84].

Let us now turn to the problem of formulating tree-level string theory amplitudes in the language of

twisted de Rham theory.

3.1 Twisted Cycles for String Amplitudes

Open string scattering amplitudes are defined on the moduli space of genus-zero Riemann surfaces

with n punctures, X = M0,n. After gauge fixing the positions of three of them to (z1, zn−1, zn) =

7The name comes due to the resemblance of (3.6) to the standard period relations on Riemann surfaces, see, e.g.,
[82, 83].

8The name intersection number of twisted cocycles is justified only in the case of the dual cohomology defined with
∇∨ω = ∇−ω, where the pairing receives contributions only from certain regions of the moduli space. We discuss it in
Section 5. In the case ∇∨ω = ∇ω there is nothing to intersect. To author’s best knowledge, the intersection form of
cohomology groups (3.7) is poorly understood beyond the one-dimensional case.
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(0, 1,∞), the regions of integration of the open string amplitudes are given by a disk ordering D(β)

with a permutation β, which is an (n− 3)-simplex labelled by β:

∆n−3(β) := {0 < zβ(2) < zβ(3) < · · · < zβ(n−2) < 1}. (3.8)

It is embedded in the real section of the moduli space, M0,n(R). Here the overbar denotes a closure of

the space. Twisted cycles are then defined as follows.

Definition 3.1. Twisted cycle on X =M0,n labelled by a permutation β is given by

C(β) := ∆o
n−3(β)⊗ SLβ [u(z)], (3.9)

whose topological part is the interior of the simplex ∆n−3(β). The branch of u(z) for a given twisted

cycle is chosen according to the so-called standard loading, denoted by SL. We define it as

SLβ [u(z)] =
∏
i<j

(
zβ(j) − zβ(i)

)α′sβ(i),β(j) . (3.10)

The set {C(β) |β ∈ (1,Sn−3(2, 3, . . . , n− 2), n− 1, n)} of cardinality (n− 3)! forms a basis of twisted

cycles. Here, Sn−3 denotes permutations of a set of n− 3 labels.

Twisted cycles are elements of H lf
n−3(X,Lω). The size of the basis is known to be (n− 3)! from the

study of Selberg integrals by Aomoto, see, e.g., [14, 87], as well as the BCJ basis for open string

amplitudes [60], or equivalently size of the KLT matrix [13]. Of course, one can also choose different

bases of twisted cycles labelled by different sets of (n− 3)! orderings, not necessarily being related by a

permutation operator. The multi-valued function u(z) is given by the Koba–Nielsen factor:

u(z) :=
∏
i<j

(zi − zj)α
′sij =

n−2∏
i=2

(0− zi)α
′s1i

n−2∏
i=2

(zi − 1)
α′si,n−1

∏
2≤i<j≤n−2

(zi − zj)α
′sij . (3.11)

The twist 1-form ω then becomes:

ω = d log
∏
i<j

(zi − zj)α
′sij = α′

∑
i<j

sij d log(zi − zj) = α′
n−2∑
i=2

∑
j 6=i

sij
zi − zj

 dzi = α′
n−2∑
i=2

Ei dzi,

where Ei :=
∑
j 6=i sij/(zi − zj) are the so-called scattering equations [88]. The divisor D is defined by

the singular locus of u(z), i.e.,

D :=

n−2⋃
i=2

{zi = 0}
n−2⋃
i=2

{zi − 1 = 0}
⋃

2≤i<j≤n−2

{zi − zj = 0}.

Since D does not belong to the manifold X, the objects (3.9) have no boundaries in X, that is

∂ C(β) = ∅ for any β. This justifies the use of the name twisted cycle.

The above definition is not fully satisfactory, as it contains singular points when more than two

punctures coalesce at once. In order to resolve this issue, we consider a Deligne–Mumford–Knudsen

compactification [23–26] of M0,n, given by the so-called minimal blowup, π−1(M0,n) = M̃0,n [2, 27].

A blowup of a simplex (3.8) is a polytope called the associahedron [89]. We will study this object more

closely in Section 4. An additional regularization from locally finite twisted homology H lf
n−3(X,Lω) into
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Hn−3(X,Lω), where the twisted cycles are compact can be constructed by considering Pochhammer

contour and its higher-dimensional generalizations, see, e.g., [14, 15, 41]. We will show how to obtain

it in Section 4.1, and how to use it the study of the field theory limit of open string amplitudes in

Appendix A.

3.2 Twisted Cocycles for String Amplitudes

The dimension of the twisted cohomology group Hn−3(X,∇ω) is also (n− 3)!. A convenient

basis for this space studied in the string amplitudes literature [61, 62] is given by the so-called

Parke–Taylor factors:9

PT(β) =
dz1 ∧ dz2 ∧ dz3 ∧ · · · ∧ dzn−2 ∧ dzn−1 ∧ dzn

(zβ(1) − zβ(2))(zβ(2) − zβ(3)) · · · (zβ(n−1) − zβ(n))(zβ(n) − zβ(1))

/
vol SL(2,R).

Here one needs to fix the SL(2,R) redundancy in the same way as for twisted cycles by taking

(z1, zn−1, zn) = (0, 1,∞) and compensating with a constant Faddeev–Popov factor:

vol SL(2,R) =
dz1 ∧ dzn−1 ∧ dzn

(z1 − zn−1)(zn−1 − zn)(zn − z1)
,

This leads to the following definition for twisted cocycles.

Definition 3.2. Twisted cocycle on X =M0,n labelled by a permutation β is given by

PT(β) :=
dz2 ∧ dz3 ∧ · · · ∧ dzn−2

(0− zβ(2))(zβ(2) − zβ(3)) · · · (zβ(n−2) − 1)
. (3.12)

The set {PT(β) |β ∈ (1,Sn−3(2, 3, . . . , n− 2), n− 1, n)} of cardinality (n− 3)! forms a basis of twisted

cocycles.

Twisted cocycles are elements of Hn−3(X,∇ω). Once again, it is often necessary to consider a blowup

of (3.12) defined on M̃0,n. We illustrate how to perform it in practice in the Appendix A, see also [81].

In order to satisfy the assumptions of the twisted period relations (3.6), it is required that the twisted

cycles (3.12) are logarithmic. In the following we prove by construction that (3.12) is a logarithmic

differential form.

Claim 3.1. The Parke–Taylor factor (3.12) can be represented as a logarithmic (n− 3)-form:

PT(β) = (−1)n sgn(β) d log

(
0− zβ(2)

zβ(2),β(3)

)
∧ d log

(
zβ(2),β(3)

zβ(3),β(4)

)
∧ · · · ∧ d log

(
zβ(n−3),β(n−2)

zβ(n−2) − 1

)
,

where zab := za − zb. Note that the prefactor is a constant.

Proof. We will prove the claim inductively in n. For clarity of notation let us specialize to the canonical

permutation In = (12 · · ·n) without loss of generality. The cases n = 3, 4 can be checked explicitly:

PT(I3) = −1,

9Note that in order to be consistent with the literature, we have not permuted the differential form in the numerator.
As a consequence, Parke–Taylor factors for different permutations are related by relabelling and an additional change of
sign.
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PT(I4) = d log
0− z2

z2 − 1
=

(
1

z2
− 1

z2 − 1

)
dz2 =

dz2

(0− z2)(z2 − 1)
.

Assuming that the statement is true for n− 2 and n− 1, for n ≥ 5 we find:

PT(In) = (−1)n d log
0− z2

z23
∧ · · · ∧ d log

zn−4,n−3

zn−3,n−2
∧ d log

zn−3,n−2

zn−2 − 1

= (−1)n
(
d log

0− z2

z23
∧ · · · ∧ d log

zn−4,n−3

zn−3,n−2

)
∧
(

dzn−3

zn−3,n−2
− (zn−3 − 1) dzn−2

zn−3,n−2 (zn−2 − 1)

)
. (3.13)

The term in the first pair of brackets is almost proportional to PT(In−1), however it includes an

additional variable zn−2 which is a constant in the definition of PT(In−1). We need to take it into

account by adding an extra differential with respect to zn−2. Then the term in the first brackets

becomes:
PT(In−1)

(−1)n−1
+

(
d log

0− z2

z23
∧ · · · ∧ d log

zn−5,n−4

zn−4,n−3

)
∧ dzn−2

zn−3,n−2
. (3.14)

Once again, the term in the brackets is proportional to the lower-point case PT(In−2) plus terms

including the 1-form dzn−3. However, the additional terms give rise to the 2-form dzn−3 ∧ dzn−2 in

the expression (3.14), and hence vanish in the full expression for PT(In), since they are wedged with

the second bracket in (3.13). Up to these terms (3.14) equals

PT(In−1)

(−1)n−1
+

PT(In−2)

(−1)n−2
∧ dzn−2

zn−3,n−2
.

Note that in both PT(In−1) and PT(In−2) we have set the punctures fixed at 1 to have an arbitrary

position, denoted by zn−3 and zn−4 respectively. Plugging the above expression into (3.13) we find:

PT(In) = (−1)n
(
PT(In−1)

(−1)n−1
+

PT(In−2)

(−1)n−2
∧ dzn−2

zn−3,n−2

)
∧
(

dzn−3

zn−3,n−2
− (zn−3 − 1) dzn−2

zn−3,n−2 (zn−2 − 1)

)
=

1

zn−3,n−2

(
zn−3 − 1

zn−2 − 1
PT(In−1) ∧ dzn−2 −

1

zn−3,n−2
PT(In−2) ∧ dzn−3 ∧ dzn−2

)
.

We now use the inductive assumption to obtain:

PT(In) =
1

zn−3 − zn−2

(
zn−3 − 1

zn−2 − 1

1

(0− z2)(z2 − z3) · · · (zn−4 − zn−3)(zn−3 − zn−2)

− 1

zn−3 − zn−2

1

(0− z2)(z2 − z3) · · · (zn−4 − zn−3)

)
dz2 ∧ · · · ∧ dzn−2

=
dz2 ∧ dz3 ∧ · · · ∧ dzn−2

(0− z2)(z2 − z3) · · · (zn−3 − zn−2)(zn−2 − 1)

(
zn−3 − 1

zn−3 − zn−2
− zn−2 − 1

zn−3 − zn−2

)
=

dz2 ∧ dz3 ∧ · · · ∧ dzn−2

(0− z2)(z2 − z3) · · · (zn−3 − zn−2)(zn−2 − 1)
,

which completes the proof.

Note how due to its recursive nature, PT(In) in its logarithmic form contains Fibonacci number

of terms, Fn−2 [90], that all collapse to a single one (3.12) once summed over. One may wonder if

generalizations of the Parke–Taylor factor used to describe multi-trace amplitudes [91] or general scalar

– 17 –



theories [92] are logarithmic. In the following we show that they are not, and therefore cannot enter

the bases of the twisted homologies used in twisted period relations (3.6).

Claim 3.2. The multi-trace Parke–Taylor factors of the form

PT(β|γ| · · · ) =
dz1 ∧ dz2 ∧ · · · ∧ dzn

(zβ(1) − zβ(2)) · · · (zβ(|β|) − zβ(1))(zγ(1) − zγ(2)) · · · (zγ(|γ|) − zγ(1)) · · ·

/
vol SL(2,R),

where the permutations β, γ, . . . are a partition of (12 · · ·n), are not logarithmic on M̃0,n.

Proof. Recall that a differential form is logarithmic if it has no higher-order poles along the divisor

of X given by the singular locus of u(z). We will show that for the multi-trace Parke–Taylor factor,

there always exists a higher-order pole, and therefore it cannot be logarithmic. Let us focus on the

subpermutation β, which without loss of generality we can choose to be β = (12 · · ·m) for some

2 ≤ m ≤ n− 2. Since |β| < n− 1, we can fix two of the punctures in the remaining permutations to be

1 and ∞. Let us also take z1 = 0. We then perform a blowup along the face {z1 = z2 = · · · = zm} by

taking

zi = τyi for i = 1, 2, . . . ,m,

as well as set y1 = 0, ym = 1. Changing the variables of integration from {z2, z3, . . . , zm} to

{τ, y2, y3, . . . , ym−1}, the differentials in the numerator scale as

dz2 ∧ dz3 ∧ . . . ∧ dzm ∼ τm−2dτ,

while the denominator scales as

(0− z2)(z2 − z3) · · · (zm − 0) ∼ τm.

Hence the contour given by {|τ | = ε} receives the contribution proportional to dτ/τ2, which is a double

pole. We conclude that multi-trace Parke–Taylor factors are not logarithmic.

3.3 KLT Relations Revisited

With the definitions of twisted cycles (3.9) and twisted cocycles (3.12) we can study their pairings.

We also have analogous definitions for the dual spaces Hn−3(X,L∨ω) and Hn−3(X,∇∨ω), whose bases

we label with C(β)∨ and PT(β)∨ respectively. Elements of the period matrices (3.1) and (3.2) then

become:

〈C(β), PT(γ)〉 = Zβ(γ) and 〈C(β)∨, PT(γ)∨〉 = Zβ(γ),

Both of these bilinears give the Z-integrals as defined in (2.12). Similarly, a pairing between two twisted

cocycles is given by the J-integral (2.14):

〈PT(β), PT(γ)∨〉 = J(β|γ). (3.15)

In Section 4 we will prove that:

〈C(β), C(γ)∨〉 =

(
i

2

)n−3

mα′(β|γ), (3.16)

for an appropriately defined pairing between the two twisted cycles computed by their intersection

number. Here, mα′(β|γ) denotes the α′-corrected bi-adjoint scalar amplitudes introduced in [1]. We
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can build matrices out of the above pairings and apply the twisted period relation (3.6) in order to

obtain the relation:10

J(δ|ε) =
∑

β∈B, γ∈C

Zβ(δ)m−1
α′ (β|γ)Zγ(ε). (3.17)

Note that here we have absorbed the constant factor (i/2)n−3 from (3.16) into the definition a coupling

constant of J(δ|ε). Using the fact that open string amplitudes can be expanded in the basis of

Z-integrals, and closed string amplitudes can be expanded in the basis of J-integrals as:

Aopen(β) =
∑
δ∈D

n(δ)Zβ(δ) and Aclosed =
∑

δ∈D, ε∈E

n(δ)n(ε) J(δ|ε), (3.18)

we find

Aclosed =
∑

β∈B, γ∈C

Aopen(β)m−1
α′ (β|γ)Aopen(γ). (3.19)

These are the Kawai–Lewellen–Tye relations [6]. We conclude that twisted period relations for string

theory amplitudes are equivalent to KLT relations. In fact, similar identities can be written for any

other string-like models having BCJ representations of the form (3.18).

Example 3.1. Let us illustrate (3.19) with an example for n = 4. The sizes of the bases are 1, and we

can choose them to be B = C = {(1234)}. The KLT relations (3.19) then read:

Aclosed
4 = Aopen(1234)

(
1

tanπα′s
+

1

tanπα′t

)−1

Aopen(1234), (3.20)

where we used the notation s = s12 and t = s23. We will give a method of calculating the above

coefficient of KLT expansion in Section 4.2. The four-point open string amplitude is given by the

Veneziano amplitude [53] proportional to the beta function, B(α′s, α′t). Plugging it into (3.20) and

using trigonometric identities, we find:

Aclosed
4 =

sinπα′s sinπα′t

sinπα′(s+ t)
B(α′s, α′t)2 = −πα′2u2 Γ(α′s) Γ(α′t) Γ(α′u)

Γ(1− α′s) Γ(1− α′t) Γ(1− α′u)
,

where u = s13 = −s − t by momentum conservation. This expression is indeed proportional to the

Virasoro–Shapiro amplitude for four-point closed string scattering [54, 55].

Example 3.2. For n = 5 the size of the basis is 2. Let us take B = {(12345), (12435)} and C =

{(13254), (14253)}. The KLT relations (3.19) become:

Aclosed
5 =

Aopen(12345)

Aopen(12435)


ᵀ  1

sinπα′s23 sinπα′s45
0

0
1

sinπα′s24 sinπα′s35


−1 Aopen(13254)

Aopen(14253)



= sinπα′s23 sinπα′s45Aopen(12345)Aopen(13254) + (3↔ 4).

In Section 4.3 we will discuss how to calculate entries of the above inverse of the KLT kernel. For

more examples of KLT relations we refer the reader to [1].

10By m−1
α′ (β|γ) we denote the inverse of a matrix mα′ (γ|β) with rows labelled by γ ∈ C and columns labelled by β ∈ B.
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3.4 Basis Expansion and the Circuit Matrix

A related question in twisted de Rham theory is how monodromy group acts on the period matrix

(3.1), see, e.g. [15]. More precisely, the problem translates to finding a matrix M which relates two

period matrices P′ and P with different choices of bases for twisted cycles, say D and D′:

P′ = MP.

The representative of the monodromy group, M, is called a circuit matrix [15]. Following the derivation

given in [1], we can show how to construct the entries of the matrix M from intersection numbers of

twisted cycles in the following way. Let H be a d× d matrix of intersection numbers of twisted cycles

defined with bases C and D for the rows and columns respectively, and H′k be an (n− 3)! vector of

intersection numbers of a given twisted cycle labelled by k and the basis C. Similarly, let Pl be a vector

of pairings between the basis D and a given twisted cocycle labelled by l, and Pkl be a pairing between

the twisted cycle k and twisted cocycle l. We can organize these objects into a (d+ 1)× (d+ 1) matrix,

whose determinant equals [93]:

det

[
H H′k
Pᵀl P′kl

]
=

(
P′kl − (H′k)ᵀ(H−1)ᵀPl

)
det H = 0.

This expression vanishes because the final column of the matrix is linearly dependent of the remaining

d columns, which form a basis. Since det H is non-vanishing, the term in the brackets ought to be

equal to zero. Repeating the same procedure d× d times, we can build a new period matrix P′, whose

basis of twisted cycles is D′, while P has a basis D. Note that both matrices have the same bases

of twisted cocycles. Rows of H′ are labelled by the basis C, while its columns are in D′. The final

expression reads:

P′ = (H′)ᵀ(H−1)ᵀP implying M = (H′)ᵀ(H−1)ᵀ, (3.21)

which gives an explicit realization of the circuit matrix M. Note that this expression is independent of

the choice of the basis C, whose labels are contracted in the expression for M. When D = D′ we have

M = I, as expected. It would be interesting to understand how (3.21) arises directly from twisted de

Rham theory.

In the case of string amplitudes, this expression translates to:

Aopen(β) =
∑

γ∈C, δ∈D

mα′(β|γ)m−1
α′ (γ|δ)Aopen(δ), (3.22)

which gives a way of expressing a given open string partial amplitude in a BCJ basis [60, 71] given by a

set D of (n− 3)! partial amplitudes Aopen(δ) for δ ∈ D. For examples of how to evaluate (3.22) see [1].
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Section 4

Inverse KLT Kernel as Intersection Numbers of Twisted Cycles

Intersection theory for twisted cycles was introduced by Kita and Yoshida in 1992 [16],

who later developed it further in a series of papers [17–19]. Since then, intersection numbers have

been evaluated for a large family of different types of hypergeometric functions [80, 94–102], including

Selberg-type integrals [2, 81, 85, 86, 103, 104]. For our purposes, intersection numbers of twisted cycles

play a central role in the KLT relations by computing entries of the inverse of the KLT kernel. It is

therefore important to understand how to evaluate them in the setting of string intergrals. In this

section we discuss a combinatorial way for computing intersection numbers of twisted cycles and prove

its equivalence to the diagrammatic rules for calculating mα′(β|γ) given in [1].

Let us first review the key aspects of the intersection numbers of twisted cycles. Let H lf
m(X,Lω) be

the m-th locally finite twisted homology group on a non-compact m-dimensional manifold X = Cm \D,

where the divisor D is the singular locus of a multi-valued function u(z) =
∏k
i=1 fi(z)

αi . The twist

1-form ω = d log u(z) defines an integrable connection ∇ω = d + ω ∧ . The twisted homology has

coefficients in Lω, the local system of solutions to the differential equation dξ = ω ∧ ξ. Twisted cycles

are then elements of H lf
m(X,Lω). Working under the assumption that the exponents αi ∈ R \Z of u(z)

are sufficiently generic, one can define an isomorphism

H lf
m(X,Lω)

reg−−−→ Hm(X,Lω), (4.1)

which is the inverse of the natural map from Hm(X,Lω) to H lf
m(X,Lω). We refer to the map (4.1)

as regularization [14]. We will give plenty of explicit examples of regularized twisted cycles in the

following sections.

Similarly, we have a dual m-th locally finite twisted homology group H lf
m(X,L∨ω) with the coefficients

in the local system L∨ω defined with dξ = −ω ∧ ξ. Kita and Yoshida showed [16] that there exists a

non-degenerate pairing,

Hm(X,Lω)×H lf
m(X,L∨ω)

•−−→ C,

known as the intersection form. Together with the regularization map (4.1), it defines the intersection

number of two twisted cycles,

C = γ ⊗ uγ(z) ∈ H lf
m(X,Lω) and C∨ = γ∨ ⊗ u−1

γ∨ (z) ∈ H lf
m(X,L−ω)

as

regC • C∨ =
∑

z∈γ ∩ γ∨
Intz(γ, γ

∨)uγ(z)u−1
γ∨ (z). (4.2)

Here, Intz(γ, γ
∨) is the topological intersection number of two topological cycles γ and γ∨ at point z.

The sum proceeds over all intersections between the two cycles. When they intersect non-tangentially—

which will be the case throughout this work—the topological intersection number Int is equal to +1 or

−1 depending on their relative orientation, as follows:

γγ∨

= +1 or

γ∨γ

= −1. (4.3)
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Despite the fact that most of the literature on intersection numbers of twisted cycles has been

focused on studying the pairing with the dual homology defined with L∨ = L−ω, one can also apply

these ideas to the case complex conjugate case L∨ = Lω which is more relevant to physics. Hanamura

and Yoshida [84] considered an isomorphism L−ω ∼= Lω which can be canonically defined if all αi are

real and sufficiently generic. Then, for two twisted cycles given by

C = γ ⊗ uγ(z) ∈ H lf
m(X,Lω) and C∨ = γ∨ ⊗ uγ∨(z) ∈ H lf

m(X,Lω)

the intersection number is defined as:

regC • C∨ =
∑

z∈γ ∩ γ∨
Intz(γ, γ

∨)uγ(z)uγ∨(z) / |u(z)|2,

which is analogous to (4.2). Indeed, when the exponents αi are real, both definitions agree with

each other. For this reason, for considerations of intersection numbers of twisted cycles it will not be

important to make distinction between the two cases L−ω and Lω, and hence we will denote twisted

cycles belonging to both twisted homologies with same symbols. We will also not distinguish between

C and C∨, as they are given by the same definition (3.9).

Let us focus on the twisted cycles relevant to open string scattering amplitudes. Recall that the

multi-valued function defining the local system Lω is given by the Koba–Nielsen factor:

u(z) =
∏
i<j

(zi − zj)α
′sij .

Here, the Mandelstam invariants sij = ki · kj in the exponents are chosen in such a way that none of

the invariants sij... = (ki + kj + . . .)2/2 is an integer. In the following we will set α′ = 1 for clarity of

notation. The manifold X is the moduli space of genus-zero Riemann surfaces with n punctures, M0,n.

Twisted cycles C(β) on this space were defined in (3.9) with the standard loading operator SL, which

chooses the branch of the Koba–Nielsen factor for a given permutation β in a canonical way. Using

this definition, in the case of n = 4 we have:

C(1234) = {0 < z2 < 1} ⊗ zs12
2 (1− z2)s23 =

−−−→
(0, 1)⊗ zs(1− z)t,

where we denote the only manifold coordinate as z = z2 and the exponents with the usual notation

s = s12 and t = s23. In the case of n = 5 the basis has two elements:

C(12345) = {0 < z2 < z3 < 1} ⊗ zs12
2 (1− z2)s24(z3 − z2)s23zs34

3 (1− z3)s34 ,

C(13245) = {0 < z3 < z2 < 1} ⊗ zs12
2 (1− z2)s24(z2 − z3)s23zs34

3 (1− z3)s34 .

One can also define other bases of twisted cycles C(β). They have a straightforward definition analogous

to (3.9). For instance, in the next section we will make us of the four-point twisted cycles:

C(2134) =
−−−−−→
(−∞, 0)⊗ (−z)s(1− z)t and C(1324) =

−−−−→
(1,∞)⊗ zs(z − 1)t.

Before evaluating intersection numbers let us give an explicit construction of the regularization map

(4.1) for twisted cycles C(β), as well as discuss how they are affected by the blowup procedure [27].
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4.1 Regularization of Twisted Cycles

The cycles relevant for string amplitudes (3.9) are non-compact. Since the definition of the

intersection number requires at least one of the twisted cycles to be compact, we need to employ

a regularization. In this section we discuss an explicit construction of such a map, based on the

Pochhammer contour and its higher-dimensional generalizations, see, e.g., [14, 15, 41].

Let us review how the standard Pochhammer contour is constructed. We start by considering the

integral:

I :=

∫ 1

0

zs(1− z)t ϕ(z), (4.4)

where s, t /∈ Z and ϕ(z) is any single-valued 1-form. As defined, the integral converges only for

sufficiently positive values of s and t. In order to make the it convergent for all values of these

parameters, one can employ an alternative contour of integration γ, known as the Pochhammer contour:

γ :=
z=0 z=1

P
C0

C′
0

C1

C′
1

This contour winds around the two branch points z = 0, 1 once in both directions. We picture the

branch cuts as extending from z = 0, 1 downwards to −i∞. Let us track how this contour is related to

the one used in (4.4). Starting from the point P and moving right, we first obtain the contribution

equal to I. After winding around z = 1 in a positive direction along C1, one picks up a phase factor

e2πit, so that the next stretch towards z = 0 equals to −e2πitI, where the minus comes from a different

orientation that (4.4). Next, winding around z = 0 gives an additional factor of e2πis from C0, so that

the following contribution becomes e2πi(s+t)I. Winding around z = 1, this time in a negative direction

C ′1, takes the phase factor back to e2πit, so that the final contribution is e2πitI. After performing

another turn around z = 0 in a negative direction given by C ′0, we land at the point P on the original

branch. Summing up the contributions, we have:∮
γ

zs(1− z)t ϕ(z) =
(

1− e2πit + e2πi(s+t) − e2πis
)∫ 1

0

zs(1− z)t ϕ(z),

or equivalently∫ 1

0

zs(1− z)t ϕ(z) =

∮
γ′
zs(1− z)t ϕ(z) with γ′ :=

γ

(e2πis − 1) (e2πit − 1)
.

Let us split the contour γ′ into three parts: regions near the two branch points z = 0, 1, and the

interval
−−−−−−→
(ε, 1− ε). In order to be precise, we will use a small parameter ε as the radius of the circular

contours. The contributions near the branch point at z = 0 give:

C0 + C ′0
(e2πis − 1) (e2πit − 1)

=

(
e2πit − 1

)
S(ε, 0)

(e2πis − 1) (e2πit − 1)
=

S(ε, 0)

e2πis − 1
,

where by S(a, z) we denote a positively oriented circular contour with centre at z and starting at a
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point a. Similarly, around z = 1 we find the contribution

C1 + C ′1
(e2πis − 1) (e2πit − 1)

=

(
1− e2πis

)
S(1− ε, 1)

(e2πis − 1) (e2πit − 1)
= −S(1− ε, 1)

e2πit − 1
.

Finally, the contours along the real axis simply give
−−−−−−→
(ε, 1− ε). Putting everything together, we find

the regularization of the original cycle
−−−→
(0, 1) to be:

reg
−−−→
(0, 1) := γ′

=
S(ε, 0)

e2πis − 1
+
−−−−−−→
(ε, 1− ε)− S(1− ε, 1)

e2πit − 1

=
z=0 z=1

. (4.5)

Here, we have introduced a graphical notation to denote the regularized cycle. It is understood that the

circular parts of the contour come multiplied with the additional factors 1/(e2πis−1) and −1/(e2πit−1)

that are not represented explicitly. We will make a repeated use of this regularization in the following

sections. Note that we have been implicitly working with a twisted cycle
−−−→
(0, 1)⊗ zs(1− z)t relevant for

string amplitude calculations.

Generalizations to higher-dimensional cycles can be made by performing a similar regularization

[14]. Since locally we can describe a manifold X as a direct product of lower-dimensional spaces, we can

employ the regularization (4.5) near the singularities on these product spaces. In the case of X =M0,n

with n ≥ 5, however, there is an additional difficulty coming from the fact that the singular locus of

u(z) is not normally crossing. For example, in the case of n = 5 the function u(z) defining the local

system Lω is singular at

{z2 = 0} ∪ {z2 − 1 = 0} ∪ {z2 − z3 = 0} ∪ {z3 = 0} ∪ {z3 − 1 = 0},

which has degenerate points at (z2, z3) = (0, 0), (1, 1), and also (∞,∞). The way forward is to consider

a blowup of this space [23–27], denoted by M̃0,5 = π−1(M0,5), where all triple singular points get

resolved. In Figure 4.1 we have illustrated the real section of M0,5, denoted by M0,5(R), where the

twisted cycles live before the blowup, as well as its image, M̃0,5(R). Note that in this representation

we brought the point at infinity to a finite position for convenience. The resulting space is divided into

twelve chambers separated by the singular lines. Each of the lines has an associated label corresponding

to the exponent of the given zero in u(z), or equivalently a phase factor that one picks up upon crossing

the branch line. For example, the line defined by {z2− 1 = 0} is labelled with (24), since it corresponds

to the factor (z2 − 1)s24 in u(z).

Blowup has been performed in the neighbourhood of the points (0, 0), (1, 1), and (∞,∞), resulting

in three new locally-defined curves labelled by (123), (234), and (235). For example, near (z2, z3) = (0, 0)

the blowup introduced a line (123) corresponding to the factor z2
s12(z2 − z3)s23z3

s13 , whose exponents

sum up to s12 + s23 + s13 = s123. Points labelled with the same symbol on these new curves are

identified, and so are the segments between them. Each of the vertices can be uniquely specified as

intersection of two lines, for instance the point (z2, z3) = (0, 1) is written as (12) ∩ (34).

Each of the twelve chambers after the blowup forms a polygon known as the associahedron, K4.11

11Historically, skeleton of the associahedron first appeared the doctoral thesis of Tamari in 1951 [105]. In 1963, Stasheff

– 24 –



π−1

7−−−−→

<[z2]

z3=∞

C(12345)

<[z3]

z3=1

z3=0

z2=0 z2=1 z2=∞

C(13245)

C(13425)

C(12435)

C(14235)

C(14325)

C(13452)

C(14352)

C(14532)

C(14523)

C(14253)C(12453)

z2=z3

<[z2]

(35)

C̃(12345)

<[z3]

(34)

(12) (24) (25)

C̃(13245)

C̃(13425)

C̃(12435)

C̃(14235)

C̃(14325)

C̃(13452)

C̃(14352)

C̃(14532)

C̃(14523)

C̃(14253)C̃(12453)

(23)

(13) (123)

(234)

(235)

Figure 4.1. Real slice of the moduli space of Riemann spheres with five punctures, M0,5, and its image under

the blowup map π−1(M0,5) = M̃0,5.

Since twisted cycles C̃(β) are defined as associahedra with a uniquely specified standard loading given

by (3.10), we will sometimes not distinguish between the two. Notice that the canonical twisted cycle

C̃(12345) is neighbouring all the other cycles, except for C̃(14253), by either an edge or a vertex.

Adjacency relations between different associahedra will be important in the evaluation of intersection

numbers of twisted cycles. Regularized twisted cycles have a natural definition analogous to (4.5). For

example, reg C̃(12345) in a small neighbourhood of the edge (23) can be represented as:12

reg C̃(12345)
∣∣∣
(23)

=

 (23)

 ∧
 (123) (234)

(23)

 , (4.6)

where in both cases the horizontal direction is embedded in the real part of M̃0,5 illustrated in Figure 4.1.

Similarly, near the point (12) ∩ (123) we have:

reg C̃(12345)
∣∣∣
(12)∩(123)

=

 (12)

 ∧
 (123)

 . (4.7)

In general, one considers the Deligne–Mumford–Knudsen compactification [23–26] ofM0,n, denoted

by M̃0,n, in which the singular locus of u(z) = 0 is normally crossing. It is given by the procedure

gave a realization of the associahedron as a cell complex in his work on associativity of H-spaces [89, 106]. For this
reason, associahedron is often referred to as the Stasheff polytope. Since then, many realizations of the polytope have
been constructed, see, e.g., [107–112]. For a historical account see, e.g., the introduction of [112]. Connection to the

moduli space M̃0,n was first found by Kapranov in [113, 114], and from a combinatorial point of view later by Devadoss
[28, 30]. It was also independently rediscovered by Yoshida in the context of hypergeometric functions [115].

12Orientations of the cycles are naturally induced from the right-handed manifold X. More precisely, a multi-dimensional
residue {|gi(z)| = ε} is oriented by

∧
i d arg gi > 0 [15]. For the purpose of this section, however, this fact will not be

important as we will consider pairings between twisted cycles, for which possible signs due to orientations always cancel
out.
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called the minimal blowup [2, 27]. It is known that real part of each chamber of M̃0,n is isomorphic to

an associahedron Kn−1, see, e.g., [28, 114]. We will give properties of associahedra for general n in

Section 4.4, after studying examples of intersection numbers for n = 4, 5, which will illustrate how they

are connected to adjacency relations between different associahedra. Generalized Pochhammer contour

for Kn−1 is defined analogously to (4.6) and (4.7). We can now give a precise definition of the pairing

between twisted cycles, which gives rise to the entries of H.

Definition 4.1. Non-degenerate pairing between two twisted cycles is given by

〈C(β),C(γ)〉 := reg C̃(β) • C̃(γ),

where C̃(β) and C̃(γ) are two, not necessarily distinct, twisted cycles defined as a blowup of (3.9). For

simplicity we will use the same notation for n = 4, even though in this case there is no need for a

blowup.

4.2 Four-point Examples

We start evaluation of intersection numbers with the simplest example of n = 4, which will

illustrate most of the core ideas at play. We first consider the case of the self-intersection number of

the twisted cycle C(1234). In order to avoid degeneracy on the interval (ε, 1− ε), let us make a small

deformation of one of the cycles into a sine-like curve, on top of the regularization (4.5) for the other

cycle:

〈C(1234),C(1234)〉 =
(

reg
−−−→
(0, 1)⊗ zs(1− z)t

)
•
(−−−→

(0, 1)sin ⊗ zs(1− z)t
)

=
z=0

z=1

−−−→
(0, 1)sin

reg
−−−→
(0, 1)

= − 1

e2πis − 1
− 1− 1

e2πit − 1
. (4.8)

There are three intersection points: near z = 0, at z = 1/2, and near z = 1. The first contribution

gives 1/(e2πis − 1) from the definition (4.5) times −1 arising from the topological intersection number

(4.3) for this relative orientation of the cycles. Similarly, the second factor is simply −1 due to the

relative orientation at the intersection point at z = 1/2. The final factor is −1/(e2πit − 1) times +1

due to the orientation.

Intersection numbers are independent of the deformation of the second twisted cycle [16]. For

instance, we can calculate it with one of the cycles deformed into a small upside-down sine curve to

obtain:

〈C(1234),C(1234)〉 =
(

reg
−−−→
(0, 1)⊗ zs(1− z)t

)
•
(−−−→

(0, 1)−sin ⊗ zs(1− z)t
)

=
z=0

z=1

−−−→
(0, 1)−sin

reg
−−−→
(0, 1)

= − e2πis

e2πis − 1
+ 1− e2πit

e2πit − 1
. (4.9)

This time, the two end-point intersection numbers have picked up monodromy factors. Near z = 0

we have 1/(e2πis − 1) from the definition of (4.5) times the phase factor e2πis times −1 due to the
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orientation. Similar reasoning gives the contribution from the neighbourhood of z = 1. The mid-

point intersection has changed orientation and hence give the contribution +1. Another choice is a

deformation into an arc curve:

〈C(1234),C(1234)〉 =
(

reg
−−−→
(0, 1)⊗ zs(1− z)t

)
•
(−−−→

(0, 1)arc ⊗ zs(1− z)t
)

=
z=0 z=1

−−−→
(0, 1)arc

reg
−−−→
(0, 1)

= − 1

e2πis − 1
− e2πit

e2πit − 1
, (4.10)

which receives contributions from only two intersection points, which we have analyzed before separately.

Finally, we have the deformation:

〈C(1234),C(1234)〉 =
(

reg
−−−→
(0, 1)⊗ zs(1− z)t

)
•
(−−−→

(0, 1)−arc ⊗ zs(1− z)t
)

=
z=0 z=1

−−−→
(0, 1)−arc

reg
−−−→
(0, 1)

= − e2πis

e2πis − 1
− 1

e2πit − 1
. (4.11)

It is straightforward to show that all the above calculations (4.8), (4.9), (4.10), and (4.11) give the

same answer:

〈C(1234),C(1234)〉 =
i

2

(
1

tanπs
+

1

tanπt

)
. (4.12)

Let us now turn to studying intersection numbers of two distinct twisted cycles. Intersecting

C(1234) with C(2134) one obtains:

〈C(1234),C(2134)〉 =
(

reg
−−−→
(0, 1)⊗ zs(1− z)t

)
•
(−−−−−→

(−∞, 0)⊗ (−z)s(1− z)t
)

=
z=0

reg
−−−→
(0, 1)

−−−−−→
(−∞, 0)

=
eπis

e2πis − 1
=
i

2

(
− 1

sinπs

)
. (4.13)

This time, there is only one intersection point near z = 0 giving 1/(e2πis − 1) times the monodromy

factor eπis. The topological intersection number gives +1. In the remaining case of intersecting twisted

cycles C(1234) and C(1324) we have:

〈C(1234),C(1324)〉 =
(

reg
−−−→
(0, 1)⊗ zs(1− z)t

)
•
(−−−−→

(1,∞)⊗ (z)s(z − 1)t
)

=
z=1

reg
−−−→
(0, 1)

−−−−→
(1,∞)

=
eπit

e2πit − 1
=
i

2

(
− 1

sinπt

)
, (4.14)
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which comes from the contribution near z = 1. Note that in both cases (4.13) and (4.14), the minus

sign in the final answer can be tracked down to the fact that the two cycles involved induce opposite

orientation on the boundaries at z = 0 and z = 1 respectively. For example, in the case (4.14)

the boundary of the first cycle C(1234) is ∂
−−−→
(0, 1) = {1} − {0}, and for the second cycle C(1324) is

∂
−−−−→
(1,∞) = {∞}−{1}, so the boundaries at z = 1 contributing to the intersection number have opposite

orientations.

All of the remaining combinations of four-point twisted cycles can be obtained by relabelling the

cases considered above. As we will see, the four-point cases (4.13) and (4.14) from this section will

also serve as building blocks for intersection numbers for higher multiplicities.

4.3 Five-point Examples

Before moving on to the most general case, let us study several five-point examples to gain some

intuition about higher-dimensional twisted cycles. Without loss of generality we can fix the first twisted

cycle to be C̃(12345) and consider its intersections with other cycles. A representation of the real

section of the moduli space M̃0,5 was given in Figure 4.1, from which one can read off the adjacency of

different twisted cycles.

We first consider the self-intersection number 〈C(12345),C(12345)〉. Kita and Yoshida showed [17]

that one can define a deformation of the second cycle similar to the sinusoid we used in the n = 4 case

(4.8). The deformation is made in such a way that the self-intersection number receives contributions

from neighbourhoods of the barycenter of the associahedron K4 itself, barycenters of all its facets, and

its vertices. Due to the regularization employed, locally near a vertex given by H1 ∩H2, where H1

and H2 are two facets, we receive a contribution 1/(e2πisH1 − 1)(e2πisH2 − 1), near the barycenter of

each facet H1 we get 1/(e2πisH1 − 1), and near the barycenter of the whole associahedron we get 1.

Explicitly, we have:

〈C(12345),C(12345)〉 = 1 +
1

e2πis12 − 1
+

1

e2πis23 − 1
+

1

e2πis34 − 1
+

1

e2πis45 − 1
+

1

e2πis51 − 1

+
1

(e2πis12 − 1) (e2πis34 − 1)
+

1

(e2πis23 − 1) (e2πis45 − 1)

+
1

(e2πis34 − 1) (e2πis51 − 1)
+

1

(e2πis45 − 1) (e2πis12 − 1)

+
1

(e2πis51 − 1) (e2πis23 − 1)
, (4.15)

which is a sum over contributions from five vertices, five facets, and one polygon. See [17] for details of

the derivation. As a matter of fact, (4.15) admits an alternative, more concise form:

〈C(12345),C(12345)〉 =

(
i

2

)2
(

1 +
1

tanπs12 tanπs34
+

1

tanπs23 tanπs45
+

1

tanπs34 tanπs51

+
1

tanπs45 tanπs12
+

1

tanπs51 tanπs23

)
.

Other cases can be obtained by reducing to previously calculated results. For example, two twisted

cycles C̃(12345) and C̃(13245) share the facet (23). Working locally in its neighbourhood, we can write

the intersection number as a product of the one in the real direction orthogonal to (23) times the
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boundary (23) itself:

〈C(12345),C(13245)〉 =
(23)

reg C̃(12345) C̃(13245)

=
eπis23

e2πis23 − 1

reg C̃(12345)

∣∣∣∣∣
(23)

• C̃(13245)

∣∣∣∣∣
(23)


= − i

2

1

sinπs23


(123)

(234)

C̃(13245)
∣∣∣
(23)

reg C̃(12345)
∣∣∣
(23)


= −

(
i

2

)2
1

sinπs23

(
1

tanπs45
+

1

tanπs51

)
.

Other cases follow the same algorithm. The remaining topology to consider is that of the intersection

of C̃(12345) with C̃(12453). This time, these two cycles intersect at a vertex point (12) ∩ (45). We

first consider the real direction orthogonal to (12) and then the intersection within (12). Being careful

about the orientations of the cycles we find:

〈C(12345),C(12453)〉 =
(12)

reg C̃(12345) C̃(12453)

=
eπis12

e2πis12 − 1

reg C̃(12345)

∣∣∣∣∣
(12)

• C̃(12453)

∣∣∣∣∣
(12)


= − i

2

1

sinπs12


(123)

reg C̃(12345)
∣∣∣
(12)

C̃(12453)
∣∣∣
(12)


= −

(
i

2

)2
1

sinπs12

1

sinπs45
.

Here, in the second step, both cycles induce the same orientation on the facet (123), giving an overall

plus sign contribution. We will come back to the point of orientations induced on boundaries in the

next section.

There is only one chamber in M̃0,5(R) which is not adjacent to C̃(12345), pictured near the top of

Figure 4.1. It corresponds to the twisted cycle C̃(13524). Because the two cycles do not intersect, we

have

〈C(12345),C(13524)〉 = 0.

In general, if two chambers are not adjacent, the corresponding intersection number vanishes.

Having studied several examples, the general strategy for evaluating intersection numbers is now

clear: after identifying the intersection face F of the two cycles, we project onto facets containing

F one by one until the problem reduces to calculating self-intersection numbers for smaller twisted

cycles. We will now prove that for general n this procedure reproduces the results of [1] and can be

streamlined using simple diagrammatic rules.
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4.4 Proof of the General Case

Let us review the structure of M̃0,n(R) in the general case. It is known that this space is divided

into (n − 1)!/2 chambers, each isomorphic to an (n − 3)-dimensional associahedron Kn−1, see, e.g.,

[28, 30]. The space is divided by 2n−1 − n− 1 [116] hyperplanes bounding the associahedra, including

the ones at infinity. For concreteness, let us specialize to the associahedron defined with the identity

permutation, In := (12 · · ·n), which we denote by

Kn−1(In) := π−1{0 < z2 < z3 < · · · < zn−2 < 1},

where the overbar means closure of this space, so that bounding facets are also included. Associahedra

for other permutations are defined analogously. Twisted cycles on the blowup space M̃0,n are then

given as interior of the associahedron loaded with the function u(z) with an appropriate phase given

by the standard loading (3.10):

C̃(β) = Ko
n−1(β)⊗ SLβ [u(z)].

This is a blowup of the definition (3.9). Note that in this way we have identified only half of the (n−1)!

cyclically-inequivalent permutations. This is because each associahedron comes with an orientation

induced from the right-handed space M̃0,n(R). The remaining half of the twisted cycles with reversed

permutation βᵀ, for example Iᵀn = (n · · · 21), can be related to the (n− 1)!/2 set by

C̃(βᵀ) = (−1)n C̃(β),

which means that when n is even, twisted cycles corresponding to associahedra with both orientations

are identified.13 In the odd case, the minus sign arises because of the change of integration region and

gauge fixing condition for {z1, zn−1, zn}. Note that a given permutation corresponds to a right-handed

associahedron if the labels {z1, zn−1, zn} come in the canonical ordering, and to a left-handed one

otherwise.

Following [2], we will label the n(n− 3)/2 facets bounding the chamber Kn−1(In) with:

(12 · · · i), (23 · · · i+1), . . . , (n−i, n−i+1, · · · , n−1) for i = 2, 3, . . . , n−2. (4.16)

Each of these facets is a direct product of two other associahedra [28, 121]. In our notation, for a face

labelled by (ω) we have:

(ω) ∼= K|ω|(ω, −I)×Kn−|ω|(In\ω, I), (4.17)

where by In\ω we mean the complement of ω in In. We have introduced a new label I, which can be

thought of as corresponding to a puncture at infinity in both disk orderings. It inherits the phases

from the Koba–Nielsen factor u(z) corresponding particles in the set ω, and hence the puncture with

the label I can be represented as having associated momentum

kµI :=
∑
i∈ω

kµi = −
∑
i∈In\ω

kµi .

Similarly, in the second associahedron, the label −I has an associated momentum −kµI . Note that

when |ω| = 2, K2 is a point and hence the corresponding facets can be thought of as being isomorphic

13An alternative is to consider an orientable double cover of M̃0,n(R), whose combinatorics has been studied in
[117, 118]. Such space also has a known decomposition into (n − 2)! permutohedra [119], which in the language of
amplitudes corresponds to the choice of a Del Duca–Dixon–Maltoni basis [120].
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to a single associahedron.

Every codimension-k face F of Kn−1(In), for k = 1, 2, . . . , n − 3, can be uniquely specified as

an intersection of k facets H1, H2, . . . ,Hk from the above set (4.16), i.e., F = H1 ∩ H2 ∩ · · · ∩ Hk.

For each face F , the condition disjoint/contained is satisfied for all pairs of facets Hi = (ab · · · ) and

Hj = (cd · · · ). It says that their labels are either disjoint, ab · · · ∩ cd · · · = ∅, or one contains the other,

i.e., ab · · · ⊂ cd · · · or cd · · · ⊂ ab · · · . For example, for the associahedron K4(I5) we have five facets:

(12), (23), (34), (123), (234),

and its five codimension-2 faces, or vertices, are given by:

(12) ∩ (34), (12) ∩ (123), (23) ∩ (123), (23) ∩ (234), (34) ∩ (234),

which can be read off from the Figure 4.1.

It is known that two associahedra sharing a facet H from the family (4.16) have permutations

that differ by a transposition of the labels of H [115]. For example, K4(12345) and K4(14325) share

the facet (234). Whenever two associahedra are adjacent through a codimension-k face, they can be

reached by a series of k such transposition moves, up to a change of orientation. Conversely, if such a

series does not exist, then two associahedra are not adjacent. For instance, K4(12345) and K4(12453)

and adjacent through the vertex (123)∩ (23), which means that one can pass between them by crossing

through (12) and (123) in either order. At the same time, K4(12345) is not adjacent to K4(13524),

since they do not share any facets, see Figure 4.1. As a generalization of (4.17), a codimension-k face

is isomorphic to a product of k + 1 associahedra [28].

Finally, let us remark on orientations that associahedra induce on their faces. For each facet (ω)

from the set (4.16), Kn−1(In) and its neighbour induce the same orientation on (ω) if |ω| is odd, and

an opposite one if |ω| is even [2]. For example, K4(12345) and K4(14325) induce the same orientation

on (234), while K4(12345) and K4(13245) induce on opposite orientation on (23), as can be seen from

Figure 4.1. Orientations of the lower-dimensional faces can be deduced from applying the same rules

recursively. For a combinatorial description of the boundary operator acting on associahedra see [115].

In combinatorics, associahedron Kn−1 is a convex polytope whose vertices correspond to all legal

ways of inserting bracketings in an word of length n − 1 in the following way. A pair of brackets is

assigned to each of the n(n−3)/2 facets (4.16). Then, two facets meet if and only if their bracketings are

compatible, i.e., satisfy the disjoint/contained condition. Repeating this procedure, every codimension-k

face F corresponds to a correct insertion of k pairs of brackets. The number of such faces is given by

T (n− 2, k+ 1) [122]. Another interpretation, originally due to Loday [109], is that of rooted trees with

n− 1 leaves, where a face F is a tree with k + 1 nodes. We illustrate this in Figure 4.2.14. We will

think of the rooted trees as Feynman diagrams [4].

Let us now prove the statement that intersection numbers of twisted cycles give rise to the rules

for evaluating the inverse KLT kernel mα′(β|γ) given in [1]. We split the arguments into two parts.

Firstly, we show that self-intersection numbers are proportional to diagonal amplitudes mα′(In|In) in

Lemma 4.1. Secondly, we show that the rules for evaluating arbitrary intersection numbers reduce to

the self-intersections as building blocks according to the graphical rules of [1] in Theorem 4.1.

14For more visualizations of associahedra and tiling of moduli spaces see the work of Devadoss, e.g., [28, 30, 123, 124].
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(12) (23)

(34)
(234)

(12)

(123)

(23)

Figure 4.2. Combinatorial interpretation of the associahedra K2(I3), K3(I4), and K4(I5) in terms of rooted
trees. Each face has an associated factorization channel.

Lemma 4.1. The self-intersection number of the twisted cycle with identity permutation, C̃(In), is

equal to the diagonal α′-corrected bi-adjoint scalar amplitude mα′(In|In) given in [1] up to a global

factor,

〈C(In),C(In)〉 =

(
i

2

)n−3

mα′(In|In). (4.18)

Proof. Kita and Yoshida showed [17] that for general n the self-intersection number is given as a sum

over contributions from barycenters of all the codimension-(0, 1, . . . , n− 3) faces of the associahedron.

The contribution coming from a codimension-k face F = H1 ∩H2 ∩ · · ·Hk is a product of k terms

1/(e2πisHi − 1) for every facet Hi intersecting at F . More explicitly, we have:

〈C(In),C(In)〉 = (−1)n−1
n−3∑
k=0

∑
F=H1∩···∩Hk

1(
e2πisH1 − 1

) (
e2πisH2 − 1

)
· · ·
(
e2πisHk − 1

) , (4.19)

where we have also included the global sign [17]. The term in the sum corresponding to k = 0, i.e.,

the one coming from the barycenter of the whole associahedron is regarded as 1. Examples of the

evaluation of (4.19) were given in (4.8) for n = 4, and in (4.15) for n = 5.

Another way of thinking about the self-intersection number (4.19) is using the interpretation of

the associahedron described by Feynman diagrams, as illustrated in Figure 4.2. In this way, the sum

(4.19) proceeds over all possible Feynman diagrams in an auxiliary theory described by the following

rules. Every internal edge with momentum pµ gives rise to a propagator −1/(eiπp
2 − 1). The theory

also has an infinite number of Feynman vertices with valency p = 3, 4, 5, . . ., each coming with a factor

of (−1)p−1. It is straightforward to check that the signs give rise to the correct prefactor in (4.19).

It is useful to construct equations of motion for such a theory. Let us use a normalization such that

factors of i/2 from (4.18) are absorbed into propagators and vertices:

− i
2

(
eiπ� − 1

)
φ =

∞∑
p=3

(
−2

i

)p−3

φp−1 =
φ2

1− 2iφ
. (4.20)

Here, φ is a real scalar matrix-valued field, and we have denoted � := ∂µ∂
µ. The left-hand side gives

a normalized propagator −2/(i(eiπp
2 − 1)), while the terms on right-hand side give rise to p-valent

vertices with factors (−2/i)p−3. The additional minus signs are responsible for the factor of (−1)n−3

in (4.19). One can verify that such a change of normalization yields a global factor for an amplitude
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that counterweights the prefactor of (4.18).

It was also conjectured in [1] that the α′-corrected bi-adjoint scalar amplitudes mα′(In|In) can be

expanded using another auxiliary theory with propagators given by 1/ tan π�
2 . The equation of motion

then reads: (
tan

π�
2

)
ϕ = V ′[ϕ], (4.21)

where the scattering field is denoted by ϕ and the functional V ′[ϕ] describes Feynman rules for the

vertices. The goal is to prove this theory yields the same amplitudes as the one described by (4.20),

with the function V ′[ϕ] generating Catalan numbers as proposed in [1].

Scattering amplitudes can be obtained from both (4.20) and (4.21) using the following standard

procedure, see, e.g., [125]. One introduces a coupling constant g, such that when g = 0 the theory

becomes free, i.e., the scattering field has no self-interactions. It is then possible to Taylor expand

the field around g = 0, so that equations of motion can be solved iteratively. On the support of this

solution, the left-hand sides of (4.20) and (4.21) become generating functions of integrated scattering

amplitudes. It is important that the left-hand sides contain the inverse propagator, which is responsible

for striping away the only remaining external propagator. The bottom line is that in order for both

equations of motion to produce the same amplitudes, the right-hand sides of both (4.20) and (4.21)

have to be equal on the support of both equations of motion.

Given this knowledge, let us find V ′[ϕ] that gives the same amplitudes in both theories. Equating

right-hand sides of (4.20) and (4.21) gives:(
tan

π�
2

)
ϕ = − i

2

(
eiπ� − 1

)
φ and V ′[ϕ] =

φ2

1− 2iφ
. (4.22)

Let us expand the tangent in the first equation to get:(
eiπ� − 1

)(1

i

(
eiπ� + 1

)−1

ϕ+
i

2
φ

)
= 0.

Since the term in the second brackets is not in the kernel of
(
eiπ� − 1

)
for generic momenta, it has to

vanish. Formally multiplying the term in the second brackets by the operator i
(
eiπ� + 1

)
from the

left, we obtain:

0 = ϕ− 1

2

(
eiπ� + 1

)
φ = ϕ− 1

2

(
eiπ� − 1

)
φ− φ.

We recognize the second term as being proportional to the left-hand side of the equation of motion

(4.20). On the support of (4.20) we have:

ϕ− iV ′[ϕ]− φ = 0.

Finally, using the second equation in (4.22), we can eliminate φ in order to get a constraint on the

functional V ′[ϕ]:

V ′[ϕ]2 − V ′[ϕ] + ϕ2 = 0.

This equation has two solutions for V ′[ϕ], however one of them has a constant independent of ϕ, which
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would not have an interpretation as a Feynman vertex in (4.21). The other solution is

V ′[ϕ] =
1

2

(
1−

√
1− 4ϕ2

)
=

∞∑
p=3
odd

C(p−3)/2 ϕ
p−1

which is a generating function for the Catalan numbers C(p−3)/2 [126]. There is an infinite number of

vertices of odd valency p = 3, 5, 7, 9, . . ., each contributing to a factor C(p−3)/2 equal to 1, 1, 2, 5, . . .

respectively. This verifies the conjecture posed in [1] and concludes the proof of (4.18).

Remark. Total number of terms in the 1/(eiπp
2−1) representation is given by the Schröder–Hipparchus

number [127]. Total number of terms in the 1/ tan π�
2 representation is given by the series [128]. For

n ≥ 4 the latter is always smaller.

Theorem 4.1. The intersection number of two twisted cycles C̃(β) and C̃(γ) is equal to the α′-corrected

bi-adjoint scalar amplitude mα′(β|γ) given in [1] up to a global factor,

〈C(β),C(γ)〉 =

(
i

2

)n−3

mα′(β|γ). (4.23)

Proof. We will show that evaluation of intersection numbers gives rise to a recursion relation which is

the same as the graphical rules found in [1].

Let C̃(β) and C̃(γ) be two twisted cycles on M̃0,n. A codimension-h intersection face F of the

corresponding associahedra Kn−1(β) and Kn−1(γ) can be written as

F := Kn−1(β) ∩Kn−1(γ) = H1 ∩H2 ∩ . . . ∩Hh. (4.24)

If F = ∅ then 〈C(β),C(γ)〉 = 0, since the cycles are not adjacent. If F = Kn−1(β) = Kn−1(γ), then

necessarily C̃(β) = C̃(γ) up to an orientation, which gives the self-intersection number ±〈C(β),C(β)〉
reducing to the case proven in Lemma 4.1.

Otherwise, let us first fix orientations of both twisted cycles to be the same. If a change of

orientation was needed and n is odd then the intersection number picks up a minus sign. Since F

is also a codimension-h face belonging to both Kn−1(β) and Kn−1(γ), the labels of the facets in the

set {H1, H2, . . . ,Hh} are necessarily pairwise disjoint/contained. Let us pick one such facet H, such

that all other Hi either contain H or are disjoint with H. Permutation β then splits naturally into

two parts, β = (H,β\H), where β\H denotes the complement of H in β. Similarly, for γ we have

γ = (H, γ\H).

Let us consider intersection of these two twisted cycles locally as a product of the one in the

real orthogonal direction H⊥ times the one within H. Since the intersection in H⊥ reduces to the

previously studied case (4.13), we have:

〈C(β),C(γ)〉 =
i

2

(−1)|H|−1

sinπsH
〈C(β)|H , C(γ)|H〉

=
i

2

(−1)|H|−1

sinπsH
〈C(H, −I), C(H, −I)〉 × 〈C(β\H, I), C(γ\H, I)〉 , (4.25)

where we have used that the facet H is a product of two smaller twisted cycles according to (4.17).

The new twisted cycles have loading naturally induced from the one of C̃(β) and C̃(γ). A potential

minus sign arises since β and γ induce different orientations on H when |H| is even. The new label I
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corresponds to momentum kµI =
∑
i∈H k

µ
i . Since |H| ≥ 2, the right-hand side of (4.25) is a product of

a self-intersection number and an intersection number for a cycle with smaller n. Thus, it provides a

recursion relation that can be used to evaluate an arbitrary intersection number. Simple arithmetic

reveals that the overall prefactor becomes (i/2)n−3 after performing all the recursive steps.

It follows that the intersection number (4.23) receives contributions from the intersection face

F = H1 ∩H2 ∩ · · · ∩Hh constructed out of the factors 1/ sinπsHi and 1/ tanπsH′ for H ′ ⊂ Hi.

Let us demonstrate how to conveniently calculate (4.25) using graphical rules of [1].15 We will do

so in two steps, first giving the rule for the absolute value of (4.23) and then its sign. One can arrive at

the permutation γ by a series of h label flips H1, H2, . . . ,Hh, which are the same as in (4.24), up to a

final orientation change. Let us illustrate both permutations as circles connecting the labels (1, 2, . . . , n)

in the corresponding orders. We start with two orderings β, and perform a series of flips H1, H2, . . . ,Hh

on the second permutation to arrive at the ordering γ, possibly up to a global orientation change, as

follows:

β1

β2βn

β3

· · ·

H7−−→

βi

βj

HI

 {H1,H2,...,Hh}\H7−−−−−−−−−−−−→

βi

βj

H
I



Here we have arranged the flips so that H used in (4.25) is the first one performed. The remaining flips

{H1, H2, . . . ,Hh} \ {H} do not change the fact that there exists a crossing point I when the labels

in H are brought arbitrarily close together. The rule is then to associate a self-intersection number

〈C(H, −I),C(H, −I)〉 to the polygon created by labels (H,−I), a factor 1/ sinπsH = 1/ sinπsI to

the intermediate edge, and an intersection number 〈C(β\H, I),C(γ\H, I)〉 to the remainder of the

diagram. Repeating this procedure recursively, one obtains the full intersection number (4.23).

Finally, we prove that the sign of (4.23) is given by (−1)w(β|γ)+1, where w(β|γ) is the relative

winding number of the two permutations, following the prescription of [1]. Keeping track of signs in the

above algorithm, we start with two identical permutations β, for which w(β|β) = 1 gives a plus sign, as

expected. Then applying a single flip H gives a sign (−1)|H|−1. Similarly, the winding number changes

by |H| − 1, giving the same contribution. In the final step, a potential orientation flip would contribute

(−1)n, while the winding number changes by n− 2, thus giving an identical sign contribution. This

shows that (−1)w(β|γ)+1 calculates the correct sign of (4.23) and hence concludes the proof.

Example 4.1. Let us illustrate this procedure in practice by calculating 〈C(12345),C(13245)〉, or

equivalently mα′(12345|13245). After drawing a circle diagram with both permutations (12345) and

(13245), we find the dual of the polygon created by the red loop. This results in a diagram connecting two

subamplitudes, mα′(23,−I|23,−I) and mα′(451I|451I) with kµI = kµ2 + kµ3 , with the propagator given

by 1/ sinπs23. The first subamplitude is equal to 1, while the second one is a sum of two propagators

given by tangents in the factorization channels s34 and s51, according to (4.12). To summarize, we

15Similar combinatorial rules for studying adjacency of associahedra in M̃0,n(R) were described in [28] using an
interpretation of the associahedron Kn−1 as a configuration space of triangulations of n-sided polygons.
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have:

1

2

3

4

5

=

1

2

3

4

5

= −
(
i

2

)2
1

sinπs23

(
1

tanπs45
+

1

tanπs51

)
.

The minus sign arises because of the winding number w(12345|13245) = 2. The above result encodes

the fact that the two associahedra K4(12345) and K4(13245) share the face (23), as well as two vertices

(23) ∩ (123) and (23) ∩ (234), see Figure 4.1.

Example 4.2. Let us consider another example by evaluating 〈C(12345),C(12453)〉, or equivalently

mα′(12345|12453). This time, the dual graph is composed of three subamplitudes, each of which is

trivalent and hence contributes the contact term 1. The two propagators in the s12 and s45 channels

are given by sine factors, as follows:

1

2

3

4

5

=

1

2

3

4

5

= −
(
i

2

)2
1

sinπs12

1

sinπs45
.

The winding number is w(12345|12453) = 2, giving an overall minus sign. Since there is only one

trivalent graph contributing, it means that the associahedra K4(12345) and K4(12453) share only a

single vertex (12) ∩ (123), see Figure 4.1.

Example 4.3. Next, let us consider a six-point example of 〈C(123456),C(124365)〉, or equivalently

mα′(123456|124365). The dual diagram reduces to three subamplitudes, two of which give 1, while the

third contributes a four-point self-intersection number (4.12). Recall that self-intersection numbers

themselves are given by diagrams with vertices of odd valency and propagators built out of tangent

functions [1]. In our case, we have:

1

2

34

5

6

=

1

2

34

5

6

=

(
i

2

)3
1

sinπs34

1

sinπs56

(
1

tanπs12
+

1

tanπs234

)
.

The plus sign arises because w(123456|124365) = 3. The above answer also encodes the fact that the two

associahedra K5(123456) and K5(124365) share the vertices (34)∩(1234)∩(12) and (34)∩(1234)∩(234),

as well as the codimension-2 edge (34) ∩ (1234) between them.

Example 4.4. Finally, let us consider a 12-point example of the intersection number of twisted cycles

C̃(123456789, 10, 11, 12) and C̃(127856, 11, 12, 9, 10, 34). For these two permutations the dual diagram
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is trivalent and hence given as a product of propagators of the sine type as follows:

1
2

3

4

5

6
7

8

9

10

11

12

=

1
2

3

4

5

6
7

8

9

10

11

12

= −
(
i

2

)9
1

sinπs12

1

sinπs34

1

sinπs56

1

sinπs78

1

sinπs9,10

× 1

sinπs11,12

1

sinπs1234

1

sinπs5678

1

sinπs9,10,11,12
.

The winding number equals to 4, which gives an overall minus sign. The corresponding nine-dimensional

associahedra intersect only at a single vertex (12) ∩ (34) ∩ (56) ∩ (78) ∩ (9, 10) ∩ (123456789, 10) ∩
(1234) ∩ (5678) ∩ (12345678) in the moduli space. For more examples of how to evaluate mα′(β|γ) we

refer the reader to [1].

In the field theory limit, α′ → 0, only the faces of maximal codimension contribute. In other

words, a given intersection number reduces to a sum over trivalent diagrams. Since the intersection

number has only terms coming from the intersection face, F = Kn−1(β) ∩Kn−1(γ), these diagrams

are necessarily planar with respect to both orderings, β and γ. This gives rise to the usual definition of

the bi-adjoint scalar double-partial amplitudes m(β|γ) [7, 8].

In general, since each facet of a given associahedron can be written as a product of lower-dimensional

associahedra according to (4.17), the corresponding scattering amplitude factors into two lower-point

amplitudes connected by a label I. Physically, this is the statement of unitarity. Since the regularized

twisted cycles are given by the generalized Pochhammer contour, near the facet it receives the

contribution of 1/(e2πisI − 1), which contains an infinite number of simple poles at sI = 0,±1,±2, . . .,

allowing propagation of massless, massive, and tachyonic modes. Physically, this corresponds to the

statement of locality. Both of these properties are associated to twisted cycles. In the case of pairings

between twisted cycles and twisted cocycles, such as the ones giving rise to open string amplitudes

(3.18), it is the role of the cocycle to select if a given factorization channel is utilized or not.
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Section 5

Conclusion

In this work we have shed new light on the Kawai–Lewellen–Tye relations [6]. By applying the tools

of twisted de Rham theory, we have shown that they follow from the underlying algebro-topological

identities known as the twisted period relations. On the way, we have formulated tree-level string theory

amplitudes in a way that makes connections to combinatorics and topology. In particular, we have

explored the relation to the polytope called the associahedron. We have shown that the inverse of the

KLT kernel can be computed from the knowledge of how associahedra intersect one another in the

moduli space. From this perspective, the inverse of the KLT kernel appears to be a more fundamental

object than the kernel itself, in both string and field theory. Introduction of twisted de Rham theory

in the study of string integrals opens new directions not only for the KLT relations, but also scattering

amplitudes in a more general setting.

Since the formalism of twisted de Rham theory applies to a broad spectrum of topological spaces

and multi-valued functions, one may wonder about generalizations of the calculations presented in this

work to other cases. Indeed, the most natural extension is to consider higher-genus amplitudes in string

theory. This direction looks particularly promising in the light of the recent analysis of monodromy

properties of higher-genus string integrals by Tourkine and Vanhove [129], as well as Hohenegger and

Stieberger [130]. A related construction of KLT relations for one-loop field theory integrands has

been recently given by He, Schlotterer, and Zhang [131, 132]. We leave the study of these intriguing

questions for future research. Aside of string theory, intersection numbers of twisted cycles have been

previously calculated in the context of conformal field theories by Mimachi and Yoshida [2, 85] in order

to explain identities between correlation functions found by Dotsenko and Fateev [133, 134]. It would

be interesting to investigate whether these identities can be further generalized, perhaps even to the

case of the conjectured conformal field theory on the null boundary of asymptotically-flat spacetimes

[135].

The Deligne–Mumford–Knudsen compactification of the moduli space M0,n can be constructed as

a Chow quotient of the Grassmannian Gr(2, n) [113]. It is also known that planar amplitudes in the

N = 4 super Yang–Mills (SYM) theory—which are the field theory limit of superstring amplitudes—can

be defined on the positive Grassmannian [5]. Additionally, they also have a description in terms of

a geometric object found by Arkani-Hamed and Trnka [136, 137]. It is natural to expect it to be

related to the associahedron described in this work. The problem is somewhat akin to the so-called

Grassmanian dualities [138] with an additional complication of the α′ corrections. The main obstacle

comes from the fact that our results are largely independent of the spacetime dimension and precise

theory under consideration, as it only suffices that its amplitudes have a BCJ representation in terms

of Z-integrals. Associahedra also appear in a slightly different context of cluster algebras used to study

N = 4 SYM amplitudes [139, 140].16

One may then wonder about seeing the field theory limit from a different point of view. Indeed, one

such possibility coming naturally from twisted de Rham theory is to consider the dual twisted homology

and cohomology defined with the multi-valued function u−1(z) instead of u(z). This corresponds to

reversing the string parameter α′ in one of the amplitudes. An equivalent procedure has been recently

studied in the context of string theory by Siegel and collaborators [142–145]. In particular, Huang,

Siegel, and Yuan showed that considering a chiral version of KLT relations, one obtains the field theory

16Some steps in the direction of applying twisted de Rham theory to N = 4 SYM amplitudes have been taken in [141].
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amplitude as follows [143]:

AGR =
∑

β∈B, γ∈C

Aopen(β)m−1
α′ (β|γ)Aopen

chiral(γ). (5.1)

where we have used the same notation as in (3.19), except Aopen
chiral(γ) denotes a string amplitude with a

flipped spacetime signature ηµν → −ηµν , or equivalently a replacement α′ → −α′. The equation (5.1)

is in fact equivalent to the original twisted Riemann period relation found in [21]. In this interpretation,

the field theory amplitude AGR is an intersection number of twisted cocycles, given by the pairing:

Hn−3
c (X,Lω)×Hn−3(X,L∨ω) −→ C,

where the dual system is defined through L∨ω = L−ω and one of the cohomologies is with compact support

[21]. Methods for evaluation of this pairing have been given in [21, 77–81]. In particular, Matsumoto

gave a simple proof [79] of the fact that these intersection numbers localize on the intersections of the

singular locus of u(z). Translating to the string theory case, with the bases of twisted cocycles given by

(3.12), the intersection numbers are given by a sum of multi-dimensional residues around the vertices

of all the associahedra in the moduli space M̃0,n. A given vertex contributes if only if the differential

form PT(β) ∧ PT(γ) has a double pole at the place corresponding to this vertex. Since both differential

forms are logarithmic, double poles arise only if the two Parke–Taylor factors share a factorization

channel. In this way, the sum over all residues receives contributions only from the vertices laying

on the intersection Kn−1(β) ∩Kn−1(γ) in the moduli space. This gives rise to the bi-adjoint scalar

amplitude m(β|γ) as a sum over all Feynamn diagrams compatible with both permutations β and γ.

It is also possible to consecutively apply the global residue theorem (GRT) [82]—in a way analogous to

the one considered by Dolan and Goddard [146]—in order to obtain a dual description that localizes

on the residues around the scattering equations
∧n−2
i=2{|Ei| = ε}. In pictures, the duality translates

between different types of residues as follows:

GRT←−−−→

∏n−2
i=2 δ(Ei)

It is known that when all the exponents of the Koba–Nielsen factor (3.11) are positive, there are (n−3)!

solutions of the constraint
∏n−2
i=2 δ(Ei) laying in the hypercube (0, 1)n−3 ⊂ M̃0,n(R) with one solution

per associahedron [147]. Of course, the advantage of this approach is the fact that the residues are

computed far away from the faces, so no blowup is necessary for explicit computations. The resulting

formula for the intersection number of twisted cocycles reads, up to normalization factors:∮
∧n−2
i=2 {|Ei|=ε}

PT(β) ∧ PT(γ)∏n−2
i=2 Ei

(5.2)

This is the so-called Cachazo–He–Yuan formula [7, 148] for the bi-adjoint scalar amplitude m(β|γ).

Other amplitudes, such as AGR, can be expanded in the basis of m(β|γ), as in (3.18). Notice that
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the field theory limit is obtained in the limit of vanishing twist ω = α′
∑n−2
i=2 Ei dzi. It is tempting to

suggest that there could exist an alternative derivation of the CHY formulae by imposing a constraint

on ω, perhaps in relation to Morse theory discussed in [14]. It would also be interesting to find out how

it relates to other approaches of connecting CHY formalism and string theory, see, e.g., [145, 149–153],

in particular in the context of ambitwistor strings [154]. We leave the study of these connections for

future investigations.

Also in the field theory limit, there exists another instance of relations between gravity and

Yang–Mills amplitudes known as the BCJ double-copy [71]. In this context, Carrasco studies the space

of trivalent graphs and its relation to associahedra and permutohedra [155]. It would be interesting to

see how this story fits with ours. Here, twisted cycles play the role of colour factors, while twisted

cocycles play the role of kinematics factors. Moreover, blowup of the moduli space M̃0,n—or its double

cover [117]—provides a natural way of understanding the configuration space of trivalent diagrams as

its limit. We hope this language could contribute to deeper understanding of colour-kinematics duality

and its connection to KLT relations, particularly at higher loops.

Last but not least, it is important to understand questions arising from this work on the level of

rigour of mathematics. Such issues involve, for example, study of the Hodge structure of the intersection

form for twisted cohomology groups (3.15), finding an algebro-topological derivation of the form of

the circuit matrix given in (3.21), or study of the formula (5.2) in the context of Morse theory. From

the point of view of combinatorics, further study of the moduli spaces of marked bordered Riemann

surfaces of higher genus and their tilings, along the lines of [156, 157], is important in understanding

higher-loop generalizations of KLT relations. It is also known that string amplitudes have a rich motivic

structure, see, e.g., [158–160]. In particular, J-integrals (2.14) and Z-integrals (2.12) can be related by

[72]:

J(β|γ) = sv [Zβ(γ)] ,

where sv is the single-valued projection introduced by Brown [161, 162]. This relation bears resemblance

to the twisted period relations for the basis of twisted cycles and cocycles (3.17). It would interesting

to study the connection between motivic structure and twisted de Rham theory in this context.
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Appendix A

Field Theory Limit from the Generalized Pochhammer Contour

As was shown in Section 3, tree-level open string partial amplitudes can be understood as pairings

between twisted cycles and twisted cocycles. In this appendix, we show how to obtain its field theory

limit, α′ → 0, by utilizing the generalized Pochhammer contour and blowup of the moduli space

described in Section 4.1.

Recall that open string amplitudes can be expanded in the basis of Z-theory amplitudes (2.12).

They in turn are given by the pairing:

Hn−3(X,Lω)×Hn−3(X,∇ω) −→ C,

denoted by Zβ(γ) = 〈C(β),PT(γ)〉, using the basis of twisted cycles (3.9) and cocycles (3.12) for string

amplitudes. We also employ the regularization reg C̃(β) in order to make twisted cycles compact, and

work on the blowup of the moduli space, M̃0,n. Notice that the information about the factors of α′ of

Zβ(γ) is entirely contained in the regularized twisted cycle reg C̃(β). In order to take the field theory

limit, let us count the powers of α′ contributing to different pieces of the generalized Pochhammer

contour based on the associahedron Kn−1(β).

Each face F of codimension k can be written as F = H1 ∩ H2 ∩ · · · ∩ Hk. Near each facet Hi,

reg C̃(β) picks up a factor 1/(e2πiα′sHi − 1), which in the α′ → 0 limit scales as 1/α′. We conclude

that the string integral in the α′ → 0 limit receives leading contributions from the faces F of maximal

codimension n− 3, or in other words, vertices of the associahedron Kn−1(β). Since all the singularities

of the string amplitude are encapsulated in the choice of the generalized Pochhammer contour, and

the integrals to be performed are finite when α′ → 0, we can take u(z) → 1 in the same limit. To

summarize, we have:

lim
α′→0
〈C(β),PT(γ)〉 =

1

(2πiα′)n−3

∑
v=H1∩···∩Hn−3

1∏n−3
i=1 (±sHi)

∮
|Hi|=ε

i=1,...,n−3

PT(γ). (A.1)

where the sum proceeds over all the Catalan number Cn−2 [126] of vertices v of Kn−1(β). The integrals

are performed along an appropriately oriented tubular neighbourhood of each vertex v.17

Let us work out explicit examples of the evaluation of (A.1). One needs to be extra careful about

sign factors coming from orientation induced by the associahedron on the vertices. Let us illustrate

this fact for n = 4. In the α′ → 0 limit, the regularized twisted cycle defined in (4.5) becomes

lim
α′→0

reg
−−−→
(0, 1) =

1

α′

(
S(ε, 0)

2πis
− S(1− ε, 1)

2πit

)
.

Recall that we use S(a, z) to denote a positively-oriented circular contour starting at a and with a

centre at z. The contours around the two vertices of K3(I4) come with different signs due to different

orientations induced from
−−−→
(0, 1). Let us now evaluate (A.1) for a four-point example 〈C(1234),PT(1234)〉.

17For a reference on the computation of multi-dimensional contour integrals see, e.g., Chapter 5 of [82].
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From the pole around z = 0 we obtain:

lim
α′→0
〈C(1234),PT(1234)〉

∣∣∣∣
z=0

=
1

2πiα′s

∮
|z|=ε

dz

(0− z)(z − 1)
=

1

α′s
, (A.2)

and from around z = 1 we find the contribution:

lim
α′→0
〈C(1234),PT(1234)〉

∣∣∣∣
z=1

= − 1

2πiα′t

∮
|z−1|=ε

dz

(0− z)(z − 1)
=

1

α′t
. (A.3)

Hence we find the answer which is a sum over two Feynman diagrams in the s and t channels. The two

contributions worked out to give the same sign. In general, all the vertices contributing to (A.1) will

give the same sign. For another choice of the twisted cocycle, PT(2134), we have:

lim
α′→0
〈C(1234),PT(2134)〉 =

1

2πiα′s

∮
|z|=ε

dz

(z − 0)(0− 1)
= − 1

α′s
.

Notice that contribution from the vertex z = 1 vanishes, since PT(2134) does not have a pole at z = 1.

Similarly, for PT(1324) we obtain:

lim
α′→0
〈C(1234),PT(1324)〉 = − 1

2πiα′t

∮
|z−1|=ε

dz

(0− 1)(1− z)
= − 1

α′t
,

since there are no poles at z = 0.

For higher-point cases one needs to consider a blowup of the integrals (A.1). Let us illustrate the

procedure with an n = 5 example for 〈C(12345),PT(12345)〉. The corresponding associahedron K4(I5)

has five vertices. The contribution from (z2, z3) = (0, 1) can be calculated straightforwardly:

lim
α′→0
〈C(12345),PT(12345)〉

∣∣∣∣
(12)∩(34)

= − 1

(2πiα′)2

1

s12 s34

∮
|z2|=ε
|z3−1|=ε

dz2 ∧ dz3

(0− z2)(z2 − z3)(z3 − 1)

= − 1

α′2 s12 s34
.

Here we have used the tubular contour given by {|z2| = ε} ∧ {|z3− 1| = ε}. Next, near (z2, z3) = (0, 0)

we perform a blowup using the change of variables from {z2, z3} into {y2, τ} given by z2 = τy2 and

z3 = τ . Since dz2 ∧ dz3 = τdy2 ∧ dτ , we have the contribution:

lim
α′→0
〈C(12345),PT(12345)〉

∣∣∣∣
(123)

=
1

(2πiα′)2

∑
H∈{(12),(23)}

1

s123(±sH)

∮
|H|=ε
|τ |=ε

τdy2 ∧ dτ
(0− τy2)(τy2 − τ)(τ − 1)

= − 1

2πiα′2

∑
H∈{(12),(23)}

1

s123(±sH)

∮
|H|=ε

dy2

(0− y2)(y2 − 1)

= − 1

α′2s123

(
1

s12
+

1

s23

)
.

In the first line, the powers of τ add up to create a simple pole dτ/τ , over which we have integrated.

In the second line we have used the result of the four-point computations (A.2) and (A.3) with the

appropriate signs for sH , H ∈ {(12), (23)}. For the remaining two vertices near (z2, z3) = (1, 1) we use
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the variables τ, y3 defined through z2 = 1 − τ and z3 = 1 − τy3, so that dz2 ∧ dz3 = τdτ ∧ dy3. A

similar calculation reveals:

lim
α′→0
〈C(12345),PT(12345)〉

∣∣∣∣
(234)

=
1

(2πiα′)2

∑
H∈{(23),(34)}

1

s234(±sH)

∮
|τ |=ε
|H|=ε

τdτ ∧ dy3

(−1 + τ)(−τ + τy3)(−τy3)

= − 1

2πiα′2

∑
H∈{(23),(34)}

1

s234(±sH)

∮
|H|=ε

dy3

(0− y3)(y3 − 1)

= − 1

α′2s234

(
1

s23
+

1

s34

)
,

where once again we have used a residue theorem to integrate over the simple pole dτ/τ . Summing up

all the contributions and using momentum conservation, we have

lim
α′→0
〈C(12345),PT(12345)〉 = − 1

α′2

(
1

s12s34
+

1

s23s45
+

1

s34s51
+

1

s45s12
+

1

s51s23

)
.

Using the same procedure with different cocycles, it is straightforward to verify other examples, for

instance:

lim
α′→0
〈C(12345),PT(13245)〉 =

1

α′2s23

(
1

s45
+

1

s51

)
,

lim
α′→0
〈C(12345),PT(12453)〉 =

1

α′2s12s45
.

In general, in the α′ → 0 limit one finds that Z-integrals (2.12) collapse to the bi-adjoint scalar

partial-amplitudes [70]:

lim
α′→0
〈C(β),PT(γ)〉 = −(−α′)3−nm(β|γ),

where we have included the normalization factor. The method of computing this result using the

generalized Pochhammer contour presented above, despite having a simple geometrical interpretation

in terms of the associahedron, is not particularly efficient. In this light, it would be interesting to

study systematic ways of evaluating (A.1) and its higher-order terms, which could provide a new way

of performing the α′ expansion.
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[38] P. Deligne, Équations différentielles à points singuliers réguliers, vol. 163 of Lecture Notes in Math.

Springer, 1970.

[39] M. Kita and M. Noumi, On the structure of cohomology groups attached to the integral of certain

many-valued analytic functions, Proc. Japan Acad. Ser. A Math. Sci. 58 (1982) 97–100.

[40] M. Kita, On hypergeometric functions in several variables I. New integral representations of Euler type,

Japan J. Math. 18 (1992) 25–74.

[41] M. Kita, On hypergeometric functions in several variables II. The Wronskian of the hypergeometric

functions of type (n+ 1,m+ 1), J. Math. Soc. Japan 45 (10, 1993) 645–669.

– 45 –

http://dx.doi.org/10.1017/S0027763000005304
http://dx.doi.org/10.1007/BF02684599
http://dx.doi.org/10.1007/BF02684599
http://dx.doi.org/10.7146/math.scand.a-11642
http://dx.doi.org/10.7146/math.scand.a-12001
http://dx.doi.org/10.7146/math.scand.a-12001
http://dx.doi.org/10.7146/math.scand.a-12002
http://dx.doi.org/10.1007/BF01589496
http://dx.doi.org/10.1007/BF01589496
https://arxiv.org/abs/math/9807010
http://dx.doi.org/10.1007/JHEP04(2015)055
https://arxiv.org/abs/1307.5124
https://arxiv.org/abs/math-ph/0405011
http://dx.doi.org/10.3792/pja/1195518895
http://dx.doi.org/10.3792/pja/1195518829
http://dx.doi.org/10.2969/jmsj/02720248
http://dx.doi.org/10.2969/jmsj/02720248
http://dx.doi.org/10.3836/tjm/1270214894
http://dx.doi.org/10.3836/tjm/1270214894
http://dx.doi.org/10.3836/tjm/1270214323
http://dx.doi.org/10.3836/tjm/1270214323
http://dx.doi.org/10.3792/pjaa.58.97
http://dx.doi.org/10.4099/math1924.18.25
http://dx.doi.org/10.2969/jmsj/04540645


[42] M. Kita, On vanishing of the twisted rational de Rham cohomology associated with hypergeometric

functions, volume=135, Nagoya Mathematical Journal (1994) 55–85.

[43] I. M. Gelfand, General theory of hypergeometric functions, Soviet Math. Dokl. 33 (1986) 573–577.

[44] I. M. Gelfand and S. I. Gelfand, Generalized hypergeometric equations, Soviet Math. Dokl. 33 (1986)

643–646.

[45] M. Kita and K. Matsumoto, Duality for hypergeometric functions and invariant Gauss-Manin systems,

Compositio Mathematica 108 (1997) 77–106.

[46] K. Aomoto, M. Kita, P. Orlik and H. Terao, Twisted de Rham cohomology groups of logarithmic forms,

Advances in Mathematics 128 (1997) 119–152.

[47] Y. Haraoka, Hypergeometric Functions. Asakura-shoten, 2002.

[48] H. Kimura, Introduction to Hypergeometric Functions. Saieinsu-sha, 2007.

[49] P. Orlik and H. Terao, Arrangements of Hyperplanes. Grundlehren der mathematischen Wissenschaften.

Springer Berlin Heidelberg, 1992, 10.1007/978-3-662-02772-1.

[50] M. Nakahara, Geometry, Topology and Physics. CRC Press, 2003.

[51] R. Bott and L. Tu, Differential Forms in Algebraic Topology. Graduate Texts in Mathematics. Springer

New York, 2013, 10.1007/978-1-4757-3951-0.

[52] Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C40

(2016) 100001.

[53] G. Veneziano, Construction of a crossing-symmetric, Regge behaved amplitude for linearly rising

trajectories, Nuovo Cim. A57 (1968) 190–197.

[54] M. A. Virasoro, Alternative constructions of crossing-symmetric amplitudes with Regge behavior, Phys.

Rev. 177 (1969) 2309–2311.

[55] J. A. Shapiro, Electrostatic analog for the Virasoro model, Phys. Lett. B33 (1970) 361–362.

[56] Z. Koba and H. B. Nielsen, Reaction amplitude for n mesons: A Generalization of the

Veneziano-Bardakci-Ruegg-Virasoro model, Nucl. Phys. B10 (1969) 633–655.

[57] Z. Koba and H. B. Nielsen, Manifestly crossing invariant parametrization of n meson amplitude, Nucl.

Phys. B12 (1969) 517–536.

[58] E. D’Hoker and D. H. Phong, The Geometry of String Perturbation Theory, Rev. Mod. Phys. 60 (1988)

917.

[59] N. Berkovits, Super Poincare covariant quantization of the superstring, JHEP 04 (2000) 018,

[hep-th/0001035].

[60] S. Stieberger, Open & Closed vs. Pure Open String Disk Amplitudes, 0907.2211.

[61] C. R. Mafra, O. Schlotterer and S. Stieberger, Complete N-Point Superstring Disk Amplitude II.

Amplitude and Hypergeometric Function Structure, Nucl. Phys. B873 (2013) 461–513, [1106.2646].

[62] C. R. Mafra, O. Schlotterer and S. Stieberger, Complete N-Point Superstring Disk Amplitude I. Pure

Spinor Computation, Nucl. Phys. B873 (2013) 419–460, [1106.2645].

[63] A. Cappelli, E. Castellani, F. Colomo and P. Di Vecchia, The Birth of String Theory. The Birth of

String Theory. Cambridge University Press, 2012.

[64] M. Green, J. Schwarz and E. Witten, Superstring Theory: Volume 2, Loop Amplitudes, Anomalies and

Phenomenology. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 1988.

– 46 –

http://dx.doi.org/10.1017/S0027763000004955
http://dx.doi.org/10.1023/A:1000297607512
http://dx.doi.org/10.1006/aima.1997.1631
http://dx.doi.org/10.1007/978-3-662-02772-1
http://dx.doi.org/10.1007/978-1-4757-3951-0
http://dx.doi.org/10.1088/1674-1137/40/10/100001
http://dx.doi.org/10.1088/1674-1137/40/10/100001
http://dx.doi.org/10.1007/BF02824451
http://dx.doi.org/10.1103/PhysRev.177.2309
http://dx.doi.org/10.1103/PhysRev.177.2309
http://dx.doi.org/10.1016/0370-2693(70)90255-8
http://dx.doi.org/10.1016/0550-3213(69)90331-9
http://dx.doi.org/10.1016/0550-3213(69)90071-6
http://dx.doi.org/10.1016/0550-3213(69)90071-6
http://dx.doi.org/10.1103/RevModPhys.60.917
http://dx.doi.org/10.1103/RevModPhys.60.917
http://dx.doi.org/10.1088/1126-6708/2000/04/018
https://arxiv.org/abs/hep-th/0001035
https://arxiv.org/abs/0907.2211
http://dx.doi.org/10.1016/j.nuclphysb.2013.04.022
https://arxiv.org/abs/1106.2646
http://dx.doi.org/10.1016/j.nuclphysb.2013.04.023
https://arxiv.org/abs/1106.2645


[65] J. Polchinski, String Theory: Volume 1, An Introduction to the Bosonic String. Cambridge Monographs

on Mathematical Physics. Cambridge University Press, 1998.

[66] J. Polchinski, String Theory: Volume 2, Superstring Theory and Beyond. Cambridge Monographs on

Mathematical Physics. Cambridge University Press, 1998.

[67] S. Mandelstam, Determination of the pion - nucleon scattering amplitude from dispersion relations and

unitarity. General theory, Phys. Rev. 112 (1958) 1344–1360.

[68] L. D. Faddeev and V. N. Popov, Feynman Diagrams for the Yang-Mills Field, Phys. Lett. 25B (1967)

29–30.

[69] J. E. Paton and H.-M. Chan, Generalized Veneziano model with isospin, Nucl. Phys. B10 (1969)

516–520.

[70] C. R. Mafra and O. Schlotterer, Non-abelian Z-theory: Berends-Giele recursion for the α′-expansion of

disk integrals, JHEP 01 (2017) 031, [1609.07078].

[71] Z. Bern, J. J. M. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes, Phys. Rev.

D78 (2008) 085011, [0805.3993].

[72] S. Stieberger and T. R. Taylor, Closed String Amplitudes as Single-Valued Open String Amplitudes, Nucl.

Phys. B881 (2014) 269–287, [1401.1218].

[73] S. J. Parke and T. R. Taylor, An Amplitude for n Gluon Scattering, Phys. Rev. Lett. 56 (1986) 2459.

[74] J. Broedel, O. Schlotterer, S. Stieberger and T. Terasoma, All order α′-expansion of superstring trees

from the Drinfeld associator, Phys. Rev. D89 (2014) 066014, [1304.7304].

[75] E. Y. Yuan, α′-Expansion of Open String Disk Integrals via Mellin Transformations, Nucl. Phys. B891

(2015) 296–311, [1402.1066].

[76] M. Kontsevich and D. Zagier, Periods, in Mathematics Unlimited — 2001 and Beyond (B. Engquist and

W. Schmid, eds.), pp. 771–808. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001. DOI.

[77] P. Deligne and G. Mostow, Monodromy of hypergeometric functions and non-lattice integral monodromy,

Publ. Math., Inst. Hautes Étud. Sci. 63 (1986) 5–89.

[78] K. Matsumoto, Intersection theory for twisted cohomologies and twisted Riemann’s period relations III –

On Pn, private note.

[79] K. Matsumoto, Intersection numbers for logarithmic k-forms, Osaka J. Math. 35 (1998) 873–893.

[80] K. Matsumoto, Intersection numbers for 1-forms associated with confluent hypergeometric functions,

Funkcial. Ekvac. 41 (1998) 291–308.

[81] K. Ohara, Intersection numbers of twisted cohomology groups associated with Selberg-type integrals, 1998.

[82] P. Griffiths and J. Harris, Principles of Algebraic Geometry. Wiley Classics Library. Wiley, 2014.

[83] H. Farkas and I. Kra, Riemann Surfaces. Graduate Texts in Mathematics. Springer New York, 2012,

10.1007/978-1-4612-2034-3.

[84] M. Hanamura and M. Yoshida, Hodge structure on twisted cohomologies and twisted Riemann

inequalities. I, Nagoya Math. J. 154 (1999) 123–139.

[85] K. Mimachi and M. Yoshida, Intersection Numbers of Twisted Cycles and the Correlation Functions of

the Conformal Field Theory, Communications in Mathematical Physics 234 (2003) 339–358.

[86] K. Mimachi, K. Ohara and M. Yoshida, Intersection numbers for loaded cycles associated with

Selberg-type integrals, Tohoku Math. J. (2) 56 (12, 2004) 531–551.

[87] K. Aomoto, On The Complex Selberg Integral, The Quarterly Journal of Mathematics 38 (1987) 385.

– 47 –

http://dx.doi.org/10.1103/PhysRev.112.1344
http://dx.doi.org/10.1016/0370-2693(67)90067-6
http://dx.doi.org/10.1016/0370-2693(67)90067-6
http://dx.doi.org/10.1016/0550-3213(69)90038-8
http://dx.doi.org/10.1016/0550-3213(69)90038-8
http://dx.doi.org/10.1007/JHEP01(2017)031
https://arxiv.org/abs/1609.07078
http://dx.doi.org/10.1103/PhysRevD.78.085011
http://dx.doi.org/10.1103/PhysRevD.78.085011
https://arxiv.org/abs/0805.3993
http://dx.doi.org/10.1016/j.nuclphysb.2014.02.005
http://dx.doi.org/10.1016/j.nuclphysb.2014.02.005
https://arxiv.org/abs/1401.1218
http://dx.doi.org/10.1103/PhysRevLett.56.2459
http://dx.doi.org/10.1103/PhysRevD.89.066014
https://arxiv.org/abs/1304.7304
http://dx.doi.org/10.1016/j.nuclphysb.2014.12.005
http://dx.doi.org/10.1016/j.nuclphysb.2014.12.005
https://arxiv.org/abs/1402.1066
http://dx.doi.org/10.1007/978-3-642-56478-9_10
http://dx.doi.org/10.1007/BF02831622
http://dx.doi.org/10.1007/978-1-4612-2034-3
http://dx.doi.org/10.1017/S0027763000025344
http://dx.doi.org/10.1007/s00220-002-0766-4
http://dx.doi.org/10.2748/tmj/1113246749
http://dx.doi.org/10.1093/qmath/38.4.385


[88] F. Cachazo, S. He and E. Y. Yuan, Scattering equations and Kawai-Lewellen-Tye orthogonality, Phys.

Rev. D90 (2014) 065001, [1306.6575].

[89] J. D. Stasheff, Homotopy Associativity of H-Spaces. I, Transactions of the American Mathematical

Society 108 (1963) 275–292.

[90] OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences, A000045.

[91] O. Schlotterer, Amplitude relations in heterotic string theory and Einstein-Yang-Mills, JHEP 11 (2016)

074, [1608.00130].

[92] C. Baadsgaard, N. E. J. Bjerrum-Bohr, J. L. Bourjaily and P. H. Damgaard, String-Like Dual Models

for Scalar Theories, JHEP 12 (2016) 019, [1610.04228].

[93] D. Bernstein, Matrix Mathematics: Theory, Facts, and Formulas. Princeton University Press, 2009.

[94] K. Matsumoto, Quadratic Identities for Hypergeometric Series of Type (k, l), Kyushu Journal of

Mathematics 48 (1994) 335–345.

[95] K. Ohara and N. Takayama, Evaluation of Intersection Numbers of Twisted Homology Groups of Locally

Constant Sheaves of More Than 1 Dimension, 1998.

[96] Y. Goto, Intersection Numbers and Twisted Period Relations for the Generalized Hypergeometric

Function m+1Fm, Kyushu Journal of Mathematics 69 (2015) 203–217.

[97] H. Majima, K. Matsumoto and N. Takayama, Quadratic relations for confluent hypergeometric functions,

Tohoku Math. J. (2) 52 (2000) 489–513.

[98] K. Cho, K. Mimachi and M. Yoshida, A Hypergeometric Integral Attached to the Configuration of the

Mirrors of the Reflection Group Sn+2 Acting on Pn, Kyushu Journal of Mathematics 49 (1995) 11–34.

[99] Y. Goto, Twisted period relations for Lauricella’s hypergeometric functions FA, Osaka J. Math. 52 (07,

2015) 861–879, [1310.6088].

[100] Y. Goto and K. Matsumoto, The monodromy representation and twisted period relations for Appell’s

hypergeometric function F4, Nagoya Mathematical Journal 217 (2015) 61–94, [1310.4243].

[101] Y. Goto, Twisted Cycles and Twisted Period Relations for Lauricella’s Hypergeometric Function FC ,

International Journal of Mathematics 24 (2013) 1350094, [1308.5535].

[102] K. Ohara, Y. Sugiki and N. Takayama, Quadratic Relations for Generalized Hypergeometric Functions

pFp−1, Funkcialaj Ekvacioj 46 (2003) 213–251.

[103] K. Mimachi and M. Yoshida, The reciprocity relation of the Selberg function, Journal of Computational

and Applied Mathematics 160 (2003) 209 – 215.

[104] K. Mimachi, The Jones Polynomial and the Intersection Numbers of Twisted Cycles Associated with a

Selberg Type Integral, Journal of Knot Theory and Its Ramifications 20 (2011) 469–496.
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