STATISTICAL DISTRIBUTION OF ROOTS OF A POLYNOMIAL MODULO PRIMES

Yoshiyuki Kitaoka
kitaoka@meijo-u.ac.jp

Abstract

Let $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ be an irreducible polynomial with integer coefficients. For a prime p for which $f(x)$ is fully splitting modulo p, we consider n roots r_{i} of $f(x) \equiv 0 \bmod p$ with $0 \leq r_{1} \leq \cdots \leq r_{n}<p$ and propose several conjectures on the distribution of an integer $\left\lceil\sum_{i \in S} r_{i} / p\right\rceil$ for a subset S of $\{1, \ldots, n\}$ when $p \rightarrow \infty$.

1. Introduction

Throughout this paper, unless otherwise specified, a polynomial means a monic $i r$ reducible polynomial of degree >1 with integer coefficients, and the letter p denotes a prime number. For a polynomial $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ of degree n and a prime number p, we say that $f(x)$ is fully splitting modulo p if there are integers $r_{1}, r_{2}, \ldots, r_{n}$ satisfying $f(x) \equiv \prod\left(x-r_{i}\right) \bmod p$. We assume that

$$
\begin{equation*}
0 \leq r_{1}, \ldots, r_{n}<p \tag{1}
\end{equation*}
$$

Substituting

$$
\operatorname{Spl}(f, X):=\{p \leq X \mid f(x) \text { is fully splitting modulo } p\}
$$

for a positive number X and $\operatorname{Spl}(f):=\operatorname{Spl}(f, \infty)$, we know that $S p l(f)$ is an infinite set and that the density theorem due to Chebotarev holds; that is,

$$
\lim _{X \rightarrow \infty} \frac{\# \operatorname{Spl}(f, X)}{\#\{p \leq X\}}=\frac{1}{[\mathbb{Q}(f): \mathbb{Q}]},
$$

where \mathbb{Q} is the rational number field and $\mathbb{Q}(f)$ is a finite Galois extension field of \mathbb{Q} generated by all roots of $f(x)([12])$.
For $p \in S p l(f)$, the definition of roots r_{i} with (11) clearly implies that

$$
\begin{equation*}
a_{n-1}+r_{1}+\cdots+r_{n}=C_{p}(f) p \tag{2}
\end{equation*}
$$

for an integer $C_{p}(f)$. The author has previously studied the statistical distribution of $C_{p}(f)$ and local roots r_{i} for $p \in \operatorname{Spl}(f)([4]-[6],[8],[9])$. A basic fact that we need here is as follows.
Proposition 1. If $p \in S p l(f)$ is sufficiently large, then for any subset S of $\{1,2, \ldots$, $n\}$ with $\# S=n-1$, we have

$$
\begin{equation*}
\left\lceil\sum_{j \in S} r_{j} / p\right\rceil=C_{p}(f) \tag{3}
\end{equation*}
$$

where $\lceil x\rceil$ is an integer such that $x \leq\lceil x\rceil<x+1$.
A proof of Proposition 1 is given in [5], where it is initially supposed that a sequence of n ! points $\left(r_{\sigma(1)} / p, \ldots, r_{\sigma(n-1)} / p\right)$ for all permutations $\sigma \in S_{n}$ is uniformly distributed in $[0,1)^{n-1}$ when $p \rightarrow \infty$ if a polynomial $f(x)$ is indecomposable. However, this turns out to be false (counterexamples in the case of $n=6$ are given in [9] and in Section 4 here). Here, a polynomial $f(x)$ is called decomposable if there are polynomials $g(x)$ and $h(x)$ satisfying $f(x)=g(h(x))$ and $1<\operatorname{deg} h<\operatorname{deg} f$, and indecomposable otherwise. In this paper, we give detailed observations in the case of $n \leq 6$. To do so, we introduce an ordering among roots r_{i} as follows:

$$
\begin{equation*}
0 \leq r_{1} \leq \cdots \leq r_{n}<p \tag{4}
\end{equation*}
$$

This determines roots r_{i} uniquely. We note that $r_{1}=0 \operatorname{implies} a_{0} \equiv 0 \bmod p$ and (4) is equivalent to $0<r_{1}<\cdots<r_{n}<p$ for a sufficiently large $p \in \operatorname{Spl}(f)$ by the irreducibility of $f(x)$.

In Section 2, we recall observations related to the uniform distribution, and in Section 3, we introduce a new density and give observations in the case of $\operatorname{deg} f \leq 5$, where the density is independent of a polynomial if it is irreducible and indecomposable. In Section 4, we give observations in the case of $\operatorname{deg} f=6$, where the density depends on each polynomial. In Section 5 , we give some theoretical results to analyze the data, although it is too far to clarify the whole picture. The data presented in this paper were obtained using pari/gp 1

2. Uniform distribution

Let us recall a fundamental fact about uniform distribution.
Lemma 1. For a natural number n, the volume of a subset of the unit cube $[0,1)^{n}$ defined by $\left\{\left(x_{1}, \ldots, x_{n}\right) \in[0,1)^{n} \mid x_{1}+\cdots+x_{n} \leq x\right\}$ is given by

$$
U_{n}(x):=\frac{1}{n!} \sum_{i=0}^{n}(-1)^{i}\binom{n}{i} \max (x-i, 0)^{n}
$$

and for an integer k with $1 \leq k \leq n$, we have

$$
\begin{equation*}
U_{n}(k)-U_{n}(k-1)=\frac{1}{n!} \sum_{i=0}^{k}(-1)^{i}\binom{n+1}{i}(k-i)^{n} . \tag{5}
\end{equation*}
$$

See [2] for a proof of the first statement, from which identity (5) follows easily. We note that $A(n, k):=n!\left(U_{n}(k)-U_{n}(k-1)\right)(1 \leq k \leq n)$ is called an Eulerian number and satisfies

$$
A(1,1)=1, A(n, k)=(n-k+1) A(n-1, k-1)+k A(n-1, k)
$$

[^0]Necessary values of $A(n, k)$ in this paper are

$n \backslash k$	1	2	3	4	5
2	1	1			
3	1	4	1		
4	1	11	11	1	
5	1	26	66	26	1

and we note that

$$
\begin{equation*}
\operatorname{vol}\left(\left\{\left(x_{1}, \ldots, x_{n}\right) \in[0,1)^{n} \mid\left\lceil\sum x_{i}\right\rceil=k\right\}\right)=\frac{A(n, k)}{n!} \tag{6}
\end{equation*}
$$

For a polynomial $f(x)$ of degree n, (2) implies

$$
r_{1} / p+\cdots+r_{n} / p=C_{p}(f)-a_{n-1} / p
$$

whose left-hand side is close to an integer $C_{p}(f)$ when p is large. Thus, the sequence of points $\left(r_{1} / p, \ldots, r_{n} / p\right)$ is not uniformly distributed in the unit cube $[0,1)^{n}$ as $p \rightarrow \infty$. However, the sequence of n ! points $\left(r_{\sigma(1)} / p, \ldots, r_{\sigma(n-1)} / p\right)$ for all $\sigma \in S_{n}$ is expected to be uniformly distributed in $[0,1)^{n-1}$ for the majority of polynomials. This is true without exception in the case of $n=2$ [1, [13]. If the expectation is true, then the density of the distribution of the value $C_{p}(f)$ in (2) is given by Lemma 1 as follows:

$$
\begin{equation*}
\lim _{X \rightarrow \infty} \frac{\#\left\{p \in \operatorname{Spl}(f, X) \mid C_{p}(f)=k\right\}}{\# \operatorname{Spl}(f, X)}=\frac{A(n-1, k)}{(n-1)!} \tag{7}
\end{equation*}
$$

since Proposition 1 implies

$$
\begin{equation*}
\#\left\{p \in \operatorname{Spl}(f, X) \mid C_{p}(f)=k\right\}=\#\left\{p \in \operatorname{Spl}(f, X) \mid\left\lceil\sum_{i \in S} r_{i} / p\right\rceil=k\right\}+O(1) \tag{8}
\end{equation*}
$$

for any subset S of $\{1, \ldots, n\}$ with $\# S=n-1$. Computer experiments support (7) well.

Although we began our study with the distribution of $C_{p}(f)$, which originated from [3] and [7], it is more interesting in view of (7) and (8) to study the distribution of the value $\left\lceil\left(\sum_{i \in S} r_{i}\right) / p\right\rceil$ with the condition (4) on local roots r_{i} for a given subset S of $\{1, \ldots, n\}$. We provide some observations in the following sections.

3. New density

We introduce here a new type of distribution. Statements on the density without proof hereinafter are conjectures based on numerical experiments.

Let $f(x)$ be a polynomial of degree n and let p be a prime in $S p l(f)$. We assume the global order (4) on local roots; that is, we number local roots r_{i} of $f(x)$ modulo p as follows:

$$
0 \leq r_{1} \leq \cdots \leq r_{n}<p \quad\left(f\left(r_{i}\right) \equiv 0 \bmod p\right) .
$$

As noted above, we have $0<r_{1}<\cdots<r_{n}<p$ if p is sufficiently large. Let us consider a more general density than the left-hand side of (7). For a subset S of $\{1,2, \ldots, n\}$, we define a frequency table $\operatorname{Pr}(f, S, X)$ by

$$
\operatorname{Pr}(f, S, X):=\left[F_{1}, \ldots, F_{s}\right]
$$

where $s:=\# S$ and

$$
\begin{equation*}
F_{k}:=F_{k}(f, S, X)=\frac{\#\left\{p \in \operatorname{Spl}(f, X) \mid\left\lceil\sum_{i \in S} r_{i} / p\right\rceil=k\right\}}{\# \operatorname{Spl}(f, X)} \tag{9}
\end{equation*}
$$

It is clear that the assumption $0 \leq r_{i}<p(i=1, \ldots, n)$ implies $F_{k}=0$ unless $0 \leq k \leq s$. We see easily that $\lim _{X \rightarrow \infty} F_{0}(f, S, X)=0$ since primes contributing to the numerator of (9) divide the constant term a_{0} of $f(x)$.
Next, note that we may confine ourselves to the case $2 \leq s \leq n-1$. Suppose that $F_{k}(f, S, X) \neq 0$ with $s=1$, say $S=\{i\}$; then, the equation $\left\lceil r_{i} / p\right\rceil=k$ implies $k=1$ for every sufficiently large p, which implies $\lim _{X \rightarrow \infty} F_{1}(f, S, X)=1$ and $\lim _{X \rightarrow \infty} F_{k}(f, S, X)=0(k \neq 1)$. When $s=n$, that is, $S=\{1, \ldots, n\}$, we have

$$
\left\lceil\sum_{i \in S} r_{i} / p\right\rceil=\left\lceil C_{p}(f)-a_{n-1} / p\right\rceil= \begin{cases}C_{p}(f) & \text { if } a_{n-1} \geq 0 \\ C_{p}(f)+1 & \text { if } a_{n-1}<0\end{cases}
$$

and so this case is reduced to the case of $s=n-1$ by (8), which has been previously studied [4]-6], 8].

Assuming that $s=n-1$ and f is indecomposable, we expect that in the case of $n \leq 5$, a sequence of n ! points $\left(r_{\sigma(1)} / p, \ldots, r_{\sigma(n-1)} / p\right)\left(\sigma \in S_{n}\right)$ is uniformly distributed as $p \rightarrow \infty$, which implies (7). However, this is not the case if $n=6$, as we will see later.

We abbreviate as

$$
\operatorname{Pr}(f, S):=\lim _{X \rightarrow \infty} \operatorname{Pr}(f, S, X)=\lim _{X \rightarrow \infty}\left[F_{1}(f, S, X), \ldots, F_{s}(f, S, X)\right]
$$

assuming that the limit exists, something that the author has no data to refute. The first expectation is as follows.

Conjecture 1. Suppose that $f(x)$ is not equal to $g(h(x))$ for any quadratic polynomial $h(x)$. Then, for every j with $1 \leq j \leq n$, we have

$$
\operatorname{Pr}(f, S)=[1,1] / 2 \text { for } S=\{j, n+1-j\}
$$

where $[1,1] / 2$ means $[1 / 2,1 / 2]$ for simplicity; we adopt this notation hereinafter.
We checked the following polynomials. Let $B P$ be a polynomial of degree $n=4,5$, or 6 with coefficients equal to 0 or 1 , and let α be one of its roots. For a number $\beta=\sum_{i=1}^{n} c_{i} \alpha^{i-1}$ with $0 \leq c_{i} \leq 2$, we take a polynomial f of degree n for which β is a root. We skip a reducible polynomial and also a decomposable polynomial, which is in the form $f(x)=g(h(x))$ with $\operatorname{deg} h=2$. Considering that

$$
F_{k}:=F_{k}(f, S, X) \rightarrow 1 / 2 \quad(k=1,2, X \rightarrow \infty)
$$

holds under Conjecture 1, we judge that the expectation is true if

$$
\left|F_{1}-F_{2}\right|<0.1
$$

for a large number X, since $F_{1}+F_{2}=1$. The excluded case is as follows.
Proposition 2. Suppose that a polynomial $f(x)=x^{n}+a_{n-1} x^{n-1}+\ldots$ is equal to $g(h(x))$ for a quadratic polynomial $h(x)$. Then, for $S=\{j, n+1-j\}(1 \leq j \leq n)$, we have

$$
\operatorname{Pr}(f, S)= \begin{cases}{[1,0] \quad} & \text { if } a_{n-1} \geq 0 \\ {[0,1]} & \text { if } a_{n-1}<0\end{cases}
$$

Proof. We only have to see that, except for finitely many primes p, the value $\left\lceil\left(r_{j}+r_{n+1-j}\right) / p\right\rceil$ is equal to 1 or 2 according to whether $a_{n-1} \geq 0$ or $a_{n-1}<0$, respectively. We note that $\operatorname{deg} g=n / 2$ and we may assume that $h(x)=(x+a)^{2}$ or $h(x)=(x+a)(x+a+1)$ for an integer a according to whether the coefficient of x of $h(x)$ is even or odd, respectively. In the case of $h(x)=(x+a)^{2}, a_{n-1}=a n$ is easy, and if $r \in \mathbb{Z}(0<r<p)$ is a root of $f(x)=g\left((x+a)^{2}\right) \equiv 0 \bmod p$, then $p-r-2 a$ is also one of its roots, and we see $0<p-r-2 a<p$ for a sufficiently large p (9).Hence, by the assumption (4), the sequences $r_{1}<\cdots<r_{n}$ and $p-r_{n}-2 a<\cdots<p-r_{1}-2 a$ are identical. Thus, we have $r_{j}+r_{n+1-j}=p-2 a=p-2 a_{n-1} / n$, which implies

$$
\begin{cases}\left(r_{j}+r_{n+1-j}\right) / p \leq 1 & \text { if } a_{n-1} \geq 0 \\ \left(r_{j}+r_{n+1-j}\right) / p>1 & \text { if } a_{n-1}<0\end{cases}
$$

This completes the proof in the case of $h(x)=(x+a)^{2}$. In the case of $h(x)=$ $(x+a)(x+a+1)$, noting that $a_{n-1}=(1+2 a) n / 2$ and both r_{i} and $p-r_{i}-1-2 a(i=$ $1, \ldots, n)$ are roots, we have $r_{j}+r_{n+1-j}=p-1-2 a=p-2 a_{n-1} / n$ in a similar way as above, which completes the proof.

For a subset S of $\{1, \ldots, n\}$, we put $S^{\vee}:=\{n+1-i \mid i \in S\}$. Then, for $\operatorname{Pr}(f, S)=\left[F_{1}, \ldots, F_{s}\right]$, we have

$$
\operatorname{Pr}\left(f, S^{\vee}\right)=\left[F_{s}, \ldots, F_{1}\right]
$$

empirically in many cases, which is equivalent to

$$
\begin{equation*}
\operatorname{Pr}\left(f, S^{\vee}\right)=\operatorname{Pr}(f, S)^{\vee} \tag{10}
\end{equation*}
$$

putting $\left[a_{1}, \ldots, a_{s}\right]^{\vee}:=\left[a_{s}, \ldots, a_{1}\right]$.
Proposition 3. Under the assumption that
(A) $\sum_{j \in S^{\vee}} r_{j} / p$ is not an integer for every sufficiently large prime $p \in \operatorname{Spl}(f)$, we have

$$
\operatorname{Pr}\left((-1)^{n} f(-x), S\right)^{\vee}=\operatorname{Pr}\left(f(x), S^{\vee}\right)
$$

Moreover, if $\operatorname{Pr}\left((-1)^{n} f(-x), S\right)=\operatorname{Pr}(f(x), S)$ holds, then we have (10).

Proof. Since we have $f(x) \equiv \prod\left(x-r_{i}\right) \bmod p$ with $0<r_{1}<\cdots<r_{n}<p$ for a sufficiently large prime p, we get $(-1)^{n} f(-x) \equiv \prod\left(x+r_{i}\right) \equiv \prod\left(x-R_{i}\right) \bmod p$ with

$$
0<R_{1}:=p-r_{n}<\cdots<R_{i}:=p-r_{n+1-i}<\cdots<R_{n}:=p-r_{1}<p
$$

Noting an equality $\lceil s-r\rceil=s+1-\lceil r\rceil$ for $s:=\# S \in \mathbb{Z}, r \notin \mathbb{Z}$, we see that $\left\lceil\sum_{i \in S} R_{i} / p\right\rceil=\left\lceil s-\sum_{j \in S^{\vee}} r_{j} / p\right\rceil=s+1-\left\lceil\sum_{j \in S^{\vee}} r_{j} / p\right\rceil$, which implies $F_{k}\left((-1)^{n} f(-x), S, X\right)=F_{s+1-k}\left(f(x), S^{\vee}, X\right)$. Hence, we have the desired equation $\operatorname{Pr}\left((-1)^{n} f(-x), S, X\right)=\operatorname{Pr}\left(f(x), S^{\vee}, X\right)^{\vee}$.

Remark 1. If f is indecomposable with $n \leq 5$, then $\operatorname{Pr}(f, S)$ seems to be dependent on only S and $\operatorname{deg} f$, as we see below. Hence, this proposition elucidates (10). Therefore, The assumption (A) is not necessarily true. For example, for $f=x^{4}+1$, both $r_{1}<\cdots<r_{4}$ and $p-r_{4}<\cdots<p-r_{1}$ are the set of local roots. Hence, we have $r_{1}=p-r_{4}$ and $r_{2}=p-r_{3}$, that is, $\sum_{i \in S} r_{i} / p=1$ for $S=\{1,4\},\{2,3\}$. Another example is the polynomial f_{3} (cf. Remark 4).

Before giving a sufficient condition to (A), let us recall a relation between the decomposition of a polynomial $f(x)$ modulo p and that of p to the product of prime ideals over $F:=\mathbb{Q}(\alpha)$, where α is a root of $f(x)$. Denote the ring of integers of F by O_{F} and prime ideals lying above p by \mathfrak{p}_{i}. Suppose that $p \in \operatorname{Spl}(f)$ is sufficiently large and r_{1}, \ldots, r_{n} are roots of $f(x)$ modulo p; then, we have the decomposition of $p: p O_{F}=\mathfrak{p}_{1} \cdots \mathfrak{p}_{n}$ and we may suppose that, by renumbering

$$
\begin{equation*}
\mathfrak{p}_{i}=\left(\alpha-r_{i}\right) O_{F}+p O_{F} \text { and } O_{F} / p O_{F} \cong O_{F} / \mathfrak{p}_{1} \oplus \cdots \oplus O_{F} / \mathfrak{p}_{n} \tag{11}
\end{equation*}
$$

in particular $\alpha \equiv r_{i} \bmod \mathfrak{p}_{i}$. The isomorphism in (11) is given by

$$
\beta \bmod p O_{F} \mapsto\left(\beta \bmod \mathfrak{p}_{1}, \ldots, \beta \bmod \mathfrak{p}_{n}\right)
$$

and

$$
O_{F} / \mathfrak{p}_{i} \cong \mathbb{Z} / p \mathbb{Z}
$$

Moreover, p splits fully over F if and only if p splits fully over the field $\mathbb{Q}(f)$ generated by all roots of $f(x)$.

Proposition 4. If the condition (A) for S with $\# S=s$ does not hold, then a sum of some s roots of $f(x)$ is zero, that is, $f(x)=\left(x^{s}+0 \cdot x^{s-1}+\ldots\right)\left(x^{n-s}+\right.$ $\left.a_{n-1} x^{n-s-1}+\ldots\right)$.

Proof. The assumption means that there are infinitely many primes p such that $\sum_{j \in S^{\vee}} r_{j} \equiv 0 \bmod p$. Let α be a root of $f(x)$ and put $F=\mathbb{Q}(\alpha)$, and let $K:=\mathbb{Q}(f)$ be a field generated by all roots of $f(x)$. For a sufficiently large prime $p \in \operatorname{Spl}(f)$ and roots r_{1}, \ldots, r_{n} of $f(x)$ modulo p with (4), let \mathfrak{p}_{i} be a prime ideal of F defined by (11) and let $\mathfrak{p}_{i}=\mathfrak{P}_{i, 1} \ldots \mathfrak{P}_{i, g}(g=[K: F])$ be the decomposition of \mathfrak{p}_{i} to the product of prime ideals over K. The congruence $\alpha \equiv r_{i} \bmod \mathfrak{p}_{i}$ implies $\alpha \equiv$ $r_{i} \bmod \mathfrak{P}_{i, 1}$. Taking an automorphism σ_{i} of K over \mathbb{Q} such that $\mathfrak{P}_{i, 1}^{\sigma_{i}}=\mathfrak{P}_{1,1}$, we have $\alpha^{\sigma_{i}} \equiv r_{i} \bmod \mathfrak{P}_{1,1}$. Hence, $\sum_{i \in S^{\vee}} \alpha^{\sigma_{i}} \equiv \sum_{i \in S^{\vee}} r_{i} \equiv 0 \bmod \mathfrak{P}_{1,1}$ for infinitely
many prime numbers $p \in \operatorname{Spl}(f)$. Although automorphisms σ_{i} depend on p, we can choose an appropriate infinite subset of $\operatorname{Spl}(f)$ so that automorphisms σ_{i} are independent of p. Hence, we have $\sum_{i \in S^{\vee}} \alpha^{\sigma_{i}} \equiv \sum_{i \in S^{\vee}} r_{i} \equiv 0 \bmod \mathfrak{P}_{1,1}$ for infinitely many primes p, which implies $\sum_{i \in S^{\vee}} \alpha^{\sigma_{i}}=0$. Since $\alpha^{\sigma_{i}}$ are distinct roots of $f(x)$ by $\alpha^{\sigma_{i}} \equiv r_{i} \bmod \mathfrak{P}_{1,1}$, we complete the proof.

Let us give some observations in the cases of $n=3,4,5$. The case of $n=6$ is discussed in the following section.

In the case of $n=3$, Conjecture 1 and (8) give

$$
\operatorname{Pr}(f, S)=[1,1] / 2 \text { if } \# S=2
$$

In the case of $n=4$, supposing that f is irreducible and indecomposable, We conjecture

$$
\begin{aligned}
& \operatorname{Pr}(f,\{1,2\})=\operatorname{Pr}(f,\{3,4\})^{\vee}=[5,1] / 6, \\
& \operatorname{Pr}(f,\{1,3\})=\operatorname{Pr}(f,\{2,4\})^{\vee}=[5,1] / 6, \\
& \operatorname{Pr}(f,\{1,4\})=\operatorname{Pr}(f,\{2,3\})=[1,1] / 2, \\
& \operatorname{Pr}(f, S)=[1,4,1] / 6 \text { if } s:=\# S=3 .
\end{aligned}
$$

We note

$$
\binom{n}{s}^{-1} \sum_{\# S=s} \operatorname{Pr}(f, S)= \begin{cases}{[1,1] / 2!} & \text { if } s=2 \\ {[1,4,1] / 3!} & \text { if } s=3\end{cases}
$$

where $\binom{n}{s}$ is the number of subsets S with $\# S=s$. This suggests that a sequence of points $\left[r_{i}, r_{j}\right] / p(i \neq j)$ (resp. $\left.\left[r_{i}, r_{j}, r_{k}\right] / p(i \neq j, j \neq k, i \neq k)\right)$ is uniformly distributed in $[0,1)^{2}$ (resp. $[0,1)^{3}$) (cf. (6)). Thus, the symmetry (10) holds. We checked the following polynomials. Let $B P$ be an irreducible polynomial of degree 4 with coefficients equal to 0 or 1 , and let α be one of its roots. For a number $\beta=\sum_{i=1}^{4} c_{i} \alpha^{i-1}$ with $0 \leq c_{i} \leq 2$, we take a polynomial f for which β is a root, but skip a reducible polynomial and a decomposable one. We observe the behavior of values $6\left[F_{1}, F_{2}\right]-[5,1]$ for $S=\{1,2\}$ for increasing X, for example. If the above conjecture is true, then it converges to $[0,0]$ when $X \rightarrow \infty$. Defining an integer X_{j} by $\# \operatorname{Spl}\left(f, X_{j}\right)=1000 j$, we observe values $\left|6 F_{1}-5\right|+\left|6 F_{2}-1\right|$ at $X=X_{j}$. If they are less than 0.01 for successive integers $X=X_{j}, \ldots, X_{j+100}$ for some j, we conclude that the above is true.

In the case of $n=5$ we adopt the following d-adic approximation method to find a candidate of the limit. First, we take the polynomial $f=x^{5}-10 x^{3}+5 x^{2}+10 x+1$, which defines a unique subfield of degree 5 in a cyclotomic field $\mathbb{Q}(\exp (2 \pi i / 25))$, and define an integer X_{j} by $\# \operatorname{Spl}\left(f, X_{j}\right)=1000 j$ as before. Suppose that a sequence of vectors c_{m} converges to a rational vector $\boldsymbol{a}=\left[a_{1}, \ldots, a_{s}\right] / b\left(a_{i}, b \in \mathbb{Z}\right)$ and let D be a finite set of integers including b. Then, for a large integer m, the error $\sum_{i}\left|d c_{m}[i]-r\left(d c_{m}[i]\right)\right|$ is minimal at $d=b$, where $r(x)$ denotes the nearest integer to x. Noting this, to guess the limit from a sequence $\left\{c_{m}\right\}$ given
by computer experiments, we begin by guessing a set D including the denominator b of \boldsymbol{a} by some means or other. In this case, we take for $D\{d \mid 0<d \leq$ 500 and a prime divisor of d is 2,3 or 5$\}$. Second, we look for an integer $d=d_{0} \in$ D that gives the minimum of errors $\sum_{i}\left|d c_{m}[i]-r\left(d c_{m}[i]\right)\right|(d \in D)$. Then, d_{0} is a candidate of the denominator. We checked that there is an integer j such that for successive integers $X=X_{j}, \ldots, X_{j+10^{5}}$, both the integer $d=d_{0}$ determined above and rounded integers of elements of $d \cdot \operatorname{Pr}\left(f, S, X_{i}\right)$ are stable. In this case, the minimum error is less than 0.01 for $X=10^{10}$ and the conjecture holds. The symmetry (10) holds.

$$
\begin{aligned}
& \operatorname{Pr}(f,\{1,2\})=\operatorname{Pr}(f,\{4,5\})^{\vee}=[137,7] / 144 \\
& \operatorname{Pr}(f,\{1,3\})=\operatorname{Pr}(f,\{3,5\})^{\vee}=[11,1] / 12 \\
& \operatorname{Pr}(f,\{1,4\})=\operatorname{Pr}(f,\{2,5\})^{\vee}=[17,7] / 24, \\
& \operatorname{Pr}(f,\{1,5\})=[1,1] / 2, \\
& \operatorname{Pr}(f,\{2,3\})=\operatorname{Pr}(f,\{3,4\})^{\vee}=[29,19] / 48, \\
& \operatorname{Pr}(f,\{2,4\})=[1,1] / 2, \\
& \operatorname{Pr}(f,\{1,2,3\})=\operatorname{Pr}(f,\{3,4,5\})^{\vee}=[71,67,6] / 144, \\
& \operatorname{Pr}(f,\{1,2,4\})=\operatorname{Pr}(f,\{2,4,5\})^{\vee}=[11,12,1] / 24, \\
& \operatorname{Pr}(f,\{1,2,5\})=\operatorname{Pr}(f,\{1,4,5\})^{\vee}=[7,39,2] / 48 \\
& \operatorname{Pr}(f,\{1,3,5\})=[1,22,1] / 24, \\
& \operatorname{Pr}(f,\{2,3,4\})=[1,7,1] / 9 \\
& \operatorname{Pr}(f,\{2,3,5\})=\operatorname{Pr}(f,\{1,3,4\})^{\vee}=[1,17,6] / 24, \\
& \operatorname{Pr}(f, S)=[1,11,11,1] / 24 \text { if } \# S=4 .
\end{aligned}
$$

We note that

$$
\binom{n}{s}^{-1} \sum_{\# S=s} \operatorname{Pr}(f, S)= \begin{cases}{[1,1] / 2!} & \text { if } s=2 \\ {[1,4,1] / 3!} & \text { if } s=3 \\ {[1,11,11,1] / 4!} & \text { if } s=4\end{cases}
$$

To check other polynomials, we consider that an element a of $\operatorname{Pr}(f, S, X)$ converges to a candidate $A / B(A, B \in \mathbb{Z})$ if we have $A=r(a \cdot B)$. By this method, we checked the above for any irreducible polynomial f of degree 5 that has a root $\sum_{i} c_{i} \alpha^{i-1}$ $\left(0 \leq c_{i} \leq 2\right)$, where α is a root of an irreducible polynomial with coefficients equal to 0 or 1 .

4. The case of degree 6

In the case of $n \leq 5$, the classification of being decomposable or not is enough to consider densities. However, in the case of $n=6$, it is not enough and indecompos-
able polynomials have been divided into at least four types so far 2. First, we give some examples.
Example 1. For the indecomposable polynomial $f=f_{1}=x^{6}+x^{5}+x^{4}+x^{3}+$ $x^{2}+x+1$, we expect

$$
\begin{aligned}
& \operatorname{Pr}(f,\{1,2\})=\operatorname{Pr}(f,\{5,6\})^{\vee}=[39,1] / 40, \\
& \operatorname{Pr}(f,\{1,3\})=\operatorname{Pr}(f,\{4,6\})^{\vee}=[14,1] / 15, \\
& \operatorname{Pr}(f,\{1,4\})=\operatorname{Pr}(f,\{3,6\})^{\vee}=[17,3] / 20, \\
& \operatorname{Pr}(f,\{1,5\})=\operatorname{Pr}(f,\{2,6\})^{\vee}=[23,7] / 30, \\
& \operatorname{Pr}(f,\{1,6\})=[1,1] / 2, \\
& \operatorname{Pr}(f,\{2,3\})=\operatorname{Pr}(f,\{4,5\})^{\vee}=[19,5] / 24, \\
& \operatorname{Pr}(f,\{2,4\})=\operatorname{Pr}(f,\{3,5\})^{\vee}=[3,1] / 4, \\
& \operatorname{Pr}(f,\{2,5\})=[1,1] / 2, \\
& \operatorname{Pr}(f,\{3,4\})=[1,1] / 2, \\
& \operatorname{Pr}(f,\{1,2,3\})=\operatorname{Pr}(f,\{4,5,6\})^{\vee}=[251,106,3] / 360, \\
& \operatorname{Pr}(f,\{1,2,4\})=\operatorname{Pr}(f,\{3,5,6\})^{\vee}=[67,52,1] / 120, \\
& \operatorname{Pr}(f,\{1,2,5\})=\operatorname{Pr}(f,\{2,5,6\})^{\vee}=[37,82,1] / 120, \\
& \operatorname{Pr}(f,\{1,2,6\})=\operatorname{Pr}(f,\{1,5,6\})^{\vee}=[16,73,1] / 90, \\
& \operatorname{Pr}(f,\{1,3,4\})=\operatorname{Pr}(f,\{3,4,6\})^{\vee}=[37,82,1] / 120, \\
& \operatorname{Pr}(f,\{1,3,5\})=\operatorname{Pr}(f,\{2,4,6\})^{\vee}=[27,92,1] / 120, \\
& \operatorname{Pr}(f,\{1,3,6\})=\operatorname{Pr}(f,\{1,4,6\})^{\vee}=[13,104,3] / 120, \\
& \operatorname{Pr}(f,\{1,4,5\})=\operatorname{Pr}(f,\{2,3,6\})^{\vee}=[11,46,3] / 60, \\
& \operatorname{Pr}(f,\{2,3,4\})=\operatorname{Pr}(f,\{3,4,5\})^{\vee}=[17,50,5] / 72, \\
& \operatorname{Pr}(f,\{2,3,5\})=\operatorname{Pr}(f,\{2,4,5\})^{\vee}=[5,16,3] / 24, \\
& \operatorname{Pr}(f,\{1,2,3,4\})=\operatorname{Pr}(f,\{3,4,5,6\})^{\vee}=[25,68,26,1] / 120, \\
& \operatorname{Pr}(f,\{1,2,3,5\})=\operatorname{Pr}(f,\{2,4,5,6\})^{\vee}=[20,73,26,1] / 120, \\
& \operatorname{Pr}(f,\{1,2,3,6\})=\operatorname{Pr}(f,\{1,4,5,6\})^{\vee}=[7,178,53,2] / 240, \\
& \operatorname{Pr}(f,\{1,2,4,5\})=\operatorname{Pr}(f,\{2,3,5,6\})^{\vee}=[10,83,26,1] / 120, \\
& \operatorname{Pr}(f,\{1,2,4,6\})=\operatorname{Pr}(f,\{1,3,5,6\})^{\vee}=[1,89,29,1] / 120, \\
& \operatorname{Pr}(f,\{1,2,5,6\})=[1,59,59,1] / 120, \\
& \operatorname{Pr}(f,\{1,3,4,5\})=\operatorname{Pr}(f,\{2,3,4,6\})^{\vee}=[5,83,31,1] / 120, \\
& \operatorname{Pr}(f,\{1,3,4,6\})=[1,59,59,1] / 120, \\
& \operatorname{Pr}(f,\{2,3,4,5\})=[1,23,23,1] / 48, \\
& \operatorname{Pr}(f, S)=[1,26,66,26,1] / 120 \text { if } \# S=5 .
\end{aligned}
$$

Remark 2. In this case, the symmetry (10) holds. To look for conjectural values, we adopt the 10 -adic approximation besides the d-adic one in the previous section.

[^1]That is, we observe the minimum of errors $\sum_{i}\left|c_{m}[i]-r\left(d \cdot c_{m}[i]\right) / d\right|$ and $\sum_{i} \mid d \cdot$ $c_{m}[i]-r\left(d \cdot c_{m}[i]\right) \mid(d \in D)$ for a sequence of vectors c_{m}. In this case, we take for D $\{d \mid 1 \leq d \leq 500$ and a prime divisor of d is 2,3 or 5$\}$. Let p_{j} be the smallest prime number in $\operatorname{Spl}(f)$ larger than $10^{9} j$. To the extent of $p_{j}<10^{11}$ and $j>30$, the values of $\operatorname{Pr}\left(f, S, p_{j}\right)$ support the above conjecture by this double-checking method.

We have

$$
\binom{n}{s}^{-1} \sum_{\# S=s} \operatorname{Pr}(f, S)= \begin{cases}{[1,1] / 2!} & \text { if } s=2 \\ {[1,4,1] / 3!} & \text { if } s=3 \\ {[1,11,11,1] / 4!} & \text { if } s=4 \\ {[1,26,66,26,1] / 5!} & \text { if } s=5\end{cases}
$$

and

$$
\begin{align*}
\operatorname{Pr}(f,\{1,2,5\}) & =\operatorname{Pr}(f,\{1,3,4\}) \tag{12}\\
\operatorname{Pr}(f,\{2,5,6\}) & =\operatorname{Pr}(f,\{3,4,6\}) \tag{13}\\
\operatorname{Pr}(f,\{2,3,4\})+\operatorname{Pr}(f,\{1,5,6\}) & =\operatorname{Pr}(f,\{3,4,5\})+\operatorname{Pr}(f,\{1,2,6\}) \tag{14}\\
\operatorname{Pr}(f,\{2,3,5\})+\operatorname{Pr}(f,\{1,4,6\}) & =\operatorname{Pr}(f,\{1,3,5\})+\operatorname{Pr}(f,\{2,4,6\})= \\
\operatorname{Pr}(f,\{2,3,6\})+\operatorname{Pr}(f,\{1,4,5\}) & =\operatorname{Pr}(f,\{2,4,5\})+\operatorname{Pr}(f,\{1,3,6\}) \tag{15}\\
\operatorname{Pr}(f,\{1,2,5,6\}) & =\operatorname{Pr}(f,\{1,3,4,6\}) \tag{16}
\end{align*}
$$

$\mathbb{Q}(f)=\mathbb{Q}(\exp (2 \pi i / 7))$ is obvious. The sequence $[1,59,59,1]$ for $S=\{1,2,5$, $6\}$ and $\{1,3,4,6\}$ is given by $T_{1}(4, i)(i=1,2,3,4)$, where $T_{1}(n, k)(1 \leq k \leq n)$ is defined by

$$
T_{1}(1,1)=1, T_{1}(n, k)=(4 n-4 k+1) T_{1}(n-1, k-1)+(4 k-3) T_{1}(n-1, k)
$$

and the sequence $[1,23,23,1]$ for $S=\{2,3,4,5\}$ is given by $T_{2}(4, i)(i=1,2,3,4)$ where $T_{2}(n, k)(1 \leq k \leq n)$ is defined by

$$
T_{2}(1,1)=1, T_{2}(n, k)=(2 n-2 k+1) T_{2}(n-1, k-1)+(2 k-1) T_{2}(n-1, k)
$$

Example 2. For the indecomposable polynomial $f=f_{2}=x^{6}-2 x^{5}+11 x^{4}+6 x^{3}+$ $16 x^{2}+122 x+127$, we expect

$$
\begin{aligned}
& \operatorname{Pr}(f,\{1,2\})=\operatorname{Pr}(f,\{5,6\})^{\vee}=[139,5] / 144, \\
& \operatorname{Pr}(f,\{1,3\})=\operatorname{Pr}(f,\{4,6\})^{\vee}=[127,17] / 144, \\
& \operatorname{Pr}(f,\{1,4\})=\operatorname{Pr}(f,\{3,6\})^{\vee}=[7,2] / 9 \\
& \operatorname{Pr}(f,\{1,5\})=\operatorname{Pr}(f,\{2,6\})^{\vee}=[25,11] / 36, \\
& \operatorname{Pr}(f,\{1,6\})=[1,1] / 2 \\
& \operatorname{Pr}(f,\{2,3\})=\operatorname{Pr}(f,\{4,5\})^{\vee}=[3,1] / 4, \\
& \operatorname{Pr}(f,\{2,4\})=\operatorname{Pr}(f,\{3,5\})^{\vee}=[107,37] / 144, \\
& \operatorname{Pr}(f,\{2,5\})=[1,1] / 2
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Pr}(f,\{3,4\})=[1,1] / 2, \\
& \operatorname{Pr}(f,\{1,2,3\})=[49,23,0] / 72, \quad \operatorname{Pr}(f,\{4,5,6\})=[0,1,3] / 4, \quad(*) \\
& \operatorname{Pr}(f,\{1,2,4\})=[37,35,0] / 72, \quad \operatorname{Pr}(f,\{3,5,6\})=[0,23,49] / 72, \quad(*) \\
& \operatorname{Pr}(f,\{1,2,5\})=[5,13,0] / 18, \quad \operatorname{Pr}(f,\{2,5,6\})=[0,89,55] / 144, \quad(*) \\
& \operatorname{Pr}(f,\{1,2,6\})=[28,115,1] / 144, \operatorname{Pr}(f,\{1,5,6\})=[0,13,5] / 18, \quad(*) \\
& \operatorname{Pr}(f,\{1,3,4\})=[5,13,0] / 18, \quad \operatorname{Pr}(f,\{3,4,6\})=[0,89,55] / 144, \quad(*) \\
& \operatorname{Pr}(f,\{1,3,5\})=[1,3,0] / 4, \quad \operatorname{Pr}(f,\{2,4,6\})=\operatorname{Pr}(f,\{1,3,5\})^{\vee}, \\
& \operatorname{Pr}(f,\{1,3,6\})=[16,121,7] / 144, \operatorname{Pr}(f,\{1,4,6\})=[1,115,28] / 144, \quad(*) \\
& \operatorname{Pr}(f,\{1,4,5\})=[3,12,1] / 16, \quad \operatorname{Pr}(f,\{2,3,6\})=[0,3,1] / 4, \quad(*) \\
& \operatorname{Pr}(f,\{2,3,4\})=[35,101,8] / 144, \operatorname{Pr}(f,\{3,4,5\})=[0,13,5] / 18, \quad(*) \\
& \operatorname{Pr}(f,\{2,3,5\})=[29,95,20] / 144, \operatorname{Pr}(f,\{2,4,5\})=[8,101,35] / 144, \quad(*)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Pr}(f,\{1,2,3,4\})=\operatorname{Pr}(f,\{3,4,5,6\})^{\vee}=[31,77,36,0] / 144, \\
& \operatorname{Pr}(f,\{1,2,3,5\})=\operatorname{Pr}(f,\{2,4,5,6\})^{\vee}=[19,89,36,0] / 144, \\
& \operatorname{Pr}(f,\{1,2,3,6\})=\operatorname{Pr}(f,\{1,4,5,6\})^{\vee}=[0,3,1,0] / 4, \\
& \operatorname{Pr}(f,\{1,2,4,5\})=\operatorname{Pr}(f,\{2,3,5,6\})^{\vee}=[1,26,9,0] / 36, \\
& \operatorname{Pr}(f,\{1,2,4,6\})=\operatorname{Pr}(f,\{1,3,5,6\})^{\vee}=[0,107,37,0] / 144, \\
& \operatorname{Pr}(f,\{1,2,5,6\})=[0,1,1,0] / 2, \\
& \operatorname{Pr}(f,\{1,3,4,5\})=\operatorname{Pr}(f,\{2,3,4,6\})^{\vee}=[0,25,11,0] / 36, \\
& \operatorname{Pr}(f,\{1,3,4,6\})=[0,1,1,0] / 2, \\
& \operatorname{Pr}(f,\{2,3,4,5\})=[0,1,1,0] / 2, \\
& \operatorname{Pr}(f, S)=[0,1,2,1,0] / 4 \text { if } \# S=5 .
\end{aligned}
$$

Remark 3. Conjectural values are determined by the double-checking method above. In this case, the symmetry does not hold for lines with tag $(*)$ for $\# S=3$. In this case, we have

$$
\binom{n}{s}^{-1} \sum_{\# S=s} \operatorname{Pr}(f, S)= \begin{cases}{[1,1] / 2} & \text { if } s=2 \\ {[3,13,4] / 20} & \text { if } s=3 \\ {[1,19,19,1] / 40} & \text { if } s=4 \\ {[0,1,2,1,0] / 4} & \text { if } s=5\end{cases}
$$

and (12), (13), and (16) hold. Putting $t(n, m)=2 A(n+1, m+1)-\binom{n}{m}$, we see that $[1,19,19,1]=[t(3,0), t(3,1), t(3,2), t(3,3)]$. The polynomial $x^{2} / 4+2 x^{3} / 4+x^{4} / 4$ corresponding to $[0,1,2,1,0] / 4$ for $\# S=5$ above is equal to $\left(x / 2+x^{2} / 2\right)^{2}$. That is, the generating polynomial of $\operatorname{Pr}(f, S)$ is identical to the square of the generating polynomial of densities of the two-dimensional uniform distribution (cf. Section 4). This shows that a sequence of points $\left(r_{\sigma(1)}, \ldots, r_{\sigma(5)}\right) / p$ for $\sigma \in S_{6}$ is not uniformly distributed in $[0,1)^{5}$.

Let α be a root of f. Then, we have $\mathbb{Q}(\alpha)=\mathbb{Q}(f)=\mathbb{Q}(\exp (2 \pi i / 7))$, and over a quadratic subfield $M_{2}=\mathbb{Q}(\sqrt{-7})$ of $\mathbb{Q}(\alpha), f$ has a divisor $g_{3}(x):=x^{3}-x^{2}+$ $(\sqrt{-7}+5) x+3 \sqrt{-7}+8$, for which the coefficient of x^{2} is the rational number -1 . This is an example of the first case of Proposition 5 below.

The densities for the polynomial $f_{2}(-x)$ are the same as those for the next polynomial $f_{3}(x)$; that is,

$$
\begin{equation*}
\operatorname{Pr}\left(f_{2}(-x), S\right)=\operatorname{Pr}\left(f_{3}(x), S\right) \tag{17}
\end{equation*}
$$

Example 3. For the indecomposable polynomial $f=f_{3}=x^{6}-2 x^{3}+9 x^{2}+6 x+2$, we expect that

$$
\begin{equation*}
\operatorname{Pr}\left(f_{3}, S\right)=\operatorname{Pr}\left(f_{2}, S^{\vee}\right)^{\vee} \tag{18}
\end{equation*}
$$

Remark 4. Conjectural values are determined by the double-checking method. Let us make a remark from a theoretical viewpoint. Because we can check that the polynomial $f_{2}(x)$ satisfies the assumption (A) by using Proposition 4, we have $\operatorname{Pr}\left(f_{2}(-x), S\right)^{\vee}=\operatorname{Pr}\left(f_{2}(x), S^{\vee}\right)$, and hence, (17) and (18) are equivalent. Polynomials $f_{3}(x)$ and $f_{3}(-x)$ have the same densities, and assumption (A) on S is not satisfied for either polynomial if $\# S=3$ and $S \neq\{1,3,5\},\{2,4,6\}$.
Let α be a root of f. Then, $\mathbb{Q}(\alpha)$ is a splitting field of the polynomial $x^{3}-3 x-14$, which is the composite field of $\mathbb{Q}(\sqrt{-1})$ and a field defined by $x^{3}-3 x-14=0$. Over a quadratic subfield $M_{2}=\mathbb{Q}(\sqrt{-1})$ of $\mathbb{Q}(\alpha), f$ has a divisor $g_{3}(x):=x^{3}+0$. $x^{2}-3 \sqrt{-1} x-\sqrt{-1}-1$, whose second leading coefficient is a rational number 0 . This is also an example of the first case of Proposition 5
Example 4. For an indecomposable polynomial $f=f_{4}=x^{6}-9 x^{5}-3 x^{4}+139 x^{3}+$ $93 x^{2}-627 x+1289$, we expect

$$
\begin{aligned}
& \operatorname{Pr}(f,\{1,2\})=\operatorname{Pr}(f,\{5,6\})^{\vee}=[277,11] / 288 \\
& \operatorname{Pr}(f,\{1,3\})=\operatorname{Pr}(f,\{4,6\})^{\vee}=[661,59] / 720 \\
& \operatorname{Pr}(f,\{1,4\})=\operatorname{Pr}(f,\{3,6\})^{\vee}=[38,7] / 45 \\
& \operatorname{Pr}(f,\{1,5\})=\operatorname{Pr}(f,\{2,6\})^{\vee}=[559,161] / 720 \\
& \operatorname{Pr}(f,\{1,6\})=[1,1] / 2 \\
& \operatorname{Pr}(f,\{2,3\})=\operatorname{Pr}(f,\{4,5\})^{\vee}=[33,7] / 40 \\
& \operatorname{Pr}(f,\{2,4\})=\operatorname{Pr}(f,\{3,5\})^{\vee}=[47,13] / 60 \\
& \operatorname{Pr}(f,\{2,5\})=[1,1] / 2 \\
& \operatorname{Pr}(f,\{3,4\})=[1,1] / 2
\end{aligned}
$$

$\operatorname{Pr}(f,\{1,2,3\})=\operatorname{Pr}(f,\{4,5,6\})^{\vee}=[475,164,9] / 648$,
$\operatorname{Pr}(f,\{1,2,4\})=\operatorname{Pr}(f,\{3,5,6\})^{\vee}=[649,416,15] / 1080$,
$\operatorname{Pr}(f,\{1,2,5\})=\operatorname{Pr}(f,\{2,5,6\})^{\vee}=[314,751,15] / 1080$,
$\operatorname{Pr}(f,\{1,2,6\})=\operatorname{Pr}(f,\{1,5,6\})^{\vee}=[208,857,15] / 1080$,

$$
\begin{aligned}
& \operatorname{Pr}(f,\{1,3,4\})=\operatorname{Pr}(f,\{3,4,6\})^{\vee}=[314,751,15] / 1080, \\
& \operatorname{Pr}(f,\{1,3,5\})=\operatorname{Pr}(f,\{2,4,6\})^{\vee}=[15,56,1] / 72, \\
& \operatorname{Pr}(f,\{1,3,6\})=\operatorname{Pr}(f,\{1,4,6\})^{\vee}=[433,2726,81] / 3240, \\
& \operatorname{Pr}(f,\{1,4,5\})=\operatorname{Pr}(f,\{2,3,6\})^{\vee}=[539,2520,181] / 3240, \\
& \operatorname{Pr}(f,\{2,3,4\})=\operatorname{Pr}(f,\{3,4,5\})^{\vee}=[722,2375,143] / 3240, \\
& \operatorname{Pr}(f,\{2,3,5\})=\operatorname{Pr}(f,\{2,4,5\})^{\vee}=[639,2314,287] / 3240 . \\
& \operatorname{Pr}(f,\{1,2,3,4\})=\operatorname{Pr}(f,\{3,4,5,6\})^{\vee}=[53,175,56,4] / 288, \\
& \operatorname{Pr}(f,\{1,2,3,5\})=\operatorname{Pr}(f,\{2,4,5,6\})^{\vee}=[101,469,140,10] / 720, \\
& \operatorname{Pr}(f,\{1,2,3,6\})=\operatorname{Pr}(f,\{1,4,5,6\})^{\vee}=[17,268,70,5] / 360, \\
& \operatorname{Pr}(f,\{1,2,4,5\})=\operatorname{Pr}(f,\{2,3,5,6\})^{\vee}=[24,261,70,5] / 360, \\
& \operatorname{Pr}(f,\{1,2,4,6\})=\operatorname{Pr}(f,\{1,3,5,6\})^{\vee}=[5,277,73,5] / 360, \\
& \operatorname{Pr}(f,\{1,2,5,6\})=[1,35,35,1] / 72 \text {, } \\
& \operatorname{Pr}(f,\{1,3,4,5\})=\operatorname{Pr}(f,\{2,3,4,6\})^{\vee}=[27,515,168,10] / 720, \\
& \operatorname{Pr}(f,\{1,3,4,6\})=[1,35,35,1] / 72, \\
& \operatorname{Pr}(f,\{2,3,4,5\})=[7,137,137,7] / 288, \\
& \operatorname{Pr}(f, S)=[1,14,42,14,1] / 72 \text { if } \# S=5 \text {. }
\end{aligned}
$$

Remark 5. The conjectural values above were determined by the double-checking method for $p<10^{13}$ and $D=\{d \mid d \leq 4000$ and a prime divisor of d is 2,3 or 5$\}$. The symmetry (10) and (12)-(16) hold.
In this case, we expect

$$
\binom{n}{s}^{-1} \sum_{\# S=s} \operatorname{Pr}(f, S)= \begin{cases}{[1,1] / 2!} & \text { if } s=2 \\ {[1,4,1] / 3!} & \text { if } s=3 \\ {[1,11,11,1] / 4!} & \text { if } s=4 \\ {[1,14,42,14,1] / 72} & \text { if } s=5\end{cases}
$$

Substituting $T(m, n):=(m n)!\prod_{k=0}^{n-1}(k!/(k+m)!)(m, n \geq 1)([11)$, which is called a multidimensional Catalan number, we see $T(m, 6-m)=1,14,42,14,1$ according to $m=1,2,3,4,5$, respectively.
Let α be a root of f. Then, over a cubic subfield M_{3} defined by $\beta^{3}-\beta^{2}-2 \beta+1=0$ of $\mathbb{Q}(\alpha), f$ has a divisor $g_{2}(x):=x^{2}+(6 \beta-5) x+9 \beta^{2}-15 \beta+8$, whose discriminant is the rational number -7 . This is an example of the second case of Proposition5, We have $\mathbb{Q}(\alpha)=\mathbb{Q}(\exp (2 \pi i / 7))$ and $\operatorname{Pr}\left(f_{4}(-x), S\right)=\operatorname{Pr}\left(f_{4}(x), S\right)$.
Remark 6. With respect to the polynomials on pp. 86-87 in [9], the densities defined here for the polynomials in cases (1)-(5) are equal to the ones given in Examples 2, 3, 1, 1, and 4, respectively.

We can consider a more general density. For a real function $t=t\left(x_{1}, \ldots, x_{n}\right)$,
we define $\operatorname{Pr}(f, t, X):=\left[\ldots, F_{0}, F_{1}, \ldots\right]$ by

$$
F_{k}:=\frac{\#\left\{p \in \operatorname{Spl}(f, X) \mid\left\lceil t\left(r_{1} / p, \ldots, r_{n} / p\right)\right\rceil=k\right\}}{\# \operatorname{Spl}(f, X)}
$$

and put $\operatorname{Pr}(f, t):=\lim _{X \rightarrow \infty} \operatorname{Pr}(f, t, X)$.
For example, for $f=x^{3}-3 x+1$, we expect

$$
\operatorname{Pr}\left(f, 4 x_{i}\right)_{[1 . .4]}= \begin{cases}{[9,5,2,0] / 16} & (i=1) \\ {[3,5,5,3] / 16} & (i=2) \\ {[0,2,5,9] / 16} & (i=3)\end{cases}
$$

where $v_{[n . . m]}$ means a subsequence $\left[v_{n}, \ldots, v_{m}\right]$ for $v=\left[\ldots, v_{0}, v_{1}, \ldots\right]$. $\operatorname{Pr}\left(f, 4 x_{1}\right)[4]=\operatorname{Pr}\left(f, 4 x_{3}\right)[1]=0$ is not difficult to prove.

5. Arithmetic aspects

We recall that in this paper, a polynomial is supposed to be an irreducible monic one with integer coefficients, and hereinafter, we neglect the global order (4). To analyze the case of $\operatorname{deg} f=6$, we prepare the following.

Proposition 5. Let $f(x)=x^{2 m}+a_{2 m-1} x^{2 m-1}+\ldots$ be a polynomial of even degree $2 m$ and let α be a root of $f(x)$ and put $F=\mathbb{Q}(\alpha)$. Let p be a sufficiently large prime number in $\operatorname{Spl}(f)$, and let $r_{1}, \ldots, r_{2 m} \in \mathbb{Z}$ be roots of $f(x)$ modulo p, that is,

$$
\begin{equation*}
f(x) \equiv \prod_{i=1}^{2 m}\left(x-r_{i}\right) \bmod p \tag{19}
\end{equation*}
$$

(1) Suppose that F contains a quadratic subfield M_{2} and that the coefficient of x^{m-1} of the monic minimal polynomial $g_{m}(x)$ of α over M_{2} be a rational integer a. Then, for the decomposition $p O_{M_{2}}=\mathfrak{p}_{1} \mathfrak{p}_{2}$ to the product of prime ideals \mathfrak{p}_{i} of M_{2}, we can renumber the roots r_{i} so that

$$
\begin{equation*}
g_{m}(x) \equiv \prod_{i=1}^{m}\left(x-r_{i}\right) \bmod \mathfrak{p}_{1}, \quad g_{m}(x) \equiv \prod_{i=m+1}^{2 m}\left(x-r_{i}\right) \bmod \mathfrak{p}_{2} \tag{20}
\end{equation*}
$$

and we have the linear relation

$$
\begin{equation*}
r_{1}+\cdots+r_{m} \equiv r_{m+1}+\cdots+r_{2 m} \equiv-a \bmod p \tag{21}
\end{equation*}
$$

Moreover, we have $f(x)=x^{2 m}+2 a x^{2 m-1}+\ldots$.
(2) Suppose that F contains a subfield M_{m} of degree m and that the discriminant of the monic minimal quadratic polynomial $g_{2}(x)$ of α over M_{m} is a rational integer D. Then, we can renumber the roots r_{i} so that we have

$$
\begin{equation*}
g_{2}(x) \equiv\left(x-r_{i}\right)\left(x-r_{i+m}\right) \bmod \mathfrak{p}_{i} \quad(i=1, \ldots, m) \tag{22}
\end{equation*}
$$

for the decomposition $p O_{M_{m}}=\mathfrak{p}_{1} \ldots \mathfrak{p}_{m}$ to the product of prime ideals, and we have the quadratic relation

$$
\begin{equation*}
\left(r_{i}-r_{i+m}\right)^{2} \equiv D \bmod p \quad(i=1, \ldots, m) \tag{23}
\end{equation*}
$$

Moreover, F contains a quadratic field $\mathbb{Q}(\sqrt{D})$.
Proof. We number the roots r_{i} of $f(x) \equiv 0 \bmod p$ and prime ideals \mathfrak{P}_{i} of F lying above p so that $\alpha \equiv r_{i} \bmod \mathfrak{P}_{i}$. Let us prove case (1) above. First, we note that the degree of $g_{m}(x) \in O_{M_{2}}[x]$ is m. We may assume that $p O_{M_{2}}=\mathfrak{p}_{1} \mathfrak{p}_{2}$ and $\mathfrak{p}_{1} O_{F}=$ $\mathfrak{P}_{1} \ldots \mathfrak{P}_{m}$ and $\mathfrak{p}_{2} O_{F}=\mathfrak{P}_{m+1} \ldots \mathfrak{P}_{2 m}$, which imply $\mathfrak{P}_{i} \cap M_{2}=\mathfrak{p}_{1}(i=1, \ldots, m)$ and $\mathfrak{P}_{i} \cap M_{2}=\mathfrak{p}_{2}(i=m+1, \ldots, 2 m)$. The assumptions $g_{m}(\alpha)=0$ and $\alpha \equiv r_{i} \bmod \mathfrak{P}_{i}$ imply $g_{m}\left(r_{i}\right) \equiv 0 \bmod \mathfrak{P}_{i}$; Hence,

$$
g_{m}\left(r_{i}\right) \in \mathfrak{P}_{i} \cap M_{2}= \begin{cases}\mathfrak{p}_{1} & (i=1, \ldots, m) \\ \mathfrak{p}_{2} & (i=m+1, \ldots, 2 m)\end{cases}
$$

which concludes (20). Therefore, the definition of a implies $a+\sum_{i=1}^{m} r_{i} \in \mathfrak{p}_{1} \cap \mathbb{Z}=p \mathbb{Z}$ and $a+\sum_{i=m+1}^{2 m} r_{i} \in \mathfrak{p}_{2} \cap \mathbb{Z}=p \mathbb{Z}$ by $a, r_{i} \in \mathbb{Z}$; hence, we get (21). Equations $a_{2 m-1}+\sum_{i=1}^{2 m} r_{i} \equiv 0 \bmod p$ and (21) imply $a_{2 m-1} \equiv 2 a \bmod p$; hence, $a_{2 m-1}=2 a$, since p is sufficiently large. Thus, we have $f(x)=x^{2 m}+2 a x^{2 m-1}+\ldots$.
Next, let us prove case (2) above. Put $g_{2}(x)=x^{2}+A x+B\left(A, B \in O_{M_{m}}\right)$. The assumption $g_{2}(\alpha)=0$ implies $g_{2}\left(r_{i}\right) \equiv 0 \bmod \mathfrak{P}_{i}$, that is, $g_{2}\left(r_{i}\right) \in \mathfrak{P}_{i}(i=$ $1, \ldots, 2 m)$. By renumbering, we may assume that

$$
p O_{M_{m}}=\mathfrak{p}_{1} \ldots \mathfrak{p}_{m}, \quad \mathfrak{p}_{i} O_{F}=\mathfrak{P}_{i} \mathfrak{P}_{i+m} \quad(i=1, \ldots, m)
$$

Then we have

$$
g_{2}\left(r_{i}\right) \in \mathfrak{P}_{i} \cap M_{m}=\mathfrak{p}_{i}, \quad g_{2}\left(r_{i+m}\right) \in \mathfrak{P}_{i+m} \cap M_{m}=\mathfrak{p}_{i} \quad(i=1, \ldots, m)
$$

that is (22). Therefore, we have

$$
D \equiv\left(r_{i}+r_{i+m}\right)^{2}-4 r_{i} r_{i+m} \equiv\left(r_{i}-r_{i+m}\right)^{2} \bmod \mathfrak{p}_{i} \quad(i=1, \ldots, m)
$$

Since D and r_{i} are rational integers and $\mathfrak{p}_{i} \cap \mathbb{Z}=p \mathbb{Z}$, we have (23). Since the difference \sqrt{D} of α and its conjugate over M_{m} is in F and D is a rational integer, F contains a quadratic field $\mathbb{Q}(\sqrt{D})$.

A sufficient condition for the assumption in (1) is as follows.
Proposition 6. If $f(x)=g(h(x))$ holds for a polynomial $g(x)$ of degree 2 and a polynomial $h(x)$ of degree $m(>1)$, then the assumption in (1) of Proposition 5 is satisfied.

Proof. Let α be a root of $f(x)$. Substituting $\beta:=h(\alpha)$ and $M_{2}:=\mathbb{Q}(\beta)$, we have $g(\beta)=f(\alpha)=0$; hence, M_{2} is a quadratic field and $g(x)$ is $(x-\beta)(x-\bar{\beta})$
for a conjugate $\bar{\beta} \in M_{2}$ of β over \mathbb{Q}. Then, $g_{m}(x):=h(x)-\beta$ satisfies $f(x)=$ $g_{m}(x)(h(x)-\bar{\beta}), g_{m}(\alpha)=0$, and the second leading coefficient of $g_{m}(x)$, which is equal to that of $h(x)$, is rational. If $g_{m}(x)$ is reducible over M_{2}, there is a decomposition $g_{m}(x)=k_{1}(x) k_{2}(x)$ with $k_{i}(x) \in M_{2}[x]$ and $\operatorname{deg} k_{i}>1$. Thus, $f(x)=(h(x)-\beta)(h(x)-\bar{\beta})=g_{m}(x) \overline{g_{m}(x)}$ is divisible by a polynomial $k_{i}(x) \overline{k_{i}(x)} \in$ $\mathbb{Q}[x]$, which contradicts the irreducibility of $f(x)$.

Let us make a few comments on the relations between (20) and the distribution.
Lemma 2. Keep the case (1) in Proposition5 and assume that $0 \leq r_{i}<p(1 \leq i \leq$ 2m). Substituting $C_{p}\left(g, \mathfrak{p}_{1}\right):=\left(a+\sum_{i=1}^{m} r_{i}\right) / p \in \mathbb{Z}, C_{p}\left(g, \mathfrak{p}_{2}\right):=\left(a+\sum_{i=m+1}^{2 m} r_{i}\right) / p \in$ \mathbb{Z}, we have $C_{p}(f)=C_{p}\left(g, \mathfrak{p}_{1}\right)+C_{p}\left(g, \mathfrak{p}_{2}\right)$ and

$$
\begin{equation*}
C_{p}\left(g, \mathfrak{p}_{1}\right)=\left\lceil\left(r_{1}+\cdots+r_{m-1}\right) / p\right\rceil, C_{p}\left(g, \mathfrak{p}_{2}\right)=\left\lceil\left(r_{m+1}+\cdots+r_{2 m-1}\right) / p\right\rceil \tag{24}
\end{equation*}
$$

except finitely many primes p.
Proof. The definition (2) of $C_{p}(f)$ implies $C_{p}(f) p=2 a+\sum_{i=1}^{2 m} r_{i}=\left(a+\sum_{i=1}^{m} r_{i}\right)+$ $\left(a+\sum_{i=m+1}^{2 m} r_{i}\right)$, i.e., $C_{p}(f)=C_{p}\left(g, \mathfrak{p}_{1}\right)+C_{p}\left(g, \mathfrak{p}_{2}\right)$. Substituting $k=\left\lceil\left(r_{1}+\cdots+\right.\right.$ $\left.\left.r_{m-1}\right) / p\right\rceil$, we have $\left(r_{1}+\cdots+r_{m-1}\right) / p \leq k<\left(r_{1}+\cdots+r_{m-1}\right) / p+1$. Hence, $C_{p}\left(g, \mathfrak{p}_{1}\right)-\left(r_{m}+a\right) / p \leq k<C_{p}\left(g, \mathfrak{p}_{1}\right)-\left(r_{m}+a\right) / p+1$, and so

$$
-\left(r_{m}+a\right) / p \leq k-C_{p}\left(g, \mathfrak{p}_{1}\right)<-\left(r_{m}+a\right) / p+1
$$

If $k-C_{p}\left(g, \mathfrak{p}_{1}\right) \leq-1$ holds, then we have $-\left(r_{m}+a\right) / p \leq-1$; hence, $1 \leq p-r_{m} \leq a$. If this inequality holds for infinitely many primes, there is an integer r between 1 and a such that $p-r_{m}=r$ for infinitely many primes, which implies $f(-r) \equiv$ $f\left(r_{m}\right) \equiv 0 \bmod p$, hence a contradiction $f(-r)=0$. Thus, $k-C_{p}\left(g, \mathfrak{p}_{1}\right) \geq 0$ holds. Next, suppose that $k-C_{p}\left(g, \mathfrak{p}_{1}\right) \geq 1$ holds for infinitely many primes. Then, we have $\left(r_{m}+a\right) / p<0$, and hence, $0 \leq r_{m}<-a$ for infinitely many primes, which is also a contradiction similar to the above. Hence, we have $k-C_{p}\left(g, \mathfrak{p}_{1}\right)=0$. Another equality is similarly proved.

Keeping and continuing the above, (8) implies

$$
\lim _{X \rightarrow \infty} F_{k}(f, S, X)=\lim _{X \rightarrow \infty} \frac{\#\left\{p \in \operatorname{Spl}(f, X) \mid C_{p}\left(g, \mathfrak{p}_{1}\right)+C_{p}\left(g, \mathfrak{p}_{2}\right)=k\right\}}{\# \operatorname{Spl}(f, X)}
$$

for any subset S with $\# S=n-1$. We note that there are $2(m!)^{2}$ ways of choosing points $\left(r_{1} / p, \ldots, r_{m-1} / p, r_{m+1} / p, \ldots, r_{2 m-1} / p\right) \in[0,1)^{2(m-1)}$ by two ways for $\mathfrak{p}_{1}, \mathfrak{p}_{2}$ and m ! ways of choosing r_{1}, \ldots, r_{m-1} (resp. $r_{m+1}, \ldots, r_{2 m-1}$) from r_{1}, \ldots, r_{m} (resp. $r_{m+1}, \ldots, r_{2 m}$). If, therefore, a sequence of all $2(m!)^{2}$ points $\left(r_{1} / p, \ldots, r_{m-1} / p, r_{m+1} / p, \ldots, r_{2 m-1} / p\right) \in[0,1)^{2(m-1)}$ for every prime $p \in \operatorname{Spl}(f)$ distributes uniformly when $p \rightarrow \infty$, then by (24) we have

$$
\lim _{X \rightarrow \infty} F_{k}(f, S, X)
$$

$$
\begin{aligned}
& =\operatorname{vol}\left(\left\{\left(x_{1}, \ldots, x_{2(m-1)}\right) \in[0,1)^{2(m-1)} \mid\left\lceil\sum_{l=1}^{m-1} x_{l}\right\rceil+\left\lceil\sum_{l=m}^{2(m-1)} x_{l}\right\rceil=k\right\}\right) \\
& =\sum_{i+j=k} \operatorname{vol}\left\{\left(x_{1}, \ldots, x_{m-1}\right) \in[0,1)^{m-1} \mid\left\lceil\sum_{l=1}^{m-1} x_{l}\right\rceil=i\right\} \times \\
& \quad \operatorname{vol}\left\{\left(x_{m}, \ldots, x_{2(m-1)}\right) \in[0,1)^{m-1} \mid\left\lceil\sum_{l=m}^{2(m-1)} x_{l}\right\rceil=j\right\}
\end{aligned}
$$

The volume $\operatorname{vol}\left\{\left(x_{1}, \ldots, x_{m-1}\right) \in[0,1)^{m-1} \mid\left\lceil\sum_{l=1}^{m-1} x_{l}\right\rceil=i\right\}$ is given by Eulerian numbers as above. In the case of $m=3$ for now, by

$$
\operatorname{vol}\left\{\left(x_{1}, x_{2}\right) \in[0,1)^{2} \mid\left\lceil x_{1}+x_{2}\right\rceil=i\right\}=\left\{\begin{array}{cll}
0 & \text { if } & i \leq 0 \\
1 / 2 & \text { if } & i=1,2 \\
0 & \text { if } & i \geq 2
\end{array}\right.
$$

, we have

$$
\lim _{X \rightarrow \infty} F_{k}(f, S, X)=\left\{\begin{array}{cl}
1 / 4 & \text { if } k=2,4 \\
1 / 2 & \text { if } k=3 \\
0 & \text { otherwise }
\end{array}\right.
$$

This elucidates $\operatorname{Pr}(f, S)=[0,1,2,1,0] / 4$ at $\# S=5$ in the cases of Examples 2 and 3.

In the case of $\operatorname{deg} f=4$, the assumption in (1) of Proposition5 and that of being decomposable are equivalent as follows.

Proposition 7. Let $M_{2}=\mathbb{Q}(\sqrt{D})(D \in \mathbb{Q})$ be a quadratic field and $f(x) \in \mathbb{Q}[x]$ be a polynomial of degree $\ell+2$. Suppose that $f(x)=g(x) h(x)$ with $g(x)=x^{2}+$ $a x+b_{1}+b_{2} \sqrt{d}, h(x) \in M_{2}[x]$ with $a, b_{1}, b_{2} \in \mathbb{Q}$. Then, $\ell=2$ and $f(x)$ is equal to $\left(x^{2}+a x+b_{1}\right)^{2}-b_{2}^{2} d$, in particular, decomposable, which implies that in (1) of Proposition5, the polynomial f is decomposable if $\operatorname{deg} f=4$.

Proof. We note that the irreducibility of a polynomial f implies $b_{2} \neq 0$. Write $h(x)=x^{\ell}+h_{1}(x)+\sqrt{d} h_{2}(x)\left(h_{1}, h_{2} \in \mathbb{Q}[x]\right)$; then, we have

$$
\begin{aligned}
f(x) & =\left(x^{2}+a x+b_{1}+b_{2} \sqrt{d}\right)\left(x^{\ell}+h_{1}(x)+\sqrt{d} h_{2}(x)\right) \\
& =\left(x^{2}+a x+b_{1}\right)\left(x^{\ell}+h_{1}(x)\right)+b_{2} d h_{2}(x) \\
& +\sqrt{d}\left[b_{2}\left(x^{\ell}+h_{1}(x)\right)+\left(x^{2}+a x+b_{1}\right) h_{2}(x)\right] \in \mathbb{Q}[x] .
\end{aligned}
$$

Thus, we have $b_{2}\left(x^{\ell}+h_{1}(x)\right)+\left(x^{2}+a x+b_{1}\right) h_{2}(x)=0$, and hence, $x^{\ell}+h_{1}(x)=$ $-b_{2}^{-1}\left(x^{2}+a x+b_{1}\right) h_{2}(x)$, which implies $h(x)=-b_{2}^{-1}\left(x^{2}+a x+b_{1}-b_{2} \sqrt{d}\right) h_{2}(x)$. Thus, we have $f(x)=-b_{2}^{-1}\left(\left(x^{2}+a x+b_{1}\right)^{2}-b_{2}^{2} d\right) h_{2}(x)$. Since $f(x)$ is irreducible and monic, we have $f(x)=\left(x^{2}+a x+b_{1}\right)^{2}-b_{2}^{2} d$.

References

[1] W. Duke, J.B. Friedlander, and H. Iwaniec, Equidistribution of roots of a quadratic congruence to prime moduli, Ann. of Math. 141 (1995), 423-441.
[2] W. Feller, An introduction to probability theory and its applications Vol. 2, J. Wiley, New York, 1966.
[3] T. Hadano, Y. Kitaoka, T. Kubota, and M. Nozaki, Densities of sets of primes related to decimal expansion of rational numbers, in Number Theory: Tradition and Modernization, 67-80, Springer Science + Business Media, Inc, 2006.
[4] Y. Kitaoka, A statistical relation of roots of a polynomial in different local fields, Math. of Comp. 78(2009), 523-536.
[5] Y. Kitaoka, A statistical relation of roots of a polynomial in different local fields II, in Number Theory : Dreaming in Dreams (Series on Number Theory and Its Application Vol. 6), 106-126, World Scientific, 2010.
[6] Y. Kitaoka, A statistical relation of roots of a polynomial in different local fields III, Osaka J. Math. 49 (2012), 393-420.
[7] Y. Kitaoka, Introduction to algebra (in Japanese), Kin-en-Shobo (2012).
[8] Y. Kitaoka, A statistical relation of roots of a polynomial in different local fields IV, Uniform Distribution Theory 8 (2013), no.1, 17-30.
[9] Y. Kitaoka, Statistical distribution of roots of a polynomial modulo prime powers, in Number Theory : Plowing and Starring through High Wave Forms(Series on Number Theory and Its Application Vol.11), pp.75-94, World Scientific, 2013.
[10] Y. Kitaoka, Statistical distribution of roots modulo primes of an irreducible and decomposable polynomial of degree 4, Uniform Distribution Theory 10 (2015), no.2, 1-10.
[11] The On-Line Encyclopedia of Integer Sequences, https://oeis.org/.
[12] J.P.Serre, Quelques applications du théorème de densité de Chebotarev, I.H.E.S., 54 (1981), 323-401.
[13] Á. Tóth, Roots of Quadratic congruences, Internat. Math. Res. Notices, (2000), 719-739.

[^0]: ${ }^{1}$ The PARI Group, PARI/GP version 2.7.0, Bordeaux, 2014, http://pari.math.u-bordeaux.fr/

[^1]: ${ }^{2}$ Added in the proof: This classification by densities turned out to be inappropriate.

