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Abstract

We introduce a new algebraic construction, monop, that combines monoids (with
respect to the product of species), and operads (monoids with respect to the substitu-
tion of species) in the same algebraic structure. By the use of properties of cancella-
tive set-monops we construct a family of partially ordered sets whose prototypical ex-
amples are the Dowling lattices. They generalize the partition posets associated to a
cancellative operad, and the subset posets associated to a cancellative monoid. Their
generalized Withney numbers of the first and second kind are the entries of a Riordan
matrix and its inverse. Equivalently, they are the connecting coefficients of two um-
bral inverse Sheffer sequences with the family of powers {x n}∞n=0. We study algebraic
monops, their associated algebras and the free monop-algebras, as part of a program
in progress to develop a theory of Koszul duality for monops.

Dedicated to the memory of Gian Carlo Rota, 1932-1999.

1 Introduction

The systematic study of the Sheffer families of polynomials and of its particular instances:
the Appel familes and the families of binomial type, was carried out by G.- C. Rota and his
collaborators in what is called the Umbral Calculus (see [MR70], [RKO73, RR78, Rom84]).
A Sheffer sequence is uniquely associated to a pair of exponential formal power series,
(F (x ),G (x )), F (x ) invertible with respect to the product of series, and G (x ) with respect
to the substitution. The Sheffer sequences come in pairs, one is called the umbral inverse
of the other. If one Sheffer sequence is associated to the pair (F (x ),G (x )), its umbral inverse
is associated to the pair ( 1

F (H (x )) , H (x )), where H (x ) = F 〈−1〉(x ), the substitutional inverse of
F (x ). Shapiro et al. introduced in [SGWC81] the Riordan group of matrices, whose entries
in the exponential case, connect two Sheffer families of polynomials. Since that a great
number of enumerative applications have been found by these methods. See for example
the list of Riordan arrays of OEIS.

The initial motivation of the present research was to find a combinatorial explanation
of the inversion process in the group of Riordan matrices. Equivalently, to the Sheffer se-
quences of polynomials and their umbral inverses. The key tool for such explanation is in
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the first place the concept of Möbius function and Möbius inversion over partially ordered
sets (posets) [Rot64].

For the particular case of families of binomial type, the combinatorics of the process of
inversion is related to families of posets of enriched partitions (assemblies of structures).
One of the families of binomial type obtained by summation over the poset, and its umbral
inverse by Möbius inversion. Particular cases of them were studied in [Rei78], [JRS81] and
[Sag83]. The general explanation was found in [MY91], where the construction of those
posets is based on some special kind of set operads, called c -operads.

A similar approach can be applied to the Appel families. The central combinatorial
object in this case is that of a c -monoid. A c -monoid is a special kind of monoid in the
monoidal category of species with respect to the product (See [Joy81], [Men15]. See also
[AM10] for an extensive treatment of monoids and Hopf monoids). Given a c -monoid,
through its product we are able to build a family of partially ordered sets. For each of these
monoids, one Appel family is obtained by summation over those posets, and its umbral
inverse by Möbius inversion.

In this article we introduce a new algebraic structure, that we called monop, because
it is an interesting mix between monoids and operads. Our first step was to construct a
monoidal category, the semidirect product (in the sense of Fuller [Ful16]) of the monoidal
categories of species with respect to the product and the positive species with respect to the
substitution. Then, we define a monop to be a monoid in such category. From the com-
mutative diagrams satisfied for this kind of monoids we deduce all the main properties of
monops. We also introduce the c -monops. From a c -monop we give a general construc-
tion of posets that give combinatorial explanation of the inverses of Riordan matrices by
means of Möbius inversion. Or, equivalently, to Sheffer families and their umbral inverses.
We present a number of examples of Appel, binomial and general Sheffer families together
with the posets constructed using the present theory. Remarkably, we obtain a new op-
erad, that we call the Dowling operad, which we complemented here to a monop in order
to give a construction to the classical Dowling lattice and introduce r -generalizations for r
a positive integer. With similar techniques we can define monops on rigid species (species
over totally ordered sets), with the operations of ordinal product and substitution. In this
way giving combinatorial interpretations to the inversion in the Riordan group associated
to pairs of ordinary series ( f (x ), g (x )). In a forthcoming paper we shall deal with the appli-
cations of the present theory to the ordinary Riordan matrices.

Monops have an independent algebraic interest beyond the enumerative applications
given here. B. Vallet [Val07] proved that, under reasonable conditions, posets associate to a
c -operad are Cohn-Macaulay [BGS82, Wac07] if and only if the c -operad is Koszul [GK94].
In the same vein of Vallet approach, one of us has proved [Men10] that a c -monoid is Koszul
if and only if the family of associated posets is Cohn-Macaulay. Our next step in this pro-
gram shall be the development of a Koszul duality theory for monops. Monoids are closely
related to associative algebras. Given a monoid M , the analytic functor associated to it
( [Joy86]) evaluated in a vector space is an associative algebra. Then, Koszul duality for
monops would establish a deep link between Koszul duality for operads and for associa-
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tive algebras. And also, interesting connection with the Cohn-Macaulay property for the
associated posets and Koszulness of the corresponding monop, unifying in this way the
criteria established in [Val07] and in [Men10].

2 Formal power series

The exponential generating series (or function) of a sequence of numbers fn , n = 0, 1, . . . is
the formal power series

F (x ) =
∞
∑

n=0

fn

x n

n !

The coefficient fn will be denoted as F [n ], F [n ] := fn . The series F (x )will be called a delta
series if F [0] = 0 and F [1] 6= 0. For an exponential series F (x ) with zero constant term,
F [0] = 0, we denote by γk (F )(x ) its divided power

γk (F )(x ) :=
F k (x )

k !
.

The substitution of such a formal power series F (x ) in another arbitrary formal power series
G (x ) is equal to

G (F (x )) :=
∞
∑

k=0

G [k ]×γk (F )(x ). (1)

Definition 1. A pair of exponential formal power series (F (x ),G (x )) is called admissible if
G [0] = 0. An admissible pair is called a Riordan pair if F [0] 6= 0 and G (x ) is a delta series.

Riordan product of admissible pairs is defined as follows

(F1(x ),G1(x )) ∗ (F2(x ),G2(x )) := (F1(x ).F2(G1(x )),G2(G1(x )). (2)

Admissible pairs of series in C[[x ]] form a monoid with respect to the product ∗, having
(1, x ) as identity. The Riordan pairs form a group, the inverse of (F (x ),G (x )) given by

(F (x ),G (x ))−1 = (F −1(G 〈−1〉(x )),G 〈−1〉(x )). (3)

Where F −1(x ) and G 〈−1〉(x ) denote the multiplicative and substitutional inverses of F (x )
and G (x ) respectively.

Definition 2. To an admissible pair (F (x ),G (x )) we associate the infinite lower triangular
matrix having as entries

Cn ,k =Hk [n ], 0≤ k ≤ n . (4)

Hk (x ) being the series F (x ).γk (G (x )). That matrix is denoted as 〈F (x ),G (x )〉. The Rior-
dan product is transported to matrix product by the bracket operator, We have that (see
[SGWC81]).

〈G1(x ), F1(x )〉〈G2(x ), F2(x )〉= 〈G1(x ).G2(F2(x )), F2(F1(x )).〉 (5)
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The matrix 〈F (x ),G (x )〉 is called a Riordan array when (F (x ),G (x )) is a Riordan pair. Ri-
ordan arrays with the operation of matrix product form a group that is isomorphic to the
group of Riordan pairs. The inverse of the matrix 〈F (x ),G (x )〉 is equal to

〈F (x ),G (x )〉−1 = 〈F −1(G 〈−1〉(x )),G 〈−1〉(x )〉. (6)

The ordinary generating function of the sequence fn is equal to the formal power series

f (x ) =
∞
∑

n=0

fn x n .

We denote by f [n ] the nth. coefficient of f (x ).

Definition 3. For an admissible pair (g (x ), f (x )) of ordinary generating functions we define
the associated matrix having as entries the coefficients

Cn ,k = hk [n ], 0≤ k ≤ n (7)

where hk (x ) is the series hk (x ) = g (x ). f k (x ).

3 Sheffer sequences of polynomials

Definition 4. Let G (x ) be a delta series. Define the polynomial sequence

pn (x ) :=
n
∑

k=1

γk (G )[n ]x
k , n ≥ 1 (8)

and let p0(x )≡ 1. This polynomial sequence is known to be of binomial type,

pn (x + y ) =
n
∑

k=0

�

n

k

�

pn−k (x )pk (y ).

It is called the conjugate sequence to the delta series G (x ). It is also called the associated
sequence to the series P (x ) =G 〈−1〉(x ). We have that

P (D )pn (x ) = npn−1(x ), (9)

where P (D ) is the operator defined by

P (D ) =
∞
∑

n=1

P [n ]
D n

n !
,

D being the derivative operator D r (x ) = r ′(x ).
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Definition 5. We say that a family of polynomials sn (x ) is Sheffer if there exists Riordan pair
of formal power series (F (x ),G (x )) such that

sn (x ) :=
n
∑

k=0

(F.γk (G )[n ])x
k , n ≥ 0. (10)

We will say that {sn (x )}∞n=0 is the conjugate sequence of (F (x ),G (x )).

Observe that the coefficients cn ,k = F.γk (G )[n ] connecting the family of powers x n with
sn (x ), n ≥ 0, are the entries of the Riordan matrix associated to the pair (F (x ),G (x )), 〈F (x ),G (x )〉.
Let us consider the Riordan inverse of (F (x ),G (x )),

(S (x ), P (x )) = (F (x ),G (x ))−1 = (F −1(G 〈−1〉(x )),G 〈−1〉(x ))). (11)

Let {pn (x )}∞n=0 be the family of binomial type associated to the delta operator P (D ). It is not
difficult to verify that

sn (x ) = S−1(D )pn (x ) = F (G 〈−1〉(D ))pn (x ) = F (P (D ))pn (x ) (12)

As a consequence of Eq. (12), we get that the Sheffer sequence {sn (x )}∞n=0 satisfies the bino-
mial identity

sn (x + y ) =
n
∑

k=0

�

n

k

�

sk (x )pn−k (y ).

We say that it is Sheffer relative to the binomial family pn (x ). It is called the Sheffer sequence
associated to the Riordan pair (S (x ), P (x )).

A Sheffer sequence associated to a Riordan pair of the form (S (x ), x ) is called an Appel
sequence. An Appel sequence is Sheffer relative to the family of powers, {x n}∞n=0. Observe
that, by Eq.(10), a such Appel sequence an (x ) conjugate to the pair (F (x ), x ), F (x ) = S−1(x )
is of the form,

an (x ) =
n
∑

k=0

F (x ).
x k

k !
[n ]x k =

n
∑

k=0

�

n

k

�

F [n −k ]x k , (13)

since (F (x ) x k

k ! )[n ] =
�

n
k

�

F [n − k ]. Similarly, a family of binomial type is Sheffer associated
to Riordan pairs of the form (1, P (x )) (resp. conjugate to pairs of the form (1, F (x )), F (x ) =
P 〈−1〉(x ).

3.1 Umbral substitution

Let

rn (x ) =
n
∑

k=0

dn ,k x k

be another Sheffer sequence conjugated to a Riordan pair (H (x ), K (x )). Consider the um-
bral substitution defined by

sn (r) =
n
∑

k=0

cn ,k rk :=
n
∑

k=0

cn ,k rk (x ) =
n
∑

j=0

(
∑

j≤k≤n

cn ,k dk , j )x
j .
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Since the matrix of coefficients of the umbral substitution is the product of the correspond-
ing matrices, by Eq. (5), we have that

Proposition 1. The umbral substitution sn (r)of two Sheffer sequences as above is also Shef-
fer, conjugated to the Riordan product

(F (x ),G (x )) ∗ (H (x ), K (x )) = (F (x )H (G (x )), K (G (x ))).

Corollary 1. Let an (x ) and pn (x ) be the Appel and binomial sequences conjugate respec-
tively to (F (x ), x ) and (1,G (x )). Then we have

sn (x ) = an (p). (14)

Proof. Immediate from Prop. 1 and the identity

(F (x ),G (x )) = (F (x ), x ) ∗ (1,G (x )).

The Sheffer sequence associated to (F (x ),G (x )) is the umbral inverse of {sn (x )}∞n=0, de-
noted {bsn (x )}∞n=0. For every n ≥ 0,

sn (bs(x )) :=
n
∑

k=1

F (x ).γk (G (x ))[n ]bsk (x ) = x n = bsn (s(x )) (15)

This is obviously equivalent to the identity (6). It says that the matrix F (x ).γk (G (x ))[n ] is
the inverse of S (x ).γk (P (x ))[n ]. It is summarized in the following table.

Sheffer Appel Binomial Umbral Inverse
Associated to (S(x),P(x)) (S(x),x) (1,P(x)) Conjugate to
Conjugate to (F (x ),G (x )) (F (x ), x ) (1,G (x )) Associated to

Matrix F (x )G
k (x )
k ! [n ]

�

n
k

�

F [n −k ] G k (x )
k ! [n ] Inverse Matrix

4 Species and rigid species

In a general way, a (symmetric) species is a covariant functor from the category of finite
sets and bijections B to a suitable category. For example, if we set as codomain the cat-
egory of finite sets and functions F, we get set species (see [BLL98, Joy81]). If we instead
set as codomain the category of vector spaces and linear maps VecK; we get linear species
(see for example [Joy86, AM10, Men15]). By changing the domain B by the category of to-
tally ordered setsL and poset isomorphisms, we obtain rigid species (species of structures
without the action of the symmetric groups, non-symmetric species). Rigid species are en-
dowed with two kinds of operations; shuffle and ordinal.
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4.1 Three monoidal categories with species.

The (symmetric) set species, together with the natural transformation between them form
a category. A species P is said to be positive if it assigns no structures to the empty set,
P [;] = ;. The category of species will be denoted by Sp and the category of positive species
by Sp+.

Recall that the product of species is defined as follows

(M .N )[V ] =
∑

V1+V2=V

M [V1]×N [V2].

And the substitution of a positive species P into an arbitrary species R by

R (P )[V ] =
∑

π∈Π[V ]

∏

B∈π
P [B ]×R [π].

The symbol of sum in set theoretical context will always denote disjoint union. The ele-
ments of the product M .N [V ] are pairs (m , n ), m an element of M [V1] and n an element of
N [V2], for some decomposition of V , V =V1+V2. The category Sp is monoidal with respect
to the operation of product. It has as identity the species 1 of empty sets,

1[V ] :=

¨

{;} if V = ;
; otherwise,

(16)

we have canonical isomorphisms

1.M ∼=M ∼=M .1.

The category of positive species is monoidal with respect to the operation of substitu-
tion. Its identity being the species of singletons,

X [V ] :=

¨

V if |V |= 1

; otherwise.
(17)

The divided power γk (G (x )) =
G k (x )

k ! of an exponential formal power series G (x ) has a coun-
terpart in species. Recall that for a positive species P ,

γk (P )[V ] =
∑

|π|=k

∏

B∈π
P [B ].

The elements of γk (P ) are assemblies of P -structures having exactly k elements,

a = {pB }B∈π, |a |= k , and pB ∈ P [B ] for every B ∈π.

The elements of the substitution R (P ) are pairs of the form: (a , r ), a = {pB }B∈π an assembly
of P -structures, and r an element of R [π]. The divided power can be seen as the substitu-
tion of P into the species Ek , of sets of cardinal k ,

Ek [V ] =

¨

{V } if |V |= k

; otherwise,

γk (P ) = Ek (P ).
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Definition 6. Let us consider now the product category Sp×Sp+. A pair of species (M ,O)
in Sp×Sp+ will be called admissible. Morphisms are pairs of natural transformations of the
form

(φ,ψ) : (M1,O1)→ (M2,O2),

φ : M1 → M2, and ψ : O1 → O2. It is a monoidal category with respect to the Riordan
product, defined as follows:

(M1,O1) ∗ (M2,O2) = (M1.M2(O1),O2(O1)) (18)

having as identity the pair (1, X ),

(1, X ) ∗ (M ,O) = (1.M (X ),O(X ))∼= (M ,O)∼= (M .1, X (O)) = (M ,O) ∗ (1, X ). (19)

It will be called from now on the Riodan category.

The monoidal categories Sp and Sp+ are respectively imbedded into the Riordan cate-
gory by mapping,

M 7→ (M , X ) (20)

O 7→ (1,O). (21)

Remark 1. The Riordan category is just the semidirectproduct Spo Sp+ (in the sense of
[Ful16]) associated to the action

Sp+ → [Sp, Sp]
O 7→ (M 7→M (O)).

The exponential generating functions of (M ,O) is defined to be

(M ,O)(x ) = (M (x ),O(x )). (22)

The generating function of the Riordan product (M1,O1)∗ (M2,O2) is obviously the Riordan
product of the respective generating functions

(M1,O1) ∗ (M2,O2)(x ) = (M1(x ).M2(O1(x )),O2(O1(x ))).

The matrix associated to an admissible pair (M (x ),O(x )) is invertible if and only if (M (x ),O(x ))
is a Riordan pair. Since

Cn ,k = |M .γk (O)[n ]| (23)

it enumerates pairs of the form (m , a ), m ∈M [V1] and a an assembly of O-structures over
V2 having exactly k elements, V1+V2 = [n ].

Example 1. Let us consider E , the species of sets, E [V ] = {V }. Let E+ be its associated
positive species. The pair (E , E+) has as generating function the Riordan pair

(E , E+)(x ) = (e
x , e x −1). (24)
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The matrix associated to the pair (e x , e x − 1), Cn ,k = |E .γk (E+)[n ]|, counts the number of
partial partitions of [n ] having k blocks. The matrix Cn ,k = |Π.γk (E+)[n ]| associated to the
pair (Π, E+)

(Π, E+)(x ) = (e
e x−1, e x −1) (25)

counts pairs of partitions (π1,π2), π1 ∈ Π[V1], π2 ∈ Π[V2], V1 +V2 = [n ], π2 having exactly k
blocks.

With this general interpretation in mind we can give a direct combinatorial proof to Eq.
(5).

Proposition 2. Let (M1,O1) and (M2,O2) be two admissible pairs. The matrix associated to
the Riordan product (M1(x ),O1(x ))∗ (M2(x ),O2(x )) is equal to the product of the respective
matrices,

〈M1(x ),O1(x )〉 · 〈M2(x ),O2(x )〉= 〈M1(x ) ·M2(O1(x )),O2(O1(x ))〉.

Proof. The entries of the Riordan arrays associated to the pairs (M1(x ),O1(x ))and (M2(x ),O2(x ))
have respectively the entries

An ,k = |M1γk (O1)[n ]|
Bn ,k = |M2γk (O2)[n ]|

The Riordan product (M1(x ),O1(x )) ∗ (M2(x ),O2(x )) is equal to

(M1(x ).M2(O1(x )),O2(O1(x ))).

The n , k entry of the matrix associated to the pair (M1.M2(O1),O2(O1)) is equal to

Cn ,k = |M1.M2(O1).γk (O2(O1))[n ]|.

By associativity of the substitution of species (since γk (O2(O1)) = Ek (O2(O1))), and right dis-
tributivity of the operation of substitution with respect to the product, we have that

M1.M2(O1).γk ((O2(O1)) =M1.M2(O1).γk (O2)(O1) =M1.(M2.γk (O2))(O1). (26)

The elements of the species in the right hand side of Eq. (26) evalauted in the set [n ] are of
the form (m1, a1, (a2, m2)), where;

• m1 is an M1-structure over a subset V1 of [n ].

• a1 is an assembly of O1-structures over the set V2 = [n ]−V1.

• (m2, a2) is an element of (M2.γk (O2))[π], π being the partition subjacent to a1. The
assembly a2 has k elements.

9



Figure 1: The equipotence M1.(M2.γ2(O2))(O1)[13]≡
∑13

j=2 M1.γ j (O1)[13]×M2γ2(O2)[ j ].

Assuming that |π|= j , the set of elements of above is then equipotent with the set (see Fig.
1)

M1.γ j (O1)[n ]×M2.γk (O2)[ j ]

Since k ≤ |π| ≤ n , then

Cn ,k = |M1.(M2.γk (O2))(O1)[n ]|=
n
∑

j=k

|M1.γ j (O1)[n ]||M2.γk (O2)[ j ]|=
n
∑

j=k

An , j B j ,k .

Similar monoidal categories are defined on rigid species. Let R ,S : L → F two rigid
species. For l , a linear order on a set V , recall that the shuffle product and substitution are
defined respectively by

(R .S )[l ] =
∑

V1+V +2=V

R [lV1
]×S [lV2

] (27)

R (S )[l ] =
∑

π∈Π[V ]

∏

B∈π
S [lB ]×R [π] (for S positive). (28)

where for V1 ⊆V , lV1
denotes the restriction of the total order l to V1. Note that l induces a

total order on any partition of V . We say that B < B ′, for B , B ′ ∈π if the minimun element of
lB is smaller in l than the corresponding minimun element of lB ′ . Applications of monops
in the context of rigid species with ordinal product and substitution will be consider in a
separated paper.
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4.2 Cancellative monoids, cancellative operads, and posets.

A monoid in the monoidal category Sp, the species with the operation of product, is called
(by language abuse) a monoid. An operad is a monoid in the category Sp+ of positive
species with respect to the substitution. More specifically. A monoid is a triplet (M ,ν,e)
such that the product ν : M ·M →M is associative, and e : 1→M , choses the identity, an el-
ement of M [;]. We also denote it by e, by abuse of language. We have then the associativity
and identity properties

ν (ν (m1, m2), m3) = ν (m1,ν (m2, m3))

ν (m ,e) =m = ν (e, m ).

for every triplet of elements (m1, m2, m3) of M [V1]×M [V2]×M [V3]⊆ (M ·M ·M )[V ], and the
pairs (e, m ) and (m ,e) respectively in M [;]×M [V ] and M [V ]×M [;]. A monoid (M ,ν,e) (in
Sp) is called a c -monoid if

1. |M [;]|= 1

2. The product ν satisfies the left cancellation law

ν (m1, m2) = ν (m1, m ′
2)⇒m2 =m ′

2.

And operad, as a monoid in Sp consists of a triplet (O ,η,ν), where the product η : O(O)→
O is associative, and for each unitary set {v }, e : X → O chooses the identity in O[{v }],
denoted by ev . The product η sends pairs of the form ({ωB }B∈π,ωπ) into a bigger structure,
ωV =η({ωB }B∈π,ωπ). Intuitively this product can be thought of as if ηwould assemble the
pieces in a = {ωB }B∈π according to the external structureωπ. Associativity reads as follows,

η(η̄(a1, a2),ωπ) =η(a1,η(ba2,ωπ)),

where ba2 is isomorphic to a2. By simplicity we will usually identify ba2 with a2.
The identity property reads as follows

η({ev }v∈V ,ωV ) =ωV =η({ωV }, e{V }).

See [Men15] for details and pictures. All this properties can be expressed by the commuta-
tivity of the diagrams of monoids in a monoidal category, see Section 7.
An operad (O ,η, e ) is called a c -operad if

1. |O[1]|= 1

2. The productη satisfies the left cancellation law. For (a ,ω), (a ,ω′) ∈O(O)[V ], we have

η(a ,ω) =η(a ,ω′)⇒ω=ω′.

11



Figure 2: The complement isomorphism between two monoidal structures on G

Example 2. The species of simple (undirected) graphs G is a c -monoid (in the category
Sp).

ν1 : G .G → G

(g1, g2) 7→ g1+ g2.

The plus sing meaning the disjoint union of the two graphs. There is another monoidal
structure over G , the product ν2 sending a pair of graphs to the graph obtained by con-
necting with edges all the vertices in g1 with those in g2. The two monoidal structures are
isomorphic by the correspondence c : g 7→ g c , sending a graph to its complement, obtained
by taking the complementary set of edges (with respect to the complete graph). The natu-
ral transformation c is a monoid involutive isomorphism, c 2 = IG . The following diagram
commutes (see also Fig. 2)

G .G

c .c
��

ν2 // G

c
��

G .G
ν1 // G

(29)

The corresponding positive species G+ is a c -operad with η({gB }B∈π, gπ) = gV , with gV

as the graph obtained by keeping all the edges of the internal graphs plus some more edges
created using the information of the external graph gπ. For each external edge {B1, B2} of
gπ, add all the edges of the form {b1, b2}with b1 ∈ B1 and b2 ∈ B2. The species of connected
graphs Gc is a suboperad of G .

For a c -monoid (M ,ν,e)we define a family of partially ordered sets

PM [V ] = (]V1⊆V M [V1],≤ν) = (M .E [V ],≤ν), V ∈B

the relation ≤ν defined by
m1 ≤ν m2, if ν (m1, m ′

2) =m2

12



for some m ′
2. The poset PM [V ] has a zero, the unique element of M [;]. The Möbius cardinal

of PM [V ], |PM [V ]|µ is defined to be

|PM [V ]|µ =
∑

m∈M [V ]

µ(b0, m ),

whereµ is the Möbius function of PM [V ]. In a similar way, for a c -operad (O ,η, e )we define
a family of posets

PO [V ] = (E+(O)[V ],≤ν).
The elements of E+(O) are assemblies of O-structures. The order relation ≤ν defined by

a1 ≤ a2 if there exists ba2 such that η(a1, ba2) = a2,

where ba2 is an assembly with labels over the partition π1 associated to a1, and having bπ2 as
associated partition, ba2 = {ÒwD }D∈bπ2

. The product η defined as follows

η(a1, ba2) = {η({ωC }C ∈D , ÒwD )}D∈bπ2
.

The poset PO [V ] has a zero, the assembly of singletons {ev }v∈V , ev the unique element of
O[{v }]. For M a c -monoid and O a c -operad, we define the Möbius generating functions
of the respective family of posets

MöbPM (x ) =
∞
∑

n=0

|PM [n ]|µ
x n

n !

MöbPO [n ] =
∞
∑

n=1

|PO [n ]|µ
x n

n !
.

We have that

MöbPM (x ) = M −1(x ) (30)

MöbPO (x ) = M 〈−1〉(x ). (31)

See [MY91, Men15]. Moreover, we have.

Proposition 3. If we define the Appel and binomial families conjugated respectively to
M (x ) and O(x )

ban (x ) =
∑

(mV1 ,V2)∈PM [n ]

x |V2| =
n
∑

k=1

�

n

k

�

|M [k ]|x n−k (32)

bpn (x ) =
∑

a∈PO [n ]

x |a | =
n
∑

k=1

|γk (O)[n ]|x k , (33)

then, we have that their corresponding umbral inverses are obtained by Möbius inversion
over the respective posets

an (x ) =
∑

(mV1 ,V2)∈PM [n ]

µ(b0, (mV1
, V2))x

|V2| (34)

pn (x ) =
∑

a∈PO [n ]

µ(b0, a )x |a | =
n
∑

k=1

|γk (O)[n ]|µx k . (35)

13



Proof. A proof of a more general proposition is given in Section 6, Theorem 3.

4.3 Examples of c -Monoids and Appel polynomials

Example 3. Pascal matrix, shifted powers. For the monoid E , PE [n ] is the Boolean algebra
of subsets of [n ]. The conjugate Appel is the shifted power sequence

∑

A⊆[n ]

x |A| =
n
∑

k=0

�

n

k

�

x k = (x +1)n .

The umbral inverse obtained by Möbius inversion over PE [n ] gives us their Appel umbral
inverse

∑

A⊆[n ]

µ(;, [n ]−A)x |A| =
n
∑

k=0

�

n

k

�

(−1)n−k x k = (x −1)n .

Consider the power E r , the ballot monoid. The elements of E r [V ] are weak r compositions
of V , i.e., r -uples of pairwise disjoint sets (V1, V2, . . . , Vr ) (some of them possibly empty)
whose union is V . It is a c-monoid by adding r-uples component to component:

((V1, V2, . . . , Vr ), (V
′

1 , V ′
2 , . . . , V ′

r ))
ν7→ (V1+V ′

1 , V2+V ′
2 , . . . , Vr +V ′

r ).

The ballot poset PE r [n ] gives us the combinatorial interpretation of the umbral inversion
between the Appel families (x + r )n and (x − r )n .

Example 4. Euler numbers The species of sets of even cardinal, E ev, is a submonoid of E .
Its generating function is equal to the hyperbolic cosine,

E ev(x ) =
e x + e −x

2
= cosh(x ).

It gives us PE ev[n ], the poset of subsets of [n ] having even cardinal. Since

sech(x ) = E ev(x )−1 = 1+
∞
∑

k=1

(−1)n E ∗n
x 2n

2n !
,

(E ∗n being Euler or secant numbers, that count the number of zig permutations, OEIS A000364).
We have that

|PE ev[n ]|µ =

¨

(−1)
n
2 E ∗n/2 =µ(b0, [n ]) n even

0 n odd.

The corresponding conjugate Appel polynomials are (OEIS A119467)

ban (x ) =
∑

A⊆[n ],|A| even
x n−|A| =

b n2 c
∑

k=0

�

n

2k

�

x n−2k =
(x +1)n + (x −1)n

2
.

14



and its umbral inverses (OEIS A119879)

an (x ) =
b n2 c
∑

k=0

�

n

2k

�

(−1)k E ∗k x n−2k .

We have the identity (in umbral notation),

(a+1)n + (a−1)n = 2x n .

And, making En = |PE ev[n ]|µ = an (0),

(E+1)n + (E−1)n = 2δn ,0.

The classical Euler polynomials En (x ) are connected with an (x ) by the formulas

an (x ) =
n
∑

k=0

�

n

k

�

2kEk (
x

2
)

En (x ) =
1

2n

n
∑

k=0

�

n

k

�

(−1)k an−k (2x )

The first identity follows by manipulating their generating functions, the second by bino-
mial inversion.

Example 5. Free commutative monoid generated by a positive species. Let M be a positive
species, the free commutative monoid generated by M is E (M ), the species of assemblies of
M -structures. It is a c-monoid with the operation (a1, a2)

ν7→ a1+a2, taking the union of pairs
of assemblies. The order in PE (M )[n ] is given by the subset relation on partial assemblies:
(a1, V1)≤ (a2, V2) if a1 ⊆ a2. Its Möbius function is

µ((a1, V1), (a2, V2)) = (−1)|a2−a1|. (36)

The corresponding Appel polynomials are

ban (x ) =
∑

(a ,V )∈PE (M )[n ]

x |V | (37)

an (x ) =
∑

(a ,V )∈PE (M )[n ]

(−1)|a |x |V | (38)

Subsequent Examples 6, 7, and 8 are particular cases of this general construction.

Example 6. Hermite Polinomials. Consider the free commutative monoid generated by
E2, the species of sets of cardinal 2. It is the species of parings. Equivalently, the species of
partitions whose blocks all have cardinal 2, E (E2),

E (E2)(x ) = e
x 2
2 .

15



Figure 3: The poset PE (E2)[3], and the Hermite polynomial H4(x ).

The elements of the poset PE (E2)[n ] are partial partitions of [n ] having blocks of length two
(partial pairings), endowed with the relationπ1 ≤π2 if every block ofπ1 is a block ofπ2. The
signless Hermite polynomials ÒHn (x ), are obtained as a sum over the elements of PE (E2)[n ].
Their umbral inverses, the Hermite polynomials Hn (x ) are obtained by Möbius inversion,
see Fig. 3. In the figure, partial pairing are identified with a total partition having blocks of
either size one or two. For example, following this convention, the partial partition of pair-
ings 25|57 in {1, 2, 3, 4, 5, 6, 7}) is represented as a total partition 25|57|1|3|6 (also represented
as the pair (25|57,{1, 3, 6})). In the following equations, π will represent a partial partition
consisting only of pairings.

ÒHn (x ) =
∑

π∈PE (E2)[n ]

x n−2|π| =
∑

0≤k≤b n2 c

�

n

2k

�

(2k )!
k !2k

x n−2k

=
∑

0≤k≤b n2 c

�

n

2k

�

(2k −1)!!x n−2k

Hn (x ) =
∑

π∈PE (E2)[n ]

µ(b0,π)x n−|π| =
∑

π∈PE (E2)[n ]

(−1)|π|x n−2|π|

=
∑

0≤k≤b n2 c

�

n

2k

�

(−1)k (2k −1)!!x n−2k .

This elementary Möbius inversion is closely related to Rota-Wallstrom combinatorial ap-
proach to stochastic integrals for the case of a totally random Gaussian measure. See [RTW97],
and [PT11].

Example 7. Bell-Appel polynomials. The free commutative monoid generated by E+, is
equal to the species of partitions Π = E (E+). The Bell-Appel polynomials conjugate to

16



Π(x ) = e e x−1 are

Bn (x ) =
n
∑

k=0

�

n

k

�

Bk x n−k .

The Möbius function of PΠ[n ] is equal to µ(0̂,π) = (−1)|π|. Then, the umbral inverse ÒBn (x )
is equal to

ÒBn (x ) = x n +
n
∑

k=1

�

n

k

�

(
k
∑

j=1

(−1) j S (k , j ))x n−k .

Example 8. Consider the species of graphs G . Since we have the identity G = E (Gc ), Gc

being the species of connected graphs, the monoidal structure defined by ν1 in Ex. 2 is that
of the free commutative monoid generated by Gc . The corresponding Appel polynomials
(conjugate to G (x )) are

bgn (x ) =
n
∑

k=0

�

n

k

�

2(
k
2)x n−k .

The Möbius function of PG [n ] is given by µ(b0,G ) = (−1)k (G ), where k (G ) is the number of
connected components of G (The empty graph is assumed to have zero connected com-
ponents). Their umbral inverses are the polynomials

gn (x ) =
n
∑

k=1

�

n

k

�

(
k
∑

j=1

(−1) j |γ j (Gc )[k ]|)x n−k ,

γ j (Gc ) being the species of graphs having exactly j connected components.

Example 9. The species of listsL (totally ordered sets) is a c -monoid with productν :L.L→
L, the concatenation of lists. The poset PL[n ] has as maximal elements the lists on [n ]. We
have that l1 ≤ l2 if l1 is an initial segment of l2. The Möbius function is as follows,

µ(b0, l ) =











1 if l is the empty list

−1 if l is a singleton

0 otherwise.

The conjugate polynomials of L(x ) = 1
1−x are

ban (x ) =
∑

l∈PL[n ]

x n−|l | =
n
∑

k=0

�

n

k

�

k !x n−k =
n
∑

k=0

(n )k x n−k =
∞
∑

k=0

D k x n .

Their umbral inverses are

an (x ) =
∑

l∈PL[n ]

µ(0̂, l )x n−|l | = x n −n x n−1.
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4.4 Examples of c -operads and binomial families

Example 10. The operad of lists and binomial Laguerre polynomials.The species of non-
empty lists L+ is an operad (the associative operad) with η the concatenation of lists fol-
lowing the order given by an external list, lπ = B1B2 . . . Bk

η({lB }B∈π, lπ) = lB1
lB2

. . . lBk
.

The elements of PL+[n ] are linear partitions (partition with a total order on each block). The
coefficients counting such linear partitions having k blocks are the Lah numbers

�

n −1

k −1

�

n !

k !
.

Hence, the polynomials obtained by summation on PL+[n ] are the unsigned Laguerre poly-
nomials (of binomial type)

pn (x ) =
∑

π∈PL+ [n ]

x |π| =
n
∑

k=1

�

n −1

k −1

�

n !

k !
x k = Ln (−x ). (39)

Since µ(b0,π) = (−1)n−|π|, by Möbius inversion we get that

bpn (x ) =
n
∑

k=1

(−1)n−k

�

n −1

k −1

�

n !

k !
x k = (−1)n Ln (x ). (40)

Example 11. Touchard polynomials. The operad E+ gives rise to the poset E+(E+)[n ] =
Π+[n ] of non-empty partitions ordered by refinement. The Touchard polynomials Tn (x )
conjugate to E+(x ) = e x −1 are

Tn (x ) =
n
∑

k=1

|γk (E+)[n ]|x k =
n
∑

k=1

S (n , k )x k .

Where S (n , k ) are the Stirling numbers of the second kind. By Möbius inversion we obtain
their umbral inverses

(x )n =
n
∑

k=1

|γk (E+)[n ]|µx k =
n
∑

k=1

s (n , k )x k ,

where s (n , k ) is the Stirling number of the first kind and (x )n = x (x −1)(x −2) . . . (x −n +1)
the falling factorial.

Example 12. The species of sets having odd cardinal, E odd inherit the operad structure
from E+. Hence, it is a c -operad. The posetΠodd[n ] = PE odd[n ] is formed by the partitions of
[n ]where each block have odd length, ordered by refinement. Since

E odd(x ) =
e x − e −x

2
= sinh(x ),
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the substitutional inverse of E odd(x ) is the arcsin series,

arcsin(x ) = ln(x +
p

1+ x 2) =
∞
∑

n=0

(−1)n (2n −1)!!2
x 2n+1

(2n +1)!
.

The associated polynomials codify the Möbius function of the poset Πodd[n ]

stn (x ) = x
n−1
∏

k=1

(x +n −2k ) =
∑

π∈Πodd[n ]

µ(0̂,π)x |π|.

It may be easily checked that e D−e −D

2 stn (x ) =
stn (x+1)−stn (x−1)

2 = nstn−1(x ). They are related to
the Steffensen polynomials, [RR78], Ex. 6.1., by

stn (x ) = 2n stn (
x

2
)

Example 13. The operad of cycles. Consider the rigid species of cyclic permutations C ,

C [v1, v2, . . . , vn ] = { f | f : V →V a cyclic permutation } (41)

A cyclic permutation can be identified with a linear order l having v1 as first element,
l1 = v1. Its generating function is C (x ) = ln( 1

1−x ). It is a shuffle c -operad with product
η({lB }B∈π, lπ) = lB1

lBi2
. . . lBik

, the concatenation of the internal linear orders following the
external order, lπ = B1Bi2

. . . Bik
. Since B1 is the first element of the totally ordered set π =

B1 < B2 < · · · < Bk , the minimun element of B1 is v1, and the product gives again a cyclic
permutation.

The elements of the poset PC [n ] are permutations (assemblies of cyclic permutations),
hence the conjugate sequence of C (x ) = ln( 1

1−x ) is the increasing factorial,

(x )n = x (x +1) . . . (x +n −1) =
n
∑

k=1

|s (n , k )|x k ,

s (n , k ) being the Stirling numbers of the first kind. A cycle c = (c1c2 . . . c j ) of a permutation
σ is said to be monotone if c1 < c2 < · · ·< c j . Ifσ is a permutation with k cycles, the Möbius
function was proved to be (see [JRS81])

µ(0̂,σ) =

¨

(−1)n−k if all the cycles ofσ are monotone,

0 otherwise.

Hence, their umbral inverses are

n
∑

k=1

(−1)n−k S (n , k )x k = (−1)n Tn (−x )

Tn (x ) being Touchard polynomials.
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Example 14. The Abel sequence An (x ; a ) = x (x +a )n−1 associated a x e −a x . For a = 1, it is
conjugate to the generating series A (x ) of rooted trees. The species of rooted trees has a c -
operad structure (see [MY91]). In [Rei78] the poset PA [n ] was constructed, and its Möbius
function was computed in [Sag83].

Example 15. The Bessel polynomials of Krall and Frink yn (x ). If we make Kn (x ) = x n yn−1(
1
x )

it is the associate sequence of x − x 2

2 . Hence, the conjugate to B (x ), B being the species of
commutative parethesizations, or commutative binary trees, satisfying the implicit equa-
tion

B = X +E2(B ).

It is the free operad generated by E2, a c -operad with the substitution of commutative
parethesizations (or the grafting of commutative binary trees). Computing the inverse of
P (x ) = x − x 2

2 we obtain that B (x ) = 1−
p

1−2x 2. The polynomials Kn (x ) have the following
combinatorial interpretation,

Kn (x ) =
n
∑

k=1

Bn ,k x k ,

where Bn ,k is the number of forests having k commutative binary trees with n labeled
leaves. The Möbius function of such forests is

µ(0̂, a ) =

¨

0 if a has a tree with more than two leaves

(−1)k k=number of binary trees with two leaves.

Their umbral inverse is the family ÒKn (x ),

ÒKn (x ) =
b n2 c
∑

k=1

�

n

2k

�

(2k −1)!!(−1)k x n−k .

Example 16. The generating function Gc (x ) = ln(1 +
∑∞

k=1 2(
n
2) x n

n ! ), of the c -operad Gc of
connected graphs (Ex. 2) has as conjugate the binomial family

ÒGn (x ) =
n
∑

k=1

|γk (Gc )[n ]|x k .

They are the generating function of graphs according to the number of their connected
components. An explicit expression for their umbral inverses

Gn (x ) =
n
∑

k=1

|γk (Gc )[n ]|µx k ,

is not known.
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4.4.1 The Dowling operad

Let G be a finite group of order m . Denote by E uG
+ the rigid species of G -colored ordered

sets with an extra condition. The minimun element of the set is colored with the identity 1
of G . More explicitly, E uG

+ [;] = ;, and for a nonempty totally ordered set V = {v1, v2, . . . , vn},

E uG
+ [V ] = { f | f : V →G , f (v1) = 1} (42)

This kind of colorations will be called unital. It has as generating function

E uG
+ (x ) =

∞
∑

n=0

m n−1 x n

n !
=

1

m

∞
∑

n=0

(m x )n

n !
=

e m x −1

m
. (43)

This species has a structure of c -operad, η : E uG
+ (E

uG
+ )→ E uG

+ , given as follows. The struc-
tures of E uG

+ (E
uG
+ ) are pairs of the form ({ fB }B∈π, gπ)where each fB is a unital coloration on

B , and gπ is a unital coloration on π (recall that π is a totally ordered set, B1 < B2 < · · ·< Bk ,
ordered according with their minimun element). The product hV = η({ fB }B∈π, hπ) is ob-
tained by multiplying by the right the “internal” colors on each block B ∈ π given by fB ,
times the “external” one given by h (B ). Let b ∈ V , and B the unique block of π where it
belongs. Then define hV (b ) by

hV (b ) = fB (b ) ·hπ(B ), (44)

where “·” is the product of the group. A unital coloration can be represented as a mono-
mial with exponents on G . The elements of E uG

+ (E
uG
+ )[V ] are then identified with factored

monomials. This notation provides a better insight on the structure of the operad.

(V , f ) ≡
∏

v∈V

v f (v ) (45)

({ fB }B∈π, hπ) ≡
∏

B∈π

�

∏

b∈B

b fB (b )

�hπ(B )

(46)

η :
∏

B∈π

�

∏

b∈B

b fB (b )

�hπ(B )

7→
∏

B∈π

∏

b∈B

b fB (b )·hπ(B ) (47)

For example, for the multiplicative group of non-zero integers module 5, G = Z∗5, and V =
{a , b , c , d , e , f , g , h}we have:

η : (a 1b 2d 2)1(c 1g 3 f 4)2(e 1h 3)3 7→ a 1b 2d 2c 2g 1 f 3e 3h 4. (48)

In Dowling’s original setting of lattices associated to a finite group, he made use of equiva-
lence classes of colorations over partial partitions of a set. If we had followed his approach
this would have led us to the definition of an equivalence relation between G -colorations,
f , h : V →G , f ∼ h if there exists a g ∈G such that f = g ·h . Observe that in each equiva-
lence class of colorations there is only one which is unital. This is the reason why we define
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the Dowling operad by means of unital colorations. It is the natural way of avoiding com-
plications with equivalence classes, by choosing one simple representative.

Since G satisfies the left cancellation law, and |E G
+ [1]| = 1, we have that E uG

+ is a c -
operad:

η({ fB }B∈π, hπ) =η({ fB }B∈π, h ′π)⇒ hπ = h ′π,

we can define a posets PE uG
+
[V ] = (E (E uG

+ )[V ],≤). The elements of the poset are assamblies
of unital colorations, i.e., unital factored monomials. We say that a1 ≤ a2 if there exists
a factored monomial a ′2 over the factoras of a1 such that η̄(a1, a ′2) = a2. For example for
G =Z∗5, and naming A = a 1b 2, B = c 1d 3, C = e 1 f 2g , and D = h c 2 and consider the factored
monoid

[A1B 3][C 1D 2]

We have the product

η̄((a 1b 2)(c 1d 3)(e 1 f 2g )(h 1c 2), [A1B 3][C 1D 2]) = η((a 1b 2)1(c 1d 3)3)η((e 1 f 2g )1(h 1c 2)2)
= (a 1b 2c 3d 4)(e 1 f 2g h 2c 4)

Then, we have

(a 1b 2)(c 1d 3)(e 1 f 2g )(h 1c 2)≤ (a 1b 2c 3d 4)(e 1 f 2g h 2c 4)

The poset PE uG
+
[n ] has a unique minimal element b0, the assembly of trivial colorations over

singletons, and m n−1 maximal elements (the number of unital G colorations). The expo-
nential generating function of the Möbius evaluation of PE uG

+
[V ],

MöbPE uG
+
[n ] =

∑

f ∈E uG
+ [n ]

µ(0̂, f ),

is the substitutional inverse of the generating function

E uG
+ (x ) =

e m x −1

m
,

MöbPE uG
+
(x ) =

∞
∑

n=1

MöbPE uG
+
[n ]

x n

n !
= ln(1+m x )

1
m =

∞
∑

n=1

(−m )n−1(n −1)!
x n

n !
. (49)

The binomial family conjugate to E uG
+ (x ) =

e m x−1
m is the [m ]-Touchard (see [MR17]),

T [m ]n (x ) =
∑

a∈P
E uG
+
[n ]

x |a | =
n
∑

k=1

S [m ](n , k )x k .

Their umbral inverses being

ÒT [m ]n (x ) =
∑

a∈P
E uG
+
[n ]

µ(b0, a )x |a | =
n
∑

k=0

s [m ](n , k )x k = x (x −m )(x −2m ) . . . (x − (n −1)m ).
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5 Monops

At this stage, having studied two particular cases, what is missing is a a general construction
of families of posets in order to give a combinatorial interpretation to the umbral inversion
for Sheffer families. Or equivalently, to the inverses of Riordan arrays. To this end we define
monoids in the Riordan category Spo Sp+. They will be called monops, because they are
an interesting mix between a monoidal structure in the first component of the pair, with
an operad structure in the second one.

Definition 7. A monop is a monoid in the Riordan category Spo Sp+. More specifically,
an admissible pair of species (M ,O) is called a monop if it is accompanied with a product
(ρ,η), and identity morphisms (e, e ),

(ρ,η) : (M ,O) ∗ (M ,O)→ (M ,O) (product) (50)

(e, e ) : (1, X )→ (M ,O) (identity) (51)

satisfying the identity and associativity properties of a monoid in the context of the Riordan
category SpoSp+.

We then have four natural transformations

ρ : M ·M (O)→O , η : O(O)→O

e : 1→M , e : X →O .

That suggest, without looking at the commuting diagrams implicit in the definition of (M ,O),
an operad structure on O , a monoid structure on M , and some extra conditions. We begin
with two definitions in order to formulate those extra conditions.

Definition 8. Right module over an operad.
Let O be an operad and M a species. We say the M is a right module over O if we have an
action τ : M (O)→ M of O over M that is pseudo associative and where the assembly of
identities of O fixes every structure of M

τ(η̄(a1, a2), mπ) =τ(a1,τ(a1, mπ)), (52)

τ({ev }v∈V , mV ) =mV . (53)

For a detailed study of modules over operads and applications see [Fre09].

Definition 9. Compatibility condition.
Let (M ,ν,e) be a monoid which is simultaneously a right module over O . We say that ν and
τ are compatible if for every pair

((aV1
, mπ1

), (aV2
, mπ2

)) ∈M (O)[V1]×M (O)[V2]⊆M (O) ·M (O)[V ],

we have
ν(τ(aV1

, mπ1
),τ(aV2

, mπ2
)) =τ(aV1

taV2
,ν(mπ1

, mπ2
)). (54)
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Theorem 1. Fundamental theorem of monops. Let (M ,ν,e) be a monoid, and (O ,η, e ) an
operad, M being a right O-module, τ : M (O)→M . If τ and ν are compatible then the pair
(M ,O), (M ,O) = ((M ,O), (ρ,η), (e, e )), with

ρ := ν ◦ (M .τ)

is a monop. Conversely, if (M ,O) = ((M ,O), (ρ,η), (e, e )) is a monop, then (O ,η, e ) is an
operad, (M ,ν,e), ν = ρ ◦ (M .M (e )) is a monoid with a structure of right O-module τ =
ρ ◦ (e ·M (O)) and ν and τ are compatible.

We postpone the proof of the Fundamental Theorem to Section 7.

5.1 Examples

Example 17. The pair (E , E+) is a monop. The Boolean monoid E is a right module over the
operad E+. There is a unique homomorphism τV : E (E+)[V ]→ E [V ], τ(π,{π}) =

⊎

B∈πB =
V . It is easy to check that the module and monoid structure are compatible.

Example 18. The pair (L,L+) is a monop. The module structure

τV :L(L+)[V ]→L[V ]

is defined as follows. If V = ;, τ; is trivially defined. Otherwise we define τ a concatenation
of linear orders as for the operad L+. The concatenation product ν : L.L → L is clearly
compatible with τ.

Example 19. Let Gc be the species of connected graphs. It is a c -operad with respect to the
restriction of the product η defined in Ex. 2. The species of graphs is a c -monoid with re-
spect to the product ν1 of Ex. 2. It is also a right Gc -module by restricting appropriately the
product η of Ex. 2, to obtain τ : G (Gc )→G . It is easy to check that both structures are com-
patible. Hence the pair (G ,Gc ) is a c -monop. As a motivating example of the general proce-
dure we will develop in Section 6, we are going to define a partial order over G . E (Gc )[V ]. An
element of G . E (Gc )[V ] = G .G is a pair (a1, a2) = (g1,{gB }B∈π) of graphs (an arbitrary graph
and an assembly of connected graphs). The first element of the pair is called the monoidal
section, and the assembly a the operadic section. We represent the pair (g1,{gB }B∈π) by
placing a double bar between the monoidal zone g1 and the operadic one, and simple bars
between the elements of the operadic zone {gB }B∈π (se Fig. 4). We say that

(g1,{gB }B∈π)≤ (g2,{gC }C ∈σ)

if the assembly {gB }B∈π can be split in two subassemblies

{gB }B∈π = {gB }B∈π(1) + {gB }B∈π(2) ,

such that

1. g2 = ν1(g1,τ({gB }B∈π(1) , gπ(1))), for some gπ(1) in G [π(1)]
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Figure 4: Definition of the partial order on G .E (Gc )[V ] by means of the monop structure
on (G ,Gc ).

2. {gC }C ∈σ =η({gB }B∈π(2) , gπ(2)) for some gπ(2) ∈G [π(2)]. Equivalently, {gB }B∈π(2) is less than
or equal to {gC }C ∈σ, in the partial order defined by the operad (Gc ,η).

In other words, a part of the assembly in the operadic zone of the pair is ‘abducted’ to the
monoidal zone, and then transformed, by means ofτ, in an element of the monoid. Finally
it is multiplied, by means of ν1, with the element that initially was in the monoidal zone.
The other part of the assembly in the operadic zone, remains in it and then substituted by
a bigger assembly (in the partial order defined by the operad).

We will give a general construction of posets of this kind obtained from c -monops. Each
of them gives us a Sheffer family and their umbral inverses via Möbius inversion.

5.2 A family of monops: an operad and its derivative

For an operad O , the Riordan pair (O ′,O) is a monop,

(ρ,η) : (O ′,O) ∗ (O ′,O) = (O ′.O ′(O),O(O))→ (O ′,O),

whereρ is the derivative of the morphism η : O(O)→O ,ρ :=η′. In effect, by the chain rule
we have that

η′ : O ′.O ′(O)→O ′, (55)

and
e ′ : 1→O ′. (56)

The pair (O ′,O) with the morphisms defined above is a monop (see Theorem 4 in Section
7 ).
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Example 20. The structure of monop (E , E+) in Ex. 17 can be defined by the derivative
procedure, since E = E ′+.

Example 21. The pair (L′,L+), L′ =L2, is a monop.

6 Posets associated to c -monops

Definition 10. A monop (M ,O) is said to be a c -monop if O is a c-operad and M is a c-
monoid and left cancellative as a right O-module.

For c -monop we will define a partially ordered set P(M ,O)[V ]. Recall that the subjacent
set of the partially ordered set PM [V ] associated to a c -monoid M is equal to M .E [V ], and
that of PO [V ], associated to a operad O is E+(O)[V ]. By analogy we take the Riordan product
with the monop (E , E+)

(M ,O) ∗ (E , E+) = (M .E (O), E+(O)) (57)

We already saw that E+(O)[V ] is the set subjacent to the poset PO [V ]. The interesting posets
associated to a monop are obtained by appropriately defining an order over M .E (O)[V ].
Recall that the elements of (M .E (O))[V ] are pairs of the form (m , a ), where (m , a ) ∈M [V1]×
E (O)[V2], for some decomposition of V as a disjoint union V = V1 +V2. Before defining it
we require the following definition of product.

Definition 11. Let (m1, a1) be an element of (M .E (O))[V ]. Let π be the partition subjacent
to the assembly a . Let (m ′

2, a ′2) be an element of M [π1]×E (O)[π2]⊆M .E (O)[π], π=π1+π2

a splitting of π. Observe that either π1 or π2 may be empty. We define the product

ρ̄((m1, a1), (m
′
2, a ′2)) := (ν(m1,τ(a (1)1 , m ′

2)), η̄(a
(2)
1 , a ′2))

= (ρ(m1, (a (1)1 , m ′
2)), η̄(a

(2)
1 , a ′2)), (58)

where a (i )1 is the subassembly of a1 having πi as subjacent partition, i = 1, 2.

Observe that from the identity axioms for operads, monoids, and right O- modules we
have that

ρ̄((m , a ), (e,{eB }B∈π)) = (a , m ) = ρ̄((e,{ev }v∈V ), (m , a )), (59)

π being the partition subjacent to a .

Theorem 2. The product ρ̄ is associative, left cancellative, and the identity does not have
proper divisors. Let (m1, a1), (m2, a2) and (m3, a3) be a triplet of nested elements of M .E (O),

1. (m1, a1) ∈M [V1]×E (O)[V2]⊆M .E (O)[V ], V =V1+V2.

2. (m2, a2) ∈M [π1]×E (O)[π2], π=π1+π2 a splitting of π, the partition subjacent to the
assembly a1.

3. (m3, a3) ∈M [ς1]× E (O)[ς2], ς = ς1 + ς2 a splitting of ς, the partition subjacent to the
assembly a2.
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We have

1. Associativity

ρ̄(ρ̄((m1, a1), (m2, a2)), (m3, a3)) = ρ̄((m1, a1), ρ̄((m2, a2), (m3, a3))). (60)

2. Left cancellation law

ρ̄((m1, a1), (m2, a2)) = ρ̄((m1, a1), (m
′
2, a ′2))⇒ (m2, a2) = (m

′
2, a ′2). (61)

3. The identity does not have proper divisors

ρ̄((m1, a1), (m2, a2)) = (e,{ev }v∈V )⇒m1 =m2 = e, a1 = a2 = {ev }v∈V . (62)

Proof. Le us prove associativity. We first introduce some notation. Let a = {ωB |B ∈σ} be
an assembly with subjacent partitionσ, and letσ1 be a subset ofσ. We denote by (a )σ1

the
subset of a ,

(a )σ1
= {ωB |B ∈σ1}.

For another partition ϕ, ϕ ≥σ, and ϕ1 ⊆ϕ, a⊆ϕ1
is defined to be the subset of a ,

a⊆ϕ1
= {ωB |B ⊆C , C ∈ϕ1}.

Computing ρ̄((m1, a1), (m2, a2))we get

ρ̄((m1, a1), (m2, a2)) = (ν(m1,τ(a (1)1 , m2)), η̄(a
(2)
1 , a2)),

where a (i )1 = (ai )πi
, i = 1, 2. The assembly η̄(a (2)1 , a2) decomposes as a disjoint union

η̄(a (2)1 , a2) = η̄(a
(2,1)
1 , a (1)2 )t η̄(a

(2,2)
1 , a (2)2 ),

where a (2,i )
1 = (a (2)1 )⊆ςi

and a (i )2 = (a2)ςi
, i = 1, 2. Hence,

ρ̄(ρ̄((m1, a1), (m2, a2)), (m3, a3)) =

(ν (ν (m1,τ(a (1)1 , m2)),τ(η̄(a
(2,1)
1 , a (1)2 ), m3)), η̄(η̄(a

(2,2)
1 , a (2)2 ), a3)) (63)

Since M is a right O-module, we have τ(η̄(a (2,1)
1 , a (1)2 ), m3) = τ(a

(2,1)
1 ,τ(a (1)2 , m3)). By associa-

tivity of ν and η̄, we get from Eq. (63)

ρ̄(ρ̄((m1, a1), (m2, a2)), (m3, a3)) =

(ν (m1,ν (τ(a (1)1 , m2)),τ(a
(2,1)
1 ,τ(a (1)2 , m3)), η̄(a

(2,2)
1 , η̄(a (2)2 , a3))) (64)

From the compatibility between η and τ,

ν (τ(a (1)1 , m2),τ(a
(2,1)
1 ,τ(a (1)2 , m3))) =τ (ν (a

(1)
1 ta (2,1)

1 ,ν (m2,τ(a (1)2 , m3)))).
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Hence

ρ̄(ρ̄((m1, a1), (m2, a2)), (m3, a3)) =

(ν (m1,τ (ν (a (1)1 ta (2,1)
1 ,ν (m2,τ(a (1)2 , m3)), η̄(a

(2,2)
1 , η̄(a (2)2 , a3))) (65)

The right hand side of Eq. (60) is equal to

ρ̄((m1, a1),ρ̄((m2, a2), (m3, a3))) =

(ν (m1,τ (ν ((a1)σ1
,ν (m2,τ(a (1)2 , m3)), η̄((a1)σ2

, η̄(a (2)2 , a3))). (66)

Since the partitionσ1 is the set of labels of ν (m2,τ(a (1)2 , m3)), which is equal to

π1 t{B |B ∈π, B ⊆C ∈ ς1},

we have (a1)σ1
= (a1)π1

t (a1)⊆ς1
= a (1)1 ta (2,1)

1 . In the same way we get that σ2 = ς2, and that

(a1)σ2
= a (2,2)

1 .
The left cancellation law follows easily from the left cancellation law for η̄, ν and τ. The

non existence of proper divisors of the identity is also easy and left to the reader.

The partial order is defined as follows.

Definition 12. Let (m1, a1), (m2, a2) be two elements in M .E (O)[V ]. Let π be the partition
subjacent to a1. We say that (m1, a1)≤ (m2, a2) if there exists another pair (m ′

2, a ′2) ∈M [π1]×
E (O)[π2], π=π1+π2, such that:

ρ̄((m1, a1), (m
′
2, a ′2)) = (m2, a2). (67)

Equivalently

m2 = ν(m1,τ(a (1)1 , m ′
2))

a2 = η̄(a (2)1 , a ′2). (68)

Proposition 4. The relation (m1, a1)≤ (m2, a2) in Definition 12 is a partial order.

Proof. By Eq. (59) reflexivity follows. Transitivity follows from associativity of ρ̄ in Theorem
2. Antisymmetry follows from the left canellation law and the non-divisibility of the identity
(Eq. (62))

Proposition 5. The family of posets {P(M ,O)[V ]|V a finite set} satisfies the following prop-
erties:

1. P(M ,O)[V ] has a 0̂ equal the pair (e, a0), e the unique element of M [;], and a0 = {ev }v∈V

the unique assembly of E (O)[V ] formed by singleton structures of O . Its elements of
the form (m ,;), m ∈M [V ] are maximal.

2. If f : V →U is a bijection, P(M ,O)[ f ] : P(M ,O)[V ]→ P(M ,O)[U ] is an order isomorphism.
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3. For (m1, a1) an element of P(M ,O)[V ], the order coideal

C(m1,a1) = {(m2, a2) ∈ P(M ,O)[V ]|(m2, a2)≥ (m1, a1)},

is isomorphic to P(M ,O)[π], π being the partition subjacent to a1.

4. Every interval [(m1, a1), (m2, a2)] of P(M ,O)[V ] is isomorphic to the interval [0̂, (m ′
2, a ′2)]

of P(M ,O)[π], (m ′
2, a ′2) being the unique element of M .E (O)[π] such that

ρ̄((m1, a1), (m
′
2, a ′2)) = (m2, a2).

5. The interval [b0, (m , a )] of P(M ,O)[V ], (m , a ) = (m ,{ωB }B∈π) ∈ M [V1]× E (O)[V2] is iso-
morphic to the product

[0̂, (m ,;)]V1
×
∏

B∈π
[0̂,{ωB }]B

Proof. Property 1 follows directly from Eq. (59). Property 2 from the equivariance of ρ̄. To
prove Property 3, choose an arbitrary element (m ′

2, a ′2) in P(M ,O)[π] and defineφ((m ′
2, a ′2)) :=

ρ̄((m1, a1), (m ′
2, a ′2)). By the definition of the partial order, associativity, and the left cancel-

lation lawφ is an isomorphism. Property 4 is obtained in the same way by restrictingφ to
the interval [0̂, (m ′

2, a ′2)]. To prove Property 5, first observe that the product
∏

B∈π[0̂,{ωB }]B
is isomorphic to the interval [b0, a ], a = {ωB }B∈π. Hence, we have to prove that the in-
terval [b0, (m , a )] is isomorphic to the product [b0, (m ,;)]V1

× [b0, a ]V2
. For an arbitrary ele-

ment, ((m1, a1), a2) ∈ [b0, (m ,;)]V1
× [b0, a ]V2

, (m1, a1) ≤ (m ,;), and a2 ≤ a . It means that m =
ν(m1,τ(a1, m2)), and that )η̄(a2, a ′) = a for some m2 and some a ′. Defineψ((m1, a1), a2)) :=
(m1, a1 ta2) ∈ [b0, (m , a )]. It is easy to prove thatψ is an isomorphism.

Let A be a subset of a poset P(M ,O)[n ]. We define the Möbius cardinal of A as the sum

|A|µ =
∑

(m ,a )∈A

µ(b0, (m , a )).

Theorem 3. Let (M ,O) be a c -monop. Then, the Riordan matrices Cn ,k = |M · γk (O)[n ]|
and ÒCn ,k = |M · γk (O)[n ]|µ, are one inverse of the other. Equivalently, they are associated
respectively to the Riordan pairs (M (x ),O(x )) and (M (x ),O(x ))−1.

Proof. Le us consider the poset P(M ,O)[n ]. By properties of the Möbius function we have

∑

b0≤(m1,a1)≤(m2,a2)

µ((m1, a1), (m2, a2)) =δn , j
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where (m2, a2) is any element of P(M ,O)[n ] such that |a2| = j ≤ n . Adding over all such ele-
ments in P(M ,O)[n ], we get

δn , j =
∑

(m2,a2)∈M ·γ j (O)[n ]

∑

b0≤(m1,a1)≤(m2,a2)

µ((m1, a1), (m2, a2)) =

∑

(m2,a2)∈M ·γ j (O)[n ]

∑

j≤k≤n

∑

b0≤(m1,a1)≤(m2,a2), |a1|=k

µ((m1, a1), (m2, a2)) =

∑

j≤k≤n

∑

(m1,a1)∈M ·γk (O)[n ]

∑

(m2,a2)∈M ·γ j (O)[n ]

∑

(m2,a2)≥(m1,a1)

µ((m1, a1), (m2, a2)) =

∑

j≤k≤n

∑

(m1,a1)∈M ·γk (O)[n ]

∑

(m ′
2,a ′2)∈M ·γ j (O)[k ]

µ(b0, (m ′
2, a ′2)) =

∑

j≤k≤n

|M ·γk (O)[n ]||M ·γ j (O)[k ]|µ.

The last equation follows from Proposition 5 (properties 3 and 4), and the fact that if ρ̄((m1, a1), (m ′
2, a ′2)) =

(m2, a2), then |a ′2|= |a2|.

6.1 Examples

Example 22. Actuarial polynomials. Actuarial polynomials a [β ](x ) are associated to

((1− x )−β , ln(1− x )).

Forβ = r , a positive integer, we get that the Sheffer conjugate to (E r (x ), E+(x )) = (e r x , e x−
1), are associated to ((1− x )−r , ln(1+ x )). Hence, since the Touchard polynomials Tn (x ) are
associated to ln(1+ x ), from Eq. (12) the actuarial polynomials evaluated in −x is equal to

(1+D )r Tn (x ) =
r
∑

k=1

�

r

k

�

T (k )(x ).

The pair (E r , E+) is a c -monop, E r being the ballot monoid in Ex. 3, and E+ the commuta-
tive operad of 11. The action of τ : E r (E+)→ E+ given by

τ(π, (π1,π2, . . . ,πr )) = (∪B∈π1
B ,∪B∈π2

B , . . . ,∪B∈πr
B ),

(π1,π2, . . . ,πr ) being an r -composition of π.
The elements of the partially ordered set P(E r ,E+)[V ]are pairs (W,π), where W= (W1, W2, . . . , Wr )

is a r -composition of some subset V1 of V , andπ is a partition of its complement in V . The
partial order P(E r ,E+)[V ] is better described by the covering relation. We say that (W,π) ≺
(W′,π′) if either,

1. There exist a block B of π and some 1≤ i ≤ r , such that

W′ = (W1, W2, . . . , Wi +B , . . . , Wr ),

and
π′ =π−{B }.
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Figure 5: The poset P(E 2,E+)[2], actuarial polynomial a [2]2 (x ), and its umbral inverse ba [2]2 (x ).

2. The partition π′ covers π in the refinement order, and W′ =W.

See Fig.5
Their umbral inverses are the falling factorials

(x − r )(x − r −1) . . . (x − r −n +1) =
∑

W||π∈P(E 2,E+)[n ]

µ(b0, W||π)x |π|.

Example 23. Laguerre polynomials L [α]n (x ). The Laguerre polynomials are Sheffer associ-
ated to ( 1

(1−x )α+1 , x
x−1 ),

L [α](x ) =
n
∑

k=0

�

n +α
n −k

�

n !

k !
(−x )k .

For r =α+1, a nonnegative integer,

L [r−1]
n (x ) =

n
∑

k=0

�

n + r −1

n −k

�

n !

k !
(−x )k =

n
∑

k=0

�

n + r −1

k + r −1

�

n !

k !
(−x )k .

Let us consider the pair (Lr ,L+). Lr is the r -power of the monoid of lists, Ex. 9, and L+ the
operad of non-empty lists (the associative operad Ex. 10). It is a c -monop, Lr a monoid
with product ν the concatenation of r-uples of linear orders. It is also a compatible right
L+-module with the action

τ({lB }B∈π, (lπ1
, lπ2

, . . . , lπr
)) = (l1, l2, . . . , lr ),

where li is given by

li =

¨

η({lB }B∈πi
, lπi
) if πi 6= ;

e otherwise.

η being the product of the operad L+, and e the empty order, e ∈ L[;]. The elements of the
poset P(Lr ,L+)[n ] are pairs of the form (l,π) ∈ Lr .E (L+)[n ], where l = (l1, l2, . . . , lr ) is an r -uple
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of linear orders and π is a linear partition. The numbers of such pairs satisfying |π| = k is
easily proved to be

�

n + r −1

k + r −1

�

n !

k !
.

Hence, the Sheffer polynomials obtained by summation over P(Lr ,L+)[n ] are

bsn (x ) =
∑

l,π)∈P(Lr ,L+)[n ]

x |π| =
n
∑

k=1

�

n + r −1

k + r −1

�

n !

k !
x k = L [r−1]

n (−x ).

The Möbius function is equal to

µ(0̂, (l,π)) = (−1)n−|π|,

By Möbius inversion, their umbral inverse family is equal to

sn (x ) =
∑

(l,π)∈P(Lr ,L+)[n ]

(−1)n−|π|x |π| = (−1)n
n
∑

k=0

�

n + r −1

k + r −1

�

n !

k !
(−x )k = (−1)n L [r−1]

n (x )

Example 24. Poisson-Charlier polynomials. Consider the species of partitions Π. It is si-
multaneously the free commutative monoid generated by E+, Ex. 7, and the free right E+-
module generated by E ; Π = E (E+) (see Ex. 7). As a free right E+ module, the product is
equal to τ= E (η),

τ : E (E+(E+))→ E (E+).

The monoid structure ofΠ is easily seen to be compatible with this module structure. Hence
(Π, E+) is a monop, more specifically, a c -monop. Its generating function and that of its in-
verse are the Riordan pairs

(Π(x ), E+(x )) = (e e x
, e x −1)

(Π(x ), E+(x ))
−1 = (e −x , ln(1+ x )).

The poset P(Π,E+)[n ] has as subjacent set Π.E (E+)[n ] = Π.Π[n ]. The elements of Π.Π[V ]
are pairs of partitions (π1,π2), πi ∈Π[Vi ], i = 1, 2, V1+V2 = [n ].
Let (π1,π2) and (π3,π4)be two pairs of partitions inΠ.Π[n ]. We will say that (π1,π2)≤ (π3,π4)
if we can split π2 in two partitions, π2 =π

(1)
2 +π

(2)
2 , such that

1. π3 =π1 ]π′1, π′1 being some partition on V1 greater than or equal to π(1)2 in the refine-
ment order.

2. The partition π4 is greater than or equal to π(2)2 in the refinement order.

See Fig. 6 for the poset (Π.Π)[{1, 2, 3}]. A pair (π1,π2) is represented by placing a double bar
between the partitions. The partial order is better described by the covering relation. We
will say that (π1,π2) is covered by (π3,π4) if either:
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Figure 6: Poset associated to the monop (Π, E+), and Poisson-Charlier polynomials.

1. There exists a block B in π2 such that π3 =π2 ]{B } and π4 =π2−{B }.

2. The partitionπ4 coversπ2 in the refinement order of partitions. That is,π4 is obtained
by joining exactly two blocks of π2.

This family of posets gives us the combinatorics of the Poisson-Charlier polynomials
and their umbral inverses. By summation over P(Π,E+)[n ] we get the Shifted Touchard poly-
nomials

Tn (x +1)
∑

π1||π2∈P(Π,E+)[n ]

x |π2|

By Möbius inversion we get the Poisson-Charlier polynomials corresponding to the param-
eter a = 1,

cn (x ; 1) =
∑

π1||π2∈Π.π[n ]

µ(b0,π1||π2)x
π2 .

The general Poisson-Charlier polynomials cn (x ; a )are the umbral inverses of the Sheffer
family Tn (a x +a ),

Tn (a x +a ) =
∑

π1||π2∈Π.Π[n ]

a |π1|+|π2|x |π2|. (69)

The polynomials cn (x ; a ) have the following combinatorial interpretation in terms of
the parameter a and the Möbius function of P(Π,E+)[n ] (see Fig. 6).

cn (x ; a ) =
1

a n

∑

π1||π2∈ΠΠ[n ]

µ(0̂,π1||π2)a
|π1|x |π2|. (70)

Example 25. The hyperbolic monop. The pair (E ev, E odd) is a c -monop. Its generating func-
tion is (cosh(x ), sinh(x )) and inverse ( 1p

1+x 2 , ln(x +
p

1+ x 2)). In a forthcoming paper we will
describe in detail the properties of the corresponding poset and associated Sheffer polyno-
mials.
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Example 26. Consider the shuffle monop of lists and cyclic permutations (L, C ), C ′ = L.
Its generating function

(L, C )(x ) = (
1

1− x
, ln(

1

1− x
))

has as inverse
(e −x , 1− e −x ) (71)

The elements of P(L,C )[n ] are pairs of the form (l ,σ) ∈ L · E (C )[n ], l a linear order and σ a
permutation. Since the binomial family associated to 1−e −x is the increasing factorial, Ex.
13, the Sheffer sequence associated to the Riordan pair in Eq. 71, by Eq. (12), is equal to

e D x (x +1)(x +2) . . . (x +n −1) = (x +1)(x +2) . . . (x +n ) =
∑

(l ,σ)∈P(L,C )[n ]

x |σ|,

where |σ| denotes the number of cycles in σ. Their umbral inverses codify the Möbius
function of P(L,C )[n ],

(1−D )(−1)n Tn (−x ) = (−1)n (Tn (−x ) +T ′n (−x )) = (−1)n+1 Tn+1(−x )
x

=
n
∑

k=1

S (n +1, k )(−1)n+1−k x k−1

=
n
∑

k=0

S (n +1, k +1)(−1)n−k x k .

Hence:
|L.γk (C )[n ]|µ = S (n +1, k +1)(−1)n−k .

Example 27. The ballot monoid E r of Ex. 3 together with the Dowling operad (subsection
4.4.1 ) form a monop (E r , E uG

+ ), that we call the r -Dowling monop. The monoid E r has also
a structure of right c -E uG

+ module.

τ : E r (E uG
+ ) → E r

τ({ fB }B∈π, (π1,π2, . . . ,πr )) = (∪B∈π1
B ,∪B∈π2

B , . . . ,∪B∈πr
B ) (72)

where (π1,π2, . . . ,πr ) is an r -composition ofπ, (π1,π2, . . . ,πr ) ∈ E r [π]. The reader may check
that ν and τ are compatible. For r = 1 the pair (E , E uG

+ ) will be called the Dowling monop.
In the next subsection we will give details of the construction of the Dowling and the r -
Dowling posets. Observe that this example corresponds to the Riordan category in the
context of L -species with shuffle product and substitution, their underlying sets are to-
tally ordered.

6.2 The Dowling monop, Dowling lattices and the r -Dowling posets

The Dowling lattice Qn (G ) is constructed using a monop (E , E uG
+ ). It has as underlying set

(E .E (E uG
+ ))[{v1, v2, . . . , vn}], its elements are pairs of the form (V1, a ), where a = { fB }B∈π is an

assembly of unital colorations on V2, V =V1+V2. The partial order is defined as follows.
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Definition 13. We will say that (V1, a1) ≤Qn (G ) (V3, a2) if the assembly a1 splits in two sub-

assemblies a1 = a (1)1 +a (2)2 with respective underlying partitions π(1) and π(2), such that

1. V3 =V1+
⋃

B∈π(1) B

2. a (2) ≤G a2, where ≤G is the partial order defined by the Dowling operad E uG
+ .

The order so defined is isomorphic to the classical Dowling lattice [Dow73]. We are
going to generalize this construction to a poset Qn ,r (G ) depending on a second parameter
r and whose Withney numbers of the first and second kind coincide with those defined
in [MR17].

The r -Dowling poset Qm ,r [V ] is constructed using the r -Dowling monop of above. Its
subjacent set is (E r E (E uG

+ ))[V ], whose elements are pairs of the form ((V1, V2, . . . Vr ), a ), where
a = { fB }B∈π is an assembly of unital colorations on Vr+1, V = V1 +V2 + · · ·+Vr +Vr+1. The
partial order is defined as follows.

Definition 14. We will say that ((V1, V2, . . . Vr ), a1)≤Qm ,r
((W1, W2, . . . Wr ), a2) if the assembly a1

splits in two subassemblies a1 = a (1)1 +a (2)2 with subjacent partitionsπ(1) andπ(2) respectively,
and there exists an r -coloration of π(1), (π(1)1 ,π(1)2 , . . .π(1)r ) such that

1. (W1, W2, . . . Wr ) = (V1, V2, . . . Vr ) + (
⋃

B∈π(1)1
B ,
⋃

B∈π(1)2
B , . . . ,

⋃

B∈π(1)r
B )

2. a (2)1 ≤G a2, where ≤G is the partial order defined by the Dowling operad E uG
+ .

7 Commutative diagrams and fundamental theorem

Even we deal here only with set monops, the concept could be extended to species having
as codomain other categories. For example, linear species, or linear dg-species, by chang-
ing the codomain category of sets by another appropriated category. With this in mind,
in this section we present the theory of monops by using only commutative diagrams, and
prove the Fundamental Theorem without references to the combinatorial objects and con-
structions inherent only to set monops. In this way the theorems presented here remain
valid in other contexts beyond set theoretical and combinatorial constructions.

7.1 Commutative diagrams for monoids, operads, and monops.

A monid is a species M plus a product and ν : M ·M →M , and a morphism e : 1→M , such
that the following diagrams commute

M .1
∼=

$$

M .e //M .M

ν
��

1.M
∼=

zz

e.Moo

M

(73)
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M .(M .M )

α̃
��

M .ν //M .M
ν

""
(M .M ).M ν.M //M .M ν //M

(74)

Similarly, as it has been said before, an operad O is a species plus a product η : O(O)→
O , η : O(O)→O and identiy e : X →O , such that the following diagram for the identiy and
associativity commute,

O(X )
∼=

$$

O(e ) // O(O)
η

��

X (O)
∼=

zz

e (O)oo

O

(75)

O(O(O))

α
��

O(η) // O(O)
η

""
(O(O))(O)

η(O) // O(O)
η // O

(76)

The identity and associativity axioms for (M ,O) as a monoid in the Riordan category
say that the following diagrams commute

(M ,O) ∗ (1, X )
(M O)∗(e,e ) //

∼= **

(M ,O) ∗ (M ,O)

(ρ,η)
��

(1, X ) ∗ (M ,O)
(e,e )∗(M ,O)oo

∼=tt
(M ,O)

(77)

((M ,O) ∗ (M ,O)) ∗ (M ,O)

α
��

(ρ,η)∗(M ,O) // (M ,O) ∗ (M ,O)
(ρ,η)

))
(M ,O) ∗ ((M ,O) ∗ (M ,O))

(M ,O)∗(ρ,η) // (M ,O) ∗ (M ,O)
(ρ,η) // (M ,O).

(78)

The commutativity of the diagram (77) in the second component give us the operadic iden-
tity axiom for O(Eq. 75). In the first component, gives us the commutativity of the diagram

M ·1(O) M ·e(O) //

∼=
))

M ·M (O)
ρ

��

1 ·M (X )e·M (e )oo

∼=
uu

M

(79)

We are going to concentrate in the associativity for the product ∗. We now check on how
the associative morphism α= (α1,α2)works

α : ((M1,O1) ∗ (M2,O2)) ∗ (M3,O3) → (M1,O1) ∗ ((M2,O2) ∗ (M3,O3))
α1 : (M1.M2(O1)).M3(O2(O1)) → M1.((M2.M3(O2)) ◦ (O1))

α2 : O3(O2(O1)) → (O3(O2)) ◦ (O1))
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The componentα2 is the associativity morphism in the category of positive species with
respect to the substitution.

The component α1 is obtained by associativity with respect to the product of species,
and then apply right hand side distibutivity of the substitution with respect to the product:

α1 : (M1.M2(O1)).M3(O2(O1))→M1.((M2(O1).M3(O2(O1)))→M1.((M2.M3(O2)) ◦ (O1)).

The product morphism (ρ,η) ∗ (M ,O) is equal to (ρ.M (η),O(η)) and (M ,O) ∗ (ρ,η) =
(M .ρ(O),η(O)), M and O standing for the respective identity morphisms. Hence, associa-
tivity in the second component is the associativity diagram for operads of Eq. 76). Then,
(O ,η, e ) is an operad, and an equivalent definition of a monop is as follows.

Definition 15. An admissible pair (M ,O) is called a monop if

1. O has an operad structure (O ,η, e ), η : O(O)→O .

2. The identity diagram in Eq. (79) commutes.

3. For the productρ : M .M (O)→M , the following diagram commutes (associativity for
ρ)

(M .M (O)).M (O(O))

α1

��

ρ.M (η)//M .M (O)
ρ

$$
M .((M .M (O))(O))

M .ρ(O) //M .M (O)
ρ //M .

(80)

The product ρ : M .M (O)→ M induces a monoid structure ν : M .M → M and a O-right
module structure τ : M (O)→M over M , defined by the composition of morphisms

M .M (X )
∼=
��

M .M (e )//M .M (O)

ρ

��

1.M (O)
∼=
��

e.M (O)//M .M (O)

ρ

��
M .M ν //M M (O) τ //M

(81)

The identity digram, Eq. (79), gives simultaneously the identity axiom for M as a monoid
and as right O-module. Associativity of ν and τ are deduced by specializing diagram (80).
Making the restriction O |X , e : X � O in the whole diagram, and using the natural iden-
tification N (X ) ∼= N , we obtain associativity for ν. Restricting M .M (O) to 1 ∼= 1 · 1(O) �
M .M (O) in the upper left corner of the digram we obtain associativity for τ. Conversely, if
ν and τ give to M a structure of respectively monoid and right O-module, then (M ,O) is a
monop provided that

ρ := ν ◦M .τ, ρ(m1, (a , m2)) = ν(m1,τ(a , m2)). (82)

satisfies associativity (80).
Associativity for monops gives also the following important additional information. Re-

stricting M to 1 in the first factor of the upper left corner, 1.M (O)�M .M (O), and again O
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to X in the second factor of the upper left corner, M (X (O))�M (O(O)), and expressing ρ
as in Eq. (82) we obtain the following commutative digram

M (O) ·M (O)
β
��

τ.τ //M .M
ν

##
(M .M )(O)

ν(O) //M (O) τ //M .

. (83)

It gives a kind of compatibility between the module and monoid structure of M ,

ν ◦τ.τ=τ ◦ν(O) ◦β .

That means that the action τ of O on M commutes with the product ν on M . We will say
then that ν and τ are compatible.

Proof. We have already proved the converse part. For the direct part, we have only to prove
the commutativity of (80). We expand it by using the definition of ρ, ρ = ν ◦ (M .τ).

(M .M (O)).M (O(O))

α1

��

(M .τ).M (η) // (M .M ).M (O)
ν.M (O) //M .M (O) M .τ //M .M

ν

%%
M .((M .M (O))(O))

M .((M .τ)(O))//M .((M .M )(O))
M .ν(O) //M .M (O) M .τ //M .M ν //M .

In order to prove its commutativity, consider the following enhanced diagram

(M .M (O)).M (O(O))

α(1)1

��

(M .τ).M (η) // (M .M ).M (O)

(I)

(M .M ).τ ))

ν.M (O) //M .M (O)

(II)

M .τ //M .M

ν

��

(M .M ).M

(III)

ψ
��

ν.M

77

M .(M (O).M (O(O)))

α(2)1
��

λ // M .(M (O).M (O))

(IV)

M .(τ.τ) //M (M .M )
M .ν

''
M .((M .M (O))(O))

M .((M .τ)(O)) //M .((M .M )(O))
M .ν(O) //M .M (O) M .τ //M .M ν //M ,

where λ = M .(M (O).M (η)). Pentagon (III) is the associative diagram for the monoid M ,
and hence commutes. Since α1 =α

(2)
1 ◦α

(1)
1 , we will be done after proving commutativity of

pentagon (I), triangle (II) and diagram (IV). To prove commutativity of (I)we have that

M .(τ.τ) ◦λ ◦α(1)1 = M .(τ.τ) ◦M .(M (O).M (η)) ◦α(1)1

= M .(τ.(τ ◦M (η))) ◦α(1)1

= ψ ◦ (M .τ).(τ ◦M (η))
= ψ ◦ (M .M ).τ ◦ (M .τ).M (η).
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In a similar way we prove commutativity of (II). To prove that of (IV) add to it the Mβ arrow
to obtain

M .(M (O).M (O(O)))

α(2)1
��

λ // M .(M (O).M (O))

(V)M .β
��

M .(τ.τ) //M (M .M )
M .ν

''
M .((M .M (O))(O))

M .((M .τ)(O)) //M .((M .M )(O))
M .ν(O) //M .M (O) M .τ //M .M .

Observe that (V) is the compatibility diagram Eq. (83) multiplied in all its entries by M , and
hence commutes. Pseudo-associativity of η and τ (M as a right O-module) says that:

τ ◦M (η) =τ ◦τ(O) ◦φ. (84)

Focusing in the actions of morphisms on M (O(O)), since the restriction of α(2)1 to it is equal
toφ, from Eq. (84) we get

M .(τ.τ) ◦λ=M .(τ.τ) ◦M .β−1 ◦M .((M .τ)(O)).

By the commutativity of (V)we obtain

M .ν ◦M .(τ.τ) ◦λ = M .ν ◦M .(τ.τ) ◦Mβ−1 ◦M .((M .M (O))(O)) ◦α(2)1

= M .τ ◦M .ν(O) ◦M .((M .M (O))(O)) ◦α(2)1 .

Theorem 4. Let (O ,η, e ) be an operad. Then (O ′,O , (ρ,η), (e, e )), with ρ = η′ and e = e ′ is a
monop.

Proof. Computing derivatives in the associative diagram of η, Eq. (76), and by using the
chain rule, we obtain that the following diagram commutes

(O ′.O ′(O)).O ′(O(O))

α1

��

ρ.O ′(η)// O ′.O ′(O)
ρ

$$
O ′.((O ′.O ′(O))(O))

O ′.ρ(O) // O ′.O ′(O)
ρ // O ′.

(85)

Which is the same diagram of Eq. (80) after making M = O ′. In a similar way we get the
commutativity for identity diagram for a monop.

8 Algebraic monops

A linear species is a covariant functor from the categoryB to the category VecK ofK-vector
spaces and linear maps. We use the same notation Sp and Sp+ for the monoidal categories
of liner species with the operation of product, and linear positive species with the operation
of substitution, respectively.

As in the case of set monops, an algebraic monop (M ,O) is defined to be a monoid
in the category Spo Sp+. Theorem 1, all the commuting diagrams in Section 7, and the
construction of Subsection 5.2 are obviously valid in the algebraic context.
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8.1 Monop-algebras

Let R be a linear species, andV a vector space. Denote by (R [n ]⊗V⊗n )Sn
the space of coin-

variants of R [n ]⊗V⊗n under the natural action of the symmetric group Sn . Recall that the
analytic functor ( [Joy86])

eR : VecK→VecK,

associated to R , is defined by

eR (V) =
∞
⊕

n=0

(R [n ]⊗V⊗n )Sn
. (86)

The tilde functor (Schur functor) sends the product of species to tensor product of an-
alytic functors, and substitution of species into functorial composition,

gR .S (V) = eR (V)⊗ eS (V) (87)
ßR (S )(V) = eR (eS (V)). (88)

From Eq. (87) we get that for a linear monoid M andV a vector space, fM (V) is an associative
algebra. From Eq. (88) for an operad O the corresponding analytic functor eO is a monad.
Recall that for O an algebraic operad, a vector spaceA is said to be an O-algebra if there is
an action eτ : eO(A)→A, such that the following digram commutes

Definition 16. A pair of vector spaces (A1,A2) is said to be an algebra over the monop (M ,O)
if there is an action:

(A1,A2) ∗ (M ,O) := (A1⊗fM (A2), eO(A2))
(%,ϑ)
−→ (A1,A2), (89)

which is pseudo associative.

((A1,A2) ∗ (M ,O)) ∗ (M ,O)

α

��

(%,ϑ)∗(M ,O) // (A1,A2) ∗ (M ,O)
(%,ϑ)

))
(A1,A2) ∗ ((M ,O) ∗ (M ,O))

(A1,A2)∗(ρ,η) // (A1,A2) ∗ (M ,O)
(%,ϑ) // (A1,A2).

(90)

Pseudo associativity in the second component means thatA2 is a O-algebra. In the first
component means that the following diagram commutes

A1⊗fM (A2)⊗fM ( eO(A2))

α1
��

%⊗fM (ϑ) // A1⊗fM (A2)
%

''
A1⊗ åM ·M (O)(A2)

A1⊗ρ(A2) // A1⊗fM (A2)
%) // A1.

(91)
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As a consequence of the definition A1 is a right module over the associative algebra
fM (A2). The free (M ,O)-algebra is crealy equal to

(V1⊗fM (V2), eO(V2)).

The action of (M ,O) over the free algebra is naturally the action by imposing pseudo asso-
ciativity:

(V1⊗fM (V2), eO(V2)) ∗ (M ,O) = (V1⊗fM (V2)⊗fM ( eO(V2)), eO( eO(V2)))

(V1⊗fM (V2)⊗fM ( eO(V2)), eO( eO(V2)))→ (V1⊗fM (V2), eO(V2)).
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