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ABSTRACT

Motivated by the close connection of tensor models to the SYK model, we use represen-

tation theory to construct the complete set of gauge invariant observables for bosonic and

fermionic tensor models. Correlation functions of the gauge invariant operators in the free

theory are computed exactly. The gauge invariant operators close a ring. The structure

constants of the ring are described explicitly. Finally, we construct a collective field theory

description of the bosonic tensor model.
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1 Introduction

The SYK model[1, 2] may provide a simple solvable example of holography[3], realized as an

AdS/CFT duality - see [4, 5, 6, 7]. This expectation is motivated by the fact that the model

develops an approximate conformal symmetry in the infrared. Exact conformal symmetry

is spontaneously and explicitly broken, leading to a pseudo-Goldstone mode. This mode is

responsible for the exponential growth of out of time ordered correlators, which saturates the

chaos bound[8]. Saturating the bound is a strong hint that the model is dual to something

close to Einstein gravity. Much of the progress to date is possible because the large N limit

is dominated by a simple class of diagrams. It is because these diagrams can be summed

that the model is solvable, even at strong coupling.

The SYK model describes fermions interacting with all-to-all random interactions. How-

ever, the large N physics of the SYK model is identical to a tensor model, that has a con-

ventional large N limit[9]. The large N limit of the tensor models is dominated by melonic

graphs[10, 11, 12, 13], which can be summed. For interesting related work on holographic

tensor models see [14]-[24]. Earlier work on tensor models includes [25]-[29].
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The mechanism by which gravitational physics is manifested from a strongly coupled

gauge theory remains elusive. The original CFT description has the field theory coupling

as the loop expansion parameter. On the other hand, the gravitational description that

emerges at strong coupling, must have 1/N as the loop counting parameter. This is a

highly non-trivial hint into the structure of the holographic reorganization of the CFT. The

collective field theory of Jevicki and Sakita[30] achieves exactly this: by formulating the

theory in terms of gauge invariant variables, the resulting field theory explicitly has 1/N as

the loop expansion parameter. The reorganization of the dynamics is highly non-trivial, with

non-linear collective dynamics being induced by the Jacobian of the change of variables[30].

It would be very attractive to apply the collective field theory method to CFTs and

explore the resulting field theory. In the case of a single matrix, this leads to a string field

theory for the c = 1 string[31]. This is a beautiful example of how a quantum mechanical

system can develop an extra dimension. In the much more interesting example of N =

4 super Yang-Mills theory[3] (or even QCD) the construction of collective field theory is

frustrated by the fact that the space of gauge invariants (loop space) is enormous and an

explicit construction of the dynamics of gauge invariants looks hopeless. It turns out that

representation theory can provide a systematic approach towards the structure of loop space.

Indeed, the use of representation theory in the half-BPS sector[32] leads to a clear connection

to free fermions[32, 33] and ultimately to a rather complete understanding of the mapping

between the CFT operators and supergravity geometries[34]. This has been extended to

more general bosonic sectors[35] -[41] and even for fermions and gauge fields[42, 43]. These

bases allow the computations of anomalous dimensions of heavy operators in N = 4 super

Yang-Mills[44, 45, 46, 47] (in a large N but non planar limit[48]) that are dual to excited

giant gravitons[49]-[57]. Up to now however, even with this improved understanding, it is

not obvious how to build the collective field theory of these invariant variables.

Vector models are much simpler. The space of invariants is spanned by a bilocal field and

one can explicitly build the collective dynamics[58]. In [59] the idea that the bilocal fields

provide a reconstruction of the bulk fields of the dual higher spin gravity[60] was put forwards.

Using essentially kinematics [61]-[63] developed a map between the space of bilocals and the

dual gravity. The bilocal description has also proved to be very useful for the SYK model

itself[5, 7, 64], as well as for descriptions of supersymmetric versions of SYK[65, 66, 67, 68],

in which case an elegant bilocal superspace formulation has been developed in [69].

One might hope that the case of tensor models is, in a sense, intermediate between the

vector and matrix models. It is possible that the space of gauge invariants is richer than that

of vectors, but still not as complex as that of matrices. If this is the case, this may provide

a useful lesson towards managing the loop space of multi-matrix models. We explore this

possibility in the present article.

Our basic goal is to construct the gauge invariants of both bosonic and fermionic tensor

models. For bosonic tensor (colored as well as non-colored) models, the paper [70] counted

the gauge invariants uncovering a relationship with counting problems of branched covers
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of the 2-sphere. The rank d of the tensor is related to a number of branch points. Further,

formulas for correlators of the tensor model invariants in a permutation basis were obtained.

Correlators in the permutation basis have been related to the (Hurwitz) character calculus

in [71] (see also [72]). A dual representation theory basis was developed in [73]. Our starting

point reconsiders the representation theory basis for the bosonic tensor models, in a way

that naturally allows an extension to fermionic tensor models. The basic ideas are explained

in the next section, where we obtain counting formulas for the number of gauge invariant

operators in bosonic and fermionic tensor models. The counting results for the bosons agree

with results presented in [70, 73, 74]. The counting formulas for the fermions are new.

In section 3 we consider both the computations of the vacuum expectation values of our

gauge invariant operators, as well as two point functions of normal ordered gauge invariant

operators. These computations are performed exactly (i.e. to all orders in 1/N), in the

free theory. In section 4 we describe the algebraic structure of the gauge invariants: they

form a ring. In section 5, we construct a collective field theory in terms of a subset of

the gauge invariant variables in analogy to the construction for a single matrix model. We

exhibit an emergent dimension and show that the Hamiltonian is local in this new dimension.

We reproduce large N correlators of the tensor model quantum mechanics from the classical

collective field theory. Finally, in section 6 we conclude and mention some possible directions

for further investigation.

2 Construction of Gauge Invariant Operators

In this section we simply want to count the number of gauge invariant operators that can be

constructed, for both bosonic and fermionic tensor models. Once we have understood how

to count the number of gauge invariants, a natural construction formula will be evident.

The fields that we consider are tensors, of rank r. We will denote the bosonic tensors by

φb1b2···br and the fermionic tensors by ψf1f2···fr . These fields transform in the fundamental of

G = U(N1)× U(N2)× · · · × U(Nr).

Let Vk denote the vector space carrying a copy of the fundamental representation of

U(Nk). Fields transforming in the fundamental of G = U(N1)×U(N2)×· · ·×U(Nr) belong

to V ≡ V1 × V2 × · · · × Vr. To build gauge invariants we will also need fields that transform

in the anti-fundamental, denoted φ̄b1b2···br and ψ̄f1f2···fr . Gauge invariants are then given by

contracting corresponding upper and lower indices. The valid gauge invariants, built using

two fields, are given by

φ̄b1b2···brφb1b2···br ψ̄f1f2···frψf1f2···fr (2.1)

The operators that follow are not observables because they are not gauge invariant

φ̄b1b2···brφb2b1···br ψ̄f1f2f3···frψf1f3f2···fr (2.2)
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A valid gauge invariant operator is only obtained if we contract corresponding indices of the

tensors, since the position of an index signifies which gauge group it belongs to. To simplify

the arguments that follow, we now specialize to rank 3 tensors φijk or ψijk with i = 1, ..., N1,

j = 1, ..., N2 and k = 1, ..., N3. The generalization to higher rank tensors is completely

clear. A comment is in order: the symmetry U(N) × U(N) × U(N) can not be realized in

any interacting theory, whose large N expansion is dominated by melonic diagrams. The

maximal symmetry in this case is only U(N)× U(N)×O(N).

We will want to consider products of tensors to build the general gauge invariant operator.

Here is an example

φi1j1k1φi2j2k2 · · ·φinjnkn (2.3)

This notation will quickly get out of hand, as the number of indices rapidly proliferates. To

avoid this, we will now use the notation first introduced in [32]. The sleek notation uses a

capital Roman letter to collect all of the little Roman letter indices, for example I stands

for i1, i2, · · · , in. We will also use a capital Greek letter to collect the tensors. Thus, for

example, we write

ΦIJK = φi1j1k1φi2j2k2 · · ·φinjnkn (2.4)

Similarly

ΨIJK = ψi1j1k1ψi2j2k2 · · ·ψinjnkn (2.5)

These fields belong to V⊗n. There is a natural action of Sn on V⊗n defined as follows: For

any σ ∈ Sn we have

σ · ΦIJK → Φσ(I)σ(J)σ(K) = φiσ(1)jσ(1)kσ(1)φiσ(2)jσ(2)kσ(2) · · ·φiσ(n)jσ(n)kσ(n) (2.6)

We will sometimes call this the diagonal action of Sn since each type of index, i, j or k is

permuted in exactly the same way. We could also define an action of Sn×Sn×Sn that acts

independently on these three indices. The notation distinguishing these two actions is

σ · ΦIJK → Φσ(I)σ(J)σ(K) σ ∈ Sn (2.7)

versus

σ1 ◦ σ2 ◦ σ3 · ΦIJK → Φσ1(I)σ2(J)σ3(K) σ1 ◦ σ2 ◦ σ3 ∈ Sn × Sn × Sn (2.8)

Since the diagonal action swaps the tensors we have

σ · ΦIJK = Φσ(I)σ(J)σ(K) = ΦIJK (2.9)

σ ·ΨIJK = Ψσ(I)σ(J)σ(K) = sgn(σ)ΨIJK (2.10)
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We know that swapping fermions costs a sign which is what the above equation captures.

In the last formula above sgn(σ) denotes the signature of the permutation σ. For example,

if n = 2 and σ = (12) we have

(12)ψi1j1k1ψi2j2k2 = ψi2j2k2ψi1j1k1
= −ψi1j1k1ψi2j2k2
= sgn ( (12) )ψi1j1k1ψi2j2k2 (2.11)

since the fermions are described using Grassman numbers. The equations (2.9),(2.10) will

be important in the next section.

2.1 Counting and construction for bosonic tensors

Our goal in this section is to count the number of gauge invariant operators that can be

constructed from the bosonic tensors introduced above. To construct gauge invariants we

need to completely contract the indices of ΦIJK with the indices of Φ̄IJK . In general, this

is accomplished using three permutations σ1, σ2, σ3 ∈ Sn (or equivalently, one permutation

σ1 ◦ σ2 ◦ σ3 ∈ Sn × Sn × Sn) as follows

Φ̄ · σ1 ◦ σ2 ◦ σ3 · Φ = Φ̄IJKΦσ1(I)σ2(J)σ3(K) (2.12)

The invariants given in equation (2.12) are over complete: the φ’s and φ̄’s are bosons, so we

have the symmetry given in (2.9) which must be accounted for. Let β1 ∈ Sn be an arbitrary

permutation of the φ’s and let β2 ∈ Sn be an arbitrary permutation of the φ̄’s. Then (we

act to the right if we act on lower indices and to the left if we act on upper indices)

Φ̄ · σ1 ◦ σ2 ◦ σ3 · Φ = (Φ̄ · β2) · σ1 ◦ σ2 ◦ σ3 · (β1 · Φ) (2.13)

Manipulating this a little, we have1

Φσ1(I)σ2(J)σ3(K)Φ̄
IJK = Φσ1(β1(I))σ2(β1(J))σ3(β1(K))Φ̄

β2(I)β2(J)β2(K)

= Φβ−1
2 (σ1(β1(I)))β−1

2 (σ2(β1(J)))β−1
2 (σ3(β1(K)))Φ̄

IJK (2.14)

Thus, (σ1, σ2, σ3) and (β1σ1β2, β1σ2β2, β1σ3β2) define the same gauge invariant operator. This

implies that we have one gauge invariant operator for each element in the double coset

Sn \ Sn × Sn × Sn / Sn (2.15)

This understanding of the structure of the space of gauge invariant observables was first

achieved in [70]. The generalization to other ranks is obvious. For example, rank 5 tensors

would be elements of the coset

Sn \ Sn × Sn × Sn × Sn × Sn / Sn (2.16)

1A useful identity to keep in mind is the following: Φ̄γ
−1(K)ΦK = Φ̄KΦγ(K). This follows very simply by

using the explicit representation (σ)IJ = δi1jσ(1) · · · δ
in
jσ(n)

.
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The number of elements in a double coset |H1 \G/H2| is given, by Burnside’s Lemma, as

|H1 \G/H2| =
1

|H1||H2|
∑
h1∈H1

∑
h2∈H2

∑
g∈G

δ(h1gh2g
−1) (2.17)

Thus, for example, the number N3 of rank 3 tensors built using n fields is given by

N3 =
1

(n!)2

∑
σ1,σ2,σ3∈Sn

∑
β1,β2∈Sn

δ(β1σ1β2σ
−1
1 )δ(β1σ2β2σ

−1
2 )δ(β1σ3β2σ

−1
3 ) (2.18)

To make sure the generalization is clear, we simply quote the count for the number of rank

q tensors built using n fields

Nq =
1

(n!)2

∑
σ1,··· ,σq∈Sn

∑
β1,β2∈Sn

q∏
i=1

δ(β1σiβ2σ
−1
i ) (2.19)

The arguments we have just outlined are not the most natural when we generalize to

fermionic tensors. To perform the counting in a way that will generalize nicely to the

fermionic case, we will change basis. The operators

O(σ1, σ2, σ3) = Φ̄ · σ1 ◦ σ2 ◦ σ3 · Φ (2.20)

define the “permutation basis”. We will Fourier transform to the representation theory basis

as follows

(Or1,r2,r3)α1α2α3,β1β2β3 =∑
σ1,σ2,σ2

O(σ1, σ2, σ3)Γr1α1β1(σ1)Γr2α2β2(σ2)Γr3α3β3(σ3) (2.21)

All of the representations above are irreducible representations of Sn, i.e. ri ` n, i = 1, 2, 3.

We again have to deal with the symmetry present as a consequence of (2.9). The simplest

way to do this is to couple the row indices to the trivial irreducible representation and to

couple the column indices to the trivial irreducible representation of the diagonal Sn. The

tensor product of the irreducible representations involved is

Vr1 ⊗ Vr2 ⊗ Vr3 =
⊕
r

gr1 r2 r3 rVr (2.22)

The Kronecker coefficients gr1 r2 r3 r are non-negative integers that count how many times

irreducible representation r appears in the tensor product r1 ⊗ r2 ⊗ r3. To perform the

projection to the trivial, introduce the branching coefficients Bγ
α1α2α3

defined by

1

n!

∑
σ∈Sn

Γr1α1β1(σ)Γr2α2β2(σ)Γr3α3β3(σ) =
∑
γ

Bγ
α1α2α3

Bγ
β1β2β3

(2.23)
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The branching coefficients provide an orthonormal basis for the subspace of r1⊗ r2⊗ r3 that

carries the trivial representation, i.e.

Bγ1
α1α2α3

Bγ2
α1α2α3

= δγ1γ2 (2.24)

and where we employ the usual convention that repeated indices are summed. The gauge

invariant operators are now given by

Oγ1γ2r1,r2,r3
= Bγ1

α1α2α3
(Or1,r2,r3)α1α2α3,β1β2β3B

γ2
β1β2β3

(2.25)

We will also write this as

Oγ1γ2r1,r2,r3
=
∑
σ1∈Sn

∑
σ2∈Sn

∑
σ3∈Sn

Cγ1γ2
r1,r2,r3

(σ1, σ2, σ3)O(σ1, σ2, σ3) (2.26)

where

Cγ1γ2
r1,r2,r3

(σ1, σ2, σ3) = Bγ1
α1α2α3

Γr1α1β1(σ1)Γr2α2β2(σ2)Γr3α3β3(σ3)Bγ2
β1β2β3

(2.27)

is in fact a restricted character, in the language introduced in [49],[75]. Thus, (2.26) provides

the restricted Schur polynomial basis for the gauge invariant operators of the bosonic tensor

model.

Since each multiplicity runs from 1 to gr1 r2 r3 1 and each operator is labeled by a pair

of multiplicity labels, this second construction shows that the number of gauge invariant

operators, constructed using n φ’s and n φ̄’s, is given by∑
ri`n l(ri)≤Ni

g2
r1 r2 r3 1 (2.28)

where we have used 1 to denote the rep labeled by a Young diagram with a single row of n

boxes. This is in complete agreement with [74], as already pointed out in [73]. A standard

result which follows from the orthogonality of characters is

gr1 r2 r3 1 =
1

n!

∑
σ∈Sn

χr1(σ)χr2(σ)χr3(σ) = gr1 r2 r3 (2.29)

Some checks of the counting formula (2.28) are given in Appendix A.

2.2 Counting and construction for fermionic tensors

Our goal in this section is to count the number of gauge invariant operators that can be

constructed from the fermionic tensors introduced above. To construct gauge invariants we

need to completely contract the indices of ΨIJK with the indices of Ψ̄IJK . In general, this is

again accomplished using three permutations σ1, σ2, σ3 ∈ Sn (or equivalently σ1 ◦ σ2 ◦ σ3 ∈
Sn × Sn × Sn) as follows

Ψ̄ · σ1 ◦ σ2 ◦ σ3 · Ψ = Ψ̄IJKΨσ1(I)σ2(J)σ3(K) (2.30)
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The invariants given in equation (2.30) are again over complete: the ψ’s and ψ̄’s are fermions,

so we have the symmetry given in (2.10) which must be accounted for. Following our

discussion for the bosons, let β1 ∈ Sn be an arbitrary permutation of the ψ’s and let β2 ∈ Sn
be an arbitrary permutation of the ψ̄’s. Then (exactly as for bosonic tensors, we act to the

right if we act on lower indices and to the left, if we act on upper indices)

Ψ̄ · σ1 ◦ σ2 ◦ σ3 · Ψ = sgn(β1)sgn(β2)(Ψ̄ · β2) · σ1 ◦ σ2 ◦ σ3 · (β1 ·Ψ) (2.31)

Manipulating this a little, we have

Ψσ1(I)σ2(J)σ3(K)Ψ̄
IJK = sgn(β1)sgn(β2)Ψσ1(β1(I))σ2(β1(J))σ3(β1(K))Ψ̄

β2(I)β2(J)β2(K)

= sgn(β1)sgn(β2)Ψβ−1
2 (σ1(β1(I)))β−1

2 (σ2(β1(J)))β−1
2 (σ3(β1(K)))Ψ̄

IJK

(2.32)

We will still have to account for this symmetry. To do this, it again proves useful to change

basis. The operators

P(σ1, σ2, σ3) = Ψ̄ · σ1 ◦ σ2 ◦ σ3 · Ψ (2.33)

define the “permutation basis”. Again, Fourier transform to the representation theory basis

as follows

(Pr1,r2,r3)α1α2α3,β1β2β3 =∑
σ1,σ2,σ2

P(σ1, σ2, σ3)Γr1α1β1(σ1)Γr2α2β2(σ2)Γr3α3β3(σ3) (2.34)

We now have to deal with the symmetry present as a consequence of (2.10). The simplest way

to do this is to couple the row indices to the antisymmetric irreducible representation and

to couple the column indices to the antisymmetric irreducible representation of the diagonal

Sn. By the antisymmetric irreducible representation, (denoted (1n)) we mean the irreducible

representation labeled by a Young diagram that has a single column of n boxes. This is a

one dimensional representation defined by

Γ(1n)(σ) = sgn(σ) (2.35)

To perform the projection to the antisymmetric irreducible representation, we again intro-

duce branching coefficients

1

n!

∑
σ∈Sn

Γr1α1β1(σ)Γr2α2β2(σ)Γr3α3β3(σ)sgn(σ) =
∑
γ

B̃γ
α1α2α3

B̃γ
β1β2β3

(2.36)

We are using a tilde to distinguish the branching coefficients defined using the antisymmetric

irreducible representation, from those relevant for the bosons which are defined using the

symmetric representation. The branching coefficients again define an orthonormal basis

B̃γ1
α1α2α3

B̃γ2
α1α2α3

= δγ1γ2 (2.37)
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The gauge invariant operators are now given by

Pγ1γ2r1,r2,r3
= B̃γ1

α1α2α3
(Pr1,r2,r3)α1α2α3,β1β2β3B̃

γ2
β1β2β3

(2.38)

Once again, we can write this as

Pγ1γ2r1,r2,r3
=
∑
σ1∈Sn

∑
σ2∈Sn

∑
σ3∈Sn

C̃γ1γ2
r1,r2,r3

(σ1, σ2, σ3)P(σ1, σ2, σ3) (2.39)

where

C̃γ1γ2
r1,r2,r3

(σ1, σ2, σ3) = B̃γ1
α1α2α3

Γr1α1β1(σ1)Γr2α2β2(σ2)Γr3α3β3(σ3)B̃γ2
β1β2β3

(2.40)

is again a restricted character. Thus, (2.39) provides the restricted Schur polynomial basis

for the gauge invariant operators of the fermionic tensor model.

This construction shows that the number of gauge invariant operators is given by∑
ri`n l(ri)≤Ni

g2
r1 r2 r3 (1n) (2.41)

A standard result which follows from the orthogonality of characters is

gr1 r2 r3 (1n) =
1

n!

∑
σ∈Sn

χr1(σ)χr2(σ)χr3(σ)sgn(σ) (2.42)

Some checks of this counting formula are given in Appendix A.

3 Correlators of Gauge Invariant Operators

In this section we will compute the correlation functions of the operators defined in the

previous section. Since these operators are neutral under the gauge symmetry they can

develop a nonzero vacuum expectation value. It is interesting to compute these values as

their large N limit must be reproduced by the classical equations of motion of collective

field theory. We also compute the two point functions of normal ordered gauge invariant

operators. The large N limit of these two point functions must be reproduced by considering

quadratic fluctuations about the classical collective configuration.

3.1 Bosonic Correlators

The free field two point function is

〈φ̄ijkφlmn〉 = δilδ
j
mδ

k
n (3.1)

9



This is valid both as a formula in a zero dimensional random tensor model, or as an equal

time two point function in the tensor model quantum mechanics. Wick’s theorem can be

written as

〈Φ̄IJKΦLMN〉 =
∑
σ∈Sn

n∏
a=1

δialσ(a)δ
ja
mσ(a)

δkanσ(a)

=
∑
σ∈Sn

(σ)IL(σ)JM(σ)KN (3.2)

There are two interesting correlators to consider: first we could consider the one point

functions 〈Oγ1γ2r1,r2,r3
〉; second we could consider the two point function of normal ordered

operators 〈: Oγ1γ2r1r2r3
: : Oγ3γ4s1s2s3

:〉.

One point functions: We will use the fact that

TrVj(σ) = δi1iσ(1) · · · δ
in
iσ(n)

= N
C(σ)
j (3.3)

where C(σ) denotes the number of cycles in the permutation σ. In addition, we will use the

orthogonality relation

dr
n!

∑
σ∈Sn

Γr(σ)abΓs(σ
−1)cd = δrsδbcδad (3.4)

to obtain

dr
n!

∑
s`n

∑
σ1∈Sn

Γr(σ1)cdχs(σσ
−1
1 ) = Γr(σ)cd (3.5)

Finally, we will use the relation, valid for Schur polynomials

Tr(σZ) =
∑
R

χR(σ)χR(Z) (3.6)

evaluated at Z = 1 to find

Tr(σ) =
1

n!

∑
R`n

dRχR(σ)fR(N) (3.7)

fR(N) is the product of the factors of Young diagram R understood as a representation of

U(N). Recall that the factor of a box in row i and column j is N − i+ j. We use χR(σ) to

denote a character of the symmetric group and χR(Z) to denote a Schur polynomial. The

two are distinguished only by their argument, which is either an element of the symmetric

group σ ∈ Sn or an N ×N matrix Z. We are now ready to compute the one point function

〈Oγ1γ2r1r2r3
〉 =

∑
σi∈Sn

〈Φ̄ · σ1 ◦ σ2 ◦ σ3 · Φ〉Bγ1Γr1(σ1)Γr2(σ2)Γr3(σ3)Bγ2

10



=
∑

σ,σi∈Sn

N
C(σσ1)
1 N

C(σσ2)
2 N

C(σσ3)
3 Bγ1Γr1(σ1)Γr2(σ2)Γr3(σ3)Bγ2

=
∑

σ,σi∈Sn

∑
si`n

(
1

n!

)3

ds1χs1(σσ
−1
1 )fs1(N1)ds2χs2(σσ

−1
2 )fs2(N2)

ds3χs3(σσ
−1
3 )fs3(N3)Bγ1Γr1(σ1)Γr2(σ2)Γr3(σ3)Bγ2

=
∑
σ∈Sn

fr1(N1)fr2(N2)fr3(N3)Bγ1Γr1(σ)Γr2(σ)Γr3(σ)Bγ2

= n!fr1(N1)fr2(N2)fr3(N3)δγ1γ2 (3.8)

See Appendix B for some checks of this formula.

Two point functions of normal ordered operators: Using the identities given above,

it is straightforward to compute

〈: Oγ1γ2r1r2r3
: : Oγ3γ4s1s2s3

:〉 =
∑
σ∈Sn

∑
ρ∈Sn

∑
σi∈Sn

∑
τi∈Sn

Tr(σ1στ1ρ)Tr(σ2στ2ρ)Tr(σ3στ3ρ)

×Bγ1Γr1(σ1)Γr2(σ2)Γr3(σ3)Bγ2 Bγ3Γs1(τ1)Γs2(τ2)Γs3(τ3)Bγ4

=
∑
σρσiτi

NC(σ1στ1ρ)NC(σ2στ2ρ)N (σ3στ3ρ)

×Bγ1Γr1(σ1)Γr2(σ2)Γr3(σ3)Bγ2 Bγ3Γs1(τ1)Γs2(τ2)Γs3(τ3)Bγ4

=
∑
σρσiτi

∑
ti`n

(
1

n!

)3

dt1χt1(σ1στ1ρ)ft1(N1)dt2χt2(σ2στ2ρ)ft2(N2)dt3χt3(σ3στ3ρ)ft3(N3)

×Bγ1Γr1(σ1)Γr2(σ2)Γr3(σ3)Bγ2 Bγ3Γs1(τ1)Γs2(τ2)Γs3(τ3)Bγ4

= (n!)2δr1s1δr2s2δr3s3fr1(N1)fr2(N2)fr3(N3)
n!

dr1

n!

dr2

n!

dr3
δγ1γ4δγ2γ3 (3.9)

Some checks of this formula are given in Appendix B.

3.2 Fermionic Correlators

The relevant two point function for the fermionic tensor model is

〈ψ̄ijkψlmn〉 = δilδ
j
mδ

k
n (3.10)

This is valid, as for the bosons, both as a formula in a zero dimensional random tensor model,

or as an equal time two point function in the tensor model quantum mechanics. Since the

fermionic fields anticommute, it is important to spell out the ordering of the fields. Order

the fields in the following way

Ψ̄IJKΨLMN = ψ̄i1j1k1ψ̄i2j2k2 · · · ψ̄injnknψlnmnnn · · ·ψl2m2n2ψl1m1n1 (3.11)

11



With this ordering spelled out, a simple application of Wick’s theorem now gives

〈ψ̄IJKψLMN〉 =
∑
σ∈Sn

sgn(σ)σILσ
J
Mσ

K
N (3.12)

One point functions: A simple computation shows that

〈Pγ1γ2r1r2r3
〉 =

∑
σi∈Sn

〈Ψ̄ · σ1 ◦ σ2 ◦ σ3 ·Ψ〉B̃γ1Γr1(σ1)Γr2(σ2)Γr3(σ3)B̃γ2

=
∑

σ,σi∈Sn

sgn(σ)N
C(σσ1)
1 N

C(σσ2)
2 N

C(σσ3)
3 B̃γ1Γr1(σ1)Γr2(σ2)Γr3(σ3)B̃γ2

=
∑
σ∈Sn

sgn(σ)fr1(N1)fr2(N2)fr3(N3)B̃γ1Γr1(σ)Γr2(σ)Γr3(σ)B̃γ2

= n!fr1(N1)fr2(N2)fr3(N3)δγ1γ2 (3.13)

See Appendix B for examples and checks of this formula.

Two point functions of normal ordered operators: Using the identities given above

〈: Pγ1γ2r1r2r3
: : Pγ3γ4s1s2s3

:〉 =
∑
σ∈Sn

∑
ρ∈Sn

∑
σi∈Sn

∑
τi∈Sn

sgn(σ)sgn(ρ)Tr(σ1στ1ρ)Tr(σ2στ2ρ)Tr(σ3στ3ρ)

×B̃γ1Γr1(σ1)Γr2(σ2)Γr3(σ3)B̃γ2 B̃γ3Γs1(τ1)Γs2(τ2)Γs3(τ3)B̃γ4

=
∑
σρσiτi

sgn(σ)sgn(ρ)NC(σ1στ1ρ)NC(σ2στ2ρ)N (σ3στ3ρ)

×B̃γ1Γr1(σ1)Γr2(σ2)Γr3(σ3)B̃γ2 B̃γ3Γs1(τ1)Γs2(τ2)Γs3(τ3)B̃γ4

= (n!)2δr1s1δr2s2δr3s3fr1(N1)fr2(N2)fr3(N3)
n!

dr1

n!

dr2

n!

dr3
δγ1γ4δγ2γ3 (3.14)

Appendix B illustrates and checks this formula in some simple cases.

4 Algebra of the Gauge Invariant Operators

The gauge invariant operators that we have introduced above close an interesting algebra:

we will argue that the gauge invariant operators have a ring structure. Algebras of gauge

invariant operators have also been considered in [76]. To develop the algebra for our tensor

model, we will need to develop some properties of the restricted character. We can always

assume that we work in an orthogonal representation of the symmetric group. In this case

the restricted characters obey

Cγ1γ2
r1r2r3

(σ1, σ2, σ3) = Cγ2γ1
r1r2r3

(σ−1
1 , σ−1

2 , σ−1
3 )

12



C̃γ1γ2
r1r2r3

(σ1, σ2, σ3) = C̃γ2γ1
r1r2r3

(σ−1
1 , σ−1

2 , σ−1
3 ) (4.1)

They also enjoy a “completeness identity” given by∑
σ1∈Sn

∑
σ2∈Sn

∑
σ3∈Sn

Cγ1γ2
r1r2r3

(σ1, σ2, σ3)Cγ3γ4
s1s2s3

(σ1, σ2, σ3) =
n!

dr1

n!

dr2

n!

dr3
δr1s1δr2s2δr3s3δ

γ1γ3δγ2γ4

∑
σ1∈Sn

∑
σ2∈Sn

∑
σ3∈Sn

C̃γ1γ2
r1r2r3

(σ1, σ2, σ3)C̃γ3γ4
s1s2s3

(σ1, σ2, σ3) =
n!

dr1

n!

dr2

n!

dr3
δr1s1δr2s2δr3s3δ

γ1γ3δγ2γ4 (4.2)

Using these formulas, we find the following interesting Fourier transform pairs

Oγ1γ2r1r2r3
=
∑
σ1∈Sn

∑
σ2∈Sn

∑
σ3∈Sn

Cγ1γ2
r1r2r3

(σ1, σ2, σ3)O(σ1, σ2, σ3) (4.3)

O(σ1, σ2, σ3) =
∑
s1`n

∑
s2`n

∑
s3`n

∑
γ1,γ2

ds1
n!

ds2
n!

ds3
n!
Cγ1γ2
s1s2s3

(σ1, σ2, σ3)Oγ1γ2s1s2s3
(4.4)

Pγ1γ2r1r2r3
=
∑
σ1∈Sn

∑
σ2∈Sn

∑
σ3∈Sn

C̃γ1γ2
r1r2r3

(σ1, σ2, σ3)P(σ1, σ2, σ3) (4.5)

P(σ1, σ2, σ3) =
∑
s1`n

∑
s2`n

∑
s3`n

∑
γ1,γ2

ds1
n!

ds2
n!

ds3
n!
C̃γ1γ2
s1s2s3

(σ1, σ2, σ3)Pγ1γ2s1s2s3
(4.6)

These formulas provide the clearest way to understand the relation between the permutation

and representation theory bases.

Now, in the permutation basis the gauge invariant operators close the following algebra

O(σ1, σ2, σ3)O(ρ1, ρ2, ρ3) = O(σ1 ◦ ρ1, σ2 ◦ ρ2, σ3 ◦ ρ3) (4.7)

P(σ1, σ2, σ3)P(ρ1, ρ2, ρ3) = P(σ1 ◦ ρ1, σ2 ◦ ρ2, σ3 ◦ ρ3) (4.8)

where σi ∈ Sn and ρi ∈ Sm for i = 1, 2, 3. Note that thanks to the way that we have ordered

the fermions there are no −1 factors in this second equation.

We can now work out the details of this algebra in the representation basis. A straight-

forward computation shows

Oγ1γ2r1r2r3
Oγ3γ4s1s2s3

=
∑

t1`n+m

∑
t2`n+m

∑
t3`n+m

∑
γ5γ6

f t1t2t3;γ1γ2γ3γ4
r1r2r3s1s2s3;γ5γ6

Oγ5γ6t1t2t3 (4.9)

where ri ` n and si ` m for i = 1, 2, 3. The structure constants for this algebra are given by

f t1t2t3;γ1γ2γ3γ4
r1r2r3s1s2s3;γ5γ6

=
dt1

(n+m)!

dt2
(n+m)!

dt3
(n+m)!

∑
σ1∈Sn

∑
σ2∈Sn

∑
σ3∈Sn

∑
ρ1∈Sm

∑
ρ2∈Sm

∑
ρ3∈Sm
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Cγ1γ2
r1r2r3

(σ1, σ2, σ3)Cγ3γ4
s1s2s3

(ρ1, ρ2, ρ3)Cγ5γ6
t1t2t3(σ1 ◦ ρ1, σ2 ◦ ρ2, σ3 ◦ ρ2)

=
dt1n!m!

(n+m)!dr1ds1

dt2n!m!

(n+m)!dr2ds2

dt3n!m!

(n+m)!dr3ds3
Bγ1
a ◦B

γ3
b B

γ5
ab Bγ6

cdB
γ2
c ◦B

γ4
d

(4.10)

To get to the last line above, we have simply performed the sum over the σi and the ρi using

the orthogonality relation (3.4). Remarkably, the structure constants are simply related to

overlaps between branching coefficients! Computing these overlaps is a well defined problem

in the representation theory of the symmetric group. Notice also that the structure constant,

up to an overall factor, factorizes into a product of two overlaps of branching coefficients.

There is a similar algebra for the fermionic operators

Pγ1γ2r1r2r3
Pγ3γ4s1s2s3

=
∑

t1`n+m

∑
t2`n+m

∑
t3`n+m

∑
γ5γ6

gt1t2t3;γ1γ2γ3γ4
r1r2r3s1s2s3;γ5γ6

Pγ5γ6t1t2t3 (4.11)

where the structure constants for this algebra are given by

gt1t2t3;γ1γ2γ3γ4
r1r2r3s1s2s3;γ5γ6

=
dt1

(n+m)!

dt2
(n+m)!

dt3
(n+m)!

∑
σ1∈Sn

∑
σ2∈Sn

∑
σ3∈Sn

∑
ρ1∈Sm

∑
ρ2∈Sm

∑
ρ3∈Sm

C̃γ1γ2
r1r2r3

(σ1, σ2, σ3)C̃γ3γ4
s1s2s3

(ρ1, ρ2, ρ3)C̃γ5γ6
t1t2t3(σ1 ◦ ρ1, σ2 ◦ ρ2, σ3 ◦ ρ2)

=
dt1n!m!

(n+m)!dr1ds1

dt2n!m!

(n+m)!dr2ds2

dt3n!m!

(n+m)!dr3ds3
B̃γ1
a ◦ B̃

γ3
b B̃

γ5
ab B̃γ6

cd B̃
γ2
c ◦ B̃

γ4
d

(4.12)

Again, the structure constants are simply related to overlaps between branching coefficients.

The existence of an algebraic structure for the gauge invariant operators has a remarkable

consequence: we are able to solve the free theory exactly. To make this point, write the

algebraic structure in a condensed notation as follows

OAOB = fABC OC (4.13)

with repeated indices summed. At the risk of being pedantic, A stands for two multiplicity

labels (γ1, γ2 say) and three Young diagrams (r1, r2, r3 say). Using this product repeatedly

we find

〈OA1OA2OA3 · · · OAn〉 = fA1A2
C1

fC1A3
C2

· · · fCn−2An
Cn−1

〈OCn−1〉 (4.14)

so that the computation of an n-point correlation function is reduced to the computation of

a one point function. We have already computed the most general one point function in the

previous section. Of course, the structure constants of the algebra need to be evaluated and

this is non-trivial. However, it does mean that the problem of solving the free tensor model

has been reduced entirely to a problem in Sn representation theory. This simplification is

highly non-trivial. There is a completely parallel argument for the fermionic tensor model.
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5 Collective Field Theory

We have now constructed the complete set of gauge invariant variables and an algebra that

these gauge invariants close. In this section we would like to construct a (collective) field

theory governing the dynamics of these variables. Our discussion is guided by the dynamics

of a single hermitian matrix X = X† and we will review some relevant background before

we consider the collective field theory relevant for the tensor model.

A complete set of gauge invariant variables for the one matrix model is provided by the

Schur polynomials[77]

χR(X) =
1

n!

∑
σ∈Sn

χR(σ)Tr(σX) (5.1)

These variables again close an interesting algebra, given by

χR(X)χS(X) =
∑
T

gRSTχT (X) (5.2)

where gRST are the Littlewood-Richardson coefficients. If we tried to quantize the Schur

polynomial variables, it would be a mistake to treat them as independent, as the above

algebra proves. In the case of a single matrix it is clear how we should proceed: one can

select a smaller set of variables that are independent

φn = Tr(Xn) (5.3)

where we should restrict n ≤ N . The complete set of gauge invariant variables, the Schur

polynomials, are polynomials in the φn. This is an important point: the φn are the set of

variables that are independent and by considering polynomials in these variables, we recover

the complete set of gauge invariant operators. In the large N limit, it is sensible to simply

ignore the constraint n ≤ N [30]. We can then consider the field

φk = Tr(eikX) (5.4)

or its Fourier transform, φ(x). The dynamics of this field, which is local in the emergent

dimension x, is captured in the Das-Jevicki-Sakita Hamiltonian[30, 31].

We now want to explore the possibility that there is a similar description possible for

tensor models. Our first task is to identify the smaller set of independent variables which

are independent and which we will quantize. Further, by considering polynomials in these

variables, we should reconstruct the complete set of gauge invariant operators.

It proves convenient to work in the permutation basis

Φ̄ · σ1 ◦ σ2 ◦ σ3 · Φ = Φ̄IJKΦσ1(I)σ2(J)σ3(K) (5.5)

These invariants were first counted by Geloun and Ramgoolam in [70]. They have identified

the number of invariants with the series A110143 on the OEIS website. This sequence counts
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the number of orbits obtained when Sn acts on Sn × Sn via conjugacy, i.e. for g ∈ Sn and

(x, y) ∈ Sn×Sn we have g(x, y) = (gxg−1, gyg−1). The number of invariants grows extremely

rapidly

1, 4, 11, 43, 161, 901, 5579, 43206, 378360, 3742738, ... (5.6)

A useful way to label the invariants, following [70], is by bipartite cubic graphs with edges

labeled by the gauge group the corresponding index belongs to.

Figure 1: The above figures label gauge invariant operators in the tensor model

gauge theory. Black dots correspond to φ̄ijk’s and white dots to φijks. A line la-

beled by i is a gauge index for U(Ni). The operator on the left corresponds to

φ̄i1j1k1φi2j1k1φ̄
i2j2k2φi3j2k2φ̄

i3j3k3φi4j3k3φ̄
i4j4k4φi1j4k4 and the operator on the right corresponds

to φ̄ijkφijk.

In the language of graphs it is easy to identify the smaller set of independent variables:

they are the variables that correspond to connected graphs. The number of connected graphs

can be counted using the plethystic logarithm and is identified with the series A057005 on

the OEIS website[70]. The number of independent variables still grows extremely rapidly

1, 3, 7, 26, 97, 624, 4163, 34470, 314493, 3202839, 35704007, 433460014, ... (5.7)

This growth seems to be too rapid to manage. We will now argue that we can restrict the

dynamics to an even smaller set of variables. To describe the smaller set of variables, it is

useful to consider

T i1 i2 = φ̄i1jkφi2jk (5.8)

T is a matrix on the vector space that carries the fundamental of U(N1). It thus makes sense

to take powers of T

(T n)i1 i2 = T i1jT
j
k · · ·T li2 (5.9)
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The smaller set of gauge invariants that we consider is given by

φn = Tr(T n) (5.10)

The Hamiltonian of the tensor model quantum mechanics we consider is given by

H = − ∂

∂φ̄ijk
∂

∂φijk
+

1

4
φ̄ijkφijk (5.11)

The coefficient of the second term has been chosen to ensure that the equal time two point

function is given by (3.1). The kinetic terms of the Hamiltonian, when rewritten in terms of

the new (collective) variables are

− ∂

∂φ̄ijk
∂

∂φijk
= −

∑
n,m

Ω(n,m)
∂

∂φn

∂

∂φm
+
∑
n

ω(n)
∂

∂φn
(5.12)

where2

Ω(n,m) =
∂φn
∂φ̄ijk

∂φm
∂φijk

= nmφn+m−1 (5.13)

ω(n) = − ∂

∂φ̄ijk

(
∂φn
∂φijk

)
= −

n−2∑
r=0

φrφn−r−1 −N2N3mφm−1 (5.14)

It is nontrivial that Ω(n,m) and ω(n) can be expressed in terms of the φn. This implies that

the Hamiltonian itself can be expressed in terms of this smaller set of variables, and hence

that it is consistent with the dynamics to restrict to this smaller set of variables. When

written in terms of the new variables, the Hamiltonian

H = −
∑
n,m

Ω(n,m)
∂

∂φn

∂

∂φm
+
∑
n

ω(n)
∂

∂φn
+

1

4
φ1 (5.15)

is not hermitian. This simply reflects the fact that in the new variables the inner product

is accompanied by a non-trivial Jacobian J [φ]. Performing a similarity transformation to

trivialize the measure, we arrive at a manifestly hermitian Hamiltonian[30, 31]

H = ΠΩΠ +
1

4

(
ω +

∂Ω

∂φ

)
Ω−1

(
ω +

∂Ω

∂φ

)
+ φ1 −

1

2

∂ω

∂φ
− 1

2

∂2Ω

∂φ∂φ
(5.16)

where we have used an obvious matrix notation and have introduced the momentum Π(n)

conjugate to φn

Πn = −i ∂

∂φn
(5.17)

2Note that these expressions are almost identical to the answers for the Hermitian one matrix model

which are Ω(n,m) = nmφn+m−2 and ω(n) = −
∑n−2
r=0 φrφn−r−2.
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As we have commented above, the variables φn that we have employed in the description so

far are a natural generalization of the variables (5.3) used in the matrix model. The variables

(5.3) are essentially the eigenvalues of the matrix model, so that it is natural to interpret the

gauge invariant variables constructed out of T ij as providing an eigenvalue like description

of the tensor model. Just as in the matrix case, the quantum mechanical system develops

an extra dimension. To see how this happens, we can explore the range of the eigenvalues

of T . In the case of a single matrix, the change to eigenvalues induces a Van der Monde

determinant which produces a repulsion between the eigenvalues ensuring they spread out

to produce a macroscopic emergent geometry at large N . To get some insight into what is

happening in the case of the tensor model, we compute the one point functions

〈Tr(T k)〉 = 〈Φ̄ · (k) ◦ 1 ◦ 1 · Φ〉 =
∑
σ∈Sk

N
C((k)σ)
1 N

C(σ)
2 N

C(σ)
3 (5.18)

In the above (k) is a k-cycle which, for concreteness, we take to be (123 · · · k). Lets study

the limit that Ni → ∞ holding N2

N3
fixed and taking α = N2N3

N1
fixed. In this large Ni limit

the above sum is then dominated by a nontrivial class of diagrams. For example

〈Tr(T )〉 = N1N2N3 = αN2
1

〈Tr(T 2)〉 = N2
1N2N3 +N1N

2
2N

2
3 = (α + α2)N3

1

〈Tr(T 3)〉 = N3
1N2N3 + 3N2

1N
2
2N

2
3 +N1N

3
2N

3
3 +N1N2N3

= (α + 3α2 + α3 +
α

N2
1

)N4
1

〈Tr(T 4)〉 = N4
1N2N3 + 6N3

1N
2
2N

2
3 + 6N2

1N
3
2N

3
3 +N1N

4
2N

4
3 + 5N2

1N2N3 + 5N1N
2
2N

2
3

= N5
1

(
α + 6α2 + 6α3 + α4 +

5α

N2
+

5α2

N2

)
〈Tr(T 5)〉 = N5

1N2N3 + 10N4
1N

2
2N

2
3 + 20N3

1N
3
2N

3
3 + 10N2

1N
4
2N

4
3 +N1N

5
2N

5
3

+15N3
1N2N3 + 40N2

1N
2
2N

2
3 + 15N1N

3
2N

3
3 + 8N1N2N3

= N6
1

(
α + 10α2 + 20α3 + 10α4 + α5 +

15α + 40α2 + 15α3

N2
1

+ 8
α

N4
1

)
〈Tr(T k)〉 ∼ Nk+1

1 (5.19)

The growth with k as Nk+1
1 is a clear indication that the eigenvalues of T are spreading out

and are potentially able to generate a new dimension. To construct the field theory in this

extra dimension, it is useful to introduce the field

φ(x) =

∫
dk

2π
e−ikx φk φk = Tr(eikT ) (5.20)

Notice that φ(x) is nothing but the density of eigenvalues of the T matrix and consequently

Tr(T n) =

∫
dxφ(x)xn (5.21)

The momentum dual to φ(x) is π(x) = 1
i

δ
δφ(x)

and similarly πk = 1
i
δ
δφk

. To perform the

change of variables, note that the kinetic terms in the tensor model Hamiltonian can be
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written as

− ∂

∂φ̄ijk
∂

∂φijk
= −T il

∂

∂T j l

∂

∂T ij
−N2N3

∂

∂T ii

= −
∫
dk

∫
dk′ Ωk,k′ πk πk′ +

∫
dk ωk πk (5.22)

where

Ωk,k′ = T il
∂φk
∂T j l

∂φk′

∂T ij
= −kk′Tr(T ei(k+k′)T )

= ikk′
∂

∂k
φk+k′ (5.23)

and

ωk = −T il
∂

∂T j l

(
∂φk
∂T ij

)
−N2N3

∂φk
∂T ii

= k

∫ 1

0

dτ φτki
∂

∂τ
φ(1−τ)k − ikN2N3φk (5.24)

To obtain these results, we have used the formula

∂

∂M i
j

(e−ikM)kl = (−ik)

∫ 1

0

dτ(e−iτkM)ki(e
−i(1−τ)kM)j l (5.25)

In position space we obtain

Ω(x, x′) =
∂

∂x

∂

∂x′
(xφ(x)δ(x− x′)) (5.26)

and

ω(x) = 2
∂

∂x
−
∫
dy φ(x)φ(y)

x

x− y
+ (N2N3 −N1)

∂φ(x)

∂x
(5.27)

It is interesting to note that the formula for Ω(x, x′) is identical to the formula obtained from

the radial sector of multi matrix models, and that the formula for ω(x) is very similar - see

[78, 79, 80, 81]. This easily leads to the following Hamiltonian (we have dropped constant

terms)

H =

∫
dx

[
∂π

∂x
xφ(x)

∂π

∂x
+
φ(x)

4x

(
−
∫
dy

2xφ(y)

x− y

)2

+
(N2N3 −N1)2

4x
φ(x) +

x

4
φ(x)

]
−µ
∫
dx φ(x) (5.28)

where the last term above enforces the constraint
∫
dxφ(x) = N1. To get this result, we used∫

dx−
∫
dy φ(x)φ(y)

x+ y

x− y
= 0 (5.29)
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As we explain in Appendix C, the Hamiltonian can be written as

H =

∫
dx
∂π

∂x
xφ(x)

∂π

∂x
+ Veff (5.30)

where the effective potential is

Veff =

∫
dx

[
π2x

3
φ3 +

(α− 1)2N2
1

4x
φ(x) +

x

4
φ(x)− µφ(x)

]
(5.31)

The classical field should minimize the effective potential, which leads to the following clas-

sical collective equation of motion

0 =
δVeff

δφ(x)
= π2xφ2 +

(1− α)2N2
1

4x
+
x

4
− µ

⇒ φ(x) =
1

π

√
µ

x
− 1

4
− (1− α)2N2

1

4x2
(5.32)

The chemical potential µ should be fixed by requiring that∫ x+

x−

dxφ(x) = N1 (5.33)

where the limits of integration are

x± = 2µ±
√

4µ2 −N2
1 (1− α)2 (5.34)

As a test of this classical solution, we would like to show that it reproduces the correct large

N1 correlators. To simplify the analysis that follows, we will set α = 1. In this case, after

solving for µ we have the density

φ(x) =
1

π

√
N1

x
− 1

4
x+ = 4N1 x− = 0 (5.35)

A simple computation now gives∫ N1
4

0

xφ(x)dx = N2
1

∫ N1
4

0

x2φ(x)dx = 2N3
1∫ N1

4

0

x3φ(x)dx = 5N4
1

∫ N1
4

0

x4φ(x)dx = 14N5
1

∫ N1
4

0

x5φ(x)dx = 42N6
1 (5.36)

in complete agreement with (5.19). This provides a nice test of classical collective solution.

6 Conclusions

Motivated by the close connection of tensor models to the SYK model, we have considered the

problem of counting and then constructing the gauge invariant operators of tensor models.
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Bosonic tensor models have already been considered in the literature, and the results we have

obtained are consistent with what is already known. Our results for fermionic vector models

are novel. Using the operators that have been constructed, we have exhibited an interesting

algebra underlying the gauge invariant operators of the tensor model: the gauge invariant

operators define a ring. We have written closed formulas for the structure constants of this

ring. As we have explained, this algebraic structure allows us to express arbitrary correlation

functions as one point functions, which we have computed explicitly. Consequently, once the

structure constants of the algebra are known, the free theory has been solved exactly. We

have expressed these structure constants as overlaps of branching coefficients so that their

computation is now a well defined problem in the representation theory of the symmetric

group.

To study the large N dynamics of tensor model quantum mechanics we have identified a

smaller set of gauge invariant operators that has lead to an eigenvalue like description. The

system admits a collective field theory description which is similar but not identical to the

collective field theory of a singe hermitian matrix. Our collective description shares all the

good features of previous collective descriptions. Two such features are

1. The collective description manifests the fact that the tensor model quantum mechanics

has emergent dimensions. Further, it is very attractive and highly non-trivial that the

collective dynamics in this emergent dimension is local.

2. The loop expansion parameter of the collective field theory is not ~ of the quantum

mechanics, but rather it is 1
N1

with N1 set by the tensor model gauge group. Conse-

quently the classical equations of motion of the collective field theory yield the answer

obtained by summing the complete set of Feynman diagrams that contribute at large

N1. For our tensor model example we have explicitly demonstrated this.

The above two features are highly suggestive of holography, which claims that a local (at

large N1) higher dimensional classical system is dual to the large N limit of the gauge theory.

There are a number of future directions that should be pursued. The fermionic tensor

model rather than the bosonic tensor model appears to be more relevant to the problem

of understanding holography. It would be interesting to develop the collective field theory

of the fermionic model. Specifically, it would be fascinating if such a description could be

developed for the Witten-Gurau model, which is of most relevance for SYK. Perhaps the

most interesting question to ask is if we can enlarge the space of gauge invariants to get a

genuinely larger space than the loop space of a single matrix model, such that the enlarged

space is still manageable? It seems that tensor models maybe good toy models with which

to explore holography.
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A Check of counting formulas

In this section we will explore the counting formulas obtained in Section 2. First consider

the counting at infinite N . It is rather easy to use characters of the symmetric group to

compute the Kronecker coefficients and then sum the squares of the coefficients, to compute

the number of bosonic gauge invariant operators (Nb) and the number of fermionic gauge

invariants operators (Nf ). The results are shown in Table 1.

n 1 2 3 4 5 6

Nb 1 4 11 43 161 901

Nf 1 4 11 43 161 901

Table 1: The number of bosonic Nb or fermionic Nf gauge invariant tensors constructed

using n fields. This counting is for gauge group ranks N1 = N2 = N3 =∞.

Note that the number of fermionic gauge invariant operators is equal to the number

of bosonic gauge invariant operators. This fact is easily explained: every time we have a

non-zero bosonic Kronecker coefficient, there is a corresponding non-zero fermionic Kronecker

coefficient. This is easily proved using the well known property of characters of the symmetric

group

χRT (σ) = sgn(σ)χR(σ) (A.1)

where RT is the transposed Young diagram, i.e. the Young diagram obtained from R by

swapping rows and columns. For example

R = ⇒ RT = (A.2)

Recall that 1n represents the Young diagram with a single column of n boxes. Use n to

denote the Young diagram that has a single row of n boxes. The proof is as follows

gr1,r2,r3,n =
1

n!

∑
σ∈Sn

χr1(σ)χr2(σ)χr3(σ)χn(σ)

=
1

n!

∑
σ∈Sn

χr1(σ)χr2(σ)χr3(σ)
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=
1

n!

∑
σ∈Sn

χrT1 (σ)χrT2 (σ)χrT3 (σ)(sgn(σ))3

=
1

n!

∑
σ∈Sn

χrT1 (σ)χrT2 (σ)χrT3 (σ)sgn(σ)

=
1

n!

∑
σ∈Sn

χrT1 (σ)χrT2 (σ)χrT3 (σ)χ1n(σ)

= grT1 ,rT2 ,rT3 ,1n (A.3)

Since the set of non-zero Kronecker coefficients are the same for the bosonic and the fermionic

tensor models, and the number of gauge invariant operators is equal to the sum of the

squares of these coefficients, this proves that the number of gauge invariant operators one

can construct in bosonic tensor models equals the number of gauge invariant operators one

can construct in fermionic tensor models.

The argument above has been for rank d = 3 tensors. It is clear that the above proof

goes through for rank d tensors with d odd, since in this case (sgn(σ))d = sgn(σ). For even

d however, the above proof does not go through: in this case (sgn(σ))d = 1. However, a

simple variant of the proof does work: for rank four for example, it is simple to prove that

gr1,r2,r3,r4,n = grT1 ,rT2 ,rT3 ,r4,1n (A.4)

We have verified this equality explicitly for n ≤ 6 and ranks d ≤ 8, which is a nice check of

the above arguments.

At finite N the number of fermionic and bosonic gauge invariant operators no longer

matches. Recall that for a general rank d tensor model the gauge group is U(N1)×U(N2)×
· · ·×U(Nd). As soon as n exceeds any of the Ni, it is possible to have Young diagrams r ` n
whose number of rows is greater than at least one of the Ni. In this case, the corresponding

operator vanishes and it is for this reason that we must put a cut off on the number of rows.

For example, for the bosons we have

Nb =
∑

ri`n l(ri)≤Ni

g2
r1 r2 r3 1 (A.5)

The proof breaks because we can have, for example, l(r1) < N1 and l(rT1 ) > N1. In Table 2

we have given the finite N counting for rank 3 tensors with N1 = N2 = N3 = 5.

n 1 2 3 4 5 6

Nb 1 4 11 43 92 70

Nf 1 4 11 43 87 20

Table 2: The number of bosonic Nb or fermionic Nf gauge invariant tensors constructed

using n fields. Here N1 = N2 = N3 = 5.
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Notice that there are more bosonic gauge invariant operators than there are fermionic

gauge invariant operators. This is in fact rather general: the Kronecker coefficients relevant

for the bosonic gauge invariants are mostly short and wide Young diagrams. On the other

hand, the Kronecker coefficients relevant for the fermionic gauge invariants are mostly tall

and thin Young diagrams. In fact, for the fermionic tensor model, there is some value of n

beyond which there are no new gauge invariants. In Table 3 we have shown the finite N

counting for rank 3 tensors with N1 = N2 = N3 = 3. For n ≥ 6 there are no gauge invariant

operators.

n 1 2 3 4 5 6

Nb 1 4 11 12 151 18

Nf 1 4 11 8 41 0

Table 3: The number of bosonic Nb or fermionic Nf gauge invariant tensors constructed

using n fields. Here N1 = N2 = N3 = 3.

For the first few values of n, it is possible to explicitly construct the gauge invariant

operators. For n = 1 there is a single bosonic and a single fermionic gauge invariant operator

φ̄ijkφijk ψ̄ijkψijk (A.6)

For n = 2 we have the following bosonic operators

φ̄i1j1k1φ̄i2j2k2φi1j1k1φi2j2k2 φ̄i2j1k1φ̄i1j2k2φi1j1k1φi2j2k2
φ̄i1j2k1φ̄i2j1k2φi1j1k1φi2j2k2 φ̄i1j1k2φ̄i2j2k1φi1j1k1φi2j2k2 (A.7)

which nicely matches the counting given above. There is an identical set of operators for the

fermions. For n = 3 we have the following bosonic operators

φ̄i1j1k1φ̄i2j2k2φ̄i3j3k3φi1j1k1φi2j2k2φi3j3k3 φ̄i1j1k1φ̄i2j2k3φ̄i3j3k2φi1j1k1φi2j2k2φi3j3k3
φ̄i1j1k1φ̄i2j3k2φ̄i3j3k2φi1j1k1φi2j2k2φi3j3k3 φ̄i1j1k1φ̄i2j3k3φ̄i3j2k2φi1j1k1φi2j2k2φi3j3k3
φ̄i1j1k2φ̄i2j2k3φ̄i3j3k1φi1j1k1φi2j2k2φi3j3k3 φ̄i1j1k2φ̄i2j3k1φ̄i3j2k3φi1j1k1φi2j2k2φi3j3k3
φ̄i1j1k2φ̄i2j3k3φ̄i3j2k1φi1j1k1φi2j2k2φi3j3k3 φ̄i1j2k1φ̄i2j3k2φ̄i3j1k3φi1j1k1φi2j2k2φi3j3k3
φ̄i1j2k1φ̄i2j3k3φ̄i3j1k2φi1j1k1φi2j2k2φi3j3k3 φ̄i1j2k2φ̄i2j3k3φ̄i3j1k1φi1j1k1φi2j2k2φi3j3k3
φ̄i1j2k3φ̄i2j3k1φ̄i3j1k2φi1j1k1φi2j2k2φi3j3k3

(A.8)

which matches the counting given above. The set of fermionic operators is again the same.

B Examples of Operators and Correlators

In the previous Appendix we have written down some of the gauge invariant operators in the

permutation basis. In this Appendix we will write down some operators in the representation

theory basis. We will then explore correlators of gauge invariant operators, in both bases.
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For n = 2 fields, there are no multiplicities, so these labels are dropped. There is a total

of four gauge invariant operators that can be defined. We will give the complete set of gauge

invariant operators, since this will allow us to test that they are indeed orthogonal and have

the correct two point function. The operators are given by

O , , = 2φ̄i1j1k1φ̄i2j2k2φi1j1k1φi2j2k2 + 2φ̄i2j1k1φ̄i1j2k2φi1j1k1φi2j2k2
+2φ̄i1j2k1φ̄i2j1k2φi1j1k1φi2j2k2 + 2φ̄i1j1k2φ̄i2j2k1φi1j1k1φi2j2k2 (B.1)

O
, ,

= 2φ̄i1j1k1φ̄i2j2k2φi1j1k1φi2j2k2 − 2φ̄i2j1k1φ̄i1j2k2φi1j1k1φi2j2k2

−2φ̄i1j2k1φ̄i2j1k2φi1j1k1φi2j2k2 + 2φ̄i1j1k2φ̄i2j2k1φi1j1k1φi2j2k2 (B.2)

O
, ,

= 2φ̄i1j1k1φ̄i2j2k2φi1j1k1φi2j2k2 − 2φ̄i2j1k1φ̄i1j2k2φi1j1k1φi2j2k2

+2φ̄i1j2k1φ̄i2j1k2φi1j1k1φi2j2k2 − 2φ̄i1j1k2φ̄i2j2k1φi1j1k1φi2j2k2 (B.3)

O
, ,

= 2φ̄i1j1k1φ̄i2j2k2φi1j1k1φi2j2k2 + 2φ̄i2j1k1φ̄i1j2k2φi1j1k1φi2j2k2

−2φ̄i1j2k1φ̄i2j1k2φi1j1k1φi2j2k2 − 2φ̄i1j1k2φ̄i2j2k1φi1j1k1φi2j2k2 (B.4)

A simple but tedious computation confirms (3.8) and (3.9). Some sample computations are

〈O , , 〉 = 2N1(N1 + 1)N2(N2 + 1)N3(N3 + 1) (B.5)

〈O , , O , , 〉 = 32N1(N1 + 1)N2(N2 + 1)N3(N3 + 1) (B.6)

〈O , , O
, ,
〉 = 0 (B.7)

For n = 2, the complete set of fermionic operators in the representation basis is given by

P
, ,

= 2ψ̄i1j1k1ψ̄i2j2k2ψi2j2k2ψi1j1k1 − 2ψ̄i1j2k1ψ̄i2j1k2ψi2j2k2ψi1j1k1

−2ψ̄i1j1k2ψ̄i2j2k1ψi2j2k2ψi1j1k1 − 2ψ̄i2j1k1ψ̄i1j2k2ψi2j2k2ψi1j1k1 (B.8)

P
, ,

= 2ψ̄i1j1k1ψ̄i2j2k2ψi2j2k2ψi1j1k1 − 2ψ̄i2j1k1ψ̄i1j2k2ψi2j2k2ψi1j1k1

+2ψ̄i1j2k1ψ̄i2j1k2ψi2j2k2ψi1j1k1 + 2ψ̄i1j1k2ψ̄i2j2k1ψi2j2k2ψi1j1k1 (B.9)

P
, ,

= 2ψ̄i1j1k1ψ̄i2j2k2ψi2j2k2ψi1j1k1 + 2ψ̄i2j1k1ψ̄i1j2k2ψi2j2k2ψi1j1k1

−2ψ̄i1j2k1ψ̄i2j1k2ψi2j2k2ψi1j1k1 + 2ψ̄i1j1k2ψ̄i2j2k1ψi2j2k2ψi1j1k1 (B.10)

P
, ,

= 2ψ̄i1j1k1ψ̄i2j2k2ψi2j2k2ψi1j1k1 + 2ψ̄i2j1k1ψ̄i1j2k2ψi2j2k2ψi1j1k1

+2ψ̄i1j2k1ψ̄i2j1k2ψi2j2k2ψi1j1k1 − 2ψ̄i1j1k2ψ̄i2j2k1ψi2j2k2ψi1j1k1 (B.11)

Some sample computations confirming (3.13) and (3.14) are

〈P
, ,
〉 = 2N1(N1 − 1)N2(N2 − 1)N3(N3 − 1) (B.12)

〈P
, ,
P

, ,
〉 = 32N1(N1 − 1)N2(N2 − 1)N3(N3 − 1) (B.13)

〈P
, ,
P

, ,
〉 = 0 (B.14)
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C Identities needed to derive the collective field theory

Hamiltonian

Using the identity

−
∫
dy
e−iky

x− y
= ε(k)πie−ikx (C.1)

we find

−
∫
dy

2x e−iky

y − x
= 2xε(k)πie−ikx (C.2)

Our main goal in this Appendix is to explain how to rewrite the term

T1 =

∫
dx
φ(x)

x
−
∫
dy1

2xφ(y1)

y1 − x
−
∫
dy2

2xφ(y2)

y2 − x
(C.3)

in a manifestly local form. This is the only term in the Hamiltonian that is not manifestly

local. Use the Fourier transform

φ(x) =

∫
dk

2π
e−ikxφk (C.4)

to write (this is the only non-local term in the Hamiltonian)

T1 =

∫
dk1

2π

∫
dk2

2π

∫
dk3

2π

∫
dxφk1φk2φk34xe

−ik1x−
∫
dy1

e−ik2y1

y1 − x
−
∫
dy2

e−ik3y2

y2 − x
=

∫
dk1

2π

∫
dk2

2π

∫
dk3

2π

∫
dxφk1φk2φk34xe

−ik1x
[
πiε(k2)e−ik2x

] [
πiε(k3)e−ik3x

]
= −4π2

∫
dk1

2π

∫
dk2

2π

∫
dk3

2π

∫
dxφk1φk2φk3xe

−i(k1+k2+k3)xε(k2)ε(k3) (C.5)

The expression on the last line can be manipulated, by renaming variables into

−4π2

3

∫
dk1

2π

∫
dk2

2π

∫
dk3

2π

∫
dxφk1φk2φk3xe

−i(k1+k2+k3)x(ε(k1)ε(k2) + ε(k1)ε(k3) + ε(k2)ε(k3))

=
4π2

3

∫
dk1

2π

∫
dk2

2π

∫
dk3

2π
φk1φk2φk3(i∂k1δ(k1 + k2 + k3))(ε(k1)ε(k2) + ε(k1)ε(k3) + ε(k2)ε(k3))

(C.6)

Because of the delta function, one or two of the ki’s must be positive so that

ε(k1)ε(k2) + ε(k1)ε(k3) + ε(k2)ε(k3) = −1 (C.7)

and we now find

T1 =
4π2

3

∫
dk1

2π

∫
dk2

2π

∫
dk3

2π
φk1φk2φk3(i∂k1δ(k1 + k2 + k3)) =

4π2

3

∫
dxxφ3(x) (C.8)

so that, remarkably, this term is local and it gives rise to a cubic interaction!
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