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ON THE SHAPE OF RANDOM PÓLYA STRUCTURES

BERNHARD GITTENBERGER, EMMA YU JIN AND MICHAEL WALLNER

Abstract. Panagiotou and Stufler recently proved an important fact on their way to estab-
lish the scaling limits of random Pólya trees: a uniform random Pólya tree of size n consists
of a conditioned critical Galton-Watson tree Cn and many small forests, where with proba-
bility tending to one, as n tends to infinity, any forest Fn(v), that is attached to a node v in
Cn, is maximally of size |Fn(v)| = O(log n). Their proof used the framework of a Boltzmann
sampler and deviation inequalities.

In this paper, first, we employ a unified framework in analytic combinatorics to prove
this fact with additional improvements for |Fn(v)|, namely |Fn(v)| = Θ(log n). Second, we
give a combinatorial interpretation of the rational weights of these forests and the defining
substitution process in terms of automorphisms associated to a given Pólya tree. Third, we
derive the limit probability that for a random node v the attached forest Fn(v) is of a given
size. Moreover, structural properties of those forests like the number of their components
are studied. Finally, we extend all results to other Pólya structures.

1. Introduction

In this section we first recall the asymptotic estimation of the number of Pólya trees with
n nodes from the literature [11, 12, 14]. Then, we briefly discuss simply generated trees and
give finally an outline of the paper.

1.1. Pólya trees. A Pólya tree is a rooted unlabelled non-plane tree. The size of a tree is
given by the number of its nodes. We denote by tn the number of Pólya trees of size n and by
T (z) =

∑

n≥1 tnz
n the corresponding ordinary generating function. By Pólya’s enumeration

theory [14], the generating function T (z) satisfies

T (z) = z exp

(
∞∑

i=1

T (zi)

i

)

.(1.1)

The first few terms of T (z) are then

T (z) = z + z2 + 2z3 + 4z4 + 9z5 + 20z6 + 48z7 + 115z8 + 286z9 + 719z10 + · · · ,(1.2)

(see OEIS A000081, [15]). By differentiating both sides of (1.1) with respect to z, one can
derive a recurrence relation of tn (see [11, Chapter 29] and [12]), which is

tn =
1

n− 1

n−1∑

i=1

tn−i

∑

m|i

mtm, for n > 1, and t1 = 1.
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Pólya [14] showed that the radius of convergence ρ of T (z) satisfies 0 < ρ < 1 and that ρ
is the unique singularity on the circle of convergence. Subsequently, Otter [12] proved that
T (ρ) = 1 as well as the singular expansion

T (z) = 1− b (ρ− z)1/2 + c(ρ− z) +O
(

(ρ− z)3/2
)

,(1.3)

where ρ ≈ 0.3383219, b ≈ 2.68112 and c = b2/3 ≈ 2.39614. Moreover, he derived

tn =
b
√
ρ

2
√
π

ρ−n

√
n3

(

1 +O
(
1

n

))

.

1.2. Relation between Pólya and simply generated trees. We will see that T (z) is
connected with the exponential generating function of Cayley trees. “With a minor abuse of
notation” (cf. [9, Ex. 10.2]), Cayley trees belong to the class of simply generated trees. Simply
generated trees have been introduced by Meir and Moon [10] to describe a weighted version
of rooted trees. They are defined by the functional equation

y(z) = zΦ(y(z)), with Φ(z) =
∑

j≥0

φj z
j , φj ≥ 0.(1.4)

The power series y(x) =
∑

n≥1 ynx
n has nonnegative coefficients and is the generating function

of weighted simply generated trees. One usually assumes that φ0 > 0 and φj > 0 for some
j ≥ 2 to exclude the trivial cases. In particular, in the above-mentioned sense, Cayley trees
can be seen as simply generated trees which are characterized by Φ(z) = exp(z). It is well
known that the number of rooted Cayley trees of size n is given by nn−1. Let

(1.5) C(z) =
∑

n≥0

nn−1 z
n

n!
,

be the associated exponential generating function. Then, by construction it satisfies C(z) =
z exp(C(z)). In contrast, Pólya trees are not simply generated (see [5] for a simple proof of
this fact). Note that though T (z) and C(z) are closely related, Pólya trees are not related to
Cayley trees in a strict sense, but rather to a certain class of weighted unlabeled non-plane
trees, which will be called C-trees in the sequel and have the ordinary generating function
C(z).

Informally speaking, a Pólya tree is constructed from a C-tree where to each node a forest is
attached. The family where the forests are taken from will be called D-forests. So, a Pólya tree
is (as above “with a minor abuse of notation”) a simply generated tree with small decorations
on each of its vertices. This follows from a limit theorem by Panagiotou and Stufler [13] where
trees are seen as random metric spaces which converge to a limit space, the so-called scaling
limit, when suitably rescaled. Their proof uses advanced probabilistic methods. A goal of
this paper is to understand this limit from an analytic combinatorics [6] point of view and
to offer a somewhat more elementary approach to this limit theorem. We will not reprove
the complete limit theorem, but we set up a description in terms of generating functions
which exhibits combinatorially the above mentioned relation between Pólya trees and simply
generated trees. Moreover, this description allows a detailed analysis of the decorations and
leads to some extensions of Panagiotou and Stufler’s [13] results on the decorations.
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1.3. Outline of the paper. The paper is organized as follows. In Section 2 we present
the combinatorial setup and the main results. Section 3 is devoted to the study of the size
of D-forests and the size of the C-tree Cn in a random Pólya tree Tn. We also offer new
proofs of some results from [13] using the analytic combinatorics framework. In Section 4 we
prove Theorems 2 and 4. A detailed study of D-forest is the topic of Section 4. There we
study the distribution of the size a randomly chosen D-forest within a Pólya tree as well as
the distribution of the number of components. All the results can be generalized to further
Pólya structures, albeit we do not obtain as explicit expressions as in the case of Pólya trees.
This will be the topic of Section 5. We conclude in Section 6 with some final remarks.

2. Basic structures and main results

The generating function C(z) defined in (1.5) counts several combinatorial objects. In this
section we comment on the different interpretations and answer the question of what C-trees
really are.

For a set T we define two functions: a size function | · | : T → N (normally the number of
its nodes) and a weight function w : T → R. We call T a combinatorial class if the number
of elements T ∈ T of any given size is finite. The (weighted) generating function T (z) of T
is given by

T (z) =
∑

T∈T

w(T )z|T |,

and the (weighted) exponential generating function T̂ (z) of T is given by

T̂ (z) =
∑

T∈T

w(T )
z|T |

|T |! =
∑

n≥0

( ∑

T∈T
|T |=n

w(T )
)zn

n!
.

First, let C1 be the combinatorial class of Cayley trees. These are labeled trees with the
constant weight function w(T ) = 1 for all T ∈ C1, see [14]. Then, C(z) is the corresponding
exponential generating function.

Second, let C2 be the combinatorial class of simply generated trees with Φ(z) = exp(z).
These are unlabeled plane trees with weight function

w(T ) =
∏

k≥0

(
1

k!

)nk(T )

(2.1)

where nk(T ) is the number of nodes of T with outdegree k, see [9, 10]. Then, C(z) is the
generating function of these trees.

Third, we can define the class C3 of C-trees after all.

Definition 1. A C-tree is a rooted non-plane tree T with weight

w(T ) = e(T )
∏

k≥0

(
1

k!

)nk(T )

(2.2)

where e(T ) is the number of embeddings of T into the plane.

Remark 1. The class C3 is the non-plane version of the class C2.
Lemma 1. The generating function of C3 is C(z).
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Proof. For a given C-tree T of size n and with root of outdegree d, let T1, T2, . . . , Tk be the
distinct subtrees of the root, appearing with multiplicities m1, . . . ,mk, respectively. Then,
d = m1 +m2 + · · · +mk with mi ≥ 1. We define

δ(T ) := |{all permutations of (T1, . . . , T1
︸ ︷︷ ︸

m1

, T2, . . . , T2
︸ ︷︷ ︸

m2

, . . . , Tk, . . . , Tk
︸ ︷︷ ︸

mk

)}| =
(

d

m1,m2, . . . ,mk

)

.

Hence, we get

w(T ) =
δ(T )

d!

k∏

i=1

w(Ti)
mi =

(
w(T1)

m1

m1!

)(
w(T2)

m2

m2!

)

· · ·
(
w(Tk)

mk

mk!

)

.

This implies that the generating function of the class C3 satisfies C(z) = z exp(C(z)). �

Now, we turn to the introduction of D-forests. We begin with some preliminary observa-
tions: In order to analyze the dominant singularity of T (z), we follow [12, 14], see also [6,
Chapter VII.5], and we rewrite (1.2) into

T (z) = zeT (z)D(z), where D(z) =
∑

n≥0

dnz
n = exp

(
∞∑

i=2

T (zi)

i

)

.(2.3)

We observe that D(z) is analytic for |z| < √
ρ < 1 and that

√
ρ > ρ. From (2.3) it follows

that T (z) can be expressed in terms of the generating function of C-trees: Indeed, assume
that T (z) is a function H(zD(z)) depending on zD(z). By (2.3) this is equivalent to H(x) =
x exp(H(x)). Yet, this is the functional equation for the generating function of C-trees. As
this functional equation has a unique power series solution we have H(x) = C(x), and we
just proved

T (z) = C(zD(z)).(2.4)

Note that T (z) = C(zD(z)) is a case of a super-critical composition schema which is charac-
terized by the fact that the dominant singularity of T (z) is strictly smaller than that of D(z).
In other words, the dominant singularity ρ of T (z) is determined by the outer function C(z).
Indeed, ρD(ρ) = e−1, because e−1 is the unique dominant singularity of C(z). Moreover,
the composition schema corresponds to the substitution construction of combinatorial struc-
tures [6]. Indeed, (2.4) shows that a Pólya tree is a C-tree where to each vertex there has
been attached a combinatorial object from a combinatorial class associated with the generat-
ing function D(z). As Pólya trees are trees, the D-structures must be forests. Inspecting the
generating function D(z) more closely will show that there is a natural way of defining these
D-forests.

Definition 2. Let MSET(≥2)(T ) denote the class of all multisets (or forests) of Pólya trees
where each of its distinct components appears at least in duplicate (see Figure 2.1). For

F ∈ MSET(≥2)(T ) let Aut(F ) denote the automorphism group of F . Moreover, let σi denote

the number of cycles of length i in the automorphism σ ∈ Aut(F ). To each F ∈ MSET(≥2)(T )
we assign the weight

w(F ) =
|{σ ∈ Aut(F ) | σ1 = 0}|

|Aut(F )| .

Then the class (MSET(≥2)(T ), w) is called the class of D-forests.
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Figure 2.1. All D-forests of size 2, 3, 4, 5, 6.

Our first main result is that this is indeed the combinatorially natural weighting for the
D-forests satisfying (2.4) as well as relating the weights of C-trees in terms of automorphisms
associated to a given Pólya tree. In particular, we will show that the cumulative weight dn
(defined in (2.5)) of all such forests of size n satisfies

dn =
∑

F∈MSET(≥2)(T )
|F |=n

|{σ ∈ Aut(F ) | σ1 = 0}|
|Aut(F )|

From (1.2) and (2.3) one gets the first values of this sequence:

D(z) =
∞∑

n=0

dnz
n = 1 +

1

2
z2 +

1

3
z3 +

7

8
z4 +

11

30
z5 +

281

144
z6 +

449

840
z7 + · · · .(2.5)

From (2.3) we can derive a recursion of dn as well. We get

dn =
1

n

n∑

i=2

dn−i

∑

m|i
m6=i

mtm, for n ≥ 2,

as well as d0 = 1, and d1 = 0.
Before we can formulate the first main result, we have to introduce further generating

functions. Let cn,k denote the cumulative weight of all C-trees of size k that are contained in
Pólya trees of size n. By tc,n(u) and Tc(z, u) we denote the corresponding generating function
and the bivariate generating function of (cn,k)n,k≥0, respectively, that is,

tc,n(u) =

n∑

k=1

cn,ku
k and Tc(z, u) =

∑

n≥0

tc,n(u)z
n.

Note that cn,k is in general not an integer. By marking the nodes of all C-trees in Pólya trees
we find a functional equation for the bivariate generating function Tc(z, u), which is

Tc(z, u) = zu exp (Tc(z, u)) exp

(
∞∑

i=2

T (zi)

i

)

= zu exp (Tc(z, u))D(z).(2.6)

Now we are ready to state the first main result:

Theorem 2. Let T be the set of all Pólya trees, and MSET(≥2)(T ) be the multiset (or forest)
of Pólya trees where each tree appears at least twice if it appears at all. Then the cumulative
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weight dn (defined in (2.5)) of all such forests of size n satisfies

dn =
∑

F∈MSET(≥2)(T )
|F |=n

|{σ ∈ Aut(F ) | σ1 = 0}|
|Aut(F )|

where Aut(F ) is the automorphism group of F . Furthermore, the polynomial associated to
C-trees in Pólya trees of size n is given by

tc,n(u) =
∑

T∈T , |T |=n

tT (u), where tT (u) =
1

|Aut(T )|
∑

σ∈Aut(T )

uσ1 .

In particular, for all T ∈ T , we have t′T (1) = |P(T )| where P(T ) is the set of all trees which
are obtained by pointing (or coloring) one single node in T .

Note that the decomposition of a Pólya tree into a C-tree and D-forests is in general not
unique, because the D-forests consist of Pólya trees and their vertices are not distinguishable
from those of the C-tree, see Figure 2.2. However, for a given Pólya tree T the polynomial

Figure 2.2. The decomposition of a Pólya tree with 4 nodes into a C-tree
(non-circled nodes) and D-forests (circled nodes). For this Pólya tree there
are 3 different decompositions.

tT (u) gives rise to a probabilistic interpretation of the composition scheme (2.4) (see also
Example 2 in Section 4): Let Tn denote a uniform random Pólya tree of size n. Then select
one automorphism σ of Tn uniformly at random and let Cn be the (random) subtree of Tn

consisting of all fixed points of σ. The tree Cn is indeed a C-tree, i.e., the remaining vertices
in Tn form a set of D-forests. So, fixing a Pólya tree together with one of its automorphisms
uniquely defines a decomposition into a C-tree and a set of D-forests.

The coefficient of uk can then be interpreted as the probability that the underlying C-tree
is of size k. In other words, tT (u) is the probability generating function of the random variable
CT of the number of C-tree nodes in the tree T defined by

P(CT = k) := [uk]tT (u).(2.7)

The random variable CT is a refinement of Tn in the following sense:

P(CT = k) = P (|Cn| = k | Tn = T )

Now, let us turn to the second main result. Select a random Pólya tree Tn and one of its
automorhisms and consider the random C-tree Cn given by this choice. For every vertex v of
Cn, we use Fn(v) to denote the D-forest that is attached to the vertex v in Tn, see Figure 2.3.

Let Ln be the maximal size of a D-forest contained in Tn, that is, |Fn(v)| ≤ Ln holds for
all v of Cn and the inequality is sharp.

Theorem 3. For 0 < s < 1,

(1− (log n)−s)

(−2 log n

log ρ

)

≤ Ln ≤ (1 + (log n)−s)

(−2 log n

log ρ

)

(2.8)

holds with probability 1− o(1).
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Fn(v1)

Fn(v2)
Fn(v3)

v1

v2

v3 v3

v1

v2

Fn(v1)

Fn(v2)

Fn(v3)

Figure 2.3. A random Pólya tree Tn (left), a (possible) C-tree Cn (middle)
that is contained in Tn where all D-forests Fn(v), except Fn(v1), Fn(v2), Fn(v3)
(right), are empty.

Our first main result is a proof of Theorem 3 by applying the unified framework of Gourdon
[8]. A big-O result for the upper bound was given by Panagiotou and Stufler [13, Eq. (5.5)].

Finally, we derive the limiting probability that for a random node v the attached forest
Fn(v) is of a given size. This result is consistent with the Boltzmann sampler from [13]. The
precise statement of our third main result is the following:

Theorem 4. The generating function T [m](z, u) of Pólya trees, where each vertex is marked
by z, and each weighted D-forest of size m is marked by u, is given by

T [m](z, u) = C (uzdmzm + z (D(z)− dmzm)) ,(2.9)

where dm = [zm]D(z). The probability that the D-forest Fn(v) attached to a random C-tree
node v is of size m is given by

P (|Fn(v)| = m) =
dmρm

D(ρ)

(
1 +O

(
n−1

))
.

3. The maximal size of a D-forest

We will use the generating function approach from [8] to analyze the maximal size Ln of
D-forests in a random Pólya tree Tn, which provides a new proof of Theorem 3. Following
the same approach, we can establish a central limit theorem for the random variable |Cn|,
which has been done in [16] for the more general random R-enriched trees.

Proof of Theorem 3. In (5.5) of [13], only an upper bound of Ln is given. By directly ap-
plying Gourdon’s results (Theorem 4 and Corollary 3 of [8]) for the super-critical composition
schema, we find that for any positive m,

P[Ln ≤ m] = exp
(

− c1n

m3/2
ρm/2

)

(1 +O(exp(−mε))),

where

c1 ∼
b

2
√
π(1−√

ρ)(D(ρ) + ρD′(ρ))
,

as n → ∞. Moreover, the maximal size Ln satisfies asymptotically, as n → ∞,

ELn = −2 log n

log ρ
− 3

2

2

log ρ
log log n+O(1) and VarLn = O(1).
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By using Chebyshev’s inequality, one can prove that Ln is highly concentrated around the
mean ELn. We set εn = (log n)−s where 0 < s < 1 and we get

P(|Ln − ELn| ≥ εn · ELn) ≤
VarLn

ε2n · (ELn)2
= o(1),

which means that (2.8) holds with probability 1− o(1). �

It was shown in [16] that the size |Cn| of the C-tree Cn in Tn satisfies a central limit theorem
and |Cn| = Θ(n) holds with probability 1− o(1). The precise statement is the following.

Theorem 5 ([16, Eq. (3.9) and (3.10)], [13, Eq. (5.6)]). The size of the C-tree |Cn| in a
random Pólya tree Tn of size n satisfies a central limit theorem where the expected value
E|Cn| and the variance Var |Cn| are asymptotically

E|Cn| =
2n

b2ρ
(1 +O(n−1)), and Var |Cn| =

11n

12b2ρ
(1 +O(n−1)).

Furthermore, for any s such that 0 < s < 1/2, with probability 1− o(1) we have

(3.1) (1− n−s)
2n

b2ρ
≤ |Cn| ≤ (1 + n−s)

2n

b2ρ
.

Random Pólya trees belong to the class of randomR-enriched trees and we refer the readers
to [16] for the proof of Theorem 5 in the general setting. Here we provide a proof of Theorem 5
to show the connection between a bivariate generating function and the normal distribution
and to emphasize the simplifications for the concrete values of the expected value and variance
in this case.

Proof of Theorem 5 (see also [16] for a probabilistic proof). It follows from [4, Th. 2.23]
that the random variable |Cn| satisfies a central limit theorem. In the present case, we set
F (z, y, u) = zu exp(y)D(z). It is easy to verify that F (z, y, u) is an analytic function when z
and y are near 0 and that F (0, y, u) ≡ 0, F (x, 0, u) 6≡ 0 and all coefficients [znym]F (z, y, 1)
are real and nonnegative. From [4, Th. 2.23] we know that Tc(z, u) is the unique solution
of the functional identity y = F (z, y, u). Since all coefficients of Fy(z, y, 1) are nonnegative
and the coefficients of T (z) are positive as well as monotonically increasing, this implies that
(ρ, T (ρ), 1) is the unique solution of Fy(z, y, 1) = 1, which leads to the fact that T (ρ) = 1.
Moreover, the expected value is

E|Cn| =
nFu(z, y, u)

ρFz(z, y, u)

=
[zn]∂uTc(z, u)|u=1

[zn]T (z)

=

(

[zn]
T (z)

1− T (z)

)

([zn]T (z))−1

=
2n

b2ρ
(1 +O(n−1)).

The asymptotics are directly derived from (1.3). Likewise, we can compute the variance

Var |Cn| =
[zn]T (z)(1 − T (z))−3

[zn]T (z)
− (E |Cn|)2 =

11n

12b2ρ
(1 +O(n−1)).
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Furthermore, |Cn| is highly concentrated around E |Cn|, which can be proved again by using
Chebyshev’s inequality. We set εn = n−s where 0 < s < 1/2 and get

P(
∣
∣|Cn| − E|Cn|

∣
∣ ≥ εn · E|Cn|) ≤

Var|Cn|
ε2n · (E|Cn|)2

= O(n2s−1) = o(1),

which yields (3.1). �

As a simple corollary, we also get the total size of all weighted D-forests in Tn. Let Dn

denote the union of all D-forests in a random Pólya tree Tn of size n.

Corollary 6. The size of weighted D-forests in a random Pólya tree of size n satisfies a central
limit theorem where the expected value E|Dn| and the variance Var|Dn| are asymptotically

E|Dn| = n

(

1− 2

b2ρ

)

(1 +O(n−1)), and Var|Dn| =
11n

12b2ρ
(1 +O(n−1)).

Theorem 5 and Corollary 6 tell us that a random Pólya tree Tn consists mostly of a C-tree
(proportion 2

b2ρ comprising ≈ 82.2% of the nodes) and to a small part of D-forests (proportion

1− 2
b2ρ

comprising ≈ 17.8% of the nodes). Furthermore, the average size of a D-forest Fn(v)

attached to a random C-tree vertex in Tn is b2ρ
2 − 1 ≈ 0.216, which indicates that on average

the D-forest Fn(v) is very small, although the maximal size of all D-forests in a random
Pólya tree Tn reaches Θ(log n).

Remark 2. Let us describe the connection of (2.4) to the Boltzmann sampler from [13]. We
know that F (z, y, 1) = zΦ(y)D(z) where Φ(x) = exp(x) and y = T (z). By dividing both
sides of this equation by y = T (z), one obtains from (2.3) that

1 =
zD(z)

T (z)
exp(T (z)) = exp(−T (z))

∑

k≥0

T k(z)

k!
,

which implies that in the Boltzmann sampler ΓT (x), the number of offspring contained in the
C-tree Cn is Poisson distributed with parameter T (x). As an immediate result, the random
C-tree contained in the Pólya tree generated by the Boltzmann sampler ΓT (ρ) corresponds
to a critical Galton-Watson tree since the expected number of offspring is Fy(z, y, 1) = 1 for
(z, y) = (ρ, 1).

4. D-forests and C-trees

In order to get a better understanding of D-forests and C-trees, we need to return to the
original proof of Pólya on the number of Pólya trees [14]. The important step is the treatment
of tree automorphisms by the cycle index.

As before, we denote by σi the number of cycles of length i of a permutation σ. Let
Sk be the symmetric group of order k. The type of a permutation σ ∈ Sk is the k-tuple

(σ1, σ2, . . . , σk). Note that k =
∑k

i=1 iσi.

Definition 3 (Cycle index). Let G be a subgroup of the symmetric group Sk. Then the cycle
index is

Z(G; s1, s2, . . . , sk) =
1

|G|
∑

σ∈G

sσ1
1 sσ2

2 · · · sσk
k .

Now we are ready to prove Theorem 2.
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4.1. Proof of Theorem 2. By Pólya’s enumeration theory [14], the generating function
T (z) satisfies the functional equation

T (z) = z
∑

k≥0

Z(Sk;T (z), T (z
2), . . . , T (zk))

= z
∑

k≥0

1

k!

∑

σ∈Sk

(T (z))σ1(T (z2))σ2 · · · (T (zk))σk ,

which can be simplified to (1.1), the starting point of our research, by a simple calculation.
However, this shows that the generating function of D-forests from (2.3) is given by

D(z) = exp

(
∞∑

i=2

T (zi)

i

)

=
∑

k≥0

Z(Sk; 0, T (z
2), . . . , T (zk)) =

∑

k≥0

1

k!

∑

σ∈Sk such that σ1=0

(T (z2))σ2 · · · (T (zk))σk .(4.1)

The weight of a D-forest of size n comprising k trees is given by the ratio of fixed point free
automorphisms over the total number of automorphisms. This quotient equals the number of
fixed point free permutations σ ∈ Sk of the trees which the forest consists of divided by the
total number of orderings k!, since the automorphisms of the subtrees of the root contribute
to both the number of all and the number of fixed point free automorphisms of the forest.
But this last quotient is precisely the coefficient of zn in the kth summand of (4.1). Thus

dn = [zn]D(z) =
∑

F∈MSET(≥2)(T )
|F |=n

|{σ ∈ Aut(F ) | σ1 = 0}|
|Aut(F )| .

This proves the first assertion of Theorem 2.

Example 1. The smallest D-forest is of size 2, and it consists of a pair of single nodes, see
Figure 2.1. This forest has only one fixed point free automorphism, thus d2 = 1/2. For n = 3
the forest consists of 3 single nodes. The fixed point free permutations are the 3-cycles, thus
d3 = 2/6 = 1/3. The case n = 4 is more interesting. A forest consists either of 4 single nodes,
or of 2 identical trees, each consisting of 2 nodes and one edge. In the first case we have 6
4-cycles and 3 pairs of transpositions. In the second case we have 1 transposition swapping
the two trees. Thus, d4 =

6+3
24 + 1

2 = 7
8 . ♦

These results also yield a natural interpretation of C-trees. We recall that by definition

Tc(z, u) =
∑

n≥0

tc,n(u)z
n,

where tc,n(u) =
∑

k cn,ku
k is the polynomial marking the C-trees in Pólya trees of size n.

From the decompositions (2.4) and (2.6) we get the first few terms:

tc,1(u) = u, tc,2(u) = u2, tc,3(u) =
3

2
u3 +

1

2
u, tc,4(u) =

8

3
u4 + u2 +

1

3
u.

Evaluating these polynomials at u = 1 obviously returns tc,n(1) = tn, which is the number
of Pólya trees of size n. Their coefficients, however, are weighted sums depending on the
number of C-tree nodes. For a given Pólya tree there are in general several ways to decide
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what is a C-tree node and what is a D-forest node. The possible choices are encoded in the
automorphisms of the tree, and these are responsible for the above weights as well.

Let T be a Pólya tree and Aut(T ) its automorphism group. For an automorphism σ ∈
Aut(T ) the nodes which are fixed points of σ are C-tree nodes. All other nodes are part of
D-forests. Summing over all automorphisms and normalizing by the total number gives the
C-tree generating polynomial for T :

tT (u) = Z(Aut(T );u, 1, . . . , 1) =
1

|Aut(T )|
∑

σ∈Aut(T )

uσ1 .(4.2)

The polynomial of C-trees in Pólya trees of size n is then given by

tc,n(u) =
∑

T∈T , |T |=n

tT (u),

which completes the proof of the second assertion of Theorem 2.

Example 2. For n = 3 we have 2 Pólya trees, namely the chain T1 and the cherry T2.
Thus, Aut(T1) = {id}, and Aut(T2) = {id, σ}, where σ swaps the two leaves but the root is
unchanged. Thus,

tT1(u) = u3, tT2(u) =
1

2
(u3 + u).

For n = 4 we have 4 Pólya trees shown in Figure 4.1. Their automorphism groups are given
by Aut(T1) = Aut(T2) = {id}, Aut(T3) = {id, (v3 v4)} ∼= S2, and

Aut(T4) = {id, (v2 v3), (v3 v4), (v2 v4), (v2 v3 v4), (v2 v4 v3)} ∼= S3.

This gives

tT1(u) = tT2(u) = u4, tT3(u) =
1

2
(u4 + u2), tT4(u) =

1

6
(u4 + 3u2 + 2u).

This enables us to give a probabilistic interpretation of the composition scheme (2.4). For
a given tree the weight of uk is the probability that the underlying C-tree is of size k. In
particular, T1 and T2 do not have D-forests. The tree T3 consists of a C-tree with 4 or with
2 nodes, each case with probability 1/2. In the second case, as there is only one possibility
for the D-forest, it consists of the pair of single nodes which are the leaves. Finally, the tree
T4 has either 4 C-tree nodes with probability 1/6, 2 with probability 1/2, or only one with
probability 1/3. These decompositions are shown in Figure 2.2. ♦

T1 T2 T3 T4

v3 v4 v2 v3 v4

Figure 4.1. All Pólya trees of size 4.
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In the same way as we got the composition scheme in (2.4), we can rewrite Tc(z, u)
from (2.6) into Tc(z, u) = C(uzD(z)). The expected total weight of all C-trees contained
in all Pólya trees of size n is the n-th coefficient of Tc(z), which is

Tc(z) :=
∂

∂u
Tc(z, u)

∣
∣
∣
∣
u=1

=
T (z)

1− T (z)
= z + 2z2 + 5z3 + 13z4 + 35z5 + 95z6 + · · · .(4.3)

Let us explain why these numbers are integers, although the coefficients of tc,n(u) are in
general not. We will show an even stronger result.

Lemma 7. Let T be a tree and P(T ) be the set of all trees with one single pointed (or colored)
node which can be generated from T . Then for all T ∈ T we have t′T (1) = |P(T )|.

Proof. From (4.2) we get t′T (1) =
∑

σ∈Aut(T )
σ1

|Aut(T )| is the expected number of fixed points

in a uniformly at random chosen automorphism of T . The associated random variable CT is
defined in (2.7). We will prove E(CT ) = |P(T )| by induction on the size of T .

The most important observation is that only if the root of a subtree is a fixed point, its
children can also be fixed points. Obviously, the root of the tree is always a fixed point.

For |T | = 1, the claim holds as E(CT ) = 1 and there is just one tree with a single node and
a marker on it. For larger T consider the construction of Pólya trees. A Pólya tree consists
of a root T0 and its children, which are a multiset of smaller trees. Thus, the set of children
is of the form

{T1,1, . . . , T1,k1 , T2,1, . . . , T2,k2 , . . . , Tr,1, . . . , Tr,kr}, with Ti,j ∈ T ,

and where trees with the same first index are isomorphic. On the level of children, the possible
behaviors of automorphisms are permutations within the same class of trees. In other words,
an automorphism may interchange the trees T1,1, . . . , T1,k1 in k1! many ways, etc. Here the
main observation comes into play: only subtrees of which the root is a fixed point might also
have other fixed points. Thus, the expected number of fixed points is given by the expected
number of fixed points in a random permutation of Ski times the expected number of fixed
points in Tki . By linearity of expectation we get

E(CT ) = E(CT0) +

r∑

i=0

E(number of fixed points in Ski)
︸ ︷︷ ︸

=1

E(CTi),

where E(CTi) = E(CTi,j ) for all 1 ≤ j ≤ ki and E(CT0) = 1 because the root is a fixed point
of any automorphism. Since the expected number of fixed points for each permutation is 1,
we get on average 1 representative for each class of trees. This is exactly the operation of
labeling one tree among each equivalence class. Finally, by induction the claim holds. �

This completes the proof of Theorem 2. �

As an immediate consequence of Lemma 7, t′c,n(1) counts the number of Pólya trees with n
nodes and a single labeled node (see OEIS A000107, [15]). This also explains the construction
of non-empty sequences of trees in (4.3): Following the connection of [2, pp. 61–62] one can
draw a path from the root to each labeled node. The nodes on that path are the roots of a
sequence of Pólya trees.

Remark 3. Note that Lemma 7 also implies that the total number of fixed points in all
automorphisms of a tree is a multiple of the number of automorphisms.
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Remark 4. Lemma 7 can also be proved by considering cycle-pointed Pólya trees; see [3,
Section 3.2] for a full description. Let (T, c) be a cycle-pointed structure considered up to
symmetry where T is a Pólya tree and c is a cycle of an automorphism σ ∈ Aut(T ). Then,
the number of such cycle-pointed structures (T, c) where c has length 1 is exactly the number
t′T (1).

Let us analyze the D-forests in Tn more carefully. We want to count the number of D-
forests that have size m in a random Pólya tree Tn. Therefore, we label such D-forests with an
additional parameter u in (2.4). From the bivariate generating function (2.9) we can recover
the probability P[|Fn(v)| = m] to generate a D-forest of size m in the Boltzmann sampler
from [13].

4.2. Proof of Theorem 4. The first result is a direct consequence of (2.4), where only
vertices with weighted D-forests of size m are marked. For the second result we differentiate
both sides of (2.9) and get

T [m]
u (z, 1) =

T (z)

1− T (z)

dmzm

D(z)
= Tc(z)

dmzm

D(z)
.

Then, the sought probability is given by

P [|Fn(v)| = m] =
[zn]T

[m]
u (z, 1)

[zn]Tc(z)
=

dmρm

D(ρ)

(
1 +O

(
n−1

))
.

For the last equality we used the fact that D(z) is analytic in a neighborhood of z = ρ.
Let Pn(u) be the probability generating function for the size of a weighted D-forest Fn(v)

attached to a vertex v of Cn in a random Pólya tree Tn. From the previous theorem it follows
that

Pn(u) =
∑

m≥0

[zn]T
[m]
u (z, 1)

[zn]Tc(z)
um =

[zn]Tc(z)
D(zu)
D(z)

[zn]Tc(z)
=

D(ρu)

D(ρ)

(
1 +O

(
n−1

))
.

This is exactly [13, Eq. (5.2)]. �

Summarizing, we state in Table 1 the asymptotic probabilities that a weighted D-forest
Fn(v) in Tn has size equal to or greater than m.

m 0 1 2 3 4 5 6 7
P[|Fn(v)| = m] ≈ 0.9197 0.0000 0.0526 0.0119 0.0105 0.0015 0.0027 0.0003
P[|Fn(v)| ≥ m] ≈ 1.0000 0.0803 0.0803 0.0277 0.0161 0.0060 0.0041 0.0014

Table 1. The probability that a weighted D-forest Fn(v) has size equal to or
greater than m when 0 ≤ m ≤ 7.

As most of the vertices in Cn have an empty D-forest, it is also interesting to condition on
the non-empty ones only. Its generating function is given by

Qn(u) =
∑

n≥2

P[|Fn(v)| = m
∣
∣ |Fn(v)| > 0]um =

D(ρu)− 1

D(ρ)− 1

(
1 +O

(
n−1

))
.

Its first values are listed in Table 2. It is interesting to see in these tables that the sequence
of probabilities is not decreasing in m. Additionally, we deduce that more than 80% of the
used D-forests are D-forests of size 2 and 3. These are two or three copies of a single node.
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m 2 3 4 5 6 7 8 9
P[|Fn(v)| = m

∣
∣ |Fn(v)| > 0] ≈ 0.656 0.148 0.131 0.019 0.034 0.003 0.007 0.001

Table 2. The probability that a weighted D-forest Fn(v) has size equal to or
greater than m when 0 ≤ m ≤ 7.

4.3. Properties of D-forests. Let us start with a short analysis of D(z).

Lemma 8. The generating function D(z) of D-forests has radius of convergence
√
ρ. It has

two dominant singularities at z = ±√
ρ. Let ξ(z) = e

T (z3)
3

+
T (z4)

4
+···, which is analytic for

|z| < ρ1/3. Then,

dn = (ξ(
√
ρ) + (−1)nξ(−√

ρ)) b

√
ρe

8π

ρ−n/2

√
n3

(

1 +O
(
1

n

))

.(4.4)

Furthermore, we have D(ρ) = 1
eρ and D′(ρ) = 1

eρ2

(
b2ρ
2 − 1

)

.

Proof. The key essence to this result is the elementarily checked fact that if T (z) has radius
of convergence ρ, then T (z2) will have radius of convergence

√
ρ. Therefore, ±√

ρ are the
dominant singularities, as T (z) has a unique singularity at z = ρ.

The asymptotic expansions are then derived from (1.3) as

T (z2) = 1− b
√

2ρ

(

1∓ z√
ρ

)1/2

+O
(

1∓ z√
ρ

)

, for z → ±√
ρ.

Next, note that ξ(z) is analytic for |z| < ρ1/3 due to the same reasoning as above. Thus, the

asymptotic expansion of D(z) = e
T (z2)

2 ξ(z) is derived by combining the contributions on the
two dominant singularities.

Finally, the values for D(ρ) and D′(ρ) are derived from (2.4). �

We want to determine the number of trees in a given D-forest. Let dn,k be the weight
of D-forests of size n consisting of k trees. Then, by (2.3) the bivariate generating function
satisfies

D(z, v) =
∑

n,k≥0

dn,kz
nvk = exp

(
∞∑

i=2

vi
T (zi)

i

)

.

Theorem 9. Let Xn be the random variable for the number of trees in a D-forest of size n,

i.e., P[Xn = k] :=
dn,k

dn
. Then we have

EXn =

{

3 + µ0 +O
(
n−1

)
≈ 3.2715 +O

(
n−1

)
, for n even,

3 + µ1 +O
(
n−1

)
≈ 6.7852 +O

(
n−1

)
, for n odd,

with

µ0 :=
ξ(
√
ρ)γ(

√
ρ) + ξ(−√

ρ)γ(−√
ρ)

ξ(
√
ρ) + ξ(−√

ρ)
, µ1 :=

ξ(
√
ρ)γ(

√
ρ)− ξ(−√

ρ)γ(−√
ρ)

ξ(
√
ρ)− ξ(−√

ρ)
,

ξ(z) = exp
(∑

i≥3

T (zi)

i

)

, γ(z) =
∑

i≥2

T (zi).
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Proof. The correspondence with generating functions gives

EXn =
[zn]Dv(z, 1)

[zn]D(z)
=

[zn]D(z)
∑

i≥2 T (z
i)

[zn]D(z)
.

As T (z) has a unique singularity at ρ, T (zk) is singular at ωkρ1/k where ω = exp(2πi/k) is
a k-th root of unity. By linearity of the coefficient extraction operator all that remains is to
consider D(z)T (z2). By Lemma 4.4 we get

D(z)T (z2) = −3b

√
eρ

2

(

1∓ z√
ρ

)1/2

+O
(

1∓ z√
ρ

)

, for z → ±√
ρ.

Therefore, by standard techniques of singularity analysis [6] we get

[zn]D(z)T (z2)

[zn]D(z)
= 3 +O

(
n−1

)
.

The fluctuating constant µn arises from the second part [zn]D(z)γ(z)
[zn]D(z) . Due to the reasoning

above γ(z) is analytic for |z| < ρ1/3. Thus, we can again use Lemma 4.4 to combine the
singular expansions of D(z) at ±√

ρ with the analytic expansion of γ(z).
For the computations of the approximate values we used Maple. �

As a next step we investigate the number of trees of a random D-forest in a random
Pólya tree of size n. Let tn,k be the weight of Pólya trees of size n with having k trees in
their D-forests. Then, by (2.4) the bivariate generating function satisfies

T (z, v) =
∑

n,k≥0

tn,kz
nvk = C(zD(z, v)) = zD(z, v)eT (z,v).

Theorem 10. The total number Yn of trees of all D-forests in a random Pólya tree Tn of
size n satisfies a central limit theorem where the expected value EYn and the variance VarYn

are asymptotically

EYn =
2γ(ρ)

b2ρ
n(1 +O(n−1)), and VarYn = σ2n(1 +O(n−1)),

with σ2 = 2
b2ρ

(
(2b3ρ+72dρ+18b)γ(ρ)2

9b3ρ − 4γ′(ρ)γ(ρ)
b2 + γ2(ρ)

)

≈ 0.26718, and γ2(z) =
∑

i≥2 iT (z
i).

Furthermore, for any s such that 0 < s < 1/2, with probability 1− o(1) we have

(1− n−s)
2γ(ρ)

b2ρ
n ≤ Yn ≤ (1 + n−s)

2γ(ρ)

b2ρ
n.(4.5)

Proof. The proof uses the same techniques as the one of Theorem 5. In particular, it follows
again from [4, Th. 2.23] that Yn satisfies a central limit theorem. Here, we set F (z, y, v) =
zeyD(z, v). The technical conditions are easy to check, and we know that T (z, v) is the uniuqe
solution of y = F (z, y, v). �

Theorems 5 and 10 tell us that in a Pólya trees of size n there are on average 2γ(ρ)
b2ρ n ≈

0.15776n trees in D-forests, and γ(ρ) ≈ 0.191837 trees in the D-forest of a C-tree node.

Comparing this number with the average size of the D-forest b2ρ
2 − 1 ≈ 0.216 of a C-tree

node, we conclude that most trees consist of only one node. In particular, as every tree
consists of at least a root node, a component of a D-forest has on average approximately
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0.024167 non-root nodes. This implies, that on average only every 42nd D-tree has more than
one node.

5. Other Pólya structures

5.1. Pólya trees with outdegree restriction. Our work can be extended to Ω-Pólya trees
in the same way, so we omit the proof. For any Ω ⊆ N0 = {0, 1, . . .} such that 0 ∈ Ω and
{0, 1} 6= Ω, an Ω-Pólya tree is a rooted unlabeled tree considered up to symmetry and with
outdegree set Ω. When Ω = N0, a N0-Pólya tree is a Pólya tree.

Let an be the number of Pólya trees of size n with outdegree set Ω, and A(z) the associated
generating function. That is, an = [zn]A(z). From Pólya enumeration theory [14] and
Burnside’s Lemma, the generating function A(z) satisfies the functional equation

A(z) = z ·
∑

k∈Ω

Z(Sk;A(z),A(z2), . . . ,A(zk))

= z
∑

k∈Ω

1

k!

∑

σ∈Sk

(A(z))σ1(A(z2))σ2 · · · (A(zk))σk .(5.1)

Proposition 11 has been also used in [13]. It was actually implicitly stated in [1] and fits into
the general theorem on implicit functions in [4, 6].

Proposition 11. Let τ be the unique dominant singularity of A(z). Then 0 < τ < 1 and
0 < A(τ) < ∞. Furthermore, τ is the unique real solution of

∑

k∈Ω

∂

∂x
Z(Sk;x,A(τ2), . . . ,A(τk))

∣
∣
x=A(τ)

=
1

τ
.(5.2)

and A(z) has a local expansion of the form

A(z) = A(τ)− b1 (τ − z)1/2 + c1(τ − z) +O
(

(τ − z)3/2
)

(5.3)

where b1 > 0 is a constant and an = [zn]A(z) is asymptotically

an =
b1
√
τ

2
√
π
n−3/2τ−n(1 +O(n−1)).(5.4)

Similar to Tn, we consider a random Pólya tree of size n with outdegree set Ω, denoted by

T
(d)
n , which is a tree that is selected uniformly at random from all Pólya trees of n vertices

and with outdegree set Ω. Similar to Ln, let L
(d)
n be the maximal size of a D-forest contained

in T
(d)
n . In the same way as Theorem 3, we have

Theorem 12. For 0 < s < 1,

(1− (log n)−s)

(−2 log n

log τ

)

≤ L(d)
n ≤ (1 + (log n)−s)

(−2 log n

log τ

)

holds with probability 1− o(1).

Note that τ is determined by (5.2). From (5.1) we see that every Pólya tree with outdegree
restriction Ω is a multiset of small Pólya trees with outdegree restriction Ω. We first consider
the bivariate generating function

A(z, u) = uz ·
∑

k∈Ω

Z(Sk;A(z, u),AΩ(z
2), . . . ,AΩ(z

k))(5.5)
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For a random Pólya tree T
(d)
n with outdegree restriction Ω, we then select one automorphism

of T
(d)
n uniformly at random and all fixed points of such an automorphism form a random

C-tree, denoted by C
(d)
n . It was also shown in [13] that the size |C(d)

n | in T
(d)
n satisfies a central

limit theorem and |C(d)
n | = Θ(n) holds with probability 1− o(1).

Theorem 13 ( [16, Eq. (3.9) and (3.10)], [13, Eq. (5.6)]). The size of the C-tree |C(d)
n | in

a random Pólya tree T
(d)
n of size n satisfies a central limit theorem where the expected value

E|C(d)
n | and the variance Var |C(d)

n | are asymptotically

E |C(d)
n | = n

1 + µ
(1 +O(n−1)) where µ =

τ2

A(τ)

∑

k∈Ω

∂

∂x
Z(Sk;A(τ),A(x2), . . . ,A(xk))

∣
∣
x=τ

and the variance is Var |C(d)
n | = σ2n where σ > 0. Furthermore, for any s such that 0 < s <

1/2, with high probability we have

(1− n−s)
n

1 + µ
≤ |C(d)

n | ≤ (1 + n−s)
n

1 + µ
.

Example 3. For Ω = N0 − {1}, any Ω-Pólya tree is a Pólya tree without nodes of degree 1,
which is also called a hierarchy. Let T ∗(z) be the ordinary generating function of hierarchies.
Then if we remove the root of a hierarchy, we are left with a multiset of smaller hierarchies
and the number of such subtrees is at least 2. That is,

T ∗(z) = z exp

(
∞∑

i=1

T ∗(zi)

i

)

− zT ∗(z)(5.6)

=
z

1 + z
exp

(
∞∑

i=1

T ∗(zi)

i

)

= z + z3 + z4 + 2z5 + 3z6 + · · · .

The generating function of hierarchies was also derived in [7] where the size of a hierarchy is
defined as the number of leaves, instead of the number of nodes. From (5.2) we find that τ is
the unique solution of

∑

k∈N0

∂

∂x
Z(Sk;x, T

∗(τ2), . . . , T ∗(τk))|x=T ∗(τ) −
∂

∂x
Z(S1;x)|x=T ∗(τ)

= exp

(
∞∑

i=1

T ∗(zi)

i

)

− T ∗(τ) = τ−1T ∗(τ) = τ−1.

This yields T ∗(τ) = 1. If we again differentiate both sides of (5.6) and take the n-th coefficient
of z, we get a recursion of hierarchies, namely, let t∗(n) = [zn]T ∗(z). Then we have t∗(1) = 1,
t∗(2) = 0 and for n ≥ 3,

t∗(n) =
1

n− 1

n−2∑

i=1

(t∗(n− i) + t∗(n− i− 1))
∑

m|i

mt∗(m) +
1

n− 1

∑

m|(n−1)
m6=(n−1)

mt∗(m).

With the help of this recursion, we can use Maple to generate the numbers of hierarchies, by
which we can find the approximate solution τ ≈ 0.4580838 of T ∗(τ) = 1. Furthermore, for
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the case of hierarchies, we compute µ in Theorem 13, which is

µ =
τ2

T ∗(τ)
exp(T ∗(τ))

(

exp(

∞∑

i=2

T ∗(zi)

i
)

)′

z=τ

≈ 0.6701252,

where we used T ∗(τ) = 1. ♦
Example 4. For Ω = {0, 2}, any Ω-Pólya tree is a binary Pólya tree. Let T2(z) be the ordinary
generating function of binary Pólya trees. Then we have

T2(z) = z +
1

2
z(T2(z))

2 +
1

2
zT2(z

2).(5.7)

From (5.2) we find that τ is the unique solution of

∂

∂x
(Z(S0) + Z(S2;x, T2(τ

2)))|x=T2(τ) = T2(τ) = τ−1,(5.8)

and as before we can derive a recursion from (5.7), namely, let t2(n) = [zn]T2(z). Note that
every binary Pólya trees has an even number of nodes, that is, for even n, t2(n) = 0. For odd
n, n ≥ 3, we have

t2(n) =
1

2

n−2∑

i=1

t2(i)t2(n− 1− i) +
1

2
t⌊n−1

2
⌋,

and t2(1) = 1. With the help of this recursion, we can use Maple to generate the numbers
of binary Pólya trees, by which we can find the approximate solution τ ≈ 0.6348553 of
T2(τ) = τ−1. Furthermore, for the case of binary Pólya trees, we compute µ in Theorem 13,
which is

µ =
τ2

T2(τ)
(1 +

1

2

∂

∂x
T2(x

2)|x=τ ) = τ3(1 + τT ′
2(τ

2)) ≈ 0.5330644,

where we used T2(τ) = τ−1 from (5.8). ♦
5.2. Rooted identity trees. Rooted identity trees are a further Pólya structure which has
been listed and treated in [7]. They do not fit into the framework of Ω-Pólya trees. Never-
theless, there are some analogies to Pólya trees when our framework is applied. This section
presents a discussion of what happens when we use our framework on rooted identity trees,
which will eventually lead to a combinatorial interpretation of OEIS sequence A052806.

A rooted identity tree is a Pólya tree whose automorphism group is the identity group. Let
R(z) denote the ordinary generating function of rooted identity trees. Then we can identify
every rooted identity tree as a powerset of smaller rooted identity trees, which is a multiset
of rooted identity trees that involves no repetition; see [6]. This gives

R(z) = z exp

(
∞∑

i=1

(−1)i−1R(zi)

i

)

= z exp(R(z)) exp

(
∞∑

i=2

(−1)i−1R(zi)

i

)

.(5.9)

The first few terms of R(z) are

R(z) = z + z2 + z3 + 2z4 + 3z5 + 6z6 + 12z7 + 25z8 + 52z9 + · · · .
Note that the sets of rooted identity trees can be generated as multiset of rooted identity
trees with signed weights, realizing an inclusion-exclusion process. Let R be the set of all
rooted identity trees. We consider the multiset of the elements in R, which is denoted by
MSET(R), and as before we use MSET(≥2)(R) to denote the multiset of rooted identity trees
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where each tree appears at least twice if it appears at all. Here a D∗-forest of size n is an
element of MSET(≥2)(R). The generating function for the D∗-forests of rooted identity trees
is

D∗(z) = exp

(
∞∑

i=2

(−1)i−1R(zi)

i

)

=
∑

k≥0

Z(Sk; 0,−R(z2), · · · , (−1)k−1R(zk))

=
∑

k≥0

1

k!

∑

σ∈Sk
σ1=0

(−1)σ2+σ4+···(R(z2))σ2 · · · (R(zk))σk .

Then their cumulative weights are given by

d∗n = [zn]D∗(z) =
∑

F∈MSET(≥2)(R)
|F |=n

1

|Aut(F )|
∑

σ∈Aut(F )such that σ1=0

(−1)σ2+σ4+···

and a single term of this sum is the (signed) weight of a D∗-forest F . The first few terms of
D∗(z) are

D∗(z) = 1− 1

2
z2 +

1

3
z3 − 5

8
z4 +

1

30
z5 +

11

144
z6 − 139

840
z7 + · · · .

Example 5. The smallest D∗-forest is of size 2, and it consists of a pair of single nodes. The
only fixed point free automorphism is a transposition, thus d∗2 = −1/2. For n = 3, the D∗

consists of 3 single nodes. The only fixed point free automorphisms are the 3-cycles, thus
d∗3 = 2/6 = 1/3. For n = 4, a D∗-forest consists either of 4 single nodes, or of 2 identical
trees, each consisting of 2 nodes and one edge. In the first case we have 6 4-cycles and 3 pairs
of transpositions. In the second case we have 1 transposition swapping the two trees. Thus,
d∗4 = (−6 + 3)/24 − 1/2 = −5/8. ♦

Now we define bivariate generating function in analogy to what we did for Pólya trees.
Define a function via the functional equation

Rc(z, u) = zu exp(Rc(z, u)) exp

(
∞∑

i=2

(−1)i−1R(zi)

i

)

.

and set

Rc(z, u) =
∑

n≥0

rc,n(u)z
n where rc,n(u) =

∑

T∈MSET(R)
|T |=n

rT (u).(5.10)

If we set u = 1 then we get back the generating function of rooted identity trees. Note that
the coefficients [uk]rc,n(u) do not have the nice interpretation as cumulative weight of all
C-trees identity trees of size k contained in rooted identity trees of size n. This is because
a rooted identity tree has only the trivial automorphism which means that every vertex is a
fixed point and thus the whole tree is its C-tree. But this is in contradiction to R(z) 6= C(z).

On the other hand, we have R(z) = C(zD∗(z)) meaning that a rooted identity tree is a
C-tree to which D∗-forests have been attached. But due to the signed weights the cumulative
weight of all decompositions of Pólya tree T into a C-tree and a set of D∗-forests is zero if
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T is not a rooted identity tree and 1 otherwise, as the following computation shows: In the
same way as by Theorem 2 it follows that for T ∈ MSET(R) and |T | = n,

rT (u) = Z(Aut(T );u,−1, 1, . . .) =
1

|Aut(T )|
∑

σ∈Aut(T )

(−1)σ2+σ4+···uσ1 .

Clearly, if T ∈ R, then |Aut(T )| = 1 and σ1 = n, thus rT (u) = un. It should be noted that if
T is not a rooted identity tree, i.e., T 6∈ R and |T | = n, we have

Z(Aut(T ); 1,−1, 1, . . .) =
1

|Aut(T )|
∑

σ∈Aut(T )

(−1)σ2+σ4+··· = 0,

which implies that

[zn]R(z) =
∑

T∈R
|T |=n

rT (1) =
∑

T∈MSET(R)
|T |=n

rT (1).

Example 6. For n = 3 we have 2 Pólya trees, namely the chain T1 and the cherry T2. Both
belong to the multiset of rooted identity trees. Obviously, Aut(T1) = {id}, and Aut(T2) =
{id, σ}, where σ swaps the two leaves but the root is unchanged. This contributes a minus
sign to rT2(u). Thus,

rT1(u) = u3, rT2(u) =
1

2
(u3 − u).

Note that the cherry T2 is not a rooted identity tree, so rT2(1) = 0, while the chain T1 is a
rooted identity tree, so rT1(u) = u3. For n = 4 we have 4 Pólya trees shown in Figure 4.1.
Other than T3, the other three Pólya trees belong to the multiset of rooted identity trees.
Their automorphism groups are given by Aut(T1) = Aut(T2) = {id}, and

Aut(T4) = {id, (v2 v3), (v3 v4), (v2 v4), (v2 v3 v4), (v2 v4 v3)} ∼= S3.

See Figure 2.2. This gives

rT1(u) = pT2(u) = u4, rT4(u) =
1

6
(u4 − 3u2 + 2u).

Both T1 and T2 are rooted identity trees, while T4 is not. ♦

In the same way as we got the composition scheme in (2.4), we can rewrite Rc(z, u) as
Rc(z, u) = C(uzD∗(z)). The expected total weight of all C-trees contained in all Pólya trees
of size n, according to the weights of their decompositions into a C-tree and a set of D∗-forests
is the n-th coefficient of Rc(z), which is

Rc(z) :=
∂

∂u
Rc(z, u)

∣
∣
∣
∣
u=1

=
R(z)

1−R(z)
= z + 2z2 + 4z3 + 9z4 + 20z5 + 46z6 + · · · .

By construction, recall (5.10), these numbers count the number of points which are fixed points
in all automorphisms of Pólya trees that are generated by a root to which rooted identity
trees are attached. For example consider the Pólya trees of size 4 shown in Figure 4.1. The
trees T1, T2, and T4 are constructed in this way. In these 3 trees there are in total 9 points
which are always fixed points. Yet, T4 is no rooted identity tree. Note that these numbers
also count a simple grammar, see OEIS A052806 [15].
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Remark 5. It would be desirable to have a similar relation between rooted identity trees and
C-trees as we have between C-trees and Pólya trees. However, when setting C(z) = R(zE(z))
we obtain E(z) = 1 + 1

2z
2 − 1

3z
3 + 11

8 z
4 − 6

5z
5 + 629

144z
6 + · · · , a power series with not only

nonnegative coefficients. Thus there is no straight-forward interpretation in the desired form.

6. Conclusion

In this paper we develop a combinatorial framework to describe the relation between
Pólya trees and simply generating trees. Since we kept the framework light, it is not strong
enough to reprove the functional limit theorem presented by Panagiotou and Stufler [13], but
it yields a description to this limit theorem which is to our opinion more elementary and
more easily accessible to combinatorialists. In addition, we provide not only an alternative
proof of the known big-O result on the maximal size of D-forests in a random Pólya tree,
but are able to extend this result. We provide a lower bound of the same order and also
precise constants in both bounds. By interpreting all weights on D-forests and C-trees in
terms of automorphisms associated to a Pólya tree, we derive the limiting probability that
for a random node v the attached D-forest Fn(v) is of a given size as well as some structural
properties.

In view of the connection between Boltzmann samplers and generating functions, it comes
as no surprise that the “colored” Boltzmann sampler from [13] is closely related to a bivari-
ate generating function. But the unified framework in analyzing the (bivariate) generating
functions offers stronger results on the limiting distributions of the size of the C-trees and
the maximal size of D-forests as well as more detailed knowledge on the D-forests within a
random Pólya tree.
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