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THE WEIGHT FUNCTION FOR MONOMIAL CRYSTALS OF AFFINE

TYPE

LUKE JAMES AND BEN SALISBURY

Abstract. In this work, an expression for the affine weight is calculated for Nakajima

monomial crystals in affine types A
(1)
n and B

(1)
3 .

1. Introduction

In 2003, both Nakajima [9] and Kashiwara [7] defined a crystal structure on a certain set

of monomials M, that have since been referred to as Nakajima monomials. Using this crystal

structure, it was shown that irreducible highest weight crystals can be modeled using Naka-

jima monomials [7]. Specifically, the irreducible highest weight crystal B(λ) is isomorphic to

the connected component of the crystal graph of all Nakajima monomials containing a high-

est weight monomial of weight λ. Later, Kang–Kim–Shin [4] modified the crystal structure

of Nakajima monomials from [7] and dubbed the modification the set of modified Nakajima

monomials, denoted M̂. It was shown that the connected component of the crystal graph of

all modified Nakajima monomials containing the element 1 ∈ M̂ is isomorphic to the crystal

B(∞).

Given a modified Nakajima monomial M =
∏

i∈I

∏
k≥0 Y

yi,k
i,k 1 (see Section 2.2 for an

explanation of the notation), the weight of M is defined to be

wt(M) =
∑

i∈I

(∑

k≥0

yi,k

)
Λi,

where Λi is the ith fundamental weight of the underlying Kac–Moody algebra g. If g is of

finite type, then this description of the weight map is complete. However, if g is of affine type

(for now, suppose g is not of type A
(2)
2n ), then the affine weight lattice of g has the form

P = ZΛ0 ⊕ ZΛ1 ⊕ · · · ⊕ ZΛn ⊕ Zδ,

where δ is the minimal imaginary root in the root system of g. Therefore, the weight map

on the monomial model for crystals of affine type should include a term involving δ. Indeed,

there should be some Z-valued function D on monomials such that

wt(M) =
∑

i∈I

(∑

k≥0

yi,k

)
Λi +D(M)δ.
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The definition in [4] of the weight function, however, implies that the crystals constructed

there are U ′
q(g) = Uq([g, g]) crystals when g is affine type, since, in this case, the weight lattice

is Pcl = P/Zδ.

By the structure of the root system of an (untwisted) affine Kac–Moody algebra g, the

minimal imaginary root satisfies the identity δ = θ + α0, where θ is the unique highest root

of the underlying finite type root system of g. Moreover, by the crystal axioms, wt(f̃iM) =

wt(M) − αi for all elements M in the crystal and all i ∈ I. Therefore, the coefficient of δ

in wt(M) will decrease by 1 for each instance of a 0-arrow in the path from 1 to M in the

crystal graph, so the function D is obtained by counting the number of 0-arrows in a path

from 1 to M . This is the approach taken in the results of this work.

The main results of this work give a description of the function D in types A
(1)
n (n ≥ 1)

and B
(1)
3 . The outline of the paper is as follows. In Section 2, we give an overview of the

theory of abstract crystals and introduce both the modified Nakajima monomial model and

the model given by generalized Young walls. (Generalized Young walls will be important for

the proof of the main result in type A
(1)
n for n ≥ 2.) In Section 3, the main result in type

A
(1)
n is given, but it is split into two cases: n = 1 and n ≥ 2. The main result for type B

(1)
3

is given in Section 4 and some discussion is given on generalizing the result to types with

n ≥ 3. Finally, Section 5 explains how the main results may be applied to irreducible highest

weight crystals modeled by Nakajima monomials.

2. Crystals

2.1. Generalities on affine crystals. Let I = {0, 1, . . . , n} be an index set, and let

(C,Π,Π∨, P, P∨) be a Cartan datum of affine type; i.e.,

• C = (Cij)i,j∈I is a generalized Cartan matrix of affine type,

• Π = {αi : i ∈ I} is the set of simple roots,

• Π∨ = {hi : i ∈ I} is the set of simple coroots,

• P∨ = Zh0 ⊕ · · · ⊕ Zhn ⊕ Zd is the dual weight lattice,

• h = C⊗Z P
∨ is the Cartan subalgebra,

• and P = {λ ∈ h∗ : λ(P∨) ⊂ Z} is the weight lattice.

The simple roots and simple coroots are related via the Cartan matrix: αj(hi) = Cij. The

fundamental weights Λi ∈ P are defined as Λi(hj) = δi,j and Λi(d) = 0. Define P+ = {λ ∈

P : λ(hi) ≥ 0 for all i ∈ I} to be the set of dominant integral weights. Finally, the canonical

pairing 〈 , 〉 : P∨ × P −→ Z is defined by 〈h, λ〉 = λ(h) for all h ∈ P∨ and λ ∈ P .

Let g be the affine Kac-Moody algebra associated with this Cartan datum, and denote by

Uq(g) the quantized universal enveloping algebra of g. We will always assume that g is of

untwisted affine type; that is, one of the types from [3, Table Aff 1]. We denote the generators

of Uq(g) by ei, fi (i ∈ I), and qh (h ∈ P∨). The subalgebra of Uq(g) generated by fi (i ∈ I)

will be denoted by U−
q (g). Also, let U ′

q(g) be the subalgebra of Uq(g) generated by ei, fi, and
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K±1
i (i ∈ I), where Ki = qsihi and S = diag(si ∈ Z>0 : i ∈ I) is a diagonal matrix such that

SC is a symmetric matrix. For more information, see, for example, [2].

The null root, or minimal imaginary root, of the root system of g is defined to be

δ = d0α0 + d1α1 + · · ·+ dnαn,

where the integers {di : i ∈ I} are given in [3, Table Aff 1]. Since we are only considering

untwisted affine types, we have d0 = 1. Moreover, by [3, Prop. 6.4], δ = α0 + θ, where θ is

the highest root of the underlying finite-type Lie algebra g0 of g. Using the null root, the

weight lattice P may be expressed as

P = ZΛ0 ⊕ ZΛ1 ⊕ · · · ⊕ ZΛn ⊕ Zδ.

In terms of the simple roots, we have

δ =




α0 + α1 + · · · + αn if g = A

(1)
n ,

α0 + α1 + 2α2 + · · ·+ 2αn if g = B
(1)
n .

See [3] for the expression of δ in terms of the simple roots in other affine types.

Definition 2.1. An abstract Uq(g)-crystal associated to the affine quantum group Uq(g) is

a set B together with the maps

wt : B −→ P, εi, ϕi : B −→ Z ⊔ {−∞}, ẽi, f̃i : B −→ B ⊔ {0}, (i ∈ I)

such that for all i ∈ I and b ∈ B,

(1) ϕi(b) = εi(b) + 〈hi,wt(b)〉,

(2) wt(ẽib) = wt(b) + αi, wt(f̃ib) = wt(b)− αi,

(3) εi(ẽib) = εi(b)− 1, ϕ(ẽib) = ϕi(b) + 1,

(4) εi(f̃ib) = εi(b) + 1, ϕi(f̃ib) = ϕi(b)− 1,

(5) f̃ib = b′ if and only if ẽib
′ = b for b, b′ ∈ B,

(6) ẽib = f̃ib = 0 if εi(b) = −∞.

The operators ẽi and f̃i above are known as the Kashiwara operators. Note that condition

(5) implies B is equipped with an an I-colored directed graph structure given by b
i

−→ b′ if

and only if f̃ib = b′. This graph is called the crystal graph of B.

Definition 2.2. A crystal morphism ψ : B1 −→ B2 is a map ψ : B1 ⊔ {0} −→ B2 ⊔ {0}

satisfying the following conditions:

(1) ψ(0) = 0,

(2) wt(ψ(b)) = wt(b), εi(ψ(b)) = εi(b), and ϕi(ψ(b)) = ϕi(b) for all b ∈ B1 such that

ψ(b) 6= 0,

(3) f̃iψ(b) = ψ(b′) if b, b′ ∈ B1 and f̃ib = b′.

An isomorphism of crystals is defined as a bijective morphism of crystals such that ψ(f̃ib) =

f̃iψ(b) for all b ∈ B1 and i ∈ I. A morphism ψ : B1 −→ B2 is said to be an embedding if ψ
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induces an injective map B1 ⊔ {0} −→ B2 ⊔ {0}. Moreover, an embedding ψ is called full if,

for all b ∈ B1 such that ẽiψ(b) ∈ B2, ẽib ∈ B1.

Example 2.3. For each λ ∈ P+, the crystal basis B(λ), as defined in [5], of the irreducible

highest weight Uq(g)-module V (λ) is an abstract Uq(g)-crystal. The unique element of B(λ)

of weight λ is denoted by uλ.

Example 2.4. The crystal basis B(∞), as defined in [5], of the negative half of the quantum

group U−
q (g) is an abstract Uq(g)-crystal. The unique element of B(∞) of weight 0 is denoted

by u∞.

Example 2.5. Let λ ∈ P+. Define Tλ = {tλ} to be the one-element abstract Uq(g)-crystal

whose operations, for all i ∈ I, are defined as

ẽitλ = f̃itλ = 0, εi(tλ) = ϕi(tλ) = −∞, wt(tλ) = λ.

By [6], there is a full crystal embedding B(λ) −֒→ B(∞) ⊗ Tλ, where ⊗ denotes the crystal

tensor product defined in [5]. We will not require the general definition of the crystal tensor

product, but rather focus on tensor products of the form B ⊗ Tλ, where B is some abstract

crystal. In this case, the crystal graphs B ⊗ Tλ and B are naturally isomorphic as I-colored

directed graphs using the map b ⊗ tλ 7→ b, for all b ∈ B, but the weights of corresponding

vertices differ by λ; that is, for b ∈ B, wt(b⊗ tλ) = wt(b) + λ.

2.2. Modified Nakajima monomials. Let Yi,k (i ∈ I, k ∈ Z) be formal commuting vari-

ables with an additional commuting variable 1. Define the modified Nakajima monomials as

the set M̂ of all monomials of the form

M =
∏

i∈I

∏

k≥0

Y
yi,k
i,k 1,

where yi,k ∈ Z and yi,k = 0 for all but finitely many k. For such an M , define

wt(M) =
∑

i∈I

(∑

k≥0

yi,k

)
Λi, (2.1a)

ϕi(M) = max





k∑

j=0

yi,j : k ∈ Z≥0



 , (2.1b)

εi(M) = ϕ(M) − 〈hi,wt(M)〉, (2.1c)

kf = kf (M) = min



k ∈ Z≥0 : ϕi(M) =

k∑

j=0

yi,j



 , (2.1d)

ke = ke(M) = max



k ∈ Z≥0 : ϕi(M) =

k∑

j=0

yi,j



 . (2.1e)
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Next, choose a set of nonnegative integers (oi,j)i 6=j such that oi,j + oj,i = 1. Define

Ai,k = Yi,kYi,k+1

∏

j 6=i

Y
Cji

j,k+oj,i
.

Then the Kashiwara operators can be defined as

ẽiM =




0 if εi(M) = 0,

Ai,keM if εi(M) > 0,
f̃iM = A−1

i,kf
M. (2.2)

In finite types, the set M̂ together with the maps wt, εi, ϕi, ẽi, f̃i (i ∈ I) forms an abstract

Uq(g)-crystal [4]. However, in affine types, M̂ is only an abstract U ′
q(g)-crystal.

Remark 2.6. In this paper, we will work only in types A
(1)
n (n ≥ 1) and B

(1)
n . Once and for

all, we fix our choice of integers (oi,j)i 6=j for each type: set

oi,j =




1 i < j,

0 i > j.

Note, however, that I is identified with Z/(n+1)Z in type A
(1)
n , so in this case we also assert

o0,n = 0 and on,0 = 1. This is the convention used in [4].

Define M(∞) to be the connected component of M̂ (under the application of the Kashi-

wara operators) containing 1.

Theorem 2.7 ([4]). The morphism B(∞) −→ M(∞) given by u∞ 7→ 1 is a Uq(g)-crystal

isomorphism when g is of finite type and is a U ′
q(g)-crystal isomorphism when g is of affine

type.

Example 2.8. Let M(∞) be of type A
(1)
1 and set M = Y −1

0,0 Y0,1Y1,1Y
−1
1,2 1. Then, by the

definition of the weight function on M(∞) from [4] above we have wt(M) = 0. However,

using the crystal axioms, since M = f̃1f̃01, the weight should be wt(M) = −α0 − α1 = −δ.

Note that if we use the expression of elements in M(∞) in terms of the variables Ai,k, then

M = A−1
1,1A

−1
0,01, from which it is clear an application of f̃0 has occurred in the path from 1

to M .

Remark 2.9. In the last example, we used the facts that wt(f̃ib) = wt(b) − αi for all i ∈ I

and that α0 = δ − θ, where θ is the highest root of the classical underlying root system of g

(since g is assumed to be of untwisted affine type). In particular,

wt(f̃0b) = wt(b)− α0 = wt(b) + θ − δ.

The goal of this paper is to obtain an expression for the coefficient of δ in the weight

function solely in terms of the variables Yi,k.
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Problem 2.10. For M(∞) with g of affine type, determine a function D : M(∞) −→ Z

such that the weight function wt: M(∞) −→ P is defined by

wt(M) =
∑

i∈I

(∑

k≥0

yi,k

)
Λi +D(M)δ,

where M =
∏

i∈I

∏
k≥0 Y

yi,k
ik

.

Henceforth, assume g is of type A
(1)
n or B

(1)
n . Since each of θ and αi (i ∈ I \ {0}) can

be expressed as an element of ZΛ0 ⊕ · · · ⊕ ZΛn, it must be that, for M = f̃b1 f̃b2 · · · f̃bℓ1 =∏
i∈I

∏
k≥0 Y

yi,k
i,k 1 ∈ M(∞),

wt(M) =
∑

i∈I

(∑

k≥0

yi,k

)
Λi +

∣∣∣{1 ≤ j ≤ ℓ : bj = 0}
∣∣∣δ.

Note that this implies that, whenever M can be expressed uniquely as
∏

i∈I

∏
k≥0A

ai,k
i,k 1, the

coefficient of δ in the weight of M is exactly
∑

k≥0 a0,k. Therefore, to complete the weight

function for affine crystals, it suffices to calculate the number of 0-arrows applied from 1 to

reach M in the crystal graph.

A solution to Problem 2.10 will be given in Section 3 for type A
(1)
n and in Section 4 for

type B
(1)
3 .

2.3. Generalized Young Walls. Let B be a board with coloring as follows:

1

0

n

...

1

0

0

n

n−1

...

0

n· · ·

· · ·

· · ·

· · ·

· · ·2

1

0

...

2

1

1

0

n

...

1

0

0

n

n−1

...

0

n· · ·

· · ·

· · ·

· · ·

· · ·

...
...

...
...

...

.

Definition 2.11. The generalized Young walls are constructed by placing i-colored boxes

(i ∈ I) on the board B subject to the conditions:

(1) the boxes are colored according to the board;

(2) the colored boxes are placed in rows starting from the right.

Definition 2.12. A generalized Young wall is said to be proper if, for each p > q such that

p − q ≡ 0 mod n + 1, the number of boxes in the pth row from the bottom is less than or

equal to the number of boxes in the qth row from the bottom.
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Example 2.13. Consider the following arrangement of boxes on the board B for n = 3:

Y =

03210

1

21

032

, Y ′ =

03

1

0321

, Y ′′ =
02

1 .

Then Y and Y ′ are both generalized Young walls, but Y ′′ is not since there is a break in the

first row. Furthermore, Y is proper. The wall Y ′ is not proper because the fifth row has four

elements but the first row has two elements, and 5− 1 ≡ 0 mod 4.

Definition 2.14. The kth column Yk (from the right) of a generalized Young wall, for k ≥ 1,

contains a removable δ if one of each i colored box can be removed from Yk and still obtain

a generalized Young wall. In other words, if ai,k is the number of i-colored boxes in the kth

column Yk (i ∈ I, k ≥ 1), then Yk contains a removable δ if

ai−1,k+1 < ai,k for all i ∈ I.

If a generalized Young wall contains no removable δ, it is said to be reduced .

Example 2.15. Consider the following generalized Young walls for n = 2.

Y =

0210

102

210 , Y ′ =

0210

102

210

021

.

Then Y is reduced since removing a 0, 1, and 2 from any given column would leave the 0

in the fourth column separated from its row, and therefore there is no removable δ. On the

other hand, Y ′ has a removable δ in the third column, so is not reduced.

Let F(∞) denote the set of all proper generalized Young walls. Let Y(∞) denote the set

of all proper reduced generalized Young walls. Note that Y(∞) ⊂ F(∞).

Given any Y ∈ F(∞), say that the leftmost box of any row is removable and, if it is

i-colored, then it is called a removable i-box . Also, define the site left of the leftmost box in

each row to be admissible, and if a row has no boxes, then its rightmost site is admissible. If

the site is i-colored, then it is called an i-admissible slot .

For any Y ∈ F(∞), let y1, y2, . . . be the removable i-boxes and i-admissible slots ordered

from left to right and bottom to top. The i-signature of yj is said to be − if yj is removable

and + if yj is admissible. Then the i-signature of Y is obtained by producing the sequence

of i-signatures of y1, y2, . . . and then canceling out any (+,−) pairs, resulting in a sequence

of −’s followed by +’s.

Define f̃iY to be the proper generalized Young wall obtained by placing an i-colored box

at the site corresponding to the leftmost + in the i-signature of Y and ẽiY to be the proper

generalized Young wall obtained by removing the i-box corresponding to the rightmost − in
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the i-signature of Y . If no such − exists, define ẽiY = 0. Also, define the maps

wt(Y ) = −
∑

i∈I

kiαi,

εi(Y ) = the number of − ’s in the i-signature of Y,

ϕi(Y ) = εi(Y ) + 〈hi,wt(Y )〉.

Here, ki is the number of i-colored boxes in Y and the αi are as defined for Uq(A
(1)
n ). Then

F(∞) together with the maps above form an abstract Uq(A
(1)
n )-crystal. For Y(∞), more can

be said.

Theorem 2.16 ([8]). The morphism B(∞) −→ Y(∞) such that u∞ 7→ ∅, where ∅ is the

empty generalized Young wall, defines a Uq(A
(1)
n )-crystal isomorphism.

There is a map Ψ: F(∞) −→ M̂ defined by

Ψ(Y ) =
∏

i∈I

∏

k≥0

A
−ai,k+1

i,k 1, (2.3)

where ai,k is the number of i-colored boxes in the kth column of Y . It can be seen using

results from [8] that Y(∞) is isomorphic to M(∞) as a Uq(A
(1)
n )-crystal using the restriction

of (2.3).

3. The weight function in type A
(1)
n

3.1. Specialization to type A
(1)
1 . In type A

(1)
1 , we have

A0,k = Y0,kY0,k+1Y
−2
1,k+1, A1,k = Y1,kY1,k+1Y

−2
0,k .

Lemma 3.1. For M =
∏

k≥0 Y
y0,k
0,k Y

y1,k
1,k 1 ∈ M(∞), define ai,k recursively as follows:

a1,0 = y1,0, a1,k = y1,k + 2a0,k−1 − a1,k−1,

a0,0 = y0,0 + 2a1,0, a0,k = y0,k + 2a1,k − a0,k−1.
(3.1)

Then M =
∏

k≥0A
a0,k
0,k A

a1,k
1,k 1.

Proof. Since M ∈ M(∞), there exists some a0,k, a1,k ∈ Z such that M =
∏

k≥0A
a0,k
0,k A

a1,k
1,k 1.

Thus, it suffices to show that the recurrence holds for these values ai,k. Expanding the terms

A
a0,k
0,k and A

a1,k
1,k shows that

M = Y
a0,0−2a1,0
0,0 Y

a1,0
1,0 Y

a0,1
0,1 Y

a1,1−2a0,1
1,1

∏

k≥1

A
a0,k
0,k A

a1,k
1,k 1.

Since none of the terms in
∏

k≥1A
a0,k
0,k A

a1,k
1,k 1 contribute to the power on Y0,0 or Y1,0, equating

powers yields y1,0 = a1,0 and y0,0 = a0,0 − 2a1,0, so a0,0 = y0,0 + 2a1,0. Thus, the first two

desired equations hold.
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Next, for some m ≥ 1, consider

M =

(
m−2∏

k=0

A
a0,k
0,k A

a1,k
1,k

)
A

a0,m−1

0,m−1 A
a1,m−1

1,m−1 A
a0,m
0,m A

a1,m
1,m


 ∏

k≥m+1

A
a0,k
0,k A

a1,k
1,k


1.

Note that
∏m−2

k=0 A
a0,k
0,k A

a1,k
1,k 1, when expanded, only yields values of Yi,k where k < m, and

the product
∏

k≥m+1A
a0,k
0,k A

a1,k
1,k 1 will only yield powers of Yi,k where k > m. Thus, in the

expansion of A
a1,m−1

1,m−1 A
a0,m
0,m A

a1,m
1,m , the powers on Y0,m and Y1,m will be exactly y0,m and y1,m

respectively. Since

A
a1,m−1

1,m−1 A
a0,m
0,m A

a1,m
1,m = Y

a0,m−1−2a1,m−1

0,m−1 Y
a1,m−1

1,m−1 Y
a0,m−1−2a1,m+a0,m
0,m Y

a1,m−1−2a0,m−1+a1,m
1,m ,

equating powers gives y0,m = a0,m−1 − 2a1,m + a0,m and y1,m = a1,m−1 − 2a0,m−1 + a1,m.

These can be rearranged to yield the remaining desired equations.

For the following lemma, use the convention that an empty sum is 0.

Lemma 3.2. Let M =
∏

k≥0 Y
y0,k
0,k Y

y1,k
1,k 1 =

∏
k≥0A

a0,k
0,k A

a1,k
1,k 1 ∈ M(∞). Then, for all k ≥ 0,

we have

a0,k =
k∑

i=0

(2i + 1)y0,k−i + (2i + 2)y1,k−i,

a1,k = (2k + 1)y1,0 +
k−1∑

i=0

(2i + 1)y1,k−i + (2i + 2)y0,k−i−1.

Proof. Note that (3.1) can be rewritten as a single recurrence relation. Namely, for i ≥ 1,

define z2i−1 = a1,i−1, z2i = a0,i−1, r2i−1 = y1,i−1, and r2i = y0,i−1 with the additional

condition that r0 = z0 = 0. Then the Lemma 3.1 equations can be encoded as

z0 = 0, z1 = r1, zk = rk + 2zk−1 − zk−2.

Let g(x) =
∑

k≥0 zkx
k be the generating function for (zk)k≥0. Then

g(x) = r1x+
∑

k≥2

zkx
k

= r1x+
∑

k≥2

(rk + 2zk−1 − zk−2)x
k

= r1x+
∑

k≥2

rk + 2x
∑

k≥2

zk−1x
k−1 − x2

∑

k≥2

zk−2x
k−2.

Note that the summations
∑

k≥2 zk−1x
k−1 and

∑
k≥2 zk−2x

k−2 can both be reindexed to show

equivalence to g(x). Thus,

g(x) = r1x+
∑

k≥2

rk + 2xg(x) − x2g(x).



10 LUKE JAMES AND BEN SALISBURY

Solving the above equation for g(x) yields

g(x) =

∑
k≥0 rk

x2 − 2x+ 1
=

∑
k≥0 rk

(x− 1)2
=

1

(1− x)2

∑

k≥0

rk =

(∑

i≥0

(i+ 1)xi
)(∑

k≥0

rk

)
.

This can be expanded to a single power series to yield

g(x) =
∑

k≥0

(
k∑

i=0

(i+ 1)rk−i

)
xk.

Thus,

zk =

k∑

i=0

(i+ 1)rk−i.

This can be broken up into two different cases to show the desired result. First, note that

a0,k = z2k+2 =

2k+2∑

i=0

(i+ 1)r2k+2−i.

The sum can be broken up into even and odd parts, so

z2k+1 =

k+1∑

i=0

(2i+ 1)r2k−2i+2 +

k∑

i=0

(2i + 2)r2k−2i+1

= (2k + 3)r0 +

k∑

i=0

(
(2i+ 1)r2k−2i+2 + (2i + 2)r2k−2i+1

)

=
k∑

i=0

(
(2i + 1)y0,k−i + (2i + 2)y1,k−i

)
.

Now, to prove the final part of the theorem, consider

a1,k = z2k+1 =

2k+1∑

i=0

(i+ 1)r2k+1−i

=

k∑

i=0

(2i+ 1)r2k−2i+1 +

k∑

i=0

(2i+ 2)r2k−2i

= (2k + 2)r0 + (2k + 1)r1 +

k−1∑

i=0

(2i+ 1)r2k−2i+1 +

k∑

i=0

(2i+ 2)r2k−2i

= (2k + 1)y1,0 +

k−1∑

i=0

(
(2i + 1)y1,k−i + (2i+ 2)y0,k−i−1

)
.

Note that Lemma 3.2 implies that the ai,k are uniquely determined for a given M . This

gives the following result.
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Theorem 3.3. If M =
∏

i∈I

∏
k≥0 Y

yi,k
i,k 1 ∈ M(∞), then

D(M) =
∑

k≥0

k∑

j=0

(
(2j + 1)y0,k−j + (2j + 2)y1,k−j

)
.

Example 3.4. Let M = f̃0f̃1f̃0f̃0f̃01. Then M = Y −3
0,0 Y

−2
0,1 Y

−1
0,2 Y

5
1,1Y1,21 and

∑

k≥0

k∑

j=0

(
(2j + 1)y0,k−j + (2j + 2)y1,k−j

)

= (y0,0 + 2y1,0) + (y0,1 + 2y1,1 + 3y0,0 + 4y1,0)

+ (y0,2 + 2y1,2 + 3y0,1 + 4y1,1 + 5y0,0 + 6y1,0)

+ (y0,3 + 2y1,3 + 3y0,2 + 4y1,2 + 5y0,1 + 6y1,1 + 7y0,0 + 8y1,0)

+ (y0,4 + 2y1,4 + 3y0,3 + 4y1,3 + 5y0,2 + 6y1,2 + 7y0,1 + 8y1,1 + 9y0,0 + 10y1,0) + · · ·

=
(
−3 + 2(0)

)
+
(
−2 + 2(5) + 3(−3) + 4(0)

)

+
(
−1 + 2(1) + 3(−2) + 4(5) + 5(−3) + 6(0)

)

+
(
0 + 2(0) + 3(−1) + 4(1) + 5(−2) + 6(5) + 7(−3) + 8(0)

)

+
(
0 + 2(0) + 3(0) + 4(0) + 5(−1) + 6(1) + 7(−2) + 8(5) + 9(−3) + 10(0)

)
+ · · ·

= −3− 1 + 0 + 0 + 0 + · · · .

Thus, by Theorem 3.3, we have D(M) = −4. This matches the number of f̃0’s applied to

reach M , which is the expected result.

Example 3.5. Let M = f̃0f̃1f̃1f̃01 = Y −1
0,0 Y

2
0,1Y

−1
0,2 1. Applying Lemma 3.2 gives

a0,0 = y0,0 + 2y1,0 = −1,

a0,1 = y0,1 + 2y1,1 + 3y0,0 + 4y1,0 = 2− 3 = −1,

a0,2 = y0,2 + 2y1,2 + 3y0,1 + 4y1,1 + 5y0,0 + 6y1,0 = −1 + 6− 5 = 0.

Adding up these values shows that D(M) = −2 according to Theorem 3.3, which coincides

with the fact that wt(M) = wt(f̃0f̃1f̃1f̃01) = −2α0 − 2α1 = −2δ.

3.2. General result for type A
(1)
n , n ≥ 2. In the case A

(1)
n for n ≥ 2, the same method used

for A
(1)
1 does not yield an explicit formula for the weight function. Consider the following

result.

Lemma 3.6. If M =
∏

k≥0

∏
i∈I Y

yi,k
i,k 1 =

∏
k≥0

∏
i∈I A

ai,k
i,k 1 ∈ M(∞), then

ai,k − ai−1,k =

k∑

ℓ=0

yi+ℓ,k−ℓ (3.2)

for all i ∈ I and k ≥ 0.
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Proof. This will be a proof by induction on k. As a base case, note that when k = 0,

ai,0 − ai−1,0 = yi,0.

To show that this holds, note that the only terms in
∏

k≥0

∏
i∈I A

ai,k
i,k 1 that contain any Yi,0

are Ai,0 and Ai−1,0. These contribute Yi,0 and Y −1
i,0 respectively to the overall product, so

certainly yi,0 = ai,0 − ai−1,0.

Next, for the sake of induction, assume that the result holds for all values of i and a given

value k. Then note that

k+1∑

ℓ=0

yi+ℓ,k+1−ℓ = yi,k+1 +

k+1∑

ℓ=1

yi+ℓ,k+1−ℓ = yi,k+1 +

k∑

ℓ=0

yi+ℓ+1,k−ℓ.

By the inductive assumption, this is equal to

yi,k+1 + ai+1,k − ai,k.

Now consider yi,k+1. Note that yi,k+1 = ai,k − ai+1,k + ai,k+1 − ai−1,k+1. This equation can

be obtained by considering the values of
∏

m≥0

∏
j∈I A

aj,m
j,m that contribute to Yi,k. Using this

equation yields

k+1∑

m=0

yi+m,k+1−m = ai,k − ai+1,k + ai,k+1 − ai−1,k+1 + ai+1,k − ai,k

= ai,k+1 − ai−1,k+1,

so the result holds by induction.

Consider the general solution to the above equations for a fixed k. Note that if a specific

solution is given by integers ri such that ai,k = ri for i ∈ I, then for any t ∈ Z, another

solution is given by ai,k = ri+ t for all i ∈ I. Consider now the following motivating example.

Example 3.7. In type A
(1)
2 , let M = f̃1f̃01 = Y −1

0,0 Y
−1
1,1 Y2,0Y2,11 ∈ M(∞). This can be

written as A−2
0,0A

−2
1,0A

−1
2,0A

−1
0,1A

−1
1,1A

−1
2,11. Consider the following generalized Young wall

Y ′′ =

02

10

21

0

1

∈ F(∞).

Then Ψ(Y ′′) = M (see Equation (2.3)). Note that the second column from the right has a

removable δ. Removing it yields the generalized Young wall

Y ′ =

0

1

2

0

1

∈ F(∞).
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This new generalized Young wall also has a removable δ, this time in the first column.

Removing it yields

Y =
0

1 ∈ Y(∞).

Then Ψ(Y ) = A−1
0,0A

−1
1,01, which is in M(∞) because Ψ defines the isomorphism between

M(∞) and Y(∞). Expanding Ψ(W ) in terms of the Y -variables gives Y −1
0,0 Y

−1
1,1 Y2,0Y2,11,

and we claim that Y is the reduced, proper generalized Young wall that corresponds to the

original M .

To explain our claim, note that eliminating a removable δ from the kth column of a

generalized Young wall is the same as subtracting 1 from ai,k for each i ∈ I. It can be easily

checked that, in type A
(1)
n ,

∏
i∈I Ai,k1 = 1 for any k ∈ Z≥0. Thus, eliminating a removable

δ does not change which monomial a generalized Young wall corresponds. Therefore, the

weight function on Y(∞) can be used here to calculate the coefficient of δ on the weight

function of elements of M(∞).

This idea gives rise to the following algorithm for computing D(M) for M ∈ M(∞).

Theorem 3.8. Let M =
∏

k≥0

∏
i∈I Y

yi,k
i,k 1 ∈ M(∞). Then D(M) is computed using the

following algorithm.

(1) Find the maximum value m such that there exists an i ∈ I with yi,m+1 6= 0.

(2) Find the unique solution to {ai,m}i∈I such that ai,m ∈ Z≤0, for all i ∈ I, and such that

there exists an i ∈ I with ai,m = 0. Let these be the values for ai,m. Set k = m− 1.

(3) Find the maximal solution to {ai,k}i∈I such that ai,k ∈ Z≤0 and ai,k ≤ ai−1,k+1 for

all i. Decrease k by 1.

(4) Repeat step (3) until k = −1.

After finding the values of ai,k in this manner, we have D(M) =
∑m

k=0 a0,k.

Proof. First note that in step (2), such an integral solution to the equations of (3.2) exists

since M ∈ M(∞) so must be expressible via the Ai,k. Furthermore, given a solution (ci)i∈I

of integers to the system of equations, any other solution (c′i)i∈I of integers is given by some

integral shift of the ci. This can be seen by first noting that there exists an integer t such

that c′0 = c0 + t. Then note that

c0 − cn = c′0 − c′n

c0 − cn = (c0 + t)− c′n

−cn = t− c′n

c′n = cn + t.

This can be repeated to show that c′i = ci + t for all i ∈ I. Thus, the solution to step (2) is

the integral shift of the first solution such that some value is 0 and the rest are nonpositive.
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Showing the existence and uniqueness of the solution in step (3) is nearly identical to the

argument used for step (2). It now suffices to show that the solution obtained by this algo-

rithm represents the correct expression for M corresponding to a proper, reduced generalized

Young wall.

Given any nonpositive solution to the ai,m, if none of the values are 0, then the corre-

sponding generalized Young wall has a removable δ. Thus, the solution here should certainly

be the one given by the algorithm.

For any ai,k−1 such that ai,k−1 > ai−1,k, the corresponding generalized Young wall will not

be proper. Therefore, it is certainly true that ai,k−1 ≤ ai−1,k. Furthermore, if ai,k−1 < ai−1,k

for all i ∈ I, then the corresponding generalized Young wall has a removable δ in its (k−1)st

row and so is not reduced. Thus, it must be the maximal solution, where for at least one i,

ai,k−1 = ai−1,k.

Since the a0,k values correspond to the 0-boxes in the generalized Young wall, we have

D(M) =
∑m

k=0 a0,k.

Example 3.9. Note that in M(∞) of type A
(1)
4 ,

f̃0f̃1f̃3f̃0f̃4f̃01 = A−3
0,0A

−1
1,0A

−1
3,2A

−1
4,11 = Y −3

0,0 Y
−1
0,1 Y

2
1,0Y

−1
1,1 Y2,0Y2,3Y

−1
3,3 Y

2
4,11.

Applying Theorem 3.8, note that the desired value m is 2. Step 2 of the algorithm says that

the correct values of ai,2 (i ∈ I) are solutions to the system

a0,2 − a4,2 = y0,2 + y1,1 + y2,0 = 0,

a1,2 − a0,2 = y1,2 + y2,1 + y3,0 = 0,

a2,2 − a1,2 = y2,2 + y3,1 + y4,0 = 0,

a3,2 − a2,2 = y3,2 + y4,1 + y0,0 = −1,

a4,2 − a3,2 = y4,2 + y0,1 + y1,0 = 1.

The general solution to this system is (for any t ∈ Z) a0,2 = t, a1,2 = t, a2,2 = t, a3,2 = t− 1,

and a4,2 = t. Note that the maximum solution to this system with nonpositive values is

a3,2 = −1 and ai,2 = 0 for all other i.

Similarly, for k = 1, the values of ai,1 (i ∈ I) are a solution to the system

a0,1 − a4,1 = y0,1 + y1,0 = 1,

a1,1 − a0,1 = y1,1 + y2,0 = 0,

a2,1 − a1,1 = y2,1 + y3,0 = 0,

a3,1 − a2,1 = y3,1 + y4,0 = 0,

a4,1 − a3,1 = y4,1 + y0,0 = −1.

The maximal solution to this system such that a4,1 ≤ −1 and ai,1 ≤ 0 for all other i is

a4,1 = −1 and ai,1 = 0 for all other i.
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Finally, for k = 0, the values for ai,0 (i ∈ I) are solutions to the system

a0,0 − a4,0 = y0,0 = −3,

a1,0 − a0,0 = y1,0 = 2,

a2,0 − a1,0 = y2,0 = 1,

a3,0 − a2,0 = y3,0 = 0,

a4,0 − a3,0 = y4,0 = 0.

Note that the maximal solution to this such that a0,0 ≤ −1 and ai,0 ≤ 0 for all other i is

a0,0 = −3, a1,0 = −1, a2,0 = 0, a3,0 = 0, and a4,0 = 0.

4. The weight function in type B
(1)
3

4.1. The result for B
(1)
3 . We now consider type B

(1)
3 .

Lemma 4.1. ForM =
∏

i∈I

∏
k≥0 Y

yi,k
i,k 1 =

∏
i∈I

∏
k≥0A

ai,k
i,k 1 ∈ M(∞), each of the following

hold for k ≥ 0 (with the convention that ai,−1 = 0 for all i ∈ I):

a0,k = y0,k + a2,k−1 − a0,k−1,

a1,k = y1,k + a2,k−1 − a1,k−1,

a2,k = y2,k + a0,k + a1,k + a3,k−1 − a2,k−1,

a3,k = y3,k + 2a2,k − a3,k−1.

(4.1)

Proof. Consider which Ai,k contribute Y0,ℓ to M . They are exactly A0,ℓ, A0,ℓ−1, and A2,ℓ−1.

Expanding these and equating powers with those of Y0,ℓ gives

y0,ℓ = a0,ℓ + a0,ℓ−1 − a2,ℓ−1,

which gives the first desired equality. The other three follow similarly.

The following lemma is straightforward, but we include it for easy reference in the argu-

ments below.

Lemma 4.2. For any m ≥ 0, we have
⌊
m
2

⌋
+
⌊
m+1
2

⌋
= m.

Proof. Note that
⌊
m
2

⌋
is the number of positive even integers less than or equal to m. Simi-

larly,
⌊
m+1
2

⌋
is the number of positive odd integers less than or equal to m. Summing these

values gives the number of integers less than or equal to m, which is exactly m.
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Lemma 4.3. GivenM =
∏

i∈I

∏
m≥0 Y

yi,m
i,m 1 ∈ M(∞), the solution toM =

∏
i∈I

∏
m≥0A

ai,m
i,m 1

is

a0,m =
m∑

k=0

(
2

⌊
k

2

⌋
−

⌊
k − 1

2

⌋)
y0,m−k +

⌊
k + 1

2

⌋
y1,m−k + ky2,m−k +

⌊
k

2

⌋
y3,m−k,

a1,m =

m∑

k=0

⌊
k + 1

2

⌋
y0,m−k +

(
2

⌊
k

2

⌋
−

⌊
k − 1

2

⌋)
y1,m−k + ky2,m−k +

⌊
k

2

⌋
y3,m−k,

a2,m =

m∑

k=0

(k + 1)y0,m−k + (k + 1)y1,m−k + (2k + 1)y2,m−k + ky3,m−k,

a3,m =
m∑

k=0

2

⌊
k + 2

2

⌋
y0,m−k + 2

⌊
k + 2

2

⌋
y1,m−k + (2k + 2)y2,m−k +

(
2

⌊
k

2

⌋
+ 1

)
y3,m−k.

Proof. We proceed by induction onm. First, note that the base case of a0,0 = y0,0, a1,0 = y1,0,

a2,0 = y0,0 + y1,0 + y2,0 and a3,0 = y3,0 + 2y0,0 + 2y1,0 + 2y2,0 each hold by the Lemma 4.1.

Now assume for the sake of induction that for a fixed m ∈ Z≥0 the result holds for ai,m

for all i ∈ {0, 1, 2, 3}. Then, by (4.1), we have

a0,m+1 = y0,m+1 +
m∑

k=0

(k + 1)y0,m−k + (k + 1)y1,m−k + (2k + 1)y2,m−k + ky3,m−k

−
m∑

k=0

(
2

⌊
k

2

⌋
−

⌊
k − 1

2

⌋)
y0,m−k +

⌊
k + 1

2

⌋
y1,m−k + ky2,m−k +

⌊
k

2

⌋
y3,m−k.

Since the desired identity is (by evaluating the k = 0 term and reindexing the sum)

a0,m+1 = y0,m+1 +

m∑

k=0

(
2

⌊
k + 1

2

⌋
−

⌊
k

2

⌋)
y0,m−k

+

⌊
k + 2

2

⌋
y1,m−k + (k + 1)y2,m−k +

⌊
k + 1

2

⌋
y2,m−k,

it suffices to prove the following four identities:

2

⌊
k + 1

2

⌋
−

⌊
k

2

⌋
= k + 1− 2

⌊
k

2

⌋
+

⌊
k − 1

2

⌋
, (4.2a)

⌊
k + 2

2

⌋
= k + 1−

⌊
k + 1

2

⌋
, (4.2b)

k + 1 = 2k + 1− k, (4.2c)
⌊
k + 1

2

⌋
= k −

⌊
k

2

⌋
. (4.2d)
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The relation (4.2c) holds trivially and both (4.2b) and (4.2d) are each immediate results from

Lemma 4.2. To prove (4.2a), note that

2

⌊
k + 1

2

⌋
−

⌊
k

2

⌋
+ 2

⌊
k

2

⌋
−

⌊
k − 1

2

⌋
= 2

(⌊
k + 1

2

⌋
+

⌊
k

2

⌋)
−

(⌊
k

2

⌋
+

⌊
k − 1

2

⌋)

= 2k − (k − 1)

= k + 1,

which is equivalent to the first statement. Thus, the result holds for a0,m+1.

Now consider similarly a1,m+1. Using a method identical to what was used for a0,m+1, it

can be seen that this case holds if the following four identities hold:
⌊
k + 2

2

⌋
= k + 1−

⌊
k + 1

2

⌋
, (4.3a)

2

⌊
k + 1

2

⌋
−

⌊
k

2

⌋
= k + 1− 2

⌊
k

2

⌋
+

⌊
k − 1

2

⌋
, (4.3b)

k + 1 = 2k + 1− k, (4.3c)
⌊
k + 1

2

⌋
= k −

⌊
k

2

⌋
. (4.3d)

Since each of these are identical to an identity used to prove the result for a0,m+1, the result

holds for a1,m+1 as well.

Next, to show that the theorem holds for a2,m+1, note first that by Lemma 4.1:

a2,m+1 = y2,m+1

+

m+1∑

k=0

(
2

⌊
k

2

⌋
−

⌊
k − 1

2

⌋)
y0,m+1−k +

⌊
k + 1

2

⌋
y1,m+1−k + ky2,m+1−k +

⌊
k

2

⌋
y3,m+1−k

+

m+1∑

k=0

⌊
k + 1

2

⌋
y0,m+1−k +

(
2

⌊
k

2

⌋
−

⌊
k − 1

2

⌋)
y1,m+1−k + ky2,m+1−k +

⌊
k

2

⌋
y3,m+1−k

+

m∑

k=0

2

⌊
k + 2

2

⌋
y0,m−k + 2

⌊
k + 2

2

⌋
y1,m−k + (2k + 2)y2,m−k +

(
2

⌊
k

2

⌋
+ 1

)
y3,m−k

−
m∑

k=0

(k + 1)y0,m−k + (k + 1)y1,m−k + (2k + 1)y2,m−k + ky3,m−k.
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Pulling out the k = 0 term of the first two sums and reindexing so that each of the sums

match gives

a2,m+1 = y0,m+1 + y1,m+1 + y2,m+1

+
m∑

k=0

(
2

⌊
k + 1

2

⌋
−

⌊
k

2

⌋)
y0,m−k +

⌊
k + 2

2

⌋
y1,m−k + (k + 1)y2,m−k +

⌊
k + 1

2

⌋
y2,m−k

+

m∑

k=0

⌊
k + 2

2

⌋
y0,m−k +

(
2

⌊
k + 1

2

⌋
−

⌊
k

2

⌋)
y1,m−k + (k + 1)y2,m−k +

⌊
k + 1

2

⌋
y2,m−k

+

m∑

k=0

2

⌊
k + 2

2

⌋
y0,m−k + 2

⌊
k + 2

2

⌋
y1,m−k + (2k + 2)y2,m−k +

(
2

⌊
k

2

⌋
+ 1

)
y3,m−k

−
m∑

k=0

(k + 1)y0,m−k + (k + 1)y1,m−k + (2k + 1)y2,m−k + ky3,m−k.

Since the desired result is equivalent to (by evaluating the k = 0 term and reindexing the

sum)

a2,m+1 = y0,m+1 + y1,m+1 + y2,m+1

+

m∑

k=0

(k + 2)y0,m−k + (k + 2)y1,m−k + (2k + 3)y2,m−k + (k + 1)y3,m−k,

the four identities needed to show that the result holds for a2,m+1 are

k + 2 = 2

⌊
k + 1

2

⌋
−

⌊
k

2

⌋
+

⌊
k + 2

2

⌋
+ 2

⌊
k + 2

2

⌋
− k − 1, (4.4a)

k + 2 =

⌊
k + 2

2

⌋
+ 2

⌊
k + 2

2

⌋
−

⌊
k

2

⌋
+ 2

⌊
k + 2

2

⌋
− k − 1, (4.4b)

2k + 3 = k + 1 + k + 1 + 2k + 2− 2k − 1, (4.4c)

k + 1 =

⌊
k + 1

2

⌋
+

⌊
k + 1

2

⌋
+ 2

⌊
k

2

⌋
+ 1− k. (4.4d)

The identity (4.4c) is trivial and (4.4d) is a direct application of Lemma 4.2. To show (4.4a)

and (4.4b) (which are both the same statement written different ways), note that

2

⌊
k + 1

2

⌋
−

⌊
k

2

⌋
+

⌊
k + 2

2

⌋
+ 2

⌊
k + 2

2

⌋
− k − 1

= 2

(⌊
k + 1

2

⌋
+

⌊
k + 2

2

⌋)
−

⌊
k

2

⌋
+

⌊
k + 2

2

⌋
− k − 1

= 2k + 2−

⌊
k

2

⌋
+

⌊
k + 2

2

⌋
− k − 1

= k + 1−

⌊
k

2

⌋
+

⌊
k + 2

2

⌋
.
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Thus, proving the statement reduces to showing that −
⌊
k
2

⌋
+
⌊
k+2
2

⌋
= 1. By Lemma 4.2,

−
⌊
k
2

⌋
= −k+

⌊
k+1
2

⌋
, so the statement further reduces to showing that −k+

⌊
k+1
2

⌋
+
⌊
k+1
2

⌋
= 1,

which can be shown by another application of Lemma 4.2. Therefore, each of the four desired

identities holds, so the result holds for a2,m+1.

Finally, to show the result for a3,m+1, an identical process to the one used for a2,m+1 can

be used to see that the four desired identities are

2

⌊
k + 3

2

⌋
= 2(k + 2)− 2

⌊
k + 2

2

⌋
, (4.5a)

2

⌊
k + 3

2

⌋
= 2(k + 2)− 2

⌊
k + 2

2

⌋
, (4.5b)

2k + 4 = 2(2k + 3)− 2k + 2, (4.5c)

2

⌊
k + 1

2

⌋
+ 1 = 2(k + 1)− 2

⌊
k

2

⌋
− 1. (4.5d)

However, (4.5c) is trivial and each of the remaining statements are a straightforward appli-

cations of Lemma 4.2, so each of these statements hold, and therefore so does the desired

result for a3,m+1.

Thus, by induction, the theorem holds.

Note that Lemma 4.3 shows that the ai,k are uniquely determined. This gives the following

theorem.

Theorem 4.4. Let M =
∏

i∈I

∏
k≥0 Y

yi,k
i,k 1 ∈ M(∞). Then

D(M) =
∑

m≥0

(
m∑

k=0

(
2

⌊
k

2

⌋
−

⌊
k − 1

2

⌋)
y0,m−k +

⌊
k + 1

2

⌋
y1,m−k + ky2,m−k +

⌊
k

2

⌋
y3,m−k

)
.

Example 4.5. Note that f̃0f̃1f̃2f̃31 = Y −1
0,3 Y

−1
1,3 Y2,2Y

−1
3,0 Y3,11 and

wt(f̃0f̃1f̃2f̃31) = −Λ0 − Λ1 + Λ2 − δ.

Indeed, consider the values of a0,m for each m. For m ≥ 3, a0,m = 0 since the largest nonzero

yi,k is y1,3. Now, applying Lemma 4.3 (and ignoring the values for which yi,k = 0) shows that

a0,0 =

⌊
0

2

⌋
y3,0 = 0,

a1,0 =

⌊
0

2

⌋
y3,1 +

⌊
1

2

⌋
y3,0 = 0,

a2,0 = 0y2,2 +

⌊
1

2

⌋
y3,1 +

⌊
2

2

⌋
y3,0 = −1.

Thus, by adding these up, Theorem 4.4 implies D(f̃0f̃1f̃2f̃31) = −1, as expected.
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4.2. Comments on type B
(1)
4 . In an attempt to find a similar result for the Uq(B

(1)
4 )-crystal

M(∞), note that the analogous defining identities to Lemma 4.1 are

a0,m = y0,m + a2,m−1 − a0,m−1,

a1,m = y1,m + a2,m−1 − a1,m−1,

a2,m = y2,m + a0,m + a1,m + a3,m−1 − a2,m−1,

a3,m = y3,m + a2,m + a4,m−1 − a3,m−1,

a4,m = y4,m + 2a3,m − a4,m−1.

Note that, if

a0,m =

m∑

k=0

aky0,m−k + bky1,m−k + cky2,m−k + dky3,m−k + eky4,m−k

(and given similar recurrence identities to each ai,m), the first k terms of each sequence can

be manually computed. This can be done by first noting that

a0,0 = y0,0, a3,0 = y0,0 + y1,0 + y2,0 + y3,0,

a1,0 = y1,0, a4,0 = 2y0,0 + 2y1,0 + 2y2,0 + 2y3,0 + y4,0,

a2,0 = y0,0 + y1,0 + y2,0.

Then, the known first terms of each sequence can be plugged into the analogous Lemma 4.1

identities to generate each coefficient. The following code can be used in SageMath [1] to

compute the first 21 values of the sequences (ak)
∞
k=1 and (bk)

∞
k=1:

sage : def coefficientsB4 (n):

....: a = vector ([1,0,0,0,0])

....: b = vector ([0,1,0,0,0])

....: c = vector ([1,1,1,0,0])

....: d = vector ([1,1,1,1,0])

....: e = vector ([2,2,2,2,1])

....: print[’k=’,0, ’a_k=’, a[0], ’b_k=’,a[1]]

....: for i in range(n):

....: a = c-a

....: b = c-b

....: c = a+b-c+d

....: d = c+e-d

....: e = 2*d-e

....: print [’k=’,i+1, ’a_k=’, a[0], ’b_k=’,a[1]]

....:

sage : coefficientsB4 (20)

(ak)
20
k=0 = (1, 0, 1, 1, 2, 1, 3, 2, 3, 3, 4, 3, 5, 4, 5, 5, 6, 5, 7, 6, 7),

(bk)
20
k=0 = (0, 1, 0, 2, 1, 2, 2, 3, 2, 4, 3, 4, 4, 5, 4, 6, 5, 6, 6, 7, 6).
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Note that each of these sequences is not as simple as the sequences needed for B
(1)
3 . Therefore,

while the same method of finding sequences that generate the coefficients may work here, it

is not immediately apparent how they would do so. In particular, the Online Encyclopedia of

Integer Sequences [10] notes that these first terms of ak are consistent with the power series

expansion of 1+x4

(1−x2)(1−x3)
. However, the sequence (bk)

20
k=0 was not recognized by the Online

Encyclopedia of Integer Sequences.

5. Irreducible highest weight crystals

Define the M to be the set of all monomials of the form

M =
∏

i∈I

∏

k≥0

Y
yi,k
i,k ,

where yi,k ∈ Z and yi,k = 0 for all but finitely many k. The differences between M and M̂

as sets is the inclusion of the variable 1 in M̂. the definition of εi, and the definition of f̃i.

A crystal structure may be defined on M using the same operations from Equation (2.1),

except replacing εi(M) in (2.1c) with

εi(M) = max



−

∑

j>k

yi,j : k ∈ Z





and replacing the definition of f̃i in (2.2) by

f̃iM =




0 if ϕi(M) = 0,

A−1
i,kf

M if ϕi(M) > 0,

Kashiwara [7] proved that if M ∈ M is a monomial of weight λ such that ẽiM = 0 for all

i ∈ I, then the connected component of M containing M is isomorphic to the irreducible

highest weight crystal B(λ). However, just as in the case of B(∞) above, if g is of affine

type, then the two crystals are isomorphic as U ′
q(g)-crystals rather than Uq(g)-crystals.

For consistency, if λ =
∑

i∈I piΛi is a dominant integral weight, define Hλ =
∏

i∈I Y
pi
i,0.

Direct calculations show that ẽiHλ = 0 for all i ∈ I and that wt(Hλ) = λ. Henceforth,

denote the connected component of M containing Hλ by M(λ). Moreover, the morphism

M(λ) −֒→ M(∞)⊗ Tλ defined by M 7→ H−1
λ M1⊗ tλ is a full crystal embedding.

Example 5.1. Consider the realization M(2Λ1) of the irreducible highest weight crystal

B(2Λ1) in type A
(1)
2 . Choose Y 2

1,0 to be the monomial of weight 2Λ1 to generate this crystal.

Then

M = f̃2f̃0f̃1Y
2
1,0 = Y1,0Y1,3Y2,0Y

−1
2,3 .

Using the crystal axioms, we have wt(M) = 2Λ1 − δ, but using the definition of the weight

function for Nakajima monomials we get wt(M) = 2Λ1. In this example, there are no
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variables of the form Y0,k in the expression for M . However,

Y −2
1,0 M1 = Y −1

1,0 Y1,3Y2,0Y
−1
2,3 1 = A−1

0,1A
−1
1,0A

−1
2,21,

which has weight −δ in M(∞); that is, wt(Y −2
1,0 M1⊗ t2Λ1) = 2Λ1 − δ.

Proposition 5.2. Let λ be a dominant integral weight for g of affine type. If D : M(∞) −→

Z is the map from Problem 2.10, then wt: M(λ) −→ P is defined by

wt(M) =
∑

i∈I

(∑

k≥0

yi,k

)
Λi +D(H−1

λ M1)δ,

where M =
∏

i∈I

∏
k≥0 Y

yi,k
i,k .

Proof. Embed M(λ) −֒→ M(∞)⊗ Tλ using the map M 7→ H−1
λ M1⊗ tλ.
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