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We consider a few number of identical bosons trapped in a 2D isotropic harmonic potential and
also the N-boson system when it is feasible. The atom-atom interaction is modelled by means of a
finite-range Gaussian interaction. The spectral properties of the system are scrutinized, in particular,
we derive analytic expressions for the degeneracies and their breaking for the lower-energy states
at small but finite interactions. We demonstrate that the degeneracy of the low-energy states
is independent of the number of particles in the noninteracting limit and also for sufficiently weak
interactions. In the strongly interacting regime, we show how the many-body wave function develops
holes whenever two particles are at the same position in space to avoid the interaction, a mechanism
reminiscent of the Tonks-Girardeau gas in 1D. The evolution of the system as the interaction is
increased is studied by means of the density profiles, pair correlations and fragmentation of the
ground state for N = 2, 3, and 4 bosons.

I. INTRODUCTION

The problem of a particle trapped in a harmonic trap
is one of the best known quantum systems. Going from a
single particle to a system composed ofN interacting par-
ticles is, however, far more involved. Interestingly, recent
advances in ultracold atomic gases have opened the possi-
bility of studying systems of a few atoms, either fermions
or bosons, trapped in potentials of different kind [1–4].

For the bosonic case, there are important results in
1D where the fermionization of the bosonic gas was pre-
conized by Tonks and Girardeau [5] for the case of in-
finitely repulsive bosons and later confirmed experimen-
tally in ultracold atomic gases [6, 7]. There are many
works studying fermionization in 1D, for instance, in op-
tical lattices [8], in few-atom mixtures [9–11], for attrac-
tive interactions [12] and for few dipolar bosons [13]. In
other cases, the focus are quantum correlations [14, 15],
its effects in mixtures of distinguishable and identical par-
ticles [16] and analytic ansatz to capture the physics in
all interaction regimes [17].

The case of two particles with contact interactions was
considered in one, two and three dimensions in Ref. [18].
There, they obtained semi-analytic results finding the en-
ergies and wave functions as solution of transcendental
equations. More general cases of few-body systems have
been studied mostly in 3D, see Ref. [19] and references
therein.

In 2D, semi-analytical approximate solutions to the
case of two bosons with finite range interactions have
been presented in Ref. [20]. Other 2D works include two
and three-body exact solutions for fermions and bosons
with contact interaction [21], fast-converging numerical
methods for computing the energy spectrum for a few
bosons [22], the study of finite-range effects [23, 24]
and universality [25, 26], condensation in trapped few-
boson systems [27], and interacting few-fermions systems
[28, 29].

In this paper, we study the properties for N = 2, 3,

and 4 identical bosons interacting through a finite-range
interaction confined in a 2D isotropic harmonic trap by
means of direct diagonalization of the Hamiltonian.

We analyze the properties of the system as we increase
the strength of the interaction, going from the noninter-
acting regime to the strongly interacting one. In Sect. II,
we present the many-body Hamiltonian, including the
two-body Gaussian-shaped interaction potential consid-
ered. We split the center-of-mass and relative parts of
the Hamiltonian making use of Jacobi coordinates. In
Sect. III, we consider first the noninteracting Hamilto-
nian and discuss in some details the degeneracies present
in the many-body spectrum. In Sect. IV, we focus on
the effect of interactions on the many-body spectrum of
the system. In Sect. V, we discuss the correlations which
build in the ground state as the interaction is increased.
Finally, the conclusions and summary are presented in
Sect. VI.

II. THE N-BOSON HAMILTONIAN

We consider a system of N identical bosons of mass m
trapped by an isotropic harmonic potential. The many-
body Hamiltonian in first quantized form reads

H =

N
∑

i=1

(

− ~
2

2m
∇2

i +
1

2
mω2~x 2

i

)

+g

N
∑

i<j

V (~xi−~xj) . (1)

In usual ultracold atomic gases experiments, the atom-
atom interactions are well approximated by a contact po-
tential. In our case, we use a finite-size Gaussian poten-
tial,

V (~xi − ~xj) = g
1

πs2
e−

(~xi−~xj)
2

s2 , (2)

where g and s characterize the strength and range of the
interaction, respectively. Both parameters are considered
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to be tuneable. For instance, g can be varied by means
of a suitable Feshbach resonance. In the limit of s going
to zero, we recover a contact interaction with strength
g. Regardless of N , we can split the Hamiltonian in two
parts, H = Hcm +Hr, using Jacobi coordinates,

~R ≡ 1

N

N
∑

i=1

~xi , (3)

~rk ≡
√

2k

k + 1

(

~xk+1 −
1

k

k
∑

i=1

~xi

)

, k = 1, ... , N − 1 .

The center-of-mass part and relative part of the total
Hamiltonian read

Hcm = − ~
2

2M
∇2

~R
+

1

2
Mω2 ~R 2, (4)

Hr =

N−1
∑

k=1

(

− ~
2

2µ
∇2

~rk
+

1

2
µω2~r 2

k

)

+ gṼ (~r1, ... , ~rN−1),

(5)
with the definitions M ≡ Nm and µ ≡ m/2. The in-
teraction only appears in the relative part and takes the
form

Ṽ (~r1, ... , ~rN−1) ≡
N
∑

i<j

V
(

~xi(~R,~rk, ... , ~rN−1)− ~xj(~R,~rk, ... , ~rN−1)
)

.
(6)

As a consequence, the change in the energy spectrum
with increasing the interaction through g or changing the
range s will come from a change in the energy associated
to Hr.

A. Second-quantized N-boson Hamiltonian

Our numerical method to study the excitation spec-
trum will consist in truncating the Hilbert space of the
N -boson system such that the particles can populate only
the firstM single-particle eigenstates. We label the single
particle states, ψi(x, y), and their corresponding eigenen-
ergies, ǫi = nx + ny + 1, with an index i = 1, ... ,M run-
ning through the pair of quantum numbers nx and ny.
With this truncation, the second quantized Hamiltonian
reads

Ĥ = Ĥ0 + Ĥint . (7)

Where Ĥ0 and Ĥint correspond to the single particle and
interaction terms,

Ĥ0 =

M
∑

i=1

â†i âi ǫi ,

Ĥint =
g

2

M
∑

i,j,k,l=1

â†i â
†
j âkâl Vi,j,k,l , (8)

where

Vi,j,k,l =
1

πs2

∫ ∞

−∞

dx dy dx′ dy′ ψ∗
i (x, y)ψk(x, y)

× ψ∗
j (x

′, y′)ψl(x
′, y′) e−

(x−x′)2+(y−y′)2

s2 . (9)

The explicit analytical form of these integrals, Vi,j,k,l, is
provided in Appendix C.

The operator â†i (âi) creates(destroys) a particle in the
single particle mode i,

â†i |n1, ... , nM 〉 =
√
ni + 1 |n1, ... , ni + 1, ... , nM 〉 ,

âi |n1, ... , nM 〉 =
√
ni |n1, ... , ni − 1, ... , nM 〉 . (10)

They satisfy bosonic commutation relations, [âi, â
†
j ] =

δi,j . We introduce the Fock basis,

|n1, ... , nM 〉 = (â†1)
n1 . . . (â†M )nM

√
n1! ... nM !

|vac〉 , (11)

where |vac〉 ≡ |0, ... , 0〉 is the vacuum state and, as we
consider a fixed number of particles N , the quantum
numbers ni verify

N =

M
∑

i=1

ni . (12)

The dimension of the Fock space is

DM
N =

(M +N − 1)!

(M − 1)!N !
, (13)

which, for N = 2, 3, and 4, gives, respectively,

DM
2 =

M(M + 1)

2
,

DM
3 =

M(M + 1)(M + 2)

6
,

DM
4 =

M(M + 1)(M + 2)(M + 3)

24
. (14)

III. DEGENERACIES IN THE

NONINTERACTING LIMIT

In this section, we will discuss the degeneracies present
in the system in absence of interactions. First, we con-
sider the two-boson case, in which the analysis is simpler,
and then we shall explain the main degeneracies for N
bosons.

A. The two-boson system

In the noninteracting case, g = 0, for the two-boson
system, we can write down the Hamiltonian in second
quantization, splitting the center of mass and the relative
motion. Using from now on harmonic oscillator units, ~ω
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for energy and
√

~/(mω) for length, we have, in polar
coordinates,

Ĥ = Ĥcm + Ĥr = n̂cm + n̂r + 2, (15)

where Ĥcm = n̂cm + 1, Ĥr = n̂r + 1. Therefore, we have
a 2D harmonic oscillator for each part of the Hamilto-
nian. The corresponding eigenstates can be labelled as
|ncm,mcm, nr,mr〉, namely,

n̂cm |ncm,mcm, nr,mr〉 = ncm |ncm,mcm, nr,mr〉 ,
n̂r |ncm,mcm, nr,mr〉 = nr |ncm,mcm, nr,mr〉 ,

L̂z,cm |ncm,mcm, nr,mr〉 = mcm |ncm,mcm, nr,mr〉 ,
L̂z,r |ncm,mcm, nr,mr〉 = mr |ncm,mcm, nr,mr〉 ,

(16)

where L̂z,cm and L̂z,r are the third component of the
center-of-mass orbital angular momentum and the rela-
tive orbital angular momentum, respectively, expressed
in units of ~. However, those four quantum numbers
have a restriction imposed by the symmetry of the wave
function under the exchange of particles. The full wave

function in polar coordinates for ~R and ~r reads

χncm,mcm,nr,mr
(R, r, ϕR, ϕr) =

χncm,mcm

(√
2, R, ϕR

)

χnr,mr

(

1√
2
, r, ϕr

)

,

with

χn,m (α, r, ϕ) = Nn,m (α) eimϕ

× e−
(αr)2

2 (αr)
|m|

L
|m|
n−|m|

2

(

(αr)
2
)

.
(17)

The Lk
n(x) are the associated Laguerre polynomials de-

fined as

Lk
n(x) ≡

n
∑

m=0

(−1)m
(

n+ k
n−m

)

xm

m!
(18)

and Nn,m (α) is a normalization constant,

Nn,m (α) = α

√

√

√

√

√

(

n−|m|
2

)

!

π
(

n+|m|
2

)

!
. (19)

The wave function corresponding to the center of mass
is symmetric under the exchange of particles, because
R and ϕR remain unchanged upon exchanging particles

1 and 2, since ~R = 1
2 (~x1 + ~x2). However, the relative

wave function is symmetric or antisymmetric depending
on the quantum numbermr. We have defined the relative
coordinate as ~r = ~x1−~x2, therefore the angle ϕr changes
to ϕr + π and, due to the form of the wave function,
see Eq. (17), a factor (−1)mr appears. For this reason,
only the states with mr = even can describe the two-
boson system. This implies that nr must also be an even

ncm nr mcm mr E NE dbNE
dUNE

0 0 0 0 2 0 1 0
1 0 -1 0
1 0 1 0 3 1 2 0
2 0 -2 0
2 0 0 0
2 0 2 0
0 2 0 -2 4 2 6 2
0 2 0 0
0 2 0 2
3 0 -3 0
3 0 -1 0
3 0 1 0
3 0 3 0
1 2 -1 -2
1 2 1 -2 5 3 10 4
1 2 -1 0
1 2 1 0
1 2 -1 2
1 2 1 2

TABLE I: Quantum numbers, energy, excitation energy num-
ber, degeneracy, and number of states with mr 6= 0 for the
low-energy levels of a system of two noninteracting identical
bosons trapped in a 2D isotropic harmonic potential. The
energies are in units of ~ω.

number. To sum up, the four quantum numbers are



















ncm = 0, 1, 2, 3, 4, . . .

mcm = −ncm,−ncm + 2, . . . , ncm

nr = 0, 2, 4, 6, . . .

mr = −nr,−nr + 2, . . . , nr .

(20)

With the previous possible quantum numbers, we can de-
termine the degeneracy for each energy level. We define
the excitation energy number as the excitation energy
per energy unit, NE ≡ E−E0. Then, the degeneracy for
a given value of NE (see Appendix A) is

dbNE
= −1

3

(⌊

NE

2

⌋

+ 1

)

(21)

×
[

4

⌊

NE

2

⌋2

+ (2 − 3NE)

⌊

NE

2

⌋

− 3(NE + 1)

]

,

where ⌊NE/2⌋ indicates the floor function of NE/2. The
previous equation is valid for spinless bosons, which is
the case considered in this work. However, for fermions
and bosons with spin, the spatial antisymmetric states
should be considered. The degeneracy for those states
(see Appendix A) is

dfNE
= −1

3

(⌊

NE

2

⌋

+ 1

)

(22)

×
[

4

⌊

NE

2

⌋2

+ (8− 3NE)

⌊

NE

2

⌋

− 6NE

]

.
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Eigenstates E NE dNE

|N, 0, ... , 0〉 N 0 1
|N − 1, 1, 0, ... , 0〉
|N − 1, 0, 1, 0, ... , 0〉 N+1 1 2
|N − 1, 0, 0, 1, 0, ... , 0〉
|N − 1, 0, 0, 0, 1, 0, ... , 0〉
|N − 1, 0, 0, 0, 0, 1, 0, ... , 0〉
|N − 2, 2, 0, ... , 0〉 N+2 2 6
|N − 2, 0, 2, 0, ... , 0〉
|N − 2, 1, 1, 0, ... , 0〉
|N − 1, 0, 0, 0, 0, 0, 1, 0, ... , 0〉
|N − 1, 0, 0, 0, 0, 0, 0, 1, 0, ... , 0〉
|N − 1, 0, 0, 0, 0, 0, 0, 0, 1, 0... , 0〉
|N − 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, ... , 0〉
|N − 2, 1, 0, 1, 0, ... , 0〉
|N − 2, 0, 1, 1, 0, ... , 0〉
|N − 2, 1, 0, 0, 1, 0, ... , 0〉
|N − 2, 0, 1, 0, 1, 0, ... , 0〉 N+3 3 14
|N − 2, 1, 0, 0, 0, 1, 0, ... , 0〉
|N − 2, 0, 1, 0, 0, 1, 0, ... , 0〉
|N − 3, 1, 2, 0, ... , 0〉
|N − 3, 2, 1, 0, ... , 0〉
|N − 3, 3, 0, ... , 0〉
|N − 3, 0, 3, 0, ... , 0〉

TABLE II: Eigenstates expressed using the Fock basis
(Eq. (11)), energy, excitation energy number and degeneracy,
for the low-energy levels of a system of N ≥ 3 noninteracting
identical bosons trapped in a 2D isotropic harmonic potential.
The energies are in units of ~ω.

Notice that the total degeneracy is given by [30],

dTNE
= dbNE

+ dfNE
=

(NE + 3)(NE + 2)(NE + 1)

6
. (23)

1. Unperturbed energy states

We are also interested in knowing how many states
have mr 6= 0 for each energy level, because these states
are the ones that do not feel a zero-range interaction. For
a finite but small range, these states are also expected to
remain almost unperturbed for the considered range of
interaction strengths. The number of states in each en-
ergy level such that their energy should not change sig-
nificantly with a small Gaussian width (see Appendix A)
is

dUNE
=

(

−4

3

⌊

NE

2

⌋

+NE +
1

3

)⌊

NE

2

⌋(⌊

NE

2

⌋

+ 1

)

.

(24)

B. N-boson system

The procedure described above in order to compute the
degeneracy is not valid for systems with more than two
bosons. The reason is that we cannot label the symmetric
(neither the antisymmetric) states under the exchange of

a pair of particles using the previous quantum numbers.
The symmetry of the relative Jacobi coordinates, defined
in Eq. (3), under the exchange of two particles is not well
defined. An alternative way for counting the degeneracy
is by making use of the Fock basis introduced in the pre-
vious section, Eq. (11). Those states are eigenstates of

Ĥ0, i.e.,

Ĥ0 |n1, ... , nM 〉 =

(

M
∑

i=1

niǫi

)

|n1, ... , nM 〉

= E |n1, ... , nM 〉 . (25)

The ground state of a system of N identical spinless
bosons in a 2D isotropic harmonic potential is always
non-degenerate. In particular, for the noninteracting
case, it corresponds to a state with all the bosons
populating the non-degenerate single-particle ground
state, i.e., the state |N, 0, ... , 0〉. For any higher energy
level of this system, labelled with NE = E −E0, there is
a maximum number of degenerate states, dmax

NE
, that is

reached when N ≥ NE .

Theorem. dNE
= dmax

NE
⇐⇒ N ≥ NE

Proof. From left to right, if we have reached dmax
NE

, one
of the degenerate states is the one with NE bosons in
the single-particle states with excitation energy, Esp

exc =
Esp − Esp

0 = 1. Therefore, we have N ≥ NE bosons.
From right to left, if we have N ≥ NE bosons, we have
reached the maximum degeneracy because having less
bosons would not allow us to have the previous discussed
state, which is degenerate. Adding more bosons would
not increase the number of degenerate states, since it is
impossible to introduce new states with the same energy
as the previous ones. This is due to the finite ways of
decomposing NE as a sum of positive integers, without
considering the order, that is, the number of partitions
p(NE) [31, 32].

Therefore, the degeneracy of the first NE + 1 energy
levels is independent of the number of particles N for
any N ≥ NE. In Table II, we give the low-energy states
with their corresponding energies, excitation energy num-
bers and degeneracies for a system of N bosons. In Ta-
ble III, we give dmax

NE
for the first values of NE . Comput-

ing the maximum degeneracy is analogous to computing
the number of partitions of the integer NE where there
are n+ 1 different kinds of part n for n = 1, 2, 3, ..., [33]
and we can obtain it from its generating function,

1
∏∞

k=1(1− xk)k+1
=

∞
∑

NE=0

dmax
NE

xNE , (26)

and also,

dmax
NE

=

NE
∑

k=0

p(NE − k)PL(k), (27)
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E NE p(NE) dmax

NE

N 0 1 1
N+1 1 1 2
N+2 2 2 6
N+3 3 3 14
N+4 4 5 33
N+5 5 7 70
N+6 6 11 149

TABLE III: Energy, excitation energy number, number of par-
titions of the excitation energy number and maximum degen-
eracy for the low-energy levels of a system of N noninteracting
identical bosons in a 2D isotropic harmonic potential. The
maximum degeneracy, dmax

NE
, is equal to the degeneracy of the

level NE if and only if N ≥ NE (see the text for explanation).

where PL(k) are the planar partitions of k [34]. Notice
that the number of partitions is a lower bound of the
maximum degeneracy,

dmax
NE

≥ p(NE), (28)

and the equality would hold for non-degenerate single-
particle states, e.g. for the 1D case.

IV. ENERGY SPECTRA

Our numerical method consists in the direct diagonal-
ization of the truncated second-quantized Hamiltonian,
as described in Sec. II A. We will consider systems with
N = 2, 3, and 4 bosons. Direct diagonalization provides
the energy spectrum of the Hamiltonian in the truncated
space. In particular, we have used the ARPACK imple-
mentation of the Lanczos algorithm to obtain the lower
part of the many-body spectrum.

A. Two-boson energy spectrum

In Fig. 1, we show the low-energy spectrum for the sys-
tem of two interacting identical bosons in the harmonic
trap. In the figure, we compare results obtained with
three different values of s = 0.1, 0.5 and 1. In all cases,
the energy spectrum has a number of common features.

First, in the spectrum, there are the states discussed
in Sect. III A 1, which are essentially insensitive to the
interaction. In the zero range limit, these are basically
states with non-zero relative angular momentum, which
do not feel the contact interaction [20]. With finite in-
teractions but for a small range, s = 0.1 and 0.5, they
remain mostly flat for g up to 20. For s = 1, their energy
increases slightly with g, deviating from the zero range
prediction.

Second, the ground state energy increases linearly with
g for small values of g. Up to first order perturbation
theory, the energy is given by

E0 ≃ 2 +
g

π (s2 + 2)
. (29)

E

g

(a) s = 0.1

E

g

(b) s = 0.5

E

g

() s = 1

2

2.5

3

3.5

4

4.5

5

5.5

6

0 5 10 15 20

2

2.5

3

3.5

4

4.5

5

5.5

6

0 5 10 15 20

2

2.5

3

3.5

4

4.5

5

5.5

6

0 5 10 15 20

FIG. 1: (a-c) Low-energy spectrum for N = 2 interact-
ing bosons trapped in a 2D isotropic harmonic potential de-
pending on the interaction strength g for different values
of the width s of the two-body Gaussian-shaped potential.
(Solid red lines) Energy of the ground state and the corre-
sponding center-of-mass excitations. (Long-dashed pointed
cyan lines) Unperturbed states. (Short-dashed pointed green
lines) First relative excitation and the corresponding center-
of-mass excitations. (a-c) (Blue dotted lines) Energy of the
ground state computed with the variational ansatz of Eq. (33).
(Black dashed lines) Analytic approximate energy levels us-
ing Eq. (17) of Ref. [20] shown only in panel (a). Numerical
results with (a) M = 200 and D200

2 = 20100, (b) and (c)
M = 150 and D150

2 = 11325.

However, the ground state energy tends to saturate as g
is increased. For smaller values of s, this saturation takes
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place at smaller values of g.
Third, there are the energies coming from the relative

part of the Hamiltonian with the center of mass at the
ground state, i.e. ncm = 0. The ground state is one of
these states and there is one state of this type in each
energy level with an even NE in the noninteracting limit.

Finally, the spectrum also contains center-of-mass ex-
citations [18], which are easily recognized as constant en-
ergy shifts independent of g with respect to states with
ncm = 0.

For comparison, we depict also the approximate values
of [20] in panel (a) of Fig. 1. As reported in Ref. [20], their
approximate solution – which is not variational – starts
to deviate from the exact numerical results at values of
g ≃ 4. The approximation gives, however, a fairly good
overall picture of the low-lying two-particle spectrum.

B. Degeneracy for the interacting two-boson

system

We can label the states with three quantum numbers.
Two are the ones corresponding to the center of mass, ncm

and mcm, and the other is a new quantum number, νr,
that labels the nondegenerate eigenstates of the relative
part of the Hamiltonian. We can write those states as

Ψ(R,ϕR, r) = χncm,mcm(
√
2, R, ϕR)fνr (r), (30)

where χncm,mcm(
√
2, R, ϕR) is given in Sect. III and fνr (r)

is the relative wave function, that depends on g and s.
The other states that are in the spectrum are the unper-
turbed ones (almost unaffected by the interaction). Their
degeneracy is given in Sec. III. The states of Eq. (30), for
a given νr, are degenerate with degeneracy given by the
2D harmonic oscillator of the center-of-mass part, i.e.,
their degeneracy is ncm + 1. From each noninteracting
energy level with even NE , a state with a new νr arises,
and its center-of-mass excitations appear in higher en-
ergy levels with degeneracy ncm + 1, too. To sum up,
the ground state is nondegenerate. The first excited
state is two-degenerate and the two states are the two
possible center-of-mass excitations of the ground state.
The third noninteracting energy manifold (6 states with
E(g = 0) = 4) splits in three: 1) three center-of-mass ex-
citations of the ground state, 2) two unperturbed states
and, 3) the new relative state with quantum numbers
ncm = 0, mcm = 0 and νr = 1 with E(g = 2) = 4.21.
We give the degeneracy and the quantum numbers of the
low-energy states in Table IV.

C. Three and four-boson energy spectra

Our exact diagonalization scheme allows us to obtain
the lowest part of the many-body spectrum for systems
of up to 4 bosons with good accuracy, up to values of
g ≃ 20. In Fig. 2 we report the ground state energy for

ncm nr mcm mr νr E(g = 0) E(g = 2) dint(g = 2)

0 - 0 0 1 2 2.23 1

1 - -1 0 1 3 3.23
1 - 1 0 1 3 3.23 2

2 - -2 0 1 4 4.23
2 - 0 0 1 4 4.23 3
2 - 2 0 1 4 4.23
0 - 0 0 2 4 4.21 1
0 2 0 -2 - 4 4.00
0 2 0 2 - 4 4.00 2

3 - -3 0 1 5 5.23
3 - -1 0 1 5 5.23
3 - 1 0 1 5 5.23 4
3 - 3 0 1 5 5.23
1 - -1 0 2 5 5.21
1 - 1 0 2 5 5.21 2
1 2 -1 -2 - 5 5.00
1 2 1 -2 - 5 5.00
1 2 -1 2 - 5 5.00 4
1 2 1 2 - 5 5.00

TABLE IV: Quantum numbers, energy in the noninteracting
limit, energy at g = 2 and degeneracy, for the low-energy
levels of a system of two interacting identical bosons trapped
in a 2D isotropic harmonic potential. The energies are in
units of ~ω and the ones with g = 2 correspond to a vertical
cut in Fig. 1 panel (b), s = 0.5.

N = 3 and N = 4 bosons compared with a simple mean-
field variational ansatz using the following wave function,

Ψ(~x1, ... , ~xN ) =
(α

π

)
N
2

N
∏

i=1

e−
1
2α~x

2
i , (31)

and finding the optimum α∗ that minimizes the energy

E0(α) =

∫ ∞

−∞

d~x1 ... d~xN Ψ∗(~x1, ... , ~xN )HΨ(~x1, ... , ~xN )

= N

(

α

2
+

1

2α

)

+
gN(N − 1)α

2π (αs2 + 2)
. (32)

As expected, this mean-field ansatz captures well the
behaviour of the ground state of the system for small
values of g. For g ≃ 2, however, we already observe sub-
stantial deviations, with the meanfield prediction over-
stimating the ground state energy considerably. In par-
ticular, as we will see below, the system develops strong
beyond-mean-field correlations as g is increased.

In addition, we introduce a two-body-correlated varia-
tional many-body ansatz of Jastrow type [35],

Ψ(~x1, ... , ~xN ) =
(α

π

)
N
2

N
∏

i=1

e−
1
2α~x

2
i

N
∏

j<i

(

1− ae−b(~xi−~xj)2
)

,

(33)
where α, a and b are the variational parameters. We
observe in Fig. 2 that the energies computed with this
ansatz, using standard Monte-Carlo methods, are very
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FIG. 2: Ground-state energy for (a) N=3 and (b) N=4 inter-
acting bosons trapped in a 2D isotropic harmonic potential
depending on the interaction strength g. (Red solid line) com-
puted numerically with ARPACK and (a) M = 80 and (b)
M = 50, (blue dotted line) computed with the variational
many-body wave function of Eq. (33), (black dashed line)
computed with a Gaussian variational ansatz, Eq. (31).

close, and some times even below, the exact diagonal-
ization ones. To improve the latter, one needs to enlarge
the Hilbert space (larger M) to get a slightly lower upper
bound. In principle, the exact diagonalization procedure
for a given M provides an upper bound for the ground
state and each excited state. In the next section, we
explain the physical interpretation of the variational pa-
rameters and discuss how well the ansatz captures the
physics of the problem.

The low-energy spectrum for N = 3 and N = 4 at
smaller values of g is fairly similar. This is not unex-
pected as the degenerate manifolds are the same irre-
spective of the number of particles, see Sect. III B. The
first excited state is a center-of-mass excitation, the Kohn
mode, as seen clearly in the excitation spectra shown in
Fig. 3.

Even for g up to 16, the low-energy spectra for N =
3 and N = 4 are quite similar. The overall picture is
qualitatively the same for both cases, although for N = 4
there are extra levels crossing. In Fig. 3 panel (b), there
is a level that starts crossing the highest energy level
depicted at g ≃ 3. This line in the spectrum comes from

E
−
E

0

g

(a) N = 3, s = 0.5

E
−
E

0

g

(b) N = 4, s = 0.5

0

0.5

1
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FIG. 3: Low-energy spectrum for (a) N = 3 and (b) N = 4
interacting bosons trapped in a 2D isotropic harmonic poten-
tial depending on the interaction strength g. (Red solid lines)
Energy of the ground state, (green dashed lines) the first,
(blue dotted lines) the second, (cyan dashed-dotted lines) the
third, (grey triple-dotted lines) the fourth and (black double-
dotted lines) the fifth relative excitations and, respectively,
their center-of-mass excitations in the same kind of line and
color. The number of modes that we have used is (a) M = 80
and (b) M = 50, that corresponds to Hilbert spaces of dimen-
sion D80

3 = 88560 and D50

4 = 292825, respectively.

the fourth excited level in the noninteracting limit and is
also expected to appear for systems with more particles,
e.g. N = 5. It arises from the existence of a degenerate
kind of states that are found only for N ≥ 4, as it is
explained in Sect. III.

D. Degeneracy for the interacting three and

four-boson systems

One major difference for more than two particles, is
that we do not find states not affected by the interac-
tion. Moreover, the degeneracy of the eigenfunctions of
the relative part of the Hamiltonian is not 1. Therefore,
the states cannot be uniquely characterized by νr. How-
ever, we can identify the states that are center-of-mass
excitations of lower energy states. In Fig. 3, in both
panels, for example, for g = 1, we know the degeneracy
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of all the energy levels and we can identify them. The
ground state is nondegenerate. As we have said before,
the first excited state is a center-of-mass excitation, with
degeneracy 2. The second excited state decomposes in
three states corresponding to the next center-of-mass ex-
citations of the ground state, there are two degenerate
states corresponding to a relative excitation, and finally
a different relative excitation. The third excited energy
level in the noninteracting limit splits when g is increased
in the next center-of-mass excitations of the states of
the previous level, i.e., four center-of-mass excitations of
the ground state, four center-of-mass excitations of the
previous two-degenerate relative excited states, and two
more degenerate states corresponding to two center-of-
mass excitations of the single-degenerate relative energy
level that appeared in the second excited state when g
was increased. Moreover, there are two pairs of different
relative excited states that split from the noninteract-
ing third energy level. This behaviour is the same inde-
pendently of N for g sufficiently small, for instance, for
N = 4 up to g = 3, where there is the previous discussed
crossing of levels.

E. N-boson energies up to first order in

perturbation theory

Using the analytic expressions of the integrals of the
interaction that are given in Appendix C, we compute
the energies of the first three energy levels in first order
perturbation theory. For the ground state of the system,
the energy is given by

E0 ≃ N + g
N(N − 1)

2π (s2 + 2)
. (34)

The next level has energy

E1 ≃ N + 1 + g
N(N − 1)

2π (s2 + 2)
. (35)

The third energy level splits in three, in the way that is
discussed in the previous section that is also valid for N
bosons, with energies

E21 ≃ N + 2 + g
N(N − 1)

2π (s2 + 2)
, (36)

E22 ≃ N + 2 + g
N
(

N(2 + s2)2 − s2(8 + s2)− 8
)

2π (s2 + 2)
3 , (37)

E23 ≃ N + 2 + g
N
(

N(2 + s2)2 − s2(8 + s2)− 4
)

2π (s2 + 2)
3 . (38)

The similarity in the energy difference, E−E0, for the
case of N = 3 and N = 4 plotted in Fig. 3 for a small g
can be understood using the previous expressions. The

corresponding excitation energies are, in this approxima-
tion,

E1 − E0 = 1, (39)

E21 − E0 = 2, (40)

E22 − E0 = 2− g
2N
(

1 + s2
)

π (s2 + 2)
3 , (41)

E23 − E0 = 2− g
2Ns2

π (s2 + 2)
3 . (42)

In the first two cases, Eq. (39) and Eq. (40), we recover
the first and the second center-of-mass excitations that
are red solid lines in Fig. 3. The presence of the factor
N in the quantity E22 − E0, see Eq. (41), explains why
the slope of the green dashed lines is slightly bigger in
absolute value for N = 4, panel (b), than for N = 3,
panel (a), in Fig. 3 for g ≃ 0. This effect would be no-
torious when comparing the spectrum for two very dif-
ferent numbers of particles. Finally, we also see that the
second term in E23 − E0 is proportional to N , but in
that case, for s small, the second term becomes negligi-
ble. Therefore, the blue dotted lines are very close to the
red solid lines in the spectra for g ≃ 0, as we have used
s = 0.5. In the zero-range limit, this approximation gives
E23(s → 0) = E21(s → 0). As the perturbative correc-
tion affects only the relative motion, the corrections to
E0, E1 and E21 are equal.

V. INTERACTIONS AND QUANTUM

CORRELATIONS

As seen in the previous section, the ground state energy
of the system for N = 2, 3 and 4 tends to saturate as
we increase the strength of the atom-atom interactions.
This saturation starts to occur for values g for which the
mean-field variational ansatz starts to deviate from the
exact results. This reminds of a similar effect found in
1D systems, where the ground state evolves from mean-
field to Tonks-Girardeau gas as the interaction strength
is increased. In the Tonks-Girardeau limit, the atoms
do avoid completely the atom-atom contact interaction
by building strong correlations which in 1D are easily
understood from the Bose-Fermi mapping theorem [36].
In 2D, no such mapping exist. However, we expect that
the system should build suitable correlations to avoid the
interaction, resulting in a saturation of the energy for
increasing g.

For the ground state, besides the exact diagonalization
method, we have also made use of a correlated variational
ansatz, Eq. (33), to enlighten the discussion. The ener-
gies and properties associated to this variational ansatz
are evaluated by means of Monte-Carlo methods (stan-
dard Metropolis algorithm). The physical meaning of the
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FIG. 4: Density profile of the ground state for (a) N = 2,
(b) N = 3 and (c) N = 4 interacting bosons trapped in
a 2D isotropic harmonic potential for different values of the
interaction strength g for a fixed range s = 0.5. The number
of modes that we have used is M = 50, which corresponds to
a Hilbert space with dimension (a) D50

2 = 1275, (b) D50

3 =
22100 and (c) D50

4 = 292825.

variational parameters is quite transparent. α directly af-
fects the overall size of the cloud. The two-body Jastrow
correlations are parameterized by a and b. Two limiting
cases are illustrative. If the system is fully condensed we
will have a = 0, while a = 1 would correspond to build-
ing a zero of the wave function whenever two atoms are
at the same position. b affects the two-body correlation
length. Thus, we expect the following behavior: for val-

ρ
(X

)

X

g = 10

s = 0.5
N = 2
N = 3
N = 4

0

0.05

0.1

0.15

0.2

0.25

0 0.5 1 1.5 2 2.5 3

FIG. 5: Density profile for N = 2, 3, and 4 interacting bosons
trapped in a 2D isotropic harmonic potential computed with
the ground state obtained using ARPACK with M = 50
(lines) and obtained from the variational ansatz, Eq. (33),
(crosses, squares and dots) for g = 10 and s = 0.5.

ues of g ≃ 0 we should have a = 0 (b is thus irrelevant)
and α close to 1. For increasing g, α decreases to avoid
the interaction by simply putting the atoms apart. As we
increase g, two-body correlations build in, a 6= 0 and α
should stop decreasing as the correlation is more efficient
to separate the atoms.

Let us first discuss the density profile of the clouds,
see Appendix B for definitions. In Fig. 4 we show the
density profile, normalized to unity, depending on the

radial coordinate X =
√

x2 + y2, computed with our ex-
act diagonalization procedure. Due to the symmetry of
the trap, the density profile of the ground state does not
have angular dependence, see Appendix B, Eq. (B6). In
panels (a), (b) and (c) we show results for N = 2, 3,
and 4. In all cases, with the same value of s = 0.5. We
compare densities obtained for different values of g.

Irrespective of N we observe a number of common fea-
tures. For g = 0, the system has a Gaussian density pro-
file which, as g is increased, evolves into a profile with a
flat region for X ≤ 1 at g ≃ 16. As N is increased, the
size of the inner plateau increases, thus tending towards
an homogeneous density.

The quality of our variational approach is seen in
Fig. 5. We compare density profiles obtained with the
exact diagonalization procedure with those obtained vari-
ationally by means of Eq. (33). As seen in the figure, the
variational wave function provides a fairly accurate rep-
resentation of the density profile for N = 2, 3, and 4. In
particular, it captures well the appearance of the plateau.

The effect of increasing the interaction among the
atoms is manifold. As we have seen above, the density
profile is modified and the gas becomes close to homoge-
neous in the inner part of the trap. This change in the
density is however accompanied by a change in the corre-
lations present in the system. Actually, the gas goes from
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FIG. 6: Condensed fractions of the ground state for (black
line) N = 2, (red-dashed line) N = 3 and (green spotted line)
N = 4 interacting bosons trapped in a 2D isotropic harmonic
potential depending on the interaction strength g for a fixed
range s = 0.5. The number of modes that we have used is
M = 50 and the rest of the eigenstates of the one-body density
matrix are much more smaller than the biggest one.

a fully condensed state to a largely fragmented one as we
increase the interaction. In Fig. (6), we depict how the
condensed fraction for N = 2, 3, and 4 decreases when
increasing the interaction strength. For the same value
of g, the fragmentation in the system is larger for larger
number of particles.

The most populated eigenstate of the one-body density
matrix (natural orbit), is found to have the approximate
form, using the |nx, ny〉 basis,

|φ1〉 ≃ C0 |0, 0〉+ C1 (|2, 0〉+ |0, 2〉) , (43)

and its wave function reads

φ1(X) ≃ 1√
π
e−

X2

2

(

C0 −
√
2C1

(

1−X2
)

)

. (44)

This natural orbit is a superposition of the two first
single-particle states of the 2D harmonic oscillator with
zero angular momentum, m = 0, the state |n = 0,m = 0〉
and the state |n = 2,m = 0〉, thus the wave function has
no angular dependence. For the noninteracting case,
C0 = 1 and C1 = 0, since the particles condense in the
ground state of the harmonic oscillator. When the inter-
action is increased, C0 becomes smaller and C1 starts to
increase. In Fig. 7, we plot the wave function of Eq. (44)
using the corresponding values of C0 and C1 computed
for N = 2, 3, 4 and different values of the interaction
strength g.

The advent of correlations beyond mean-field ones
should also become apparent when computing two-
particle correlations. In particular, we can evaluate the
probability of finding two particles at given positions. For
simplicity we consider one of them at the origin and the
second one at a distance X . The probability density of
finding a particle in the space once we have fixed a parti-
cle at the center is given by η(X)/ρ(0) and is normalized
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FIG. 7: Single-particle eigenstate of the one-body density ma-
trix in which the particles condense. We use Eq. (44) and the
values of C0 and C1 computed numerically diagonalizing the
one-body density matrix, Eq. (B25), for different values of g.
(a) N = 2 bosons, (b) N = 3 and (c) N = 4. The fraction of
condensed particles is plotted in Fig. 6. The number of modes
that we have used is M = 50, which corresponds to a Hilbert
space with dimension (a) D50

2 = 1275, (b) D50

3 = 22100 and
(c) D50

4 = 292825.

to unity (see Appendix B). Without interactions, the pair
correlation function is proportional to the density, since
the probability density for finding a particle in a par-
ticular place is not correlated with the positions of the
others, see Eq. (B20). In Fig. 8, we show how η(X)/ρ(0)
evolves with increasing the interaction for the systems
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FIG. 8: Probability density, η(X)/ρ(0), of finding a particle
at position X once we have found one particle at the origin,
X = 0, for (a) N = 2, (b) N = 3 and (c) N = 4 inter-
acting bosons trapped in a 2D isotropic harmonic potential
for different values of the interaction strength g for a fixed
range s = 0.5. The number of modes that we have used is
M = 50, which corresponds to a Hilbert space with dimension
(a) D50

2 = 1275, (b) D50

3 = 22100 and (c) D50

4 = 292825.

with N = 2, 3, and 4 bosons. In all cases, the central
peak gets smaller when increasing the interaction, being
fairly close to zero for g ≃ 16. This is in line with the fact
that the atoms build correlations to avoid the interaction,
e.g. as g is increased the probability of finding two atoms
at the same location decreases. In between, next to the
center of the trap, the function is uniform. When the in-

teraction is strong there is a minimum at the position of
the first atom, the probability density η(X)/ρ(0) devel-
ops a maximum corresponding to the preferred distance
between particles. Increasing the number of bosons, this
maximum shifts towards larger distances.

VI. SUMMARY AND CONCLUSIONS

In this work, we have studied systems of a few num-
ber of bosons trapped in an isotropic 2D harmonic trap
interacting by a finite-range Gaussian potential.

First, we have explored in detail the noninteracting
case, paying particular attention to the degeneracies of
the excitation spectrum of the system. In particular, for
the N -boson case, we have explained how to compute the
degeneracy of the low-energy states which is independent
of the number of particles.

By means of a direct diagonalization of the Hamilto-
nian in a truncated space, we have studied the interacting
system and we have computed the low-energy spectra for
N = 2, 3, and 4 bosons. We have also proposed a varia-
tional ansatz with two-body correlations which provides
an accurate description of both the energy and the struc-
ture of the ground state in the full range of interaction
considered. Center-of-mass and relative excitations are
clearly identified in the spectrum. As the interaction is
increased, we have shown how the ground state and all
low lying states tend to saturate as a function of the in-
teraction strength.

The effect of increasing the interaction on the ground
state is twofold. On one side, the density at the center of
the trap decreases becoming almost flat in the bulk of the
gas, with the cloud thus becoming larger. On the other
side, the atoms develop strong two-body correlations to
avoid the interaction. This is achieved by building holes
in the many-body wave function whenever two atoms are
at the same position, as is clearly seen in the computed
pair correlations and also on the explicit zeros introduced
in our variational wave function. This mechanism is sim-
ilar to the one present in the Tonks-Girardeau gas in
1D and is also responsible for the observed saturation
of the energies of the system as we increase the interac-
tion strength. Finally, the onset of correlations in turn
produces fragmentation on the one-body density matrix,
which has been shown to increase with the number of
particles.

Thus, we have shown that our exact diagonalization
method allows one to study interacting bosonic systems
in 2D. We are presently implementing this method for
spin-orbit coupled bosonic systems.
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Appendix A: Computation of degeneracies in the

noninteracting limit

1. The two-boson system

We compute the degeneracy of each energy level de-
pending on the excitation energy number, NE = E−E0,
for the two-boson system with the possible states la-
belled using the quantum numbers of Eq. (20). First,
we fix the excitation energy number, NE, and consider
it to be even. Then, the values that nr can take are
nr = 0, 2, ... , NE, so nr = 2k with k = 0, 1, ... , NE/2.
Since we have ncm + nr = NE , for each value of nr there
is the corresponding ncm. Now, we count the number of
states with a given nr with excitation energy number NE

taking into account the degeneracy due to the quantum
numbers mcm and mr, that is,

dNE,k = (ncm+1)(nr+1) = (NE−2k+1)(2k+1). (A1)

Therefore, we have to sum over k to find the degeneracy.
The sum goes from k = 0 to k = NE/2 if NE is even and
to k = (NE−1)/2 if NE is odd, which can be generalized
using the floor function, summing from k = 0 to k =
⌊NE/2⌋. The degeneracy is

dbNE
=

⌊NE/2⌋
∑

k=0

(NE − 2k + 1)(2k + 1) =

−1

3

(⌊

NE

2

⌋

+ 1

)

×
[

4

⌊

NE

2

⌋2

+ (2 − 3NE)

⌊

NE

2

⌋

− 3(NE + 1)

]

.

(A2)

The previous equation, Eq. (A2), for NE even is

dbNE
=

1

12
(NE + 2) (NE(NE + 4) + 6) , (A3)

and for NE odd is

dbNE
=

1

12
(NE + 1) (NE(NE + 5) + 6) . (A4)

For the spatial fermionic states, which are the ones with
mr = odd and antisymmetric upon exchanging particles
1 and 2, we compute the degeneracy analogously, using

that nr = odd,

dfNE
=

⌊NE/2⌋
∑

k=0

(NE − 2k)(2k + 2) =

−1

3

(⌊

NE

2

⌋

+ 1

)

×
[

4

⌊

NE

2

⌋2

+ (8− 3NE)

⌊

NE

2

⌋

− 6NE

]

.

(A5)

a. Unperturbed energy states

We are also interested in knowing the number of states
in each energy level with mr 6= 0. We compute this
number of states subtracting from the total number of
degenerate states, dbNE

, the ones with mr = 0, that is,

dUNE
= dbNE

−
⌊NE/2⌋
∑

k=0

(NE − 2k + 1)

=

(

−4

3

⌊

NE

2

⌋

+NE +
1

3

)⌊

NE

2

⌋(⌊

NE

2

⌋

+ 1

)

,

(A6)
where we have used Eq. (A2). As before, we can separate
the case with NE even,

dUNE
=

1

12
(NE + 2)(NE + 1)NE , (A7)

and the case with NE odd,

dUNE
=

1

12
(NE + 3)(NE + 1)(NE − 1). (A8)

Appendix B: Computation of the density profile, the

pair correlation function and the condensed fraction

1. The density profile

a. First-quantized density operator

For a system of N particles, the density operator in
first quantization, normalized to unity, is defined as

ρ̂(~x) ≡ 1

N

N
∑

i=1

δ(~x− ~xi). (B1)

Therefore, the density profile for a given state of a system
of N identical bosons, Ψ(~x1, ... , ~xN ), would be

ρ(~x) =
1

N

N
∑

i=1

∫

d~x1 ... d~xN δ(~x − ~xi) |Ψ(~x1, ... , ~xN )|2

=

∫

d~x2 ... d~xN |Ψ(~x, ~x2..., ~xN )|2 .
(B2)
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In particular, for a two-boson system in 2D, the previous
equation reduces to

ρ(x, y) =

∫ ∞

−∞

dx2

∫ ∞

−∞

dy2 |Ψ(x, y, x2, y2)|2 . (B3)

We compute the density profile for the general interacting
case, in the harmonic trap, for the ground state of the
system as

ρ(x, y) =

∫ ∞

−∞

dx2

∫ ∞

−∞

dy2
2

π
e−

1
2 (~x+~x2)

2 |f (|~x− ~x2|)|2 ,
(B4)

where we have made use of the explicit form of the many-
body wave function of the ground state,

Ψ(~x1, ~x2) =

√

2

π
e−

1
4 (~x1+~x2)

2

f (|~x1 − ~x2|) . (B5)

This way of writing the wave function of the ground state
is equivalent to separate the center-of-mass part from the
relative part. Using the change of variables ~r = ~x − ~x2
and polar coordinates in Eq. (B4), we express the density
as

ρ(x, y) =
2

π
e−2(x2+y2)

∫ ∞

0

r dr e−
r2

2 |f (r)|2

×
∫ 2π

0

dϕ e−2r(x cosϕ+y sinϕ) = 4e−2(x2+y2)

×
∫ ∞

0

r dr e−
r2

2 |f (r)|2 I0
(

2r
√

x2 + y2
)

.

(B6)

We have used that
∫ 2π

0

dϕ eA cosϕ+B sinϕ = 2π I0
(

√

A2 +B2
)

, (B7)

where I0 is a modified Bessel function. Notice that, as
we would expect, in Eq. (B6) we have demonstrated that
the density only depends on the radial coordinate X ≡
√

x2 + y2, and we can rewrite that equation as

ρ(X) = 4e−2X2

∫ ∞

0

rdr e−
r2

2 |f (r)|2 I0 (2rX) . (B8)

This result is valid not only for our Gaussian-shaped po-
tential but also for any potential dependent only on the
modulus of the relative coordinate. In these other cases,
the explicit form of the interaction defines the relative
wave function f(r). In the noninteracting case, we can
compute the integral analytically, by substituting the ex-
plicit form of f0(r),

f0(r) =
1√
2π
e−

r2

4 , (B9)

and we recover the known result,

ρ0(X) =
2

π
e−2X2

∫ ∞

0

rdr e−r2I0 (2rX)

=
1

π
e−X2

= |ϕ0(X)|2 ,
(B10)

where ϕ0(X) is the wave function of the single-particle
ground state of the 2D harmonic oscillator. The pre-
vious result, ρ0(X) = |ϕ0(X)|2, is also valid for the
case of N noninteracting bosons in the 2D harmonic po-
tential, since the many-body wave function factorizes,
Ψ0(~x1, ~x2..., ~xN ) = ϕ0(~x1) ... ϕ0(~xN ). We recover the
previous result replacing the factorized wave function
into Eq. (B2).

b. Second-quantized density operator

For our numerical computations, we make use of the
second-quantized form of the density operator,

ρ̂ =
1

N

M
∑

i,j=1

â†i âjψ
∗
i (~x)ψj(~x). (B11)

For a state written in our Fock basis, Eq. (11), as

|Ψ〉 =
DM

N
∑

k=1

αk |k〉 , (B12)

where the index k labels each state of the basis, |k〉 =
|n1, ... , nM 〉, the density profile is computed as

ρ(~x) =
1

N

DM
N
∑

k′,k=1

M
∑

i,j=1

ψ∗
i (~x)ψj(~x)α

∗
k′αk 〈k′| â†i âj |k〉 ,

(B13)
where ψi(~x) are the single-particle eigenstates of the 2D
harmonic oscillator.

2. The pair correlation function

The pair correlation operator, normalized to unity, for
a system of N particles reads

η̂(~x, ~x′) ≡ 1

N(N − 1)

N
∑

i=1

N
∑

j 6=i

δ(~x− ~xi)δ(~x
′ − ~xj), (B14)

from which we obtain the pair correlation function for a
state of the N -boson system, Ψ(~x1, ... , ~xN ), as

η(~x, ~x′) =
1

N(N − 1)

N
∑

i=1

N
∑

j 6=i

∫

d~x1 ... d~xN

×δ(~x− ~xi)δ(~x
′ − ~xj) |Ψ(~x1, ... , ~xN )|2

=

∫

d~x3 ... d~xN |Ψ(~x, ~x′, ~x3 ... , ~xN )|2 .

(B15)

For the particular case of the ground state of two bosons
in 2D, we have

η (~x, ~x′) = |Ψ(~x, ~x′)|2 , (B16)
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where Ψ(~x, ~x′) is the corresponding wave function,
Eq. (B5). For the noninteracting case, in the harmonic
trap, we know the function of the relative part, Eq. (B9).
In that case, the pair correlation function is

η0 (~x, ~x
′) =

1

π2
e−~x2

e−~x′2

= |ϕ0(~x)|2 |ϕ0(~x
′)|2 . (B17)

The last result is also valid for the system of N bosons,
because then we can factorize, Ψ0(~x1, ~x2..., ~xN ) =
ϕ0(~x1) ... ϕ0(~xN ), and replace the wave function into
Eq. (B15) in order to find the same result.

Now, we fix one particle at the origin, and compute
the function

η (x, y) ≡ η(~x,~0) =
2

π
e−

1
2 (x

2+y2)
∣

∣

∣
f(
√

x2 + y2)
∣

∣

∣

2

.

(B18)
Notice that the previous function depends only on the

radial coordinate X ≡
√

x2 + y2, so we can write

η(X) =
2

π
e−

1
2X

2 |f(X)|2 . (B19)

Again, for the noninteracting case we have an analytical
expression for the previous function, that reads

η0(X) =
1

π2
e−X2

, (B20)

and is proportional to the density, Eq. (B10).
The probability density of finding a particle in the

space once we have found a particle at the origin is given
by the quantity η(X)/ρ(0). We verify its normalization
to unity in the general case,

∫

d~x
η(~x,~0)

ρ(~0)
=

∫

d~x d~x3 ... d~xN

∣

∣

∣
Ψ(~x,~0, ~x3 ... , ~xN )

∣

∣

∣

2

∫

d~x2 ... d~xN

∣

∣

∣
Ψ(~0, ~x2, ~x3 ... , ~xN )

∣

∣

∣

2 = 1,

(B21)
where we have used that all the particles are identical,
Eq. (B2) and Eq. (B15).

a. Second-quantized pair correlation operator

The second-quantized form of the pair correlation op-
erator is

η̂ =
1

N(N − 1)

M
∑

i,j,p,q=1

â†i â
†
pâj âqψ

∗
i (~x)ψ

∗
p(~x

′)ψj(~x)ψq(~x
′).

(B22)
For a state written in our Fock basis, Eq. (11), as

|Ψ〉 =
DM

N
∑

k=1

αk |k〉 , (B23)

where the index k labels each state of the basis, |k〉 =
|n1, ... , nM 〉, the pair correlation function is computed

as

η(~x, ~x′) =
1

N(N − 1)

M
∑

i,j,p,q=1

ψ∗
i (~x)ψ

∗
p(~x

′)ψj(~x)ψq(~x
′)

×
DM

N
∑

k′,k=1

α∗
k′αk 〈k′| â†i â†pâj âq |k〉 ,

(B24)
where ψi(~x) are the single-particle eigenstates of the 2D
harmonic oscillator.

3. The condensed fraction

The degree of condensation is characterized using the
one-body density matrix,

ρ
|Ψ〉
i,j ≡ 1

N
〈Ψ| â†i âj |Ψ〉 , (B25)

where, i, j = 1, ... ,M . Diagonalizing this matrix, its
eigenvalues ni are computed, which are the occupations
of the corresponding singe-particle eigenstates |φi〉. The

state |Ψ〉 is fully condensed when |Ψ〉 = |φ1〉⊗N
and then,

the one-body density matrix has only a single nonzero
eigenvalue, n1 = 1. If there is fragmentation in the sys-
tem, the highest eigenvalue n1 < 1, due to the normal-

ization,
∑M

i=1 ni = 1.

Appendix C: Computation of the integrals of

interaction for the second-quantized Hamiltonian

We make an effort to find an analytic expression for the
integrals of the interaction part because, in this way, we
avoid computing a lot of 4-dimensional integrals numer-
ically, which would mean needing more computational
time in order to achieve a good precision before any other
calculation. With our method, we have a fast and accu-
rate subroutine that computes Vi,j,k,l.

In order to compute the integrals, we write explicitly
the single-particle wave functions corresponding to the
ith eigenstate of the single-particle Hamiltonian,

ψi(nx,ny)(x, y) = Nnx
Nny

Hnx
(x)Hny

(y)e−
x2+y2

2 , (C1)

with Hn(x) the Hermite polynomials and the normaliza-
tion constant

Nn =

(

1√
π2nn!

)1/2

. (C2)

The Hermite polynomials are written in series represen-
tation as

Hn(x) =

⌊n/2⌋
∑

m=0

n!(−1)m2n−2m

m!(n− 2m)!
xn−2m, (C3)
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where ⌊n/2⌋ indicates the floor function of n/2. We re-
place Eq. (C1) into Eq. (9) in order to obtain

Vi,j,k,l =
1

πs2

4
∏

i=1

Nnxi
Nnyi

Ixx′Iyy′ , (C4)

with

Ixx′ =

∫ ∞

−∞

dx′Hnx2(x
′)Hnx3(x

′)e−Ax′2

×
∫ ∞

−∞

dxHnx1(x)Hnx4 (x)e
−Ax2+Bx

=

∫ ∞

−∞

dx′Hnx2(x
′)Hnx3(x

′)e−Ax′2

Ix(x
′),

(C5)

with the definitions

A ≡ 1 +
1

s2
, (C6)

B ≡ 2x′

s2
, (C7)

and analogously for Iyy′ . Now, we use the series represen-
tation of the Hermite polynomials, Eq. (C3), to compute
the integral Ix(x

′),

Ix(x
′) =

⌊nx1/2⌋
∑

k1=0

⌊nx4/2⌋
∑

k4=0

nx1!nx4!(−1)k1+k42Q

k1!k4!(nx1 − 2k1)!(nx4 − 2k4)!

×
∫ ∞

−∞

xQe−Ax2+Bxdx

=

⌊nx1/2⌋
∑

k1=0

⌊nx4/2⌋
∑

k4=0

nx1!nx4!(−1)k1+k42Q

k1!k4!(nx1 − 2k1)!(nx4 − 2k4)!

× i−QA−Q+1
2

√
πe

B2

4A U

(

−Q
2
;
1

2
;
−B2

4A

)

=

√

π

A
e

B2

4A

⌊nx1/2⌋
∑

k1=0

⌊nx4/2⌋
∑

k4=0

⌊Q/2⌋
∑

m=0

nx1!nx4!

k1!k4!(nx1 − 2k1)!

× (−1)k1+k4Q!

(nx4 − 2k4)!m!(Q − 2m)!AQ−m
BQ−2m,

(C8)

where U
(

−Q
2 ;

1
2 ;

−B2

4A

)

is a confluent hypergeometric

function of the second kind that we have expressed in
series and Q ∈ N is defined as

Q ≡ nx1 + nx4 − 2k1 − 2k4. (C9)

The next step is computing the integral in Eq. (C5) by
replacing the explicit form of Ix(x

′), Eq. (C8). First, we

notice that depending on the parity of the integrand, the
integral will be zero since we integrate in a symmetric
interval. The possible situations are

{

Ixx′ = 0 nx1 + nx2 + nx3 + nx4 odd

Ixx′ 6= 0 nx1 + nx2 + nx3 + nx4 even.
(C10)

In the second case, we compute the integral replacing
again the Hermite polynomials by their series represen-
tation and substituting (C8) into (C5),

Ixx′ =

∫ ∞

−∞

dx′Hnx2(x
′)Hnx3(x

′)e−Ax′2

Ix(x
′)

=

⌊nx1/2⌋
∑

k1=0

⌊nx2/2⌋
∑

k2=0

⌊nx3/2⌋
∑

k3=0

⌊nx4/2⌋
∑

k4=0

⌊Q/2⌋
∑

m=0

4
∏

i=1

nxi!

ki!(nxi − 2ki)!

×
√

π

A

Q!(−1)
∑4

j=1 kj2Q
′

m!(Q− 2m)!AQ−ms2Q−4m

∫ ∞

−∞

x′
Q′

e−A′x′2

dx′

=

⌊nx1/2⌋
∑

k1=0

⌊nx2/2⌋
∑

k2=0

⌊nx3/2⌋
∑

k3=0

⌊nx4/2⌋
∑

k4=0

⌊Q/2⌋
∑

m=0

4
∏

i=1

nxi!

ki!(nxi − 2ki)!

×
√

π

A

Q!(−1)
∑4

j=1 kj2Q
′

A′−Q′+1
2 Γ

(

Q′+1
2

)

m!(Q− 2m)!AQ−ms2Q−4m
,

(C11)
with the definitions

A′ ≡ A− 1

As4
, (C12)

Q′ ≡
4
∑

i=1

(nxi − 2ki)− 2m. (C13)

The expression is analogous for Iyy′ and all the sums
that appear are finite and have few terms when nxi are
small. Now, knowing the form of Ixx′ and Iyy′ we have
Vi,j,k,l. Moreover, many of the integrals are zero

{

Vi,j,k,l = 0
∑4

i=1 nxi odd or
∑4

i=1 nyi odd

Vi,j,k,l 6= 0
∑4

i=1 nxi even and
∑4

i=1 nyi even,

(C14)
and we also take profit from the symmetries of
Ixx(nx1, nx2, nx3, nx4), which verifies

Ixx(nx1, nx2, nx3, nx4) = Ixx(nx4, nx2, nx3, nx1)

= Ixx(nx1, nx3, nx2, nx4) = Ixx(nx4, nx3, nx2, nx1).
(C15)

Therefore, we are computing four integrals at the same
time.
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