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Abstract. Let N(n, r, k) denote the number of binary words of length n that

begin with 0 and contain exactly k runs (i.e., maximal subwords of identical
consecutive symbols) of length r. We show that the generating function for

the sequence N(n, r, 0), n = 0, 1, . . ., is (1−x)(1−2x+xr−xr+1)−1 and that
the generating function for {N(n, r, k)} is xkr time the k+1 power of this. We

extend to counts of words containing exactly k runs of 1s by using symmetries

on the set of binary words.
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1. Statement of the main results

By a maximal run in a binary word, we mean a maximal consecutive sub-sequence
of identical symbols, cf. [1], page 42. We will use the words “run” and “maximal
run” synonymously. A run at the beginning of a word is an initial sequence of
identical symbols that is followed immediately by a different symbol, and a run at
the end is defined analogously. If we cut a word between every pair of consecutive
symbols that differ, the subwords that result are the runs in that word.

The purpose of this note is to present generating functions that count the number
of binary words of length n (n = 0, 1, 2, . . .) that have a specified number of runs
of a specified length. Our main result is as follows:

Theorem 1.1. Let N(n, r, k) be the number of binary words of length n that begin
with 0 and contain exactly k maximal runs of length r. Then

∞∑
n=0

N(n, r, k)xn = xk r

(
1− x

1− 2x+ xr − xr+1

)k+1

.

This result is quite elementary, but we have not been able to find it in any
other source. The sequences with r = 1 and k < 5, and some sequences with r = 2
appear in the On-Line Encyclopedia of Integer Sequences, but the close relationships
between them is not made clear in the comments there.

The proof of the theorem is given in sections 3 and 4. We count sequences that
begin with 0 because this results in significant technical simplifications. Obviously,
we can deduce the count of all sequences with a specified number of runs of a
specified length using symmetry.

Some researchers are more interested in counting success runs than in counting
all runs. By a success run, we mean a maximal consecutive sub-sequence of 1s. Let

Date: July 10, 2017.

1

ar
X

iv
:1

70
7.

04
35

1v
1 

 [
m

at
h.

C
O

] 
 1

3 
Ju

l 2
01

7
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M(n, r, k) be the number of binary words of length n that begin with 0 and contain
exactly k maximal runs of 1s of length r.

Proposition 1.2. M(n, r, k) = N(n, r + 1, k) for all n, r and k.

The proof is given in section 5.
For a binary word b of length n, define Kr

n(b) to be the number runs of length
exactly r in b. If we view Kr

n as a random variable for a binomial experiment with
parameters (n, 1/2), then P (Kr

n = k) = N(n, r, k)/2n−1. Our results permit the
rapid computation of the exact distribution of Kr

n for n up to a thousand and any
r less than n. We include some graphs and computing times in section 6.

Now, let M
(r)
n (b) be the number of success runs in b that have length at least

r. Museli [2] has given an elementary formula for the probability P (M
(r)
n = m),

where M
(r)
n is viewed as a random variable on the sample space of an (n, p) binomial

experiment. The proposition shows how Museli’s results are related to ours.
Sinha & Sinha [3] used a generating function to attempt to derive a formula

for M(n, r, k), which in their notation is Nk,r
n . However, the generating function

that they use is different from ours and is used to count different objects, and they
require additional combinatorial arguments to get the formula they seek. We have
checked the formula they give against known counts, and we do not find agreement,
so we have either misunderstood their notation or there is an error in their formula.

2. Preliminaries

Let B0(n, r, k) denote the set of binary words b that satisfy the following condi-
tions:

• b is of length n;
• if n > 0, b begins with 0;
• b contains exactly k maximal runs of length r.

For small n, we have:

B0(n, r, k) = ∅, if n < 0, since there are no words of negative length;

B0(0, r, k) = {∗}, where ∗ denotes the empty word;

B0(1, 1, 0) = ∅ and B0(1, 1, 1) = {0};
B0(1, r, 0) = {0}, if r = 2, 3, . . ..

For example:

B0(6, 1, 0) = {000000, 000011, 000111, 001100, 001111};
B0(6, 2, 2) = {001101, 001001, 001011, 011001, 011011, 010011}.

3. Proof of theorem in case k = 0

We define the numbers W (n, r), n ∈ Z, r = 1, 2, . . ., as the coefficients of the
power series expansion of the rational function in the equation below. We write
Wr(x) for the power series.

(3.1) Wr(x) :=

∞∑
n=0

W (n, r)xn =
1− x

1− 2x+ xr − xr+1
.
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For small n, we have:

W (n, r) = 0, if n < 0;

W (0, r) = 1;

W (1, 1) = 0;

W (1, r) = 1, if r = 2, 3, . . ..

Moreover, for all r = 1, 2, . . ., W (n, r) is defined by the following recursion:

W (n, r) = 2W (n− 1, r)−W (n− r, r) +W (n− r − 1, r).

Remark 3.2. W (n, 1) is the Fibonacci sequence with a 1 prepended, which is
A212804 in the On-Line Encyclopedia of Integer Sequences. W (n, 2) is an offset
of A005251; W (n, 3) is an offset of A049856; W (n, 4) is an offset of A108758. The
sequences W (n, r) with r ≥ 5 do not appear in the OEIS at the present time.

Lemma 3.3. W (n, r) = N(n, r, 0) for all integers n and for all positive integers r.

Proof. To simplify notation, we set N(n, r) := N(n, r, 0). We must show that
W (n, r) = N(n, r). We can see that N(n, r) satisfies the initial conditions for
W (n, r) by inspection of the data already given. To verify the recursion formula,
we consider cases:

Case 1: 1 < n < r. In this case, no binary word of length n contains a run of
length r. Therefore, N(n, r) = 2n−1 = 2N(n − 1, r), since we are counting words
that begin with 0. Since n < r, W (n − r, r) = 0 = W (n − r − 1, r). Thus N(n, r)
satisfies the recursive rule of W (n, r) for n = 2, 3, . . . r − 1.

Case 2: 1 < n = r. We must show that N(r, r) = 2N(r− 1, r)− 1. But there is
only one binary word beginning with 0 and having length r that is not in B0(r, r, 0),
namely the word of r 0s. So this case is clear. In particular, N(r, r) = 2r−1 − 1.

Case 3: n = r + 1. We must show that N(r + 1, r) = 2N(r, r)−N(1, r) + 1. In
the special case r = 1, we need to show N(2, 1) = 2N(1, 1)−N(1, 1)+1 = 0+0+1.
This is evident, since the only word of length 2 beginning with 0 and having no
runs of length 1 is 00. If r > 1, we need to show N(r + 1, r) = 2N(r, r). We have
already verified that N(r, r) = 2r−1−1. There are only two binary words beginning
with 0 and having length r + 1 that contain runs of length r, namely 01 · · · 1 and
0 · · · 01, and hence N(r + 1, r) = 2r − 2, which is what we sought to show.

Case 4: n > r+ 1. (This case contains the key idea in this note.) We must show
that

N(n, r) = 2N(n− 1, r)−N(n− r, r) +N(n− r − 1, r).

There are N(n − 1, r) binary words of length n − 1 with no runs of length r. We
create 2N(n− 1, r) binary words by writing either a 0 or a 1 at the end of each of
these, but in doing so, we may create a run of length r. There are N(n−r, r) words
of length n− 1 that end with a run of length r− 1. (These arise from the elements
b of B0(n−r, r, 0) by appending to b a run of length r−1 symbols that are different
from the last symbol in b.) Each of these becomes a word containing a run of length
r in one way by the addition of a symbol at the end. Thus, when we extend words
from B0(n − 1, r, 0) by appending a symbol, we create 2N(n − 1, r) − N(n − r, r)
words of length n with no runs of length r.

Some words of length n−1 contain a run of length r at the end, and no other runs
of length r. There are exactly N(n− r − 1, r) of these, since we make each one by
taking an r-run-free word of length n−r−1 (i.e., and element of B0(n−r−1, r, 0))
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and appending a run of r symbols different from the last symbol of the taken word.
Upon the addition of one more copy of the same symbol, we create a word that is
free of runs of length r, thus adding N(n − r − 1, r) elements to the set we have
formed.

We have now described the only ways we can create or destroy a run of length r
by appending a symbol. This shows that the recursive formula for N(n, r) is valid
and completes the proof of the k = 0 case. �

4. Proof of theorem for k > 0

If w is a binary word, then op(w) denotes the word obtained from w by writing
1 in place of 0 and 0 in place of 1.

Let w ∈ B0(n, r, k). Then w has the structure:

w = w0r1w1r2 · · ·wk−1rkwk,

where ri is a run of 0s or of 1s of length r and wi ∈ B0(ni, r, 0). Note that wi may
be empty (i.e., ni = 0). Also note that n0 + · · ·+ nk = n− kr.

Given a word structure as above, suppose that for each i = 0, . . . , k we select a
word bi in B0(ni, r, 0). Then (we claim), there is only one way to substitute runs
of 0s or 1s for the ri and either bi or op(bi) for wi (i = 0, . . . , k) in order to make a
word in B0(n, r, k). We can see this inductively as follows. If w0 is empty, then r1
must consist of 0s. Otherwise, in place of w0, we write b0. Now, suppose we have
completed filling in values for the ri and wi up to a given point. The last symbol
in the word formed thus far either belongs to a run, or to some run-free wi. If we
are now to add a run, we must use symbols other than the last one appearing. If
we are to add a run-free segment (in place some non-empty wj) then we must add
either bj or op(bj) and we have only one choice, lest we extend the last run, rj .

The argument in the last paragraph shows that

N(n, r, k) =
∑

n1,··· ,nk

{
k∏

i=1

N(ni, r)
∣∣∣n0 + · · ·+ nk = n− rk

}
.

But this is the coefficient of xn−rk in (Wr(x))k+1, where Wr(x) is the power series
in 3.1. The equation in the theorem follows immediately.

5. Proof of the Proposition

Let B0(n) denote the set of all binary words of length n that begin with 0. We
define a bijection γ : B0(n) → B0(n) that codes runs of length r as subwords of
the form 01 · · · 1 of length r. Specifically, suppose b = r0r1 · · · rk is an element of
B0(n) written as a concatenation of runs ri. Necessarily, r0 is a run of 0s, r1 is
a run of 1s and so on. In general, the runs with even index consist of 0s, while
those of odd index consist of 1s. To compute γ(b), we proceed as follows. In place
of each ri, write a word of the same length as ri consisting of a 0 followed by 1s.
The inverse of γ is straightforward to construct. Again, suppose b ∈ B0(n). Then
b may be written in the form s0s1 · · · sk, where each si is a 0 followed by zero or
more consecutive 1s. We construct γ−1(b) as follows. In place of s0, write a string
of 0s of length equal to the length of s0; in place of s1 write a string of 1s of length
equal to the length of s1, and so on. In general, we write strings of 0s in place of
the si when i is even and strings of 1s in place of si when i is odd, always writing a
string of length equal to the one we are replacing. This is obviously the inverse of
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γ, so we see that γ is a bijection. Now, it is clearly the case that γ(B0(n, r + 1, k))
consists of exactly those strings in B0(n) that contain k runs of 1s of length r. This
proves the proposition.

6. Computations

The figure below shows the probability mass function of K1
240 to the right, in

red. To make the data more visible, we have filled in the region bounded above
by the polygonal path joining N(240, 1, k)/2239, for k = 30, 31, . . . , 100. We also
show the PMF of K2

240 in the middle, in orange (for k = 10, 11, . . . , 50), and the
PMF of K3

240 to the left, in green (for k = 10, 11, . . . , 50). Using the function
SeriesCoefficient in Mathematica on a 2013 MacBook Pro, it takes about 0.75
seconds to compute the 138 data points shown here. It takes about 2 minutes to
compute the whole list of 1001 numbers N(1000, 1, k)/2999, 0 ≤ k ≤ 1000.
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