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SOME UNIVERSAL QUADRATIC SUMS OVER THE

INTEGERS

HAI-LIANG WU AND ZHI-WEI SUN

Abstract. Let a, b, c, d, e, f ∈ N with a > c > e > 0, b 6 a and
b ≡ a (mod 2), d 6 c and d ≡ c (mod 2), f 6 e and f ≡ e (mod 2). If
any nonnegative integer can be written as x(ax + b)/2 + y(cy + d)/2 +
z(ez + f)/2 with x, y, z ∈ Z, then the tuple (a, b, c, d, e, f) is said to
be universal over Z. Recently, Z.-W. Sun found all candidates of such
universal tuples over Z. In this paper, we use the theory of ternary
quadratic forms to show that 38 concrete tuples (a, b, c, d, e, f) in Sun’s
list of candidates are indeed universal over Z. For example, we prove
the universality of (16, 4, 2, 0, 1, 1) over Z which is related to the famous
form x2 + y2 + 32z2.

1. Introduction

Those Tx = x(x + 1)/2 with x ∈ Z are called triangular numbers. In

1796 Gauss proved Fermat’s assertion that each n ∈ N = {0, 1, 2, . . .} can

be expressed as the sum of three triangular numbers.

For polynomials f1(x), f2(x), f3(x) with fi(Z) = {fi(x) : x ∈ Z} ⊆ N

for i = 1, 2, 3, if any n ∈ N can be written as f1(x) + f2(y) + f3(z) with

x, y, z ∈ Z then we call the sum f1(x) + f2(y) + f3(z) universal over Z. For

example, Tx + Ty + Tz is universal over Z by Gauss’ result.

In 1862 Liouville (cf. [2, p. 82]) determined all universal sums aTx+bTy+

cTz over Z with a, b, c ∈ Z+. Z.-W. Sun [23, 24] studied universal sums of

the form api(x) + bpj(y) + cpk(z) with a, b, c ∈ N and i, j, k ∈ {3, 4, . . .},

where pm(x) denotes the generalized polygonal number (m− 2)
(

x

2

)

+ x; see

also [11, 19, 10, 18, 16] for subsequent work on some of Sun’s conjectures

posed in [23, 24]. In 2017 Sun [26] investigated universal sums x(ax+ 1) +

y(by+1)+z(cz+1) over Z with a, b, c ∈ Z+ = {1, 2, 3, . . .} and also universal

sums x(ax+ b)+ y(ay+ c)+ z(az+ d) with a, b, c, d ∈ N and a > b > c > d.

Quite recently, Sun [27] investigated for what tuples (a, b, c, d, e, f) with

a > c > e > 1, b ≡ a (mod 2) and |b| 6 a, d ≡ c (mod 2) and |d| 6 c,
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f ≡ e (mod 2) and |f | 6 e, the sum

x(ax+ b)

2
+

y(cy + d)

2
+

z(ez + f)

2

is universal over Z. Such tuples (a, b, c, d, e, f) are said to be universal over

Z. He showed such tuples with |b| < a, |d| < c, |f | < e, and b > d if

a = c, and d > f if c = e, must be in his list of 12082 candidates (cf. [28,

A286944]), and conjectured that all such candidates are indeed universal

over Z. Note that

{

x(x− 1)

2
: x ∈ Z

}

= {Tx : x ∈ Z} = {x(2x+ 1) : x ∈ Z}.

Sun [27] proved that some candidates (a, b, c, d, e, f) are universal over Z,

e.g. (5, 1, 3, 1, 1, 1) (equivalent to (5, 1, 4, 2, 3, 1)) is universal over Z. Sun

even conjectured that any n ∈ N can be written as x(x + 1)/2 + y(3y +

1)/2 + z(5z + 1)/2 with x, y, z ∈ N.

In this paper, via the theory of ternary quadratic forms, we establish the

universality (over Z) of 38 concrete tuples (a, b, c, d, e, f) in Sun’s list of

candidates.

Theorem 1.1. The tuples

(5, 1, 2, 2, 1, 1), (6, 0, 3, 3, 3, 1), (6, 2, 5, 5, 1, 1),

(6, 6, 3, 3, 3, 1), (8, 2, 3, 1, 1, 1), (8, 6, 3, 1, 1, 1), (8, 8, 3, 1, 1, 1)

are universal over Z.

Remark 1.1. Our proof of Theorem 1.1 uses some special techniques. Sun

[24] conjectured that any n ∈ N can be written as Tx + 2Ty + p7(z) with

x, y, z ∈ N, and J. Ju, B.-K. Oh and B. Seo [16] proved that Tx+2Ty+p7(z)

(or the tuple (5, 3, 2, 2, 1, 1)) is universal over Z.

Similarly to [27, Theorem 1.4], we observe that {Tx+p5(y) : x, y ∈ Z} =

{p5(x) + 3p5(y) : x, y ∈ Z} which can be easily proved.
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Theorem 1.2. The tuples

(6, 0, 5, 1, 3, 1), (6, 0, 5, 3, 3, 1), (7, 1, 1, 1, 1, 1), (7, 1, 2, 0, 1, 1),

(7, 1, 2, 2, 1, 1), (7, 1, 3, 1, 1, 1), (7, 1, 3, 3, 1, 1), (7, 3, 1, 1, 1, 1),

(7, 3, 2, 0, 1, 1), (7, 3, 2, 2, 1, 1), (7, 3, 3, 1, 1, 1), (7, 3, 3, 3, 1, 1),

(7, 5, 1, 1, 1, 1), (7, 5, 3, 1, 1, 1), (7, 5, 3, 3, 1, 1), (15, 3, 3, 1, 1, 1),

(15, 5, 1, 1, 1, 1), (15, 5, 3, 1, 2, 0), (15, 5, 3, 1, 2, 2), (15, 9, 3, 1, 1, 1),

(21, 7, 3, 1, 2, 2)

are universal over Z.

Remark 1.2. Our proof of Theorem 1.2 involves the theory of genera of

ternary quadratic forms. Sun [24] conjectured that any n ∈ N can be

written as Tx+ y2+ p9(z) (or Tx+2Ty + p9(z)) with x, y, z ∈ N, and Ju, Oh

and Seo [16] proved that Tx + y2 + p9(z) and Tx + 2Ty + p9(z) are universal

over Z, i.e., the tuples (7, 5, 2, 0, 1, 1) and (7, 5, 2, 2, 1, 1) are universal over

Z.

Theorem 1.3. (i) The tuples (5, 5, 3, 1, 3, 1), (5, 5, 3, 3, 3, 1), (6, 4, 5, 5, 1, 1)

and (7, 7, 3, 1, 1, 1) are universal over Z.

(ii) All the five tuples

(6, 2, 5, 1, 1, 1), (6, 2, 5, 5, 1, 1), (6, 4, 5, 1, 1, 1), (15, 5, 6, 2, 1, 1), (15, 5, 6, 4, 1, 1)

are universal over Z.

Remark 1.3. Our proof of Theorem 1.3(i) employs the Minkowski-Siegel

formula (cf. [17, pp. 173–174]). Sun [24] conjectured that any n ∈ N can be

written as Tx + p7(y) + 2p5(z) (or Tx + p7(y) + p8(z)) with x, y, z ∈ N, and

Ju, Oh and Seo [16] proved that Tx + p7(y) + 2p5(z) and Tx + p7(y) + p8(z)

are universal over Z, i.e., the tuples (6, 2, 5, 3, 1, 1) and (6, 4, 5, 3, 1, 1) are

universal over Z.

Theorem 1.4. The tuple (16, 4, 2, 0, 1, 1) is universal over Z. In other

words, any n ∈ N can be written as Tx + y2 + 2z(4z + 1) with x, y, z ∈ Z.

Remark 1.4. This result is closely related to the famous form x2+y2+32z2.

Sun [27] even conjectured that any n ∈ N can be written as Tx+y2+2z(4z−

1) with x, y, z ∈ N.

We will show Theorems 1.1-1.4 in Sections 2-5 respectively.
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In view of Theorems 1.1-1.3, [27, Theorem 1.4], and some basic facts on

regular quadratic forms, among those conjectural universal tuples (a, b, c, d, e, f)

with a = 6 > c > e > 2, b ∈ (−a, a), d ∈ (−c, c), f ∈ (−e, e) and

a − b, c − d, e − f all even listed in [28, A286944], only the universality of

the tuples

(6, 0, 5, 1, 4, 2), (6, 0, 5, 3, 4, 2), (6, 2, 5, 3, 4, 0), (6, 2, 5, 3, 5, 3),

(6, 2, 6, 0, 5, 3), (6, 2, 6, 2, 5, 3), (6, 4, 5, 1, 4, 0), (6, 4, 5, 1, 5, 1),

((6, 4, 5, 3, 2, 0), (6, 4, 5, 3, 4, 0), (6, 4, 5, 3, 5, 3), (6, 4, 6, 0, 5, 1),

(6, 4, 6, 0, 5, 3)

remains open.

2. Proof of Theorem 1.1

Lemma 2.1. Let V be a quadratic space. For any isometry T ∈ O(V ) of

infinite order,

VT = {x ∈ V : there is a positive integer k such that T k(x) = x}.

is a subspace of V with dimension one, and T (x) = det(T )x for any x ∈ VT .

Remark 2.1. Any unexplained notation in the theory of quadratic forms can

be found in [4, 17, 20]. Lemma 2.1 is a known result, see, e.g., [18].

Lemma 2.2. (i) For any n ∈ N, we can write 12n + 5 as x2 + y2 + (6z)2

with x, y, z ∈ Z.

(ii) Let n ∈ Z+ and δ ∈ {0, 1}. Then we can write 6n+1 as x2+3y2+6z2

with x, y, z ∈ Z and x ≡ δ (mod 2).

Remark 2.2. Lemma 2.2 is a known result due to the second author, see

[24, Theorem 1.7(iii) and Lemma 3.3] and [26, Remark 3.1].

John S. Hsia, in a letter to Irving Kaplansky in 1993, proved that x2 +

y2 + 10z2 represents all eligible numbers of the form 3m + 2 (cf. [14, pp.

12–14]). As all positive odd numbers are eligible by Hensel’s lemma, we

have the following lemma.

Lemma 2.3. For each n ∈ N, we can write 6n + 5 as x2 + y2 + 10z2 with

x, y, z ∈ Z.

For a, b, c ∈ Z+, we define

E(a, b, c) = {n ∈ N : n 6= ax2 + by2 + cz2 for all x, y, z ∈ Z}.
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L.E. Dickson [7, pp. 112-113] listed all the 102 primitive regular diagonal

quadratic forms ax2 + by2 + cz2 for which the structure of E(a, b, c) is

known explicitly. For example, the Gauss-Legendre theorem asserts that

E(1, 1, 1) = {4k(8l + 7) : k, l ∈ N}.

In 1996 W. Jagy [12] investigated so-called nearly regular quadratic forms,

and showed the following result (cf. [14, pp. 25–26]).

Lemma 2.4. We have

E(1, 4, 9) = {2} ∪
⋃

k,l∈N

{4k(8l + 7), 8l + 3, 9l + 3}.

Proof of Theorem 1.1. (i) Let n ∈ N and r ∈ {1, 3}. Apparently,

n = Tx + y(y + 1) +
z(5z + r)

2
⇐⇒ 40n+ r2 + 15 = 5(2x+ 1)2 + 10(2y + 1)2 + (10z + r)2.

Since

E(1, 5, 10) = {25km : k,m ∈ N and m ≡ 2, 3 (mod 5)},

we have 40 + r2 + 15 ∈ {x2 + 5y2 + 10z2 : x, y, z ∈ N}. Thus we can write

40n+ r2 + 15 = (2kx0)
2 + 5(2ky0)

2 + 10(2kz0)
2 = 4k(x2

0 + 5y20 + 10z0)
2

with k ∈ N, x0, y0, z0 ∈ Z, and x0, y0, z0 not all even. In the case k = 0, if

2 | z0 then x2
0 + 5y20 ≡ r2 + 15 ≡ 0 (mod 8) and hence x0 ≡ y0 ≡ 0 (mod 2)

which contradicts that x0, y0, z0 are not all even, thus 2 ∤ z0 and also 2 ∤ x0y0

since x2
0 + 5y20 ≡ r2 + 15− 10z20 ≡ 6 (mod 8).

It is easy to verify the following new identity:

42(x2+5y2+10z2) = (x−5y−10z)2+5(x+3y−2z)2+10(x−y+2z)2. (2.1)

If x, y, z are odd integers, then by (2.1) we have

4(x2 + 5y2 + z2) = x̄2 + 5ȳ2 + 10z̄2

with

x̃ =
x− y

2
− 2y − 5z, ỹ =

x− y

2
+ 2y − z, z̃ =

x− y

2
+ z

all odd. Thus, if 2 ∤ x0y0z0 then

40n+r2+15 = 4k(x2

0+5y20+10z20) ∈ {x2+5y2+10z2 : x,y, z are odd}. (2.2)

If x0 6≡ y0 (mod 2), then x2
0 + 5y20 + 10z20 ≡ 1 (mod 2) and k > 2 since

40n+ r2 + 15 ≡ 0 (mod 8), hence by (2.1) we have

42(x2

0 + 5y20 + 10z20) = x̄2

0 + 5ȳ20 + 10z̄20
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with x̄0 = x0 − 5y0 − 10z0, ȳ0 = x0 + 3y0 − 2z0 and z̄0 = x0 − y0 + 2z0 all

odd, and therefore (2.2) holds.

Now we suppose that k > 0, 2 | x0y0z0 and x0 ≡ y0 (mod 2). By (2.1),

4(x2

0 + 5y20 + 10z20) = x2

1 + 5y21 + 10z21

with

x1 =
x0 − y0

2
− 2y0 − 5z0, y1 =

x0 − y0
2

+ 2y0 − z0, z1 =
x0 − y0

2
+ z0

If x0 and y0 are odd, then we may assume x0 6≡ y0 − 2z0 (mod 4) without

loss of generality (otherwise we replace x0 by −x0), and hence x1, y1, z1 are

all odd. If x0, y0, (x0−y0)/2 are all even, then z0 is odd and so are x1, y1, z1.

If x0 and y0 are even with x0 6≡ y0 (mod 4), then z0 is odd and we may

assume z0 ≡ (y0 − x0)/2 (mod 4) without loss of generality (otherwise we

replace z0 by −z0), hence z1 ≡ 0 (mod 4), y1 = z1 + 2(y0 − z0) ≡ 0 (mod 2)

and (x1 − y1)/4 ≡ −y0 − z0 ≡ 1 (mod 2), therefore by (2.1) we have

x2

1 + 5y21 + 10z21 = x2

2 + 5y22 + 10z22

with

x2 =
x1 − 5y1 − 10z1

4
, y2 =

x1 + 3y1 − 2z1
4

, z2 =
x1 − y1 + 2z1

4

all odd. So we still have (2.2).

By the above, there always exist odd integers x, y, z such that 40n+ r2+

15 = x2 + 5y2 + 10z2. Write y = 2u + 1 and z = 2v + 1 with u, v ∈ Z.

As x2 ≡ r2 (mod 5), either x or −x has the form 10w + r with w ∈ Z.

Therefore

40n+ r2 + 15 = (10w + r)2 + 5(2u+ 1)2 + 10(2v + 1)2

and hence n = Tu + v(v+1)+w(5w+ r)/2. This proves the universality of

(5, r, 2, 2, 1, 1) over Z.

There is an alternative way using (2.1) and Lemma 2.1 with

T =





1/4 −5/4 −5/2
1/4 3/4 −1/2
1/4 −1/4 1/2





to explain that 40n+ r2+15 = x2+5y2+10z2 for some odd integers x, y, z.

(ii) Let n ∈ N and r ∈ {1, 3}. Apparently,

n = Tx +
y(3y + 1)

2
+ z(4z + r)

⇐⇒ 48n+ 3r2 + 8 = 6(2x+ 1)2 + 2(6y + 1)2 + 3(8z + r)2.
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Since

E(2, 3, 6) = {3q + 1 : q ∈ N} ∪ {4k(8l + 7) : k, l ∈ N}

by Dickson [7, pp. 112-113], we see that 48n + 3r2 + 8 = 2x2 + 3y2 + 6z2

for some x, y, z ∈ Z. Clearly, y2 + 2z2 6= 0, and hence by [24, Lemma 2.1]

we have y2 + 2z2 = y20 + 2z20 for some y0, z0 ∈ Z not all divisible by 3.

Thus, without any loss of generality, we simply assume that 3 ∤ y or 3 ∤ z.

Note that 3 ∤ x, 2 ∤ y, and x ≡ z (mod 2) since 2(x2 + z2) ≡ 2x2 + 6z2 ≡

3r2 + 8 − 3y2 ≡ 0 (mod 4). If 3 | y and 3 ∤ z, then z or −z is congruent

to x + y modulo 3. If 3 ∤ y and 3 | z, then y or −y is congruent to x + z

modulo 3. If 3 ∤ yz, then ε1y ≡ ε2z ≡ x (mod 3) for some ε1, ε2 ∈ {±1}.

So, without loss of generality, we may assume that x + y + z ≡ 0 (mod 3)

(otherwise we may change signs of x, y, z suitably). Note that

48n+ 3r2 + 8 = 2x2 + 3y2 + 6z2 = 2a2 + 3b2 + 6c2,

where a = y + z, b = (2x− y + 2z)/3 and c = (x + y − 2z)/3 are integers.

If x ≡ z ≡ 1 (mod 2), then x, y, z are all odd. If x ≡ z ≡ 0 (mod 2), then

a, b, c are all odd.

By the above, 48n+3r2+8 = 2a2+3b2+6c2 for some odd integers a, b, c.

Since 3b2 ≡ 3r2 + 8 − 2a2 − 6c2 ≡ 3r2 (mod 16), we can write b or −b as

8w + r with w ∈ Z. Clearly, a or −a has the form 6u + 1 with u ∈ Z, and

c = 2v + 1 for some v ∈ Z. Therefore

48n+ 3r2 + 8 = 2(6u+ 1)2 + 3(8w + r)2 + 6(2v + 1)2

and hence n = u(3u+ 1)/2 + Tv + w(4w + r). This proves the universality

of (8, 2r, 3, 1, 1, 1) over Z.

(iii) Let n ∈ N. By Lemma 2.2(ii), we can write 6n + 7 in the form

x2+3y2+6z2 with x, y, z ∈ Z and x ≡ n+1 (mod 2). Clearly, y ≡ n (mod 2).

Since 6z2 ≡ 6n+ 7− (n+ 1)2 − 3n2 ≡ 6 (mod 4), we have 2 ∤ z. Hence

24n+ 28 = 4(6n+ 7) = 4(x2 + 3y2 + 6z2) = (x− 3y)2 + 3(x+ y)2 + 24z2

with x− 2y, x+ 2y and z all odd. Note that x− 3y or 3y− x has the form

6w + 1 with w ∈ Z. Write x + y = 2u + 1 and z = 2v + 1 with u, v ∈ Z.

Then

24n+ 28 = (6w + 1)2 + 3(2u+ 1)2 + 24(2v + 1)2

and hence n = w(3w + 1)/2 + Tu + 8Tv. This proves the universality of

(8, 8, 3, 1, 1, 1).
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(iv) Let n ∈ N. By Lemma 2.3, we can write 6n + 5 as x2 + y2 + 10z2

with x, y, z ∈ Z. Clearly, x 6≡ y (mod 2). Since x2 + y2 + z2 ≡ 2 (mod 3),

exactly one of x, y, z is divisible by 3. Without loss of generality, we may

assume that x+ y+ z ≡ 0 (mod 3) (other we adjust signs of x, y, z suitably

to meet our purpose). Observe that

4(x2 + y2 + 10z2) = 2(x− y)2 + 3

(

x+ y + 10z

3

)2

+ 15

(

x+ y − 2z

3

)2

.

So, 4(6n + 5) = 2a2 + 3b2 + 15c2 for some odd integers a, b, c. As 3 ∤ a, we

may write a or −a as 6w + 1 with w ∈ Z. Write b = 2u+ 1 and c = 2v + 1

with u, v ∈ Z. Then

24n+ 20 = 2(6w + 1)2 + 3(2u+ 1)2 + 15(2v + 1)2

and hence n = Tu + 5Tv + w(3w + 1). This proves the universality of

(6, 2, 5, 5, 1, 1) over Z.

(v) Let n ∈ N. By Lemma 2.2(i), we can write 12n + 5 in the form

x2 + y2 + (6z)2 with x, y, z ∈ Z. It follows that 24n+ 10 = (x+ y)2 + (x−

y)2 + 72z2. As (x+ y)2 + (x− y)2 ≡ 10 ≡ 2 (mod 4), both x+ y and x− y

are odd. Since (x + y)2 + (x− y)2 ≡ 10 ≡ 1 (mod 3), exactly one of x+ y

and x − y is divisible by 3. So (x+ y)2 + (x− y)2 = (6u+ 1)2 + (6v + 3)2

for some u, v ∈ Z. Therefore

24n+ 10 = (6u+ 1)2 + (6v + 3)2 + 72z2

and hence n = u(3u + 1)/2 + 3Tv + 3z2. This proves the universality of

(6, 0, 3, 3, 3, 1) over Z.

By Lemma 2.4, we can write 12n + 14 in the form x2 + 4y2 + 9z2 with

x, y, z ∈ Z. Since x2 + z2 ≡ 14 (mod 4), we have 2 ∤ xz. Observe that

24n+ 28 = 2(x2 + 4y2 + 9z2) = (x− 2y)2 + (x+ 2y)2 + 18z2

with x ± 2y and z all odd. Clearly, exactly one of x − 2y and x + 2y is

divisible by 3. So, for some u, v, w ∈ Z we have

24n+ 28 = (6x+ 1)2 + 9(2y + 1)2 + 18(2z + 1)2

and hence n = x(3x + 1)/2 + 3Ty + 6Tz. This proves the universality of

(6, 6, 3, 3, 3, 1) over Z.

The proof of Theorem 1.1 is now complete. �
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3. Proof of Theorem 1.2

The following lemma is one of the most important theorems about integral

representations of quadratic forms (cf. [4, pp.129]).

Lemma 3.1. Let f be a nonsingular integral quadratic form and let m be a

nonzero integer which is represented by f over the real field R and the ring

Zp of p-adic integers for each prime p. Then m is represented by some form

f ∗ over Z where f ∗ is in the same genus of f .

Lemma 3.2. (i) [24, Lemma 3.2] If x2 + 3y2 ≡ 4 (mod 8) with x, y ∈ Z,

then x2 + 3y2 = u2 + 3v2 for some odd integers u and v.

(ii) [24, Lemma 3.6] If w = x2 + 7y2 > 0 with x, y ∈ Z and 8 | w, then

w = u2 + 7v2 for some odd integers u and v.

(iii) [27, Lemma 5.1] If w = 3x2 + 5y2 > 0 with x, y ∈ Z and 8 | w, then

w = 3u2 + 5v2 for some odd integers u and v.

Proof of Theorem 1.2. (i) Let n ∈ N. Clearly,

n = Tx+Ty+5z(3z+1)/2 ⇐⇒ 24n+11 = 3(2x+1)2+3(2y+1)2+5(6z+1)2.

There are two classes in the genus of 3x2 + 3y2 + 5z2, and the one not

containing 3x2 + 3y2 + 5z2 has the representative

3x2 + 2y2 + 8z2 − 2yz =3x2 + 3
(y

2
+ z

)2

+ 5
(y

2
− z

)2

=3x2 + 3

(

y − 3z

2

)2

+ 5

(

y + z

2

)2

If 24n+11 = 3x2+2y2+8z2−2yz with y odd and z even, then 3x2 ≡ 11−

2y2 ≡ 9 (mod 4) which is impossible. Thus, if 24n+11 ∈ {3x2+2y2+8z2−

2yz : x, y, z ∈ Z} then 24n+11 ∈ {3x2+3y2+5z2 : x, y, z ∈ Z}. With the

help of Lemma 3.1, there are x, y, z ∈ Z such that 24n+11 = 3x2+3y2+5z2.

As 5z2 6≡ 11 (mod 4), x and y cannot be both even. Without loss of

generality, we assume that 2 ∤ x. Then 3y2 + 5z2 ≡ 11 − 3x2 ≡ 0 (mod 8)

and 3y2 + 5z2 6= 0. By Lemma 3.2(iii), 3y2 + 5z2 = 3y20 + 5z20 for some odd

integers y0 and z0. Write x = 2u+1 and y0 = 2v+1 with u, v ∈ Z. As 2 ∤ z0

and 3 ∤ z0, z0 or −z0 has the form 6w + 1 with w ∈ Z. Thus 24n + 11 =

3(2u+1)2+3(2v+1)2+5(6w+1)2 and hence n = Tu+Tv +5w(3w+1)/2.

This proves the universality of (15, 5, 1, 1, 1, 1) over Z.
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(ii) Let n ∈ N and r ∈ {1, 3}. Obviously,

n = Tx +
y(3y + 1)

2
+ 3

z(5z + r)

2
⇐⇒ 120n+ 9r2 + 20 = 15(2x+ 1)2 + 5(6y + 1)2 + 9(10z + r)2.

There are two classes in the genus of x2 + 15y2 + 5z2, and the one not

containing x2 + 15y2 + 5z2 has the representative

4x2 + 4y2 + 5z2 + 2xy =
(x

2
+ 2y

)2

+ 15
(x

2

)2

+ 5z2

=
(

2x+
y

2

)2

+ 15
(y

2

)2

+ 5z2.

If 120n + 9r2 + 20 = 4x2 + 4y2 + 5z2 + 2xy with x, y, z ∈ Z, then 2xy ≡

9r2 − 5z2 ≡ 0 (mod 4) and hence x or y is even. Thus, with the help

of Lemma 3.1, we can always write 120n + 9r2 + 20 = x2 + 15y2 + 5z2

with x, y, z ∈ Z. Since x2 + 5z2 ≡ 20 ≡ 2 (mod 3), x = 3x0 for some

x0 ∈ Z. As 15y2 6≡ 9r2 (mod 4), x and z cannot be both even. If 2 ∤ x,

then 5(3y2 + z2) ≡ 9r2 + 20− x2 ≡ 4 (mod 8) and hence by Lemma 3.2(i)

we can write 3y2 + z2 as 3y20 + z20 with y0 and z0 both odd. If 2 ∤ z, then

x2 + 15y2 6= 0 and x2 + 15y2 = 3(3x2
0 + 5y2) ≡ 9r2 + 20− 5z2 ≡ 0 (mod 8),

hence by Lemma 3.2(iii) we can write 3x2
0 + 5y2 as 3x2

1 + 5y21 with x1 and

y1 both odd.

By the above, there are odd integers x, y, z such that 120n+ 9r2 + 20 =

9x2 + 15y2 + 5z2. Write y = 2u+ 1 with u ∈ Z. As 3 ∤ z, we can write z or

−z as 6v + 1 with v ∈ Z. Since x2 ≡ r2 (mod 5), we can write x or −x as

10w + r with w ∈ Z. Thus

120n+ 9r2 + 20 = 15(2u+ 1)2 + 5(6v + 1)2 + 9(10z + r)2

and hence n = Tx+y(3y+1)/2+3z(5z+ r)/2 with x, y, z ∈ Z. This proves

the universality of (15, 3r, 3, 1, 1, 1) over Z.

(iii) Let n ∈ N and r ∈ {1, 3}. Apparently,

n = 3x2 +
y(3y + 1)

2
+

z(5z + r)

2
⇐⇒ 120n+ 3r2 + 5 = 360x2 + 5(6y + s)2 + 3(10z + r)2.

If 60n + (3r2 + 5)/2 = 4x2 + 4y2 + 5z2 + 2xy with x, y, z ∈ Z, then x or y

must be even. Thus, as in part (ii), 60n+ (3r2 +5)/2 = x2 +5y2 +15z2 for

some x, y, z ∈ Z. Note that x2 + y2 ≡ z2 (mod 4). If y is odd, then 2 | x,

2 ∤ z and we may assume y 6≡ z (mod 4) (otherwise it suffices to change the
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sign of z), hence

y2 + 3z2 =

(

y − 3z

2

)2

+ 3

(

y + z

2

)2

with y1 = (y − 3z)/2 and z1 = (y + z)/2 both even. So, without loss of

generality, we may simply assume that 2 | y and x ≡ z (mod 2). Observe

that

120n+ 3r2 + 5 = 2(x2 + 5y2 + 15z2) = 3a2 + 5b2 + 10y2.

with a = (x + 5z)/2 and b = (x − 3z)/2 both integral. Since 3a2 + 5b2 ≡

5s2 + 3t2 − 10y2 ≡ 0 (mod 8) and 3a2 + 5b2 > 0, by Lemma 3.2(iii) we can

write 3a2 + 5b2 = 3c2 + 5d2 with c and d both odd. Thus

120n+ 3r2 + 5 = 3c2 + 5d2 + 40
(y

2

)2

.

As (y/2)2 ≡ 5(1−d2) ≡ d2−1 (mod 3), we must have 3 ∤ d and 3 | y. Write

y = 6u with u ∈ Z. Clearly, d or −d has the form 6v + 1 with v ∈ Z. Since

c2 ≡ r2 (mod 5), we may write c or −c as 10w + r with w ∈ Z. Therefore

120n+ 3r2 + 5 = 3(10w + r)2 + 5(6v + 1)2 + 40(3u)2

and hence n = 3u2+v(3v+1)/2+w(5w+r)/2. This proves the universality

of (6, 0, 5, r, 3, 1) over Z.

(iv) Let n ∈ N and δ ∈ {0, 1}. Clearly,

n = x(x+ δ) +
y(3y + 1)

2
+ 5

z(3z + 1)

2
⇐⇒ 24n+ 6(δ + 1) = 6(2x+ δ)2 + (6y + 1)2 + 5(6z + 1)2.

There are two classes in the genus of x2 + 5y2 + 6z2, and the one not

containing x2+5y2+6z2 has the representative 3x2+3y2+4z2−2yz+2zx.

If 24n + 6(δ + 1) = 3x2 + 3y2 + 4z2 − 2yz + 2zx, then u = (x + y)/2 and

v = (x− y)/2 are integers, and

24n+ 6(δ + 1) = 6u2 + 6v2 + 4z2 + 4vz = 6u2 + 5v2 + (v + 2z)2.

Thus, by Lemma 3.1, 24n+ 6(δ + 1) = x2 + 5y2 + 6z2 for some x, y, z ∈ Z.

Since x2 ≡ −5y2 ≡ y2 (mod 3), we may assume that x ≡ y (mod 3)

without loss of generality. If z 6≡ δ (mod 2), then x2 + 5y2 ≡ 6(δ + 1) −

6z2 ≡ 6(δ + 1)− 6(1 − δ) ≡ 4δ (mod 8), hence both x and y are even and

(x− y)/2 ≡ δ (mod 2), and thus

x2 + 5y2 + 6z2 =

(

z −
5(x− y)

6

)2

+ 5

(

x− y

6
+ z

)2

+ 6

(

x− y

6
+ y

)2

with (x− y)/6 + y ≡ (x− y)/2 ≡ δ (mod 2).
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By the above, 24n+ 6(δ + 1) = x2 + 5y2 + 6z2 for some x, y, z ∈ Z with

x, y, z ∈ Z with z ≡ δ (mod 2). Since x2+5y2 is a positive multiple of 3, by

[24, Lemma 2.1] we can write x2+5y2 = x2
0+5y20 with x0y0 ∈ Z and 3 ∤ x0y0.

So, there are x, y, z ∈ Z with x ≡ y 6≡ 0 (mod 3) and z ≡ δ (mod 2) such

that 24n+ 6(δ + 1) = x2 + 5y2 + 6z2. Write z = 2w + δ with w ∈ Z. Since

x2 + 5y2 ≡ 6 (mod 8), both x and y are odd. Thus x or −x has the form

6u+ 1 with u ∈ Z, and y or −y has the form 6v + 1 with v ∈ Z. Therefore

24n+ 6(δ + 1) = (6u+ 1)2 + 5(6v + 1)2 + 6(2w + δ)2

and hence n = w(w + δ) + u(3u + 1)/2 + 5v(3v + 1)/2. This proves the

universality of (15, 5, 3, 1, 2, 2δ) over Z.

(v) Let n ∈ N. Apparently,

n = x(x+ 1) +
y(3y + 1)

2
+ 7

z(3z + 1)

2
⇐⇒ 24n+ 14 = 6(2x+ 1)2 + (6y + 1)2 + 7(6z + 1)2.

There are two classes in the genus of x2 + 6y2 + 7z2, and the one not

containing x2 + 6y2 + 7z2 has the representative

2x2+5y2+5z2−4yz = 2x2+10u2+10v2−4(u+v)(u−v) = 2x2+6u2+14v2

with u = (y + z)/2 and v = (y − z)/2. If 24n + 14 = 2x2 + 6u2 + 14v2

for some x, u, v ∈ Z with x 6≡ v (mod 2), then 14 ≡ 2 + 6u2 (mod 8)

which is impossible. If 24n + 14 = 2x2 + 6u2 + 14v2 with x, u, v ∈ Z and

x ≡ v (mod 2), then

24n+ 14 = 6u2 +

(

x− 7v

2

)2

+ 7

(

x+ v

2

)2

.

By the above and Lemma 3.1, there are x, y, z ∈ Z such that 24n+ 14 =

6x2 + y2 + 7z2. If 2 | x, then y2 + 7z2 ≡ 6 − 6x2 ≡ 6 (mod 8) which is

impossible. So x = 2u+ 1 for some u ∈ Z. Note that y2 + 7z2 ≡ 6− 6x2 ≡

0 (mod 8) and y2 +7z2 6= 0. Applying Lemma 3.2(ii) we can write y2+7z2

as y20 + 7z20 with y0 and z0 both odd. Note that y20 + z20 ≡ y20 + 7z20 ≡ 14 ≡

2 (mod 3). So y0 or −y0 can be written as 6v+1 with v ∈ Z, and z0 or −z0

has the form 6w + 1 with w ∈ Z. Thus

24n+ 14 = 6x2 + y20 + 7z20 = 6(2u+ 1)2 + (6v + 1)2 + 7(6w + 1)2

and hence n = u(u + 1) + v(3v + 1)/2 + 7z(3z + 1)/2. This proves the

universality of (21, 7, 3, 1, 2, 2).
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(vi) Let r ∈ {1, 3, 5} and n ∈ N. Clearly,

n = Tx+Ty+
z(7z + r)

2
⇐⇒ 56n+14+r2 = 7(2x+1)2+7(2y+1)2+(14z+r)2.

There are two classes in the genus of x2 + 7y2 + 7z2, and the one not

containing x2 + 7y2 + 7z2 has the representative

2x2 + 4y2 + 7z2 + 2xy =
(x

2
+ 2y

)2

+ 7
(x

2

)2

+ 7z2.

=

(

x− 3y

2

)2

+ 7

(

x+ y

2

)2

+ 7z2

If 56n + 14 + r2 = 2x2 + 4y2 + 7z2 + 2xy with x odd and y even, then

15 ≡ 14 + r2 ≡ 2x2 + 7z2 ≡ 9 (mod 4) which is impossible. Thus, if

56n+14+r2 ∈ {2x2+4y2+7z2+2xy : x, y, z ∈ Z} then 56n+14+r2 ∈ {x2+

7y2 + 7z2 : x, y, z ∈ Z}. With the help of Lemma 3.1, there are x, y, z ∈ Z

such that 56n + 14 + r2 = x2 + 7y2 + 7z2. As x2 6≡ 14 + r2 ≡ 15 (mod 4),

y and z cannot be both even. Without loss of generality, we assume that

2 ∤ z. Then x2 + 7y2 ≡ 14 + r2 − 7z2 ≡ 0 (mod 8) and x2 + 7y2 6= 0. By

Lemma 3.2(ii), x2 + 7y2 = x2
0 + 7y20 for some odd integers x0 and y0. Now

56n + 14 + r2 = x2
0 + 7y20 + 7z2. Clearly, x0 or −x0 has the form 14w + r

with w ∈ Z. Write y0 = 2u+ 1 and z = 2v + 1 with u, v ∈ Z. Then

56n+ 14 + r2 = (14w + r)2 + 7(2u+ 1)2 + 7(2v + 1)2

and hence n = Tu + Tv + w(7w + r)/2. This proves the universality of

(7, r, 1, 1, 1, 1) over Z.

(vii) Let n ∈ N, s ∈ {1, 3} and t ∈ {1, 3, 5}. Clearly,

n = Tx +
y(3y + s)

2
+

z(7z + t)

2
⇐⇒ 168n+ 21 + 7s2 + 3t2 = 21(2x+ 1)2 + 7(6y + s)2 + 3(14z + t)2.

There are two classes in the genus of 3x2 + 21y2 + 7z2, and the one not

containing 3x2 + 21y2 + 7z2 has the representative

6x2 + 12y2 + 7z2 + 6xy =3
(x

2
+ 2y

)2

+ 21
(x

2

)2

+ 7z2.

=3

(

x− 3y

2

)2

+ 21

(

x+ y

2

)2

+ 7z2

If 168n + 21 + 7s2 + 3t2 = 6x2 + 12y2 + 7z2 + 6xy with x odd and y even,

then 31 ≡ 21 + 7s2 + 3t2 ≡ 6x2 + 7z2 ≡ 13 (mod 4) which is impossible.

Thus, if 168n + 21 + 7s2 + 3t2 ∈ {6x2 + 12y2 + 7z2 + 6xy : x, y, z ∈ Z}

then 168n + 21 + 7s2 + 3t2 ∈ {3x2 + 21y2 + 7z2 : x, y, z ∈ Z}. With the
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help of Lemma 3.1, there are x, y, z ∈ Z such that 168n+ 21 + 7s2 + 3t2 =

3x2 + 21y2 + 7z2. As 21y2 6≡ 21 + 7s2 + 3t2 ≡ 31 (mod 4), x and z cannot

be both even. If 2 ∤ x, then 21y2 + 7z2 ≡ 21 + 7s2 + 3t2 − 3x2 ≡ 4 (mod 8)

and hence by Lemma 3.2(i) we can write 3y2+z2 as 3y20+z20 with y0, z0 odd

integers. Note that x2+7y2 6= 0 since 7 ∤ t. If 2 ∤ z, then 3(x2+7y2) ≡ 21+

7s2+3t2−7z2 ≡ 0 (mod 8) and hence by Lemma 3.2(ii) x2+7y2 = x2
0+7y20

for some odd integers x0 and y0.

By the above, there are odd integers x, y, z such that 168n+21+7s2+3t2 =

3x2 + 7y2 + 21z2. Write z = 2u + 1 with u ∈ Z. As y2 ≡ s2 (mod 3), y or

−y has the form 6v+ s with v ∈ Z. Since x2 ≡ t2 (mod 7), x or −x has the

form 14w + t with w ∈ Z. Thus

168n+ 21 + 7s2 + 3t2 = 3(14w + t)2 + 7(6v + s)2 + 21(2u+ 1)2

and hence n = Tu+ v(3v+ s)/2+w(7w+ t)/2. This proves the universality

of (7, t, 3, s, 1, 1) over Z.

(viii) Let δ ∈ {0, 1} and r ∈ {1, 3, 5}. Clearly,

n = Tx + y(y + δ) +
z(7z + r)

2
⇐⇒ 56n+ 14δ + r2 + 7 = 7(2x+ 1)2 + 14(2y + δ)2 + (14z + r)2.

There are two classes in the genus of x2+7y2+14z2, the one not containing

x2 + 7y2 + 14z2 has the representative

2x2 + 7y2 + 7z2 = 2x2 + 14

(

y + z

2

)2

+ 14

(

y − z

2

)2

.

If 56n+14δ+r2+7 = 2x2+14y2+14z2 with x, y, z ∈ Z and y ≡ z (mod 2),

then 2x2 ≡ 14δ + r2 + 7 ≡ 2δ (mod 4), hence x2 ≡ δ (mod 4) and y ≡ z ≡

δ (mod 2) since

−2(y2 + z2) ≡ 14(y2 + z2) ≡ 14δ + r2 + 7− 2δ ≡ −4δ (mod 8).

If 56n+14δ+r2+7 = 2x2+14y2+14z2 with x, y, z ∈ Z and x ≡ y (mod 2),

then

56n+ 14δ + r2 + 7 =

(

x− 7y

2

)2

+ 7

(

x+ y

2

)2

+ 14z2.

In view of Lemma 3.1 and the above, there are x, y, z ∈ Z such that

56n+ 14δ + r2 + 7 = x2 + 7y2 + 14z2. If z 6≡ δ (mod 2), then

x2 + 7y2 ≡ 14δ + r2 + 7− 14z2 ≡ 14δ − 14(1− δ) ≡ 2 (mod 4)

which is impossible. Thus z ≡ δ (mod 2) and x2+7y2 ≡ r2+7 ≡ 0 (mod 8).

Note that x2 + 7y2 6= 0 since 7 ∤ r. Applying Lemma 3.2(ii) we can write
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x2 + 7y2 as x2
0 + 7y20 with x0 and y0 both odd. Since x2

0 ≡ r2 (mod 7),

either x0 or −x0 has the form 14w + r with w ∈ Z. Write y0 = 2u+ 1 and

z = 2v + δ with u, v ∈ Z. Then

56n+ 14δ + r2 + 7 ≡ (14w + r)2 + 7(2u+ 1)2 + 14(2v + δ)2

and hence n = Tu + v(v+ δ) +w(7w+ r)/2. This proves the universality of

(7, r, 2, 2δ, 1, 1) over Z.

The proof of Theorem 1.2 is now complete. �

4. Proof of Theorem 1.3

For a positive definite integral ternary quadratic form f(x, y, z) and an

integer n, as usual we define

r(n, f) := {(x, y, z) ∈ Z3 : f(x, y, z) = n}|

and adopt the standard notation r(n, gen(f)) introduced in [17, pp. 173–

174].

Lemma 4.1. Let f be a positive ternary quadratic form with determinant

d(f). Suppose that m ∈ Z+ is represented by the genus of f . Then, for each

prime p ∤ 2md(f), we have

r(mp2, gen(f))

r(m, gen(f))
= p+ 1−

(

−md(f)

p

)

. (4.1)

Proof. By the Minkowski-Siegel formula [17, pp. 173–174],

r(mp2, gen(f)) = 2π

√

mp2

d(f)

∏

q

αq(mp2, f),

where q runs over all primes and αq is the local density. As p ∤ 2md(f), by

[29] we have

αp(mp2, f) = 1 +
1

p
−

1

p2
+

(

−md(f)

p

)

1

p2
,

αp(m, f) = 1 +

(

−md(f)

p

)

1

p
.

Thus
r(mp2, gen(f))

r(m, gen(f))
= p

αp(mp2, f)

αp(m, f)
= p+ 1−

(

−md(f)

p

)

.

This concludes the proof. �

Lemma 4.2. Let w = u2 + 15v2 > 0 with u, v ∈ Z and 8 | w. Then

w = x2 + 15y2 for some odd integers x and y.
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Proof. Let k be the 2-adic order of gcd(u, v), and write u = 2ku0 and

v = 2kv0 with u0, v0 ∈ Z not all even. If k = 0, then both u0 and v0 are odd

since w is even. Below we assume that k > 0.

We observe the identity

42(x2 + 15y2) = (x− 15y)2 + 15(x+ y)2.

If u0 6≡ v0 (mod 2), then k > 2 (since 8 | w) and 42(u2
0+15v20) = s2+15t2 with

s = u0−15v0 and t = u0+v0 both odd. For j ∈ N, if 4j(u2
0+15v20) = u2

j+15v2j
for some odd integers uj and vj , then we may assume uj ≡ vj (mod 4)

without loss of generality (otherwise we may replace vj by −vj), and hence

4j+1(u2

0 + 15v20) = 4(u2

j + 15v2j ) = u2

j+1 + 15v2j+1

with uj+1 = (uj − 15vj)/2 and vj+1 = (uj + vj)/2 both odd. Thus, for some

odd integers uk and vk, we have

w = 4k(u2

0 + 15v20) = u2

k + 15v2k.

This concludes the proof. �

Proof of Theorem 1.3(i). (a) We first prove that (7, 7, 3, 1, 1, 1) is universal

over Z. Let n ∈ N. Clearly,

n = Tx + 7Ty +
z(3z + 1)

2
⇐⇒ 24n+ 25 = 3(2x+ 1)2 + 21(2y + 1)2 + (2z + 1)2.

There are two classes in the genus of x2 + 3y2 + 21z2 and the one not

containing x2 + 3y2 + 21z2 has the representative

x2 + 6y2 + 12z2 − 6yz =x2 + 3
(y

2
− 2z

)2

+ 21
(y

2

)2

=x2 + 3

(

y + 3z

2

)2

+ 21

(

y − z

2

)2

.

(4.2)

If 24n + 25 = x2 + 6y2 + 12z2 − 6yz with x, y, z ∈ Z, then the equality

modulo 4 yields y(y − z) ≡ 0 (mod 2). Thus, by (4.2) and Lemma 3.1, we

have

24n+ 25 ∈ {x2 + 3y2 + 21z2 : x, y, z ∈ Z}. (4.3)

Now we claim that 24n+ 25 = x2 + 3y2 + 21z2 for some x, y, z ∈ Z with

y2 + 7z2 > 0. This holds by (4.3) if 24n+ 25 is not a square. Suppose that

24n+25 = m2 withm ∈ Z+. Let p be any prime divisor ofm. Clearly, p > 5.

Note that r(72, x2+3y2+21z2) > 2 since 72 = (±5)2+3×(±1)2+21×(±1)2.

If p 6= 7 and r(p2, x2+6y2+12z2−6yz) > 2, then p2 = x2+6y2+12z2−6yz

for some x, y, z ∈ Z with 2 | y(y − z) and y2 + z2 > 0, hence by (4.2) we
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have p2 = x2 + 3u2 + 21v2 for some x, u, v ∈ Z with u2 + 7v2 > 0, and thus

r(p2, x2 + 3y2 + 21z2) > 2. By Lemma 4.1, if p 6= 7 then

r(p2, gen(x2 + 3y2 + 21z2))

r(1, gen(x2 + 3y2 + 21z2))
= p+ 1−

(

−7

p

)

and hence

r(p2, x2+3y2+21z2)+r(p2, x2+6y2+12z2−6yz) = 4

(

p + 1−

(

−7

p

))

> 4.

So we still have r(p2, x2+3y2+21z2) > 2 if r(p2, x2+6y2+12z2−6yz) 6 2.

As r(m2, x2 + 3y2 + 21z2) > r(p2, x2 + 3y2 + 21z2) > 2, we can write

24n + 25 = m2 as x2 + 3y2 + 21z2 with x, y, z ∈ Z and y2 + 7z2 > 0. This

proves the claim.

By the claim, there are x, y, z ∈ Z such that 24n+ 25 = x2 + 3y2 + 21z2

and y2 + 7z2 > 0. As 3y2 6≡ 25 ≡ 1 (mod 4), either x or z is odd. If

2 ∤ x, then 3(y2 + 7z2) ≡ 25− x2 ≡ 0 (mod 8) and hence by Lemma 3.2(ii)

we can write y2 + 7z2 as y20 + 7z20 with y0 and z0 both odd. If 2 ∤ z, then

x2 +3y2 ≡ 25− 21z2 ≡ 4 (mod 8) and hence by Lemma 3.2(i) we can write

x2+3y2 as x2
1+3y21 with x1 and y1 both odd. Thus 24n+25 = a2+3b2+21c2

for some odd integers a, b, c. As 3 ∤ a, either a or −a has the form 6w + 1

with w ∈ Z. Write b = 2u+ 1 and c = 2v + 1 with u, v ∈ Z. Then

24n+ 25 = (6w + 1)2 + 3(2u+ 1)2 + 21(2v + 1)2

and hence n = Tu + 7Tv + w(3w + 1)/2. This proves the universality of

(7, 7, 3, 1, 1, 1) over Z.

(b) Let n ∈ N and r ∈ {1, 3}. Clearly,

n = 5Tx +
y(3y + 1)

2
+

z(3z + r)

2
⇐⇒ 24n+ r2 + 16 = 15(2x+ 1)2 + (6y + 1)2 + (6z + r)2.

There are two classes in the genus of x2 + y2 + 15z2, and the one not

containing x2 + y2 + 15z2 has the representative

x2 + 4y2 + 4z2 − 2yz =x2 +
(y

2
− 2z

)2

+ 15
(y

2

)2

=x2 +
(

2y −
z

2

)2

+ 15
(z

2

)2

.

(4.4)

If 24n + r2 + 16 = x2 + 4y2 + 4z2 − 2yz with x, y, z ∈ Z, then 2 ∤ x and

2 | yz. Thus, in view of (4.4) and Lemma 3.1, we have

24n+ r2 + 16 ∈ {x2 + y2 + 15z2 : x, y, z ∈ Z}. (4.5)
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We claim that 24n + r2 + 16 = x2 + y2 + 15z2 for some x, y, z ∈ Z with

(x2 + 15z2)(y2 + 15z2) > 0. This holds by (4.5) if 24n + r2 + 16 is not a

square. Now suppose that 24n+ r2 + 16 = m2 with m ∈ Z+. Let p be any

prime divisor of m. Clearly, p > 5. Note that r(52, x2+y2+15z2) > 4 since

52 = (±5)2+02+15× 02 = 02+(±5)2+15× 02 = (±3)2+(±4)2+15× 02.

If r(p2, x2 + 4y2 + 4z2 − 2yz) > 2, then p2 = x2 + 4y2 + 4z2 − 2yz for some

x, y, z ∈ Z with 2 | yz and y2 + z2 > 0, hence by (4.4) p2 = x2 + u2 + 15v2

for some x, u, v ∈ Z with (x2 + 15v2)(u2 + 15v2) > 0, and thus r(p2, x2 +

y2 + 15z2) > 4. When p > 5, by Lemma 4.1 we have

r(p2, gen(x2 + y2 + 15z2))

r(1, gen(x2 + y2 + 15z2))
= p + 1−

(

−15

p

)

and hence

r(p2, x2+y2+15z2)+2r(p2, x2+4y2+4z2−2yz) = 8

(

p+ 1−

(

−15

p

))

> 50.

Thus we still have r(p2, x2+y2+15z2) > 4 if r(p2, x2+4y2+4z2−2yz) 6 2.

As r(m2, x2+y2+15z2) > r(p2, x2+y2+15z2) > 4, we can write 24n+r2+16

as x2 + y2 + 15z2 with (x2 + 15z2)(y2 + 15z2) > 0. This proves the claim.

By the claim, there are x, y, z ∈ Z such that 24n+r2+16 = x2+y2+15z2

and (x2 + 15z2)(y2 + 15z2) > 0. Since 15z2 6≡ r2 ≡ 1 (mod 4), either x or

y is odd. Without any loss of generality, we assume that 2 ∤ x. Since

y2 + 15z2 > 0 and y2 + 15z2 ≡ r2 − x2 ≡ 0 (mod 8), by Lemma 4.2 we can

write y2+15z2 = y20 +15z20 with y0 and z0 both odd. Now, 24n+ r2+16 =

x2 + y20 + 15z20 . Since x2 + y20 ≡ r2 + 1 (mod 3), one of x2 and y20 is

congruent to r2 modulo 3 and the other one is congruent to 1 modulo 3.

Thus x2 + y20 = (6u+ r)2 + (6v + 1)2 for some u, v ∈ Z. Write z0 = 2w + 1

with v ∈ Z. Then

24n+ r2 + 16 = (6u+ r)2 + (6v + 1)2 + 15(2w + 1)2

and hence n = u(3u+r)/2+v(3v+1)/2+5Tw. This proves the universality

of (5, 5, 3, r, 3, 1) over Z.

(c) Let n ∈ N. Apparently,

n = Tx + 5Ty + z(3z + 2)

⇐⇒ 24n+ 26 = 3(2x+ 1)2 + 15(2y + 1)2 + 2(6z + 2)2.
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There are two classes in the genus of 2x2 + 3y2 + 15z2, and the one not

containing 2x2 + 3y2 + 15z2 has the representative

g(x, y, z) = 2x2+5y2+11z2+2yz+2x(y−z) = 2 (x+ v)2+3(u−2v)2+15u2

(4.6)

with u = (y+z)/2 and v = (y−z)/2. If 24n+26 = g(x, y, z) with x, y, z ∈ Z,

then y ≡ z (mod 2), and hence by (4.6) we have 24n+26 = 2a2+3b2+15c2

for some a, b, c ∈ Z. So, in view of Lemma 3.1, we always have

24n+ 26 ∈ {2x2 + 3y2 + 15z2 : x, y, z ∈ Z}. (4.7)

We claim that 24n + 26 = 2x2 + 3y2 + 15z2 for some x, y, z ∈ Z with

y2 + 5z2 > 0. This holds by (4.7) if 12n+ 13 is not a square. Now suppose

that 12n+13 = m2 with m ∈ Z+. Let p be any prime divisor of m. Clearly,

p > 5. Note that r(2× 52, 2x2 + 3y2 + 15z2) > 2 since

2× 52 = 2× (±5)2 + 3× 02 + 15× 02 = 2(±1)2 + 3(±4)2 + 30× 02.

If r(2p2, g(x, y, z)) > 2, then 2p2 = g(x, y, z) for some x, y, z ∈ Z with

y2 + z2 > 0, hence by (4.6) 2p2 = 2x2 + 3b2 + 15c2 for some x, b, c ∈ Z with

b2 + c2 > 0, and thus r(2p2, 2x2 + 3y2 + 15z2) > 2. When p > 5, by Lemma

4.1 we have

r(2p2, gen(2x2 + 3y2 + 15z2))

r(2, gen(2x2 + 3y2 + 15z2))
= p+ 1−

(

−5

p

)

and hence

r(2p2, 2x2 + 3y2 + 15z2) + 2r(2p2, g(x, y, z)) = 6

(

p+ 1−

(

−5

p

))

> 40.

Thus we still have r(2p2, 2x2 + 3y2 + 15z2) > 2 if r(2p2, g(x, y, z)) 6 2. As

r(2m2, 2x2+3y2+15z2) > r(2p2, 2x2+3y2+15z2) > 2, we can write 24n+26

as 2x2 + 3y2 + 15z2 with y2 + 5z2 > 0. This proves the claim.

By the claim, there are x, y, z ∈ Z such that 24n+26 = 2x2+3(y2+5z2)

and y2+5z2 > 0. By [24, Lemma 2.1], y2+5z2 = y20 +5z20 for some integers

y0 and z0 not all divisible by 3. Without any loss of generality, we simply

assume that 3 ∤ y or 3 ∤ z. Note that 3 ∤ x and y ≡ z (mod 2). If 3 ∤ yz,

then ε1y ≡ ε2z ≡ x (mod 3) for some ε1, ε2 ∈ {±1}. If 3 | y and 3 ∤ z then

x+ y + εz ≡ 0 (mod 3) for some ε ∈ {±1}; similarly, if 3 ∤ y and 3 | z then

x+ εy+ z ≡ 0 (mod 3). So, without loss of generality we may suppose that

x+ y+ z ≡ 0 (mod 3) (otherwise we adjust signs of x, y, z suitably to meet

our purpose). If y ≡ z ≡ 0 (mod 2), then 2x2 ≡ 26 (mod 4), hence 2 ∤ x
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and y ≡ z (mod 4) since y2 + 5z2 ≡ 0 (mod 8), therefore

2x2 + 3y2 + 15z2 = 2

(

y − 5z

2

)2

+ 3

(

2x+ 5y + 5z

6

)2

+ 15

(

2x− y − z

6

)2

(4.8)

with (2x+ 5y + 5z)/6 and (2x− y − z)/6 both odd.

By the above, 24n+26 = 2a2+3b2+15c2 for some a, b, c ∈ Z with 2 ∤ bc.

As 3 ∤ a and 2a2 ≡ 26−3−15 ≡ 0 (mod 8), a or −a has the form 2(3w+1)

with w ∈ Z. Write b = 2u+ 1 and c = 2v + 1 with u, v ∈ Z. Then

24n+ 26 = 2(2(3w + 1))2 + 3(2u+ 1)2 + 15(2v + 1)2

and hence n = Tu + 5Tv + w(3w + 2). This proves the universality of

(6, 4, 5, 5, 1, 1) over Z. �

Proof of Theorem 1.3(ii). (a) Let n ∈ N and r ∈ {1, 2}. Apparently,

n = Tx + 5
y(3y + 1)

2
+ z(3z + r)

⇐⇒ 24n+ 2r2 + 8 = 3(2x+ 1)2 + 5(6y + 1)2 + 2(6z + r)2.

As mentioned Part (b) in the proof of Theorem 1.3(i), there are two classes

in the genus of x2+y2+15z2, and the one not containing x2+y2+15z2 has

the representative x2+4y2+4z2−2yz. If 12n+r2+4 = x2+4y2+4z2−2yz

with x, y, z ∈ Z, then 2 | yz since r2 6≡ x2 − 2 (mod 4). Thus, in view of

(4.4) and Lemma 3.1, 12n + r2 + 4 = x2 + y2 + 15z2 for some x, y, z ∈ Z.

If x ≡ y (mod 2), then z ≡ r (mod 2), x2 + y2 ≡ r2 − 15z2 ≡ 2r2 (mod 4)

and hence x ≡ y ≡ r ≡ z (mod 2). So, x or y has the same parity with

z. Without loss of generality we may assume that y ≡ z (mod 2). Since

y2 + 15z2 ≡ 0 (mod 4), we have x ≡ r (mod 2). If r = 2 and y2 + 15z2 = 0,

then 12n + r2 + 4 = 02 + x2 + 15 × 02 with x ≡ 0 ≡ r (mod 2) and

x2 + 15 × 02 > 0. If r = 1, then 12n2 + r2 + 4 = 12n + 5 is congruent to 2

modulo 3 and hence not a square. Thus, without loss of generality we may

assume that y2 + 15z2 > 0.

Observe that

24n+ 2r2 + 8 = 2(x2 + y2 + 15z2) = 2x2 + 3u2 + 5v2

with u = (y + 5z)/2 and v = (y − 3z)/2 both odd. Since 3u2 + 5v2 ≡

2r2 − 2x2 ≡ 0 (mod 8) and 2(3u2 + 5v2) = y2 + 15z2 > 0, by Lemma

3.2(iii) we can write 3u2 + 5v2 as 3y20 + 5z20 with y0 and z0 both odd. As

2(x2+z20) ≡ 2x2+5z20 ≡ 2r2+8 (mod 3), we have x2+z20 ≡ r2+1 ≡ 2 (mod 3)
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and hence we may write x or −x as 6u + r, z0 or −z0 as 6v + 1, and

y0 = 2w + 1, where u, v, w are integers. Therefore

24n+ 2r2 + 8 = 2x2 + 3y20 + 5z20 = 2(6u+ r)2 + 3(2w + 1)2 + 5(6v + 1)2

and hence n = u(3u+r)/2+5v(3v+1)/2+Tw. This proves the universality

of (15, 5, 6, 2r, 1, 1) over Z.

(b) Let n ∈ N, s ∈ {1, 3, 5} and t ∈ {1, 2} with (s, t) 6= (5, 2). Apparently,

n = Tx +
y(5y + s)

2
+ z(3z + t)

⇐⇒ 120n+ 3s2 + 10t2 + 15 = 15(2x+ 1)2 + 3(10y + s)2 + 10(6z + t)2.

There are two classes in the genus of 3x2 + 10y2 + 15z2, and the one not

containing 3x2 + 10y2 + 15z2 has the representative

g(x, y, z) =7x2 + 7y2 + 12z2 + 6(x+ y)z + 4xy

=3

(

x+ y

2
+ 2z

)2

+ 10

(

x− y

2

)2

+ 15

(

x+ y

2

)2

.
(4.9)

If 120n + 3s2 + 10t2 + 15 = g(x, y, z) with x, y, z ∈ Z, then we obviously

have x ≡ y (mod 2). Thus, in view of (4.9) and Lemma 3.1, 120n + 3s2 +

10t2 + 15 = 3x2 + 10y2 + 15z2 for some x, y, z ∈ Z. If x = z = 0, then

120n + 3s2 + 10t2 + 15 = 10y2, hence (s, t) = (5, 1) and y2 = 12n + 10 ≡

2 (mod 4) which is impossible. So x2 + 5z2 > 0, and hence by [24, Lemma

2.1] we can rewrite x2 + 5z2 as x2
0 + 5z20 with x0, z0 ∈ Z not all divisible by

3. Without loss of generality, we simply assume that 3 ∤ x or 3 ∤ z. Note

that 3 ∤ y since 3 ∤ t. If 3 ∤ xz, then ε1x ≡ y ≡ ε2z for some ε1, ε2 ∈ {±1}.

If 3 | x and 3 ∤ z, then x + y + εz ≡ 0 (mod 3) for some ε ∈ {±1}. If 3 ∤ x

and 3 | z, then εx+ y + z ≡ 0 (mod 3) for some ε ∈ {±1}. Without loss of

generality, we just assume that x + y + z ≡ 0 (mod 3) (otherwise we may

adjust signs of x, y, z suitably). Note that x ≡ z (mod 2) and we have the

identity

3

(

x+ 10y − 5z

6

)2

+10

(

x+ z

2

)2

+15

(

x− 2y − 5z

6

)2

= 3x2+10y2+15z2

(4.10)

with x1 = (x + 10y − 5z)/6, y1 = (x + z)/2 and z1 = (x − 2y − 5z)/6 all

integral.

If x ≡ z ≡ 1 (mod 2), then 10y2 = 120n+3s2 +10t2 +15− 3x2 − 15z2 ≡

10t2 (mod 4) and hence y ≡ t (mod 2).
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Now suppose that x ≡ z ≡ 0 (mod 2). Then 2y2 ≡ 10y2 ≡ 3s2 + 10t2 +

15 ≡ 2(t2 + 1) (mod 4) and hence y 6≡ t (mod 2). Observe that

2t2+2 ≡ 120n+3s2+10t2+15 = 3x2+10y2+15z2 ≡ x2+z2+2(t+1)2 (mod 8)

and hence

y1 =
x+ z

2
≡

(x

2

)2

+
(z

2

)2

=
x2 + z2

4
≡ t (mod 2).

Thus

z1 = x1 − 2y ≡ x1 ≡
x+ z

2
− 3z + 5y ≡ t+ y ≡ 1 (mod 2).

In view of the above, there are integers x, y, z ∈ Z with x ≡ z ≡ 1 (mod 2)

and y ≡ t (mod 2) such that 120n + 3s2 + 10t2 + 15 = 3x2 + 10y2 + 15z2.

Clearly, y or −y has the form 6v + t with v ∈ Z. Write z = 2w + 1 with

w ∈ Z. Since x2 ≡ s2 (mod 5), we can write x or −x as 10u+ s with w ∈ Z.

Therefore

120n+ 3s2 + 10t2 + 15 = 3(10u+ s)2 + 10(6v + t)2 + 15(2w + 1)2

and hence n = Tw + u(5u+ s)/2 + v(3v + t). This proves the universality

of (6, 2t, 5, s, 1, 1) over Z. �

5. Proof of Theorem 1.4

B.W. Jones and G. Pall [15] proved the following celebrated result.

Lemma 5.1. Let n ∈ N with 8n+ 1 not a square. Then

|{(x, y, z) ∈ Z3 : x2 + y2 + z2 = 8n+ 1 & 4 | x}|

=|{(x, y, z) ∈ Z3 : x2 + y2 + z2 = 8n+ 1 & x ≡ 2 (mod 4)}| > 0.

A. G. Earnest [8, 9] showed the following useful result.

Lemma 5.2. Let c be a primitive spinor exceptional integer for the genus

of a positive ternary quadratic form f(x, y, z), and let S be a spinor genus

containing f . Let s be a fixed positive integer relatively prime to 2d(f) for

which cs2 can be primitively represented by S. If t ∈ Z+ is relatively prime

to 2d(f), then ct2 can be primitively represented by S if and only if
(

−cd(f)

s

)

=

(

−cd(f)

t

)

.
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Proof of Theorem 1.4. Fix n ∈ N . Clearly,

n = Tx + y2 + 2z(4z + 1) ⇐⇒ 8n+ 2 = (2x+ 1)2 + 8y2 + (8z + 1)2.

So, it suffices to show that 8n+ 2 = x2 + y2 + 8z2 for some x, y, z ∈ Z with

x ≡ ±1 (mod 8).

Case 1. n is not twice a triangular number.

In this case, 4n + 1 is not a square. If 2 | n, then by Lemma 5.1 we can

write 4n + 1 as x2 + y2 + z2 with 2 ∤ x, 2 | y and z ≡ 2 (mod 4). If 2 ∤ n,

then there are x, y, z ∈ Z with 2 ∤ x and y ≡ z ≡ 0 (mod 2) such that

4n + 1 = x2 + y2 + z2 and hence y 6≡ z (mod 4) since y2 + z2 ≡ 5 − x2 ≡

4 (mod 8). So we can always write 4n + 1 = x2 + y2 + z2 with 2 ∤ x, 2 | y

and z ≡ 2n− 2 (mod 4), hence

8n+ 2 = 2(x2 + y2 + z2) = (x+ y)2 + (x− y)2 + 8
(z

2

)2

with z/2 ≡ n− 1 (mod 2), thus

(x+ y)2 + (x− y)2 ≡ 8n+ 2− 8(n− 1) = 10 6≡ 32 + 32 (mod 16)

and hence x+ εy ≡ ±1 (mod 8) for some ε ∈ {±1}.

Case 2. n = 2Tm with m ∈ N, and 2m + 1 has no prime factor of the

form 4k + 3.

In this case, 2m+1 can be expressed as the sum of two squares. If 4 | m,

then

8n+ 2 = 2(2m+ 1)2 = (2m+ 1)2 + (2m+ 1)2 + 8× 02

with 2m+ 1 ≡ 1 (mod 8). If 4 ∤ m, then 2m+ 1 = u2 + (2v)2 for some odd

integers u and v, and hence

8n+ 2 =2(u2 + 4v2)2 = 2((u2 − 4v2)2 + (4uv)2)

=(u2 − 4v2 + 4uv)2 + (u2 − 4v2 − 4uv)2 + 8× 02

with u2 − 4v2 ± 4uv ≡ 1 (mod 8).

Case 3. n = 2Tm with m ∈ N, and 2m + 1 has a prime factor p ≡

3 (mod 4).

By Lagrange’s four-square theorem, we can write p = a2 + b2 + c2 + d2,

where a is an even number and b, c, d are odd numbers. Thus

p2 =(a2 + b2 − c2 − d2)2 + 4(a2 + b2)(c2 + d2)

=(a2 + b2 − c2 − d2)2 + (2ac+ 2bd)2 + (2ad− 2bc)2
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and hence (2m + 1)2 = x2 + (2y)2 + (2z)2 for some odd integers x, y, z.

Observe that

8n + 2 = 2(2m+ 1)2 = (x+ 2y)2 + (x− 2y)2 + 8z2

and (x + 2y)2 + (x − 2y)2 ≡ 2 − 8z2 ≡ 10 6≡ 32 + 32 (mod 16). So one of

x+ 2y and x− 2y is congruent to 1 or −1 modulo 8.

Now we give an advanced approach to Case 3. There are three classes in

the genus of x2 + y2 + 32z2 with the three representatives

f1(x, y, z) =x2 + y2 + 32z2,

f2(x, y, z) =2x2 + 2y2 + 9z2 + 2yz − 2zx,

f3(x, y, z) =x2 + 4y2 + 9z2 − 4yz.

f1 and f2 constitute a spinor genus while another spinor genus in the genus

has the representative f3. Since 2 is a a primitive spinor exceptional integer

for this genus, by Lemma 5.2 we can write 2p2 as

f3(u, v, w) = u2 + 4v2 + 9w2 − 4vw = u2 + (2v − w)2 + 8w2

with u, v, w ∈ Z. Since 2 ∤ uw, we see that 8n+2 = 2(2m+1)2 = a2+b2+8c2

for some odd integers a, b, c. As a2 + b2 ≡ 2− 8c2 ≡ 10 6≡ 32 + 32 (mod 16),

a or b is congruent to 1 or −1 modulo 8. This concludes our discussion of

Case 3.

In view of the above, we have completed the proof of Theorem 1.4. �

Remark 5.1. f3(x, y, z) in the proof of Theorem 1.4 is one of the very few

spinor regular forms that are not regular. For more details, see [1].
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