Preprint, arXiv:1707.06223

SOME UNIVERSAL QUADRATIC SUMS OVER THE INTEGERS

HAI-LIANG WU AND ZHI-WEI SUN

Abstract

Let $a, b, c, d, e, f \in \mathbb{N}$ with $a \geqslant c \geqslant e>0, b \leqslant a$ and $b \equiv a(\bmod 2), d \leqslant c$ and $d \equiv c(\bmod 2), f \leqslant e$ and $f \equiv e(\bmod 2)$. If any nonnegative integer can be written as $x(a x+b) / 2+y(c y+d) / 2+$ $z(e z+f) / 2$ with $x, y, z \in \mathbb{Z}$, then the tuple (a, b, c, d, e, f) is said to be universal over \mathbb{Z}. Recently, Z.-W. Sun found all candidates of such universal tuples over \mathbb{Z}. In this paper, we use the theory of ternary quadratic forms to show that 38 concrete tuples (a, b, c, d, e, f) in Sun's list of candidates are indeed universal over \mathbb{Z}. For example, we prove the universality of $(16,4,2,0,1,1)$ over \mathbb{Z} which is related to the famous form $x^{2}+y^{2}+32 z^{2}$.

1. Introduction

Those $T_{x}=x(x+1) / 2$ with $x \in \mathbb{Z}$ are called triangular numbers. In 1796 Gauss proved Fermat's assertion that each $n \in \mathbb{N}=\{0,1,2, \ldots\}$ can be expressed as the sum of three triangular numbers.

For polynomials $f_{1}(x), f_{2}(x), f_{3}(x)$ with $f_{i}(\mathbb{Z})=\left\{f_{i}(x): x \in \mathbb{Z}\right\} \subseteq \mathbb{N}$ for $i=1,2,3$, if any $n \in \mathbb{N}$ can be written as $f_{1}(x)+f_{2}(y)+f_{3}(z)$ with $x, y, z \in \mathbb{Z}$ then we call the sum $f_{1}(x)+f_{2}(y)+f_{3}(z)$ universal over \mathbb{Z}. For example, $T_{x}+T_{y}+T_{z}$ is universal over \mathbb{Z} by Gauss' result.

In 1862 Liouville (cf. [2, p. 82]) determined all universal sums $a T_{x}+b T_{y}+$ $c T_{z}$ over \mathbb{Z} with $a, b, c \in \mathbb{Z}^{+}$. Z.-W. Sun [23, 24] studied universal sums of the form $a p_{i}(x)+b p_{j}(y)+c p_{k}(z)$ with $a, b, c \in \mathbb{N}$ and $i, j, k \in\{3,4, \ldots\}$, where $p_{m}(x)$ denotes the generalized polygonal number $(m-2)\binom{x}{2}+x$; see also $[11,19,10,18,16]$ for subsequent work on some of Sun's conjectures posed in [23, 24]. In 2017 Sun [26] investigated universal sums $x(a x+1)+$ $y(b y+1)+z(c z+1)$ over \mathbb{Z} with $a, b, c \in \mathbb{Z}^{+}=\{1,2,3, \ldots\}$ and also universal sums $x(a x+b)+y(a y+c)+z(a z+d)$ with $a, b, c, d \in \mathbb{N}$ and $a \geqslant b \geqslant c \geqslant d$. Quite recently, Sun [27] investigated for what tuples (a, b, c, d, e, f) with $a \geqslant c \geqslant e \geqslant 1, b \equiv a(\bmod 2)$ and $|b| \leqslant a, d \equiv c(\bmod 2)$ and $|d| \leqslant c$,

[^0]$f \equiv e(\bmod 2)$ and $|f| \leqslant e$, the sum
$$
\frac{x(a x+b)}{2}+\frac{y(c y+d)}{2}+\frac{z(e z+f)}{2}
$$
is universal over \mathbb{Z}. Such tuples (a, b, c, d, e, f) are said to be universal over \mathbb{Z}. He showed such tuples with $|b|<a,|d|<c,|f|<e$, and $b \geqslant d$ if $a=c$, and $d \geqslant f$ if $c=e$, must be in his list of 12082 candidates (cf. [28, A286944]), and conjectured that all such candidates are indeed universal over \mathbb{Z}. Note that
$$
\left\{\frac{x(x-1)}{2}: x \in \mathbb{Z}\right\}=\left\{T_{x}: x \in \mathbb{Z}\right\}=\{x(2 x+1): x \in \mathbb{Z}\}
$$

Sun [27] proved that some candidates (a, b, c, d, e, f) are universal over \mathbb{Z}, e.g. $(5,1,3,1,1,1)$ (equivalent to $(5,1,4,2,3,1))$ is universal over \mathbb{Z}. Sun even conjectured that any $n \in \mathbb{N}$ can be written as $x(x+1) / 2+y(3 y+$ 1) $/ 2+z(5 z+1) / 2$ with $x, y, z \in \mathbb{N}$.

In this paper, via the theory of ternary quadratic forms, we establish the universality (over \mathbb{Z}) of 38 concrete tuples (a, b, c, d, e, f) in Sun's list of candidates.

Theorem 1.1. The tuples

$$
\begin{aligned}
& (5,1,2,2,1,1),(6,0,3,3,3,1),(6,2,5,5,1,1) \\
& (6,6,3,3,3,1),(8,2,3,1,1,1),(8,6,3,1,1,1),(8,8,3,1,1,1)
\end{aligned}
$$

are universal over \mathbb{Z}.

Remark 1.1. Our proof of Theorem 1.1 uses some special techniques. Sun [24] conjectured that any $n \in \mathbb{N}$ can be written as $T_{x}+2 T_{y}+p_{7}(z)$ with $x, y, z \in \mathbb{N}$, and J. Ju, B.-K. Oh and B. Seo [16] proved that $T_{x}+2 T_{y}+p_{7}(z)$ (or the tuple $(5,3,2,2,1,1)$) is universal over \mathbb{Z}.

Similarly to [27, Theorem 1.4], we observe that $\left\{T_{x}+p_{5}(y): x, y \in \mathbb{Z}\right\}=$ $\left\{p_{5}(x)+3 p_{5}(y): x, y \in \mathbb{Z}\right\}$ which can be easily proved.

Theorem 1.2. The tuples

$$
\begin{aligned}
& (6,0,5,1,3,1),(6,0,5,3,3,1),(7,1,1,1,1,1),(7,1,2,0,1,1), \\
& (7,1,2,2,1,1),(7,1,3,1,1,1),(7,1,3,3,1,1),(7,3,1,1,1,1), \\
& (7,3,2,0,1,1),(7,3,2,2,1,1),(7,3,3,1,1,1),(7,3,3,3,1,1), \\
& (7,5,1,1,1,1),(7,5,3,1,1,1),(7,5,3,3,1,1),(15,3,3,1,1,1), \\
& (15,5,1,1,1,1),(15,5,3,1,2,0),(15,5,3,1,2,2),(15,9,3,1,1,1), \\
& (21,7,3,1,2,2)
\end{aligned}
$$

are universal over \mathbb{Z}.
Remark 1.2. Our proof of Theorem 1.2 involves the theory of genera of ternary quadratic forms. Sun [24] conjectured that any $n \in \mathbb{N}$ can be written as $T_{x}+y^{2}+p_{9}(z)\left(\right.$ or $\left.T_{x}+2 T_{y}+p_{9}(z)\right)$ with $x, y, z \in \mathbb{N}$, and Ju, Oh and Seo [16] proved that $T_{x}+y^{2}+p_{9}(z)$ and $T_{x}+2 T_{y}+p_{9}(z)$ are universal over \mathbb{Z}, i.e., the tuples $(7,5,2,0,1,1)$ and $(7,5,2,2,1,1)$ are universal over \mathbb{Z}.

Theorem 1.3. (i) The tuples $(5,5,3,1,3,1),(5,5,3,3,3,1),(6,4,5,5,1,1)$ and $(7,7,3,1,1,1)$ are universal over \mathbb{Z}.
(ii) All the five tuples
$(6,2,5,1,1,1),(6,2,5,5,1,1),(6,4,5,1,1,1),(15,5,6,2,1,1),(15,5,6,4,1,1)$ are universal over \mathbb{Z}.

Remark 1.3. Our proof of Theorem 1.3(i) employs the Minkowski-Siegel formula (cf. [17, pp. 173-174]). Sun [24] conjectured that any $n \in \mathbb{N}$ can be written as $T_{x}+p_{7}(y)+2 p_{5}(z)\left(\right.$ or $\left.T_{x}+p_{7}(y)+p_{8}(z)\right)$ with $x, y, z \in \mathbb{N}$, and Ju , Oh and Seo [16] proved that $T_{x}+p_{7}(y)+2 p_{5}(z)$ and $T_{x}+p_{7}(y)+p_{8}(z)$ are universal over \mathbb{Z}, i.e., the tuples $(6,2,5,3,1,1)$ and $(6,4,5,3,1,1)$ are universal over \mathbb{Z}.

Theorem 1.4. The tuple $(16,4,2,0,1,1)$ is universal over \mathbb{Z}. In other words, any $n \in \mathbb{N}$ can be written as $T_{x}+y^{2}+2 z(4 z+1)$ with $x, y, z \in \mathbb{Z}$.

Remark 1.4. This result is closely related to the famous form $x^{2}+y^{2}+32 z^{2}$. Sun [27] even conjectured that any $n \in \mathbb{N}$ can be written as $T_{x}+y^{2}+2 z(4 z-$ 1) with $x, y, z \in \mathbb{N}$.

We will show Theorems 1.1-1.4 in Sections 2-5 respectively.

In view of Theorems 1.1-1.3, [27, Theorem 1.4], and some basic facts on regular quadratic forms, among those conjectural universal tuples (a, b, c, d, e, f) with $a=6 \geqslant c \geqslant e \geqslant 2, b \in(-a, a), d \in(-c, c), f \in(-e, e)$ and $a-b, c-d, e-f$ all even listed in [28, A286944], only the universality of the tuples

$$
\begin{aligned}
& (6,0,5,1,4,2),(6,0,5,3,4,2),(6,2,5,3,4,0),(6,2,5,3,5,3) \\
& (6,2,6,0,5,3),(6,2,6,2,5,3),(6,4,5,1,4,0),(6,4,5,1,5,1) \\
& ((6,4,5,3,2,0),(6,4,5,3,4,0),(6,4,5,3,5,3),(6,4,6,0,5,1) \\
& (6,4,6,0,5,3)
\end{aligned}
$$

remains open.

2. Proof of Theorem 1.1

Lemma 2.1. Let V be a quadratic space. For any isometry $T \in O(V)$ of infinite order,

$$
V_{T}=\left\{x \in V: \text { there is a positive integer } k \text { such that } T^{k}(x)=x\right\} .
$$

is a subspace of V with dimension one, and $T(x)=\operatorname{det}(T) x$ for any $x \in V_{T}$.
Remark 2.1. Any unexplained notation in the theory of quadratic forms can be found in $[4,17,20]$. Lemma 2.1 is a known result, see, e.g., [18].

Lemma 2.2. (i) For any $n \in \mathbb{N}$, we can write $12 n+5$ as $x^{2}+y^{2}+(6 z)^{2}$ with $x, y, z \in \mathbb{Z}$.
(ii) Let $n \in \mathbb{Z}^{+}$and $\delta \in\{0,1\}$. Then we can write $6 n+1$ as $x^{2}+3 y^{2}+6 z^{2}$ with $x, y, z \in \mathbb{Z}$ and $x \equiv \delta(\bmod 2)$.

Remark 2.2. Lemma 2.2 is a known result due to the second author, see [24, Theorem 1.7(iii) and Lemma 3.3] and [26, Remark 3.1].

John S. Hsia, in a letter to Irving Kaplansky in 1993, proved that $x^{2}+$ $y^{2}+10 z^{2}$ represents all eligible numbers of the form $3 m+2$ (cf. [14, pp. 12-14]). As all positive odd numbers are eligible by Hensel's lemma, we have the following lemma.

Lemma 2.3. For each $n \in \mathbb{N}$, we can write $6 n+5$ as $x^{2}+y^{2}+10 z^{2}$ with $x, y, z \in \mathbb{Z}$.

For $a, b, c \in \mathbb{Z}^{+}$, we define

$$
E(a, b, c)=\left\{n \in \mathbb{N}: n \neq a x^{2}+b y^{2}+c z^{2} \text { for all } x, y, z \in \mathbb{Z}\right\}
$$

L.E. Dickson [7, pp. 112-113] listed all the 102 primitive regular diagonal quadratic forms $a x^{2}+b y^{2}+c z^{2}$ for which the structure of $E(a, b, c)$ is known explicitly. For example, the Gauss-Legendre theorem asserts that $E(1,1,1)=\left\{4^{k}(8 l+7): k, l \in \mathbb{N}\right\}$.

In 1996 W. Jagy [12] investigated so-called nearly regular quadratic forms, and showed the following result (cf. [14, pp. 25-26]).

Lemma 2.4. We have

$$
E(1,4,9)=\{2\} \cup \bigcup_{k, l \in \mathbb{N}}\left\{4^{k}(8 l+7), 8 l+3,9 l+3\right\}
$$

Proof of Theorem 1.1. (i) Let $n \in \mathbb{N}$ and $r \in\{1,3\}$. Apparently,

$$
\begin{aligned}
& n=T_{x}+y(y+1)+\frac{z(5 z+r)}{2} \\
\Longleftrightarrow & 40 n+r^{2}+15=5(2 x+1)^{2}+10(2 y+1)^{2}+(10 z+r)^{2} .
\end{aligned}
$$

Since

$$
E(1,5,10)=\left\{25^{k} m: k, m \in \mathbb{N} \text { and } m \equiv 2,3(\bmod 5)\right\}
$$

we have $40+r^{2}+15 \in\left\{x^{2}+5 y^{2}+10 z^{2}: x, y, z \in \mathbb{N}\right\}$. Thus we can write

$$
40 n+r^{2}+15=\left(2^{k} x_{0}\right)^{2}+5\left(2^{k} y_{0}\right)^{2}+10\left(2^{k} z_{0}\right)^{2}=4^{k}\left(x_{0}^{2}+5 y_{0}^{2}+10 z_{0}\right)^{2}
$$

with $k \in \mathbb{N}, x_{0}, y_{0}, z_{0} \in \mathbb{Z}$, and x_{0}, y_{0}, z_{0} not all even. In the case $k=0$, if $2 \mid z_{0}$ then $x_{0}^{2}+5 y_{0}^{2} \equiv r^{2}+15 \equiv 0(\bmod 8)$ and hence $x_{0} \equiv y_{0} \equiv 0(\bmod 2)$ which contradicts that x_{0}, y_{0}, z_{0} are not all even, thus $2 \nmid z_{0}$ and also $2 \nmid x_{0} y_{0}$ since $x_{0}^{2}+5 y_{0}^{2} \equiv r^{2}+15-10 z_{0}^{2} \equiv 6(\bmod 8)$.

It is easy to verify the following new identity:

$$
\begin{equation*}
4^{2}\left(x^{2}+5 y^{2}+10 z^{2}\right)=(x-5 y-10 z)^{2}+5(x+3 y-2 z)^{2}+10(x-y+2 z)^{2} . \tag{2.1}
\end{equation*}
$$

If x, y, z are odd integers, then by (2.1) we have

$$
4\left(x^{2}+5 y^{2}+z^{2}\right)=\bar{x}^{2}+5 \bar{y}^{2}+10 \bar{z}^{2}
$$

with

$$
\tilde{x}=\frac{x-y}{2}-2 y-5 z, \tilde{y}=\frac{x-y}{2}+2 y-z, \quad \tilde{z}=\frac{x-y}{2}+z
$$

all odd. Thus, if $2 \nmid x_{0} y_{0} z_{0}$ then

$$
\begin{equation*}
40 n+r^{2}+15=4^{k}\left(x_{0}^{2}+5 y_{0}^{2}+10 z_{0}^{2}\right) \in\left\{x^{2}+5 y^{2}+10 z^{2}: x, y, z \text { are odd }\right\} \tag{2.2}
\end{equation*}
$$

If $x_{0} \not \equiv y_{0}(\bmod 2)$, then $x_{0}^{2}+5 y_{0}^{2}+10 z_{0}^{2} \equiv 1(\bmod 2)$ and $k \geqslant 2$ since $40 n+r^{2}+15 \equiv 0(\bmod 8)$, hence by (2.1) we have

$$
4^{2}\left(x_{0}^{2}+5 y_{0}^{2}+10 z_{0}^{2}\right)=\bar{x}_{0}^{2}+5 \bar{y}_{0}^{2}+10 \bar{z}_{0}^{2}
$$

with $\bar{x}_{0}=x_{0}-5 y_{0}-10 z_{0}, \bar{y}_{0}=x_{0}+3 y_{0}-2 z_{0}$ and $\bar{z}_{0}=x_{0}-y_{0}+2 z_{0}$ all odd, and therefore (2.2) holds.

Now we suppose that $k>0,2 \mid x_{0} y_{0} z_{0}$ and $x_{0} \equiv y_{0}(\bmod 2)$. By (2.1),

$$
4\left(x_{0}^{2}+5 y_{0}^{2}+10 z_{0}^{2}\right)=x_{1}^{2}+5 y_{1}^{2}+10 z_{1}^{2}
$$

with

$$
x_{1}=\frac{x_{0}-y_{0}}{2}-2 y_{0}-5 z_{0}, y_{1}=\frac{x_{0}-y_{0}}{2}+2 y_{0}-z_{0}, z_{1}=\frac{x_{0}-y_{0}}{2}+z_{0}
$$

If x_{0} and y_{0} are odd, then we may assume $x_{0} \not \equiv y_{0}-2 z_{0}(\bmod 4)$ without loss of generality (otherwise we replace x_{0} by $-x_{0}$), and hence x_{1}, y_{1}, z_{1} are all odd. If $x_{0}, y_{0},\left(x_{0}-y_{0}\right) / 2$ are all even, then z_{0} is odd and so are x_{1}, y_{1}, z_{1}. If x_{0} and y_{0} are even with $x_{0} \not \equiv y_{0}(\bmod 4)$, then z_{0} is odd and we may assume $z_{0} \equiv\left(y_{0}-x_{0}\right) / 2(\bmod 4)$ without loss of generality (otherwise we replace z_{0} by $\left.-z_{0}\right)$, hence $z_{1} \equiv 0(\bmod 4), y_{1}=z_{1}+2\left(y_{0}-z_{0}\right) \equiv 0(\bmod 2)$ and $\left(x_{1}-y_{1}\right) / 4 \equiv-y_{0}-z_{0} \equiv 1(\bmod 2)$, therefore by (2.1) we have

$$
x_{1}^{2}+5 y_{1}^{2}+10 z_{1}^{2}=x_{2}^{2}+5 y_{2}^{2}+10 z_{2}^{2}
$$

with

$$
x_{2}=\frac{x_{1}-5 y_{1}-10 z_{1}}{4}, y_{2}=\frac{x_{1}+3 y_{1}-2 z_{1}}{4}, z_{2}=\frac{x_{1}-y_{1}+2 z_{1}}{4}
$$

all odd. So we still have (2.2).
By the above, there always exist odd integers x, y, z such that $40 n+r^{2}+$ $15=x^{2}+5 y^{2}+10 z^{2}$. Write $y=2 u+1$ and $z=2 v+1$ with $u, v \in \mathbb{Z}$. As $x^{2} \equiv r^{2}(\bmod 5)$, either x or $-x$ has the form $10 w+r$ with $w \in \mathbb{Z}$. Therefore

$$
40 n+r^{2}+15=(10 w+r)^{2}+5(2 u+1)^{2}+10(2 v+1)^{2}
$$

and hence $n=T_{u}+v(v+1)+w(5 w+r) / 2$. This proves the universality of ($5, r, 2,2,1,1$) over \mathbb{Z}.

There is an alternative way using (2.1) and Lemma 2.1 with

$$
T=\left(\begin{array}{ccc}
1 / 4 & -5 / 4 & -5 / 2 \\
1 / 4 & 3 / 4 & -1 / 2 \\
1 / 4 & -1 / 4 & 1 / 2
\end{array}\right)
$$

to explain that $40 n+r^{2}+15=x^{2}+5 y^{2}+10 z^{2}$ for some odd integers x, y, z.
(ii) Let $n \in \mathbb{N}$ and $r \in\{1,3\}$. Apparently,

$$
\begin{aligned}
& n=T_{x}+\frac{y(3 y+1)}{2}+z(4 z+r) \\
\Longleftrightarrow & 48 n+3 r^{2}+8=6(2 x+1)^{2}+2(6 y+1)^{2}+3(8 z+r)^{2} .
\end{aligned}
$$

Since

$$
E(2,3,6)=\{3 q+1: q \in \mathbb{N}\} \cup\left\{4^{k}(8 l+7): k, l \in \mathbb{N}\right\}
$$

by Dickson [7, pp. 112-113], we see that $48 n+3 r^{2}+8=2 x^{2}+3 y^{2}+6 z^{2}$ for some $x, y, z \in \mathbb{Z}$. Clearly, $y^{2}+2 z^{2} \neq 0$, and hence by [24, Lemma 2.1] we have $y^{2}+2 z^{2}=y_{0}^{2}+2 z_{0}^{2}$ for some $y_{0}, z_{0} \in \mathbb{Z}$ not all divisible by 3 . Thus, without any loss of generality, we simply assume that $3 \nmid y$ or $3 \nmid z$. Note that $3 \nmid x, 2 \nmid y$, and $x \equiv z(\bmod 2)$ since $2\left(x^{2}+z^{2}\right) \equiv 2 x^{2}+6 z^{2} \equiv$ $3 r^{2}+8-3 y^{2} \equiv 0(\bmod 4)$. If $3 \mid y$ and $3 \nmid z$, then z or $-z$ is congruent to $x+y$ modulo 3 . If $3 \nmid y$ and $3 \mid z$, then y or $-y$ is congruent to $x+z$ modulo 3. If $3 \nmid y z$, then $\varepsilon_{1} y \equiv \varepsilon_{2} z \equiv x(\bmod 3)$ for some $\varepsilon_{1}, \varepsilon_{2} \in\{ \pm 1\}$. So, without loss of generality, we may assume that $x+y+z \equiv 0(\bmod 3)$ (otherwise we may change signs of x, y, z suitably). Note that

$$
48 n+3 r^{2}+8=2 x^{2}+3 y^{2}+6 z^{2}=2 a^{2}+3 b^{2}+6 c^{2}
$$

where $a=y+z, b=(2 x-y+2 z) / 3$ and $c=(x+y-2 z) / 3$ are integers. If $x \equiv z \equiv 1(\bmod 2)$, then x, y, z are all odd. If $x \equiv z \equiv 0(\bmod 2)$, then a, b, c are all odd.

By the above, $48 n+3 r^{2}+8=2 a^{2}+3 b^{2}+6 c^{2}$ for some odd integers a, b, c. Since $3 b^{2} \equiv 3 r^{2}+8-2 a^{2}-6 c^{2} \equiv 3 r^{2}(\bmod 16)$, we can write b or $-b$ as $8 w+r$ with $w \in \mathbb{Z}$. Clearly, a or $-a$ has the form $6 u+1$ with $u \in \mathbb{Z}$, and $c=2 v+1$ for some $v \in \mathbb{Z}$. Therefore

$$
48 n+3 r^{2}+8=2(6 u+1)^{2}+3(8 w+r)^{2}+6(2 v+1)^{2}
$$

and hence $n=u(3 u+1) / 2+T_{v}+w(4 w+r)$. This proves the universality of $(8,2 r, 3,1,1,1)$ over \mathbb{Z}.
(iii) Let $n \in \mathbb{N}$. By Lemma 2.2(ii), we can write $6 n+7$ in the form $x^{2}+3 y^{2}+6 z^{2}$ with $x, y, z \in \mathbb{Z}$ and $x \equiv n+1(\bmod 2)$. Clearly, $y \equiv n(\bmod 2)$. Since $6 z^{2} \equiv 6 n+7-(n+1)^{2}-3 n^{2} \equiv 6(\bmod 4)$, we have $2 \nmid z$. Hence

$$
24 n+28=4(6 n+7)=4\left(x^{2}+3 y^{2}+6 z^{2}\right)=(x-3 y)^{2}+3(x+y)^{2}+24 z^{2}
$$

with $x-2 y, x+2 y$ and z all odd. Note that $x-3 y$ or $3 y-x$ has the form $6 w+1$ with $w \in \mathbb{Z}$. Write $x+y=2 u+1$ and $z=2 v+1$ with $u, v \in \mathbb{Z}$. Then

$$
24 n+28=(6 w+1)^{2}+3(2 u+1)^{2}+24(2 v+1)^{2}
$$

and hence $n=w(3 w+1) / 2+T_{u}+8 T_{v}$. This proves the universality of $(8,8,3,1,1,1)$.
(iv) Let $n \in \mathbb{N}$. By Lemma 2.3, we can write $6 n+5$ as $x^{2}+y^{2}+10 z^{2}$ with $x, y, z \in \mathbb{Z}$. Clearly, $x \not \equiv y(\bmod 2)$. Since $x^{2}+y^{2}+z^{2} \equiv 2(\bmod 3)$, exactly one of x, y, z is divisible by 3 . Without loss of generality, we may assume that $x+y+z \equiv 0(\bmod 3)$ (other we adjust signs of x, y, z suitably to meet our purpose). Observe that

$$
4\left(x^{2}+y^{2}+10 z^{2}\right)=2(x-y)^{2}+3\left(\frac{x+y+10 z}{3}\right)^{2}+15\left(\frac{x+y-2 z}{3}\right)^{2}
$$

So, $4(6 n+5)=2 a^{2}+3 b^{2}+15 c^{2}$ for some odd integers a, b, c. As $3 \nmid a$, we may write a or $-a$ as $6 w+1$ with $w \in \mathbb{Z}$. Write $b=2 u+1$ and $c=2 v+1$ with $u, v \in \mathbb{Z}$. Then

$$
24 n+20=2(6 w+1)^{2}+3(2 u+1)^{2}+15(2 v+1)^{2}
$$

and hence $n=T_{u}+5 T_{v}+w(3 w+1)$. This proves the universality of $(6,2,5,5,1,1)$ over \mathbb{Z}.
(v) Let $n \in \mathbb{N}$. By Lemma 2.2(i), we can write $12 n+5$ in the form $x^{2}+y^{2}+(6 z)^{2}$ with $x, y, z \in \mathbb{Z}$. It follows that $24 n+10=(x+y)^{2}+(x-$ $y)^{2}+72 z^{2}$. As $(x+y)^{2}+(x-y)^{2} \equiv 10 \equiv 2(\bmod 4)$, both $x+y$ and $x-y$ are odd. Since $(x+y)^{2}+(x-y)^{2} \equiv 10 \equiv 1(\bmod 3)$, exactly one of $x+y$ and $x-y$ is divisible by 3 . So $(x+y)^{2}+(x-y)^{2}=(6 u+1)^{2}+(6 v+3)^{2}$ for some $u, v \in \mathbb{Z}$. Therefore

$$
24 n+10=(6 u+1)^{2}+(6 v+3)^{2}+72 z^{2}
$$

and hence $n=u(3 u+1) / 2+3 T_{v}+3 z^{2}$. This proves the universality of $(6,0,3,3,3,1)$ over \mathbb{Z}.

By Lemma 2.4, we can write $12 n+14$ in the form $x^{2}+4 y^{2}+9 z^{2}$ with $x, y, z \in \mathbb{Z}$. Since $x^{2}+z^{2} \equiv 14(\bmod 4)$, we have $2 \nmid x z$. Observe that

$$
24 n+28=2\left(x^{2}+4 y^{2}+9 z^{2}\right)=(x-2 y)^{2}+(x+2 y)^{2}+18 z^{2}
$$

with $x \pm 2 y$ and z all odd. Clearly, exactly one of $x-2 y$ and $x+2 y$ is divisible by 3 . So, for some $u, v, w \in \mathbb{Z}$ we have

$$
24 n+28=(6 x+1)^{2}+9(2 y+1)^{2}+18(2 z+1)^{2}
$$

and hence $n=x(3 x+1) / 2+3 T_{y}+6 T_{z}$. This proves the universality of $(6,6,3,3,3,1)$ over \mathbb{Z}.

The proof of Theorem 1.1 is now complete.

3. Proof of Theorem 1.2

The following lemma is one of the most important theorems about integral representations of quadratic forms (cf. [4, pp.129]).

Lemma 3.1. Let f be a nonsingular integral quadratic form and let m be a nonzero integer which is represented by f over the real field \mathbb{R} and the ring \mathbb{Z}_{p} of p-adic integers for each prime p. Then m is represented by some form f^{*} over \mathbb{Z} where f^{*} is in the same genus of f.

Lemma 3.2. (i) [24, Lemma 3.2] If $x^{2}+3 y^{2} \equiv 4(\bmod 8)$ with $x, y \in \mathbb{Z}$, then $x^{2}+3 y^{2}=u^{2}+3 v^{2}$ for some odd integers u and v.
(ii) [24, Lemma 3.6] If $w=x^{2}+7 y^{2}>0$ with $x, y \in \mathbb{Z}$ and $8 \mid w$, then $w=u^{2}+7 v^{2}$ for some odd integers u and v.
(iii) [27, Lemma 5.1] If $w=3 x^{2}+5 y^{2}>0$ with $x, y \in \mathbb{Z}$ and $8 \mid w$, then $w=3 u^{2}+5 v^{2}$ for some odd integers u and v.

Proof of Theorem 1.2. (i) Let $n \in \mathbb{N}$. Clearly,
$n=T_{x}+T_{y}+5 z(3 z+1) / 2 \Longleftrightarrow 24 n+11=3(2 x+1)^{2}+3(2 y+1)^{2}+5(6 z+1)^{2}$.
There are two classes in the genus of $3 x^{2}+3 y^{2}+5 z^{2}$, and the one not containing $3 x^{2}+3 y^{2}+5 z^{2}$ has the representative

$$
\begin{aligned}
3 x^{2}+2 y^{2}+8 z^{2}-2 y z & =3 x^{2}+3\left(\frac{y}{2}+z\right)^{2}+5\left(\frac{y}{2}-z\right)^{2} \\
& =3 x^{2}+3\left(\frac{y-3 z}{2}\right)^{2}+5\left(\frac{y+z}{2}\right)^{2}
\end{aligned}
$$

If $24 n+11=3 x^{2}+2 y^{2}+8 z^{2}-2 y z$ with y odd and z even, then $3 x^{2} \equiv 11-$ $2 y^{2} \equiv 9(\bmod 4)$ which is impossible. Thus, if $24 n+11 \in\left\{3 x^{2}+2 y^{2}+8 z^{2}-\right.$ $2 y z: x, y, z \in \mathbb{Z}\}$ then $24 n+11 \in\left\{3 x^{2}+3 y^{2}+5 z^{2}: x, y, z \in \mathbb{Z}\right\}$. With the help of Lemma 3.1, there are $x, y, z \in \mathbb{Z}$ such that $24 n+11=3 x^{2}+3 y^{2}+5 z^{2}$. As $5 z^{2} \not \equiv 11(\bmod 4), x$ and y cannot be both even. Without loss of generality, we assume that $2 \nmid x$. Then $3 y^{2}+5 z^{2} \equiv 11-3 x^{2} \equiv 0(\bmod 8)$ and $3 y^{2}+5 z^{2} \neq 0$. By Lemma 3.2(iii), $3 y^{2}+5 z^{2}=3 y_{0}^{2}+5 z_{0}^{2}$ for some odd integers y_{0} and z_{0}. Write $x=2 u+1$ and $y_{0}=2 v+1$ with $u, v \in \mathbb{Z}$. As $2 \nmid z_{0}$ and $3 \nmid z_{0}, z_{0}$ or $-z_{0}$ has the form $6 w+1$ with $w \in \mathbb{Z}$. Thus $24 n+11=$ $3(2 u+1)^{2}+3(2 v+1)^{2}+5(6 w+1)^{2}$ and hence $n=T_{u}+T_{v}+5 w(3 w+1) / 2$. This proves the universality of $(15,5,1,1,1,1)$ over \mathbb{Z}.
(ii) Let $n \in \mathbb{N}$ and $r \in\{1,3\}$. Obviously,

$$
\begin{aligned}
& n=T_{x}+\frac{y(3 y+1)}{2}+3 \frac{z(5 z+r)}{2} \\
\Longleftrightarrow & 120 n+9 r^{2}+20=15(2 x+1)^{2}+5(6 y+1)^{2}+9(10 z+r)^{2} .
\end{aligned}
$$

There are two classes in the genus of $x^{2}+15 y^{2}+5 z^{2}$, and the one not containing $x^{2}+15 y^{2}+5 z^{2}$ has the representative

$$
\begin{aligned}
4 x^{2}+4 y^{2}+5 z^{2}+2 x y & =\left(\frac{x}{2}+2 y\right)^{2}+15\left(\frac{x}{2}\right)^{2}+5 z^{2} \\
& =\left(2 x+\frac{y}{2}\right)^{2}+15\left(\frac{y}{2}\right)^{2}+5 z^{2}
\end{aligned}
$$

If $120 n+9 r^{2}+20=4 x^{2}+4 y^{2}+5 z^{2}+2 x y$ with $x, y, z \in \mathbb{Z}$, then $2 x y \equiv$ $9 r^{2}-5 z^{2} \equiv 0(\bmod 4)$ and hence x or y is even. Thus, with the help of Lemma 3.1, we can always write $120 n+9 r^{2}+20=x^{2}+15 y^{2}+5 z^{2}$ with $x, y, z \in \mathbb{Z}$. Since $x^{2}+5 z^{2} \equiv 20 \equiv 2(\bmod 3), x=3 x_{0}$ for some $x_{0} \in \mathbb{Z}$. As $15 y^{2} \not \equiv 9 r^{2}(\bmod 4), x$ and z cannot be both even. If $2 \nmid x$, then $5\left(3 y^{2}+z^{2}\right) \equiv 9 r^{2}+20-x^{2} \equiv 4(\bmod 8)$ and hence by Lemma 3.2(i) we can write $3 y^{2}+z^{2}$ as $3 y_{0}^{2}+z_{0}^{2}$ with y_{0} and z_{0} both odd. If $2 \nmid z$, then $x^{2}+15 y^{2} \neq 0$ and $x^{2}+15 y^{2}=3\left(3 x_{0}^{2}+5 y^{2}\right) \equiv 9 r^{2}+20-5 z^{2} \equiv 0(\bmod 8)$, hence by Lemma 3.2 (iii) we can write $3 x_{0}^{2}+5 y^{2}$ as $3 x_{1}^{2}+5 y_{1}^{2}$ with x_{1} and y_{1} both odd.

By the above, there are odd integers x, y, z such that $120 n+9 r^{2}+20=$ $9 x^{2}+15 y^{2}+5 z^{2}$. Write $y=2 u+1$ with $u \in \mathbb{Z}$. As $3 \nmid z$, we can write z or $-z$ as $6 v+1$ with $v \in \mathbb{Z}$. Since $x^{2} \equiv r^{2}(\bmod 5)$, we can write x or $-x$ as $10 w+r$ with $w \in \mathbb{Z}$. Thus

$$
120 n+9 r^{2}+20=15(2 u+1)^{2}+5(6 v+1)^{2}+9(10 z+r)^{2}
$$

and hence $n=T_{x}+y(3 y+1) / 2+3 z(5 z+r) / 2$ with $x, y, z \in \mathbb{Z}$. This proves the universality of $(15,3 r, 3,1,1,1)$ over \mathbb{Z}.
(iii) Let $n \in \mathbb{N}$ and $r \in\{1,3\}$. Apparently,

$$
\begin{aligned}
& n=3 x^{2}+\frac{y(3 y+1)}{2}+\frac{z(5 z+r)}{2} \\
\Longleftrightarrow & 120 n+3 r^{2}+5=360 x^{2}+5(6 y+s)^{2}+3(10 z+r)^{2} .
\end{aligned}
$$

If $60 n+\left(3 r^{2}+5\right) / 2=4 x^{2}+4 y^{2}+5 z^{2}+2 x y$ with $x, y, z \in \mathbb{Z}$, then x or y must be even. Thus, as in part (ii), $60 n+\left(3 r^{2}+5\right) / 2=x^{2}+5 y^{2}+15 z^{2}$ for some $x, y, z \in \mathbb{Z}$. Note that $x^{2}+y^{2} \equiv z^{2}(\bmod 4)$. If y is odd, then $2 \mid x$, $2 \nmid z$ and we may assume $y \not \equiv z(\bmod 4)$ (otherwise it suffices to change the
sign of z), hence

$$
y^{2}+3 z^{2}=\left(\frac{y-3 z}{2}\right)^{2}+3\left(\frac{y+z}{2}\right)^{2}
$$

with $y_{1}=(y-3 z) / 2$ and $z_{1}=(y+z) / 2$ both even. So, without loss of generality, we may simply assume that $2 \mid y$ and $x \equiv z(\bmod 2)$. Observe that

$$
120 n+3 r^{2}+5=2\left(x^{2}+5 y^{2}+15 z^{2}\right)=3 a^{2}+5 b^{2}+10 y^{2}
$$

with $a=(x+5 z) / 2$ and $b=(x-3 z) / 2$ both integral. Since $3 a^{2}+5 b^{2} \equiv$ $5 s^{2}+3 t^{2}-10 y^{2} \equiv 0(\bmod 8)$ and $3 a^{2}+5 b^{2}>0$, by Lemma 3.2(iii) we can write $3 a^{2}+5 b^{2}=3 c^{2}+5 d^{2}$ with c and d both odd. Thus

$$
120 n+3 r^{2}+5=3 c^{2}+5 d^{2}+40\left(\frac{y}{2}\right)^{2}
$$

As $(y / 2)^{2} \equiv 5\left(1-d^{2}\right) \equiv d^{2}-1(\bmod 3)$, we must have $3 \nmid d$ and $3 \mid y$. Write $y=6 u$ with $u \in \mathbb{Z}$. Clearly, d or $-d$ has the form $6 v+1$ with $v \in \mathbb{Z}$. Since $c^{2} \equiv r^{2}(\bmod 5)$, we may write c or $-c$ as $10 w+r$ with $w \in \mathbb{Z}$. Therefore

$$
120 n+3 r^{2}+5=3(10 w+r)^{2}+5(6 v+1)^{2}+40(3 u)^{2}
$$

and hence $n=3 u^{2}+v(3 v+1) / 2+w(5 w+r) / 2$. This proves the universality of $(6,0,5, r, 3,1)$ over \mathbb{Z}.
(iv) Let $n \in \mathbb{N}$ and $\delta \in\{0,1\}$. Clearly,

$$
\begin{aligned}
& n=x(x+\delta)+\frac{y(3 y+1)}{2}+5 \frac{z(3 z+1)}{2} \\
\Longleftrightarrow & 24 n+6(\delta+1)=6(2 x+\delta)^{2}+(6 y+1)^{2}+5(6 z+1)^{2} .
\end{aligned}
$$

There are two classes in the genus of $x^{2}+5 y^{2}+6 z^{2}$, and the one not containing $x^{2}+5 y^{2}+6 z^{2}$ has the representative $3 x^{2}+3 y^{2}+4 z^{2}-2 y z+2 z x$. If $24 n+6(\delta+1)=3 x^{2}+3 y^{2}+4 z^{2}-2 y z+2 z x$, then $u=(x+y) / 2$ and $v=(x-y) / 2$ are integers, and

$$
24 n+6(\delta+1)=6 u^{2}+6 v^{2}+4 z^{2}+4 v z=6 u^{2}+5 v^{2}+(v+2 z)^{2} .
$$

Thus, by Lemma 3.1, $24 n+6(\delta+1)=x^{2}+5 y^{2}+6 z^{2}$ for some $x, y, z \in \mathbb{Z}$. Since $x^{2} \equiv-5 y^{2} \equiv y^{2}(\bmod 3)$, we may assume that $x \equiv y(\bmod 3)$ without loss of generality. If $z \not \equiv \delta(\bmod 2)$, then $x^{2}+5 y^{2} \equiv 6(\delta+1)-$ $6 z^{2} \equiv 6(\delta+1)-6(1-\delta) \equiv 4 \delta(\bmod 8)$, hence both x and y are even and $(x-y) / 2 \equiv \delta(\bmod 2)$, and thus

$$
x^{2}+5 y^{2}+6 z^{2}=\left(z-\frac{5(x-y)}{6}\right)^{2}+5\left(\frac{x-y}{6}+z\right)^{2}+6\left(\frac{x-y}{6}+y\right)^{2}
$$

with $(x-y) / 6+y \equiv(x-y) / 2 \equiv \delta(\bmod 2)$.

By the above, $24 n+6(\delta+1)=x^{2}+5 y^{2}+6 z^{2}$ for some $x, y, z \in \mathbb{Z}$ with $x, y, z \in \mathbb{Z}$ with $z \equiv \delta(\bmod 2)$. Since $x^{2}+5 y^{2}$ is a positive multiple of 3 , by [24, Lemma 2.1] we can write $x^{2}+5 y^{2}=x_{0}^{2}+5 y_{0}^{2}$ with $x_{0} y_{0} \in \mathbb{Z}$ and $3 \nmid x_{0} y_{0}$. So, there are $x, y, z \in \mathbb{Z}$ with $x \equiv y \not \equiv 0(\bmod 3)$ and $z \equiv \delta(\bmod 2)$ such that $24 n+6(\delta+1)=x^{2}+5 y^{2}+6 z^{2}$. Write $z=2 w+\delta$ with $w \in \mathbb{Z}$. Since $x^{2}+5 y^{2} \equiv 6(\bmod 8)$, both x and y are odd. Thus x or $-x$ has the form $6 u+1$ with $u \in \mathbb{Z}$, and y or $-y$ has the form $6 v+1$ with $v \in \mathbb{Z}$. Therefore

$$
24 n+6(\delta+1)=(6 u+1)^{2}+5(6 v+1)^{2}+6(2 w+\delta)^{2}
$$

and hence $n=w(w+\delta)+u(3 u+1) / 2+5 v(3 v+1) / 2$. This proves the universality of $(15,5,3,1,2,2 \delta)$ over \mathbb{Z}.
(v) Let $n \in \mathbb{N}$. Apparently,

$$
\begin{aligned}
& n=x(x+1)+\frac{y(3 y+1)}{2}+7 \frac{z(3 z+1)}{2} \\
\Longleftrightarrow & 24 n+14=6(2 x+1)^{2}+(6 y+1)^{2}+7(6 z+1)^{2} .
\end{aligned}
$$

There are two classes in the genus of $x^{2}+6 y^{2}+7 z^{2}$, and the one not containing $x^{2}+6 y^{2}+7 z^{2}$ has the representative
$2 x^{2}+5 y^{2}+5 z^{2}-4 y z=2 x^{2}+10 u^{2}+10 v^{2}-4(u+v)(u-v)=2 x^{2}+6 u^{2}+14 v^{2}$
with $u=(y+z) / 2$ and $v=(y-z) / 2$. If $24 n+14=2 x^{2}+6 u^{2}+14 v^{2}$ for some $x, u, v \in \mathbb{Z}$ with $x \not \equiv v(\bmod 2)$, then $14 \equiv 2+6 u^{2}(\bmod 8)$ which is impossible. If $24 n+14=2 x^{2}+6 u^{2}+14 v^{2}$ with $x, u, v \in \mathbb{Z}$ and $x \equiv v(\bmod 2)$, then

$$
24 n+14=6 u^{2}+\left(\frac{x-7 v}{2}\right)^{2}+7\left(\frac{x+v}{2}\right)^{2} .
$$

By the above and Lemma 3.1, there are $x, y, z \in \mathbb{Z}$ such that $24 n+14=$ $6 x^{2}+y^{2}+7 z^{2}$. If $2 \mid x$, then $y^{2}+7 z^{2} \equiv 6-6 x^{2} \equiv 6(\bmod 8)$ which is impossible. So $x=2 u+1$ for some $u \in \mathbb{Z}$. Note that $y^{2}+7 z^{2} \equiv 6-6 x^{2} \equiv$ $0(\bmod 8)$ and $y^{2}+7 z^{2} \neq 0$. Applying Lemma 3.2(ii) we can write $y^{2}+7 z^{2}$ as $y_{0}^{2}+7 z_{0}^{2}$ with y_{0} and z_{0} both odd. Note that $y_{0}^{2}+z_{0}^{2} \equiv y_{0}^{2}+7 z_{0}^{2} \equiv 14 \equiv$ $2(\bmod 3)$. So y_{0} or $-y_{0}$ can be written as $6 v+1$ with $v \in \mathbb{Z}$, and z_{0} or $-z_{0}$ has the form $6 w+1$ with $w \in \mathbb{Z}$. Thus

$$
24 n+14=6 x^{2}+y_{0}^{2}+7 z_{0}^{2}=6(2 u+1)^{2}+(6 v+1)^{2}+7(6 w+1)^{2}
$$

and hence $n=u(u+1)+v(3 v+1) / 2+7 z(3 z+1) / 2$. This proves the universality of ($21,7,3,1,2,2$).
(vi) Let $r \in\{1,3,5\}$ and $n \in \mathbb{N}$. Clearly,
$n=T_{x}+T_{y}+\frac{z(7 z+r)}{2} \Longleftrightarrow 56 n+14+r^{2}=7(2 x+1)^{2}+7(2 y+1)^{2}+(14 z+r)^{2}$.
There are two classes in the genus of $x^{2}+7 y^{2}+7 z^{2}$, and the one not containing $x^{2}+7 y^{2}+7 z^{2}$ has the representative

$$
\begin{aligned}
2 x^{2}+4 y^{2}+7 z^{2}+2 x y & =\left(\frac{x}{2}+2 y\right)^{2}+7\left(\frac{x}{2}\right)^{2}+7 z^{2} \\
& =\left(\frac{x-3 y}{2}\right)^{2}+7\left(\frac{x+y}{2}\right)^{2}+7 z^{2}
\end{aligned}
$$

If $56 n+14+r^{2}=2 x^{2}+4 y^{2}+7 z^{2}+2 x y$ with x odd and y even, then $15 \equiv 14+r^{2} \equiv 2 x^{2}+7 z^{2} \equiv 9(\bmod 4)$ which is impossible. Thus, if $56 n+14+r^{2} \in\left\{2 x^{2}+4 y^{2}+7 z^{2}+2 x y: x, y, z \in \mathbb{Z}\right\}$ then $56 n+14+r^{2} \in\left\{x^{2}+\right.$ $\left.7 y^{2}+7 z^{2}: x, y, z \in \mathbb{Z}\right\}$. With the help of Lemma 3.1, there are $x, y, z \in \mathbb{Z}$ such that $56 n+14+r^{2}=x^{2}+7 y^{2}+7 z^{2}$. As $x^{2} \not \equiv 14+r^{2} \equiv 15(\bmod 4)$, y and z cannot be both even. Without loss of generality, we assume that $2 \nmid z$. Then $x^{2}+7 y^{2} \equiv 14+r^{2}-7 z^{2} \equiv 0(\bmod 8)$ and $x^{2}+7 y^{2} \neq 0$. By Lemma 3.2(ii), $x^{2}+7 y^{2}=x_{0}^{2}+7 y_{0}^{2}$ for some odd integers x_{0} and y_{0}. Now $56 n+14+r^{2}=x_{0}^{2}+7 y_{0}^{2}+7 z^{2}$. Clearly, x_{0} or $-x_{0}$ has the form $14 w+r$ with $w \in \mathbb{Z}$. Write $y_{0}=2 u+1$ and $z=2 v+1$ with $u, v \in \mathbb{Z}$. Then

$$
56 n+14+r^{2}=(14 w+r)^{2}+7(2 u+1)^{2}+7(2 v+1)^{2}
$$

and hence $n=T_{u}+T_{v}+w(7 w+r) / 2$. This proves the universality of ($7, r, 1,1,1,1$) over \mathbb{Z}.
(vii) Let $n \in \mathbb{N}, s \in\{1,3\}$ and $t \in\{1,3,5\}$. Clearly,

$$
\begin{aligned}
& n=T_{x}+\frac{y(3 y+s)}{2}+\frac{z(7 z+t)}{2} \\
\Longleftrightarrow & 168 n+21+7 s^{2}+3 t^{2}=21(2 x+1)^{2}+7(6 y+s)^{2}+3(14 z+t)^{2} .
\end{aligned}
$$

There are two classes in the genus of $3 x^{2}+21 y^{2}+7 z^{2}$, and the one not containing $3 x^{2}+21 y^{2}+7 z^{2}$ has the representative

$$
\begin{aligned}
6 x^{2}+12 y^{2}+7 z^{2}+6 x y & =3\left(\frac{x}{2}+2 y\right)^{2}+21\left(\frac{x}{2}\right)^{2}+7 z^{2} \\
& =3\left(\frac{x-3 y}{2}\right)^{2}+21\left(\frac{x+y}{2}\right)^{2}+7 z^{2}
\end{aligned}
$$

If $168 n+21+7 s^{2}+3 t^{2}=6 x^{2}+12 y^{2}+7 z^{2}+6 x y$ with x odd and y even, then $31 \equiv 21+7 s^{2}+3 t^{2} \equiv 6 x^{2}+7 z^{2} \equiv 13(\bmod 4)$ which is impossible. Thus, if $168 n+21+7 s^{2}+3 t^{2} \in\left\{6 x^{2}+12 y^{2}+7 z^{2}+6 x y: x, y, z \in \mathbb{Z}\right\}$ then $168 n+21+7 s^{2}+3 t^{2} \in\left\{3 x^{2}+21 y^{2}+7 z^{2}: x, y, z \in \mathbb{Z}\right\}$. With the
help of Lemma 3.1, there are $x, y, z \in \mathbb{Z}$ such that $168 n+21+7 s^{2}+3 t^{2}=$ $3 x^{2}+21 y^{2}+7 z^{2}$. As $21 y^{2} \not \equiv 21+7 s^{2}+3 t^{2} \equiv 31(\bmod 4), x$ and z cannot be both even. If $2 \nmid x$, then $21 y^{2}+7 z^{2} \equiv 21+7 s^{2}+3 t^{2}-3 x^{2} \equiv 4(\bmod 8)$ and hence by Lemma 3.2(i) we can write $3 y^{2}+z^{2}$ as $3 y_{0}^{2}+z_{0}^{2}$ with y_{0}, z_{0} odd integers. Note that $x^{2}+7 y^{2} \neq 0$ since $7 \nmid t$. If $2 \nmid z$, then $3\left(x^{2}+7 y^{2}\right) \equiv 21+$ $7 s^{2}+3 t^{2}-7 z^{2} \equiv 0(\bmod 8)$ and hence by Lemma 3.2(ii) $x^{2}+7 y^{2}=x_{0}^{2}+7 y_{0}^{2}$ for some odd integers x_{0} and y_{0}.

By the above, there are odd integers x, y, z such that $168 n+21+7 s^{2}+3 t^{2}=$ $3 x^{2}+7 y^{2}+21 z^{2}$. Write $z=2 u+1$ with $u \in \mathbb{Z}$. As $y^{2} \equiv s^{2}(\bmod 3), y$ or $-y$ has the form $6 v+s$ with $v \in \mathbb{Z}$. Since $x^{2} \equiv t^{2}(\bmod 7), x$ or $-x$ has the form $14 w+t$ with $w \in \mathbb{Z}$. Thus

$$
168 n+21+7 s^{2}+3 t^{2}=3(14 w+t)^{2}+7(6 v+s)^{2}+21(2 u+1)^{2}
$$

and hence $n=T_{u}+v(3 v+s) / 2+w(7 w+t) / 2$. This proves the universality of $(7, t, 3, s, 1,1)$ over \mathbb{Z}.
(viii) Let $\delta \in\{0,1\}$ and $r \in\{1,3,5\}$. Clearly,

$$
\begin{aligned}
& n=T_{x}+y(y+\delta)+\frac{z(7 z+r)}{2} \\
\Longleftrightarrow & 56 n+14 \delta+r^{2}+7=7(2 x+1)^{2}+14(2 y+\delta)^{2}+(14 z+r)^{2} .
\end{aligned}
$$

There are two classes in the genus of $x^{2}+7 y^{2}+14 z^{2}$, the one not containing $x^{2}+7 y^{2}+14 z^{2}$ has the representative

$$
2 x^{2}+7 y^{2}+7 z^{2}=2 x^{2}+14\left(\frac{y+z}{2}\right)^{2}+14\left(\frac{y-z}{2}\right)^{2}
$$

If $56 n+14 \delta+r^{2}+7=2 x^{2}+14 y^{2}+14 z^{2}$ with $x, y, z \in \mathbb{Z}$ and $y \equiv z(\bmod 2)$, then $2 x^{2} \equiv 14 \delta+r^{2}+7 \equiv 2 \delta(\bmod 4)$, hence $x^{2} \equiv \delta(\bmod 4)$ and $y \equiv z \equiv$ $\delta(\bmod 2)$ since

$$
-2\left(y^{2}+z^{2}\right) \equiv 14\left(y^{2}+z^{2}\right) \equiv 14 \delta+r^{2}+7-2 \delta \equiv-4 \delta(\bmod 8)
$$

If $56 n+14 \delta+r^{2}+7=2 x^{2}+14 y^{2}+14 z^{2}$ with $x, y, z \in \mathbb{Z}$ and $x \equiv y(\bmod 2)$, then

$$
56 n+14 \delta+r^{2}+7=\left(\frac{x-7 y}{2}\right)^{2}+7\left(\frac{x+y}{2}\right)^{2}+14 z^{2}
$$

In view of Lemma 3.1 and the above, there are $x, y, z \in \mathbb{Z}$ such that $56 n+14 \delta+r^{2}+7=x^{2}+7 y^{2}+14 z^{2}$. If $z \not \equiv \delta(\bmod 2)$, then

$$
x^{2}+7 y^{2} \equiv 14 \delta+r^{2}+7-14 z^{2} \equiv 14 \delta-14(1-\delta) \equiv 2(\bmod 4)
$$

which is impossible. Thus $z \equiv \delta(\bmod 2)$ and $x^{2}+7 y^{2} \equiv r^{2}+7 \equiv 0(\bmod 8)$. Note that $x^{2}+7 y^{2} \neq 0$ since $7 \nmid r$. Applying Lemma 3.2(ii) we can write
$x^{2}+7 y^{2}$ as $x_{0}^{2}+7 y_{0}^{2}$ with x_{0} and y_{0} both odd. Since $x_{0}^{2} \equiv r^{2}(\bmod 7)$, either x_{0} or $-x_{0}$ has the form $14 w+r$ with $w \in \mathbb{Z}$. Write $y_{0}=2 u+1$ and $z=2 v+\delta$ with $u, v \in \mathbb{Z}$. Then

$$
56 n+14 \delta+r^{2}+7 \equiv(14 w+r)^{2}+7(2 u+1)^{2}+14(2 v+\delta)^{2}
$$

and hence $n=T_{u}+v(v+\delta)+w(7 w+r) / 2$. This proves the universality of $(7, r, 2,2 \delta, 1,1)$ over \mathbb{Z}.

The proof of Theorem 1.2 is now complete.

4. Proof of Theorem 1.3

For a positive definite integral ternary quadratic form $f(x, y, z)$ and an integer n, as usual we define

$$
r(n, f):=\left\{(x, y, z) \in \mathbb{Z}^{3}: f(x, y, z)=n\right\} \mid
$$

and adopt the standard notation $r(n, \operatorname{gen}(f))$ introduced in [17, pp. 173174].

Lemma 4.1. Let f be a positive ternary quadratic form with determinant $d(f)$. Suppose that $m \in \mathbb{Z}^{+}$is represented by the genus of f. Then, for each prime $p \nmid 2 m d(f)$, we have

$$
\begin{equation*}
\frac{r\left(m p^{2}, \operatorname{gen}(f)\right)}{r(m, \operatorname{gen}(f))}=p+1-\left(\frac{-m d(f)}{p}\right) \tag{4.1}
\end{equation*}
$$

Proof. By the Minkowski-Siegel formula [17, pp. 173-174],

$$
r\left(m p^{2}, \operatorname{gen}(f)\right)=2 \pi \sqrt{\frac{m p^{2}}{d(f)}} \prod_{q} \alpha_{q}\left(m p^{2}, f\right),
$$

where q runs over all primes and α_{q} is the local density. As $p \nmid 2 m d(f)$, by [29] we have

$$
\begin{aligned}
\alpha_{p}\left(m p^{2}, f\right) & =1+\frac{1}{p}-\frac{1}{p^{2}}+\left(\frac{-m d(f)}{p}\right) \frac{1}{p^{2}} \\
\alpha_{p}(m, f) & =1+\left(\frac{-m d(f)}{p}\right) \frac{1}{p}
\end{aligned}
$$

Thus

$$
\frac{r\left(m p^{2}, \operatorname{gen}(f)\right)}{r(m, \operatorname{gen}(f))}=p \frac{\alpha_{p}\left(m p^{2}, f\right)}{\alpha_{p}(m, f)}=p+1-\left(\frac{-m d(f)}{p}\right) .
$$

This concludes the proof.
Lemma 4.2. Let $w=u^{2}+15 v^{2}>0$ with $u, v \in \mathbb{Z}$ and $8 \mid w$. Then $w=x^{2}+15 y^{2}$ for some odd integers x and y.

Proof. Let k be the 2 -adic order of $\operatorname{gcd}(u, v)$, and write $u=2^{k} u_{0}$ and $v=2^{k} v_{0}$ with $u_{0}, v_{0} \in \mathbb{Z}$ not all even. If $k=0$, then both u_{0} and v_{0} are odd since w is even. Below we assume that $k>0$.

We observe the identity

$$
4^{2}\left(x^{2}+15 y^{2}\right)=(x-15 y)^{2}+15(x+y)^{2}
$$

If $u_{0} \not \equiv v_{0}(\bmod 2)$, then $k \geqslant 2($ since $8 \mid w)$ and $4^{2}\left(u_{0}^{2}+15 v_{0}^{2}\right)=s^{2}+15 t^{2}$ with $s=u_{0}-15 v_{0}$ and $t=u_{0}+v_{0}$ both odd. For $j \in \mathbb{N}$, if $4^{j}\left(u_{0}^{2}+15 v_{0}^{2}\right)=u_{j}^{2}+15 v_{j}^{2}$ for some odd integers u_{j} and v_{j}, then we may assume $u_{j} \equiv v_{j}(\bmod 4)$ without loss of generality (otherwise we may replace v_{j} by $-v_{j}$), and hence

$$
4^{j+1}\left(u_{0}^{2}+15 v_{0}^{2}\right)=4\left(u_{j}^{2}+15 v_{j}^{2}\right)=u_{j+1}^{2}+15 v_{j+1}^{2}
$$

with $u_{j+1}=\left(u_{j}-15 v_{j}\right) / 2$ and $v_{j+1}=\left(u_{j}+v_{j}\right) / 2$ both odd. Thus, for some odd integers u_{k} and v_{k}, we have

$$
w=4^{k}\left(u_{0}^{2}+15 v_{0}^{2}\right)=u_{k}^{2}+15 v_{k}^{2}
$$

This concludes the proof.
Proof of Theorem 1.3(i). (a) We first prove that (7, 7, 3, 1, 1, 1) is universal over \mathbb{Z}. Let $n \in \mathbb{N}$. Clearly,

$$
\begin{aligned}
& n=T_{x}+7 T_{y}+\frac{z(3 z+1)}{2} \\
\Longleftrightarrow & 24 n+25=3(2 x+1)^{2}+21(2 y+1)^{2}+(2 z+1)^{2} .
\end{aligned}
$$

There are two classes in the genus of $x^{2}+3 y^{2}+21 z^{2}$ and the one not containing $x^{2}+3 y^{2}+21 z^{2}$ has the representative

$$
\begin{align*}
x^{2}+6 y^{2}+12 z^{2}-6 y z & =x^{2}+3\left(\frac{y}{2}-2 z\right)^{2}+21\left(\frac{y}{2}\right)^{2} \\
& =x^{2}+3\left(\frac{y+3 z}{2}\right)^{2}+21\left(\frac{y-z}{2}\right)^{2} . \tag{4.2}
\end{align*}
$$

If $24 n+25=x^{2}+6 y^{2}+12 z^{2}-6 y z$ with $x, y, z \in \mathbb{Z}$, then the equality modulo 4 yields $y(y-z) \equiv 0(\bmod 2)$. Thus, by (4.2) and Lemma 3.1, we have

$$
\begin{equation*}
24 n+25 \in\left\{x^{2}+3 y^{2}+21 z^{2}: x, y, z \in \mathbb{Z}\right\} \tag{4.3}
\end{equation*}
$$

Now we claim that $24 n+25=x^{2}+3 y^{2}+21 z^{2}$ for some $x, y, z \in \mathbb{Z}$ with $y^{2}+7 z^{2}>0$. This holds by (4.3) if $24 n+25$ is not a square. Suppose that $24 n+25=m^{2}$ with $m \in \mathbb{Z}^{+}$. Let p be any prime divisor of m. Clearly, $p \geqslant 5$. Note that $r\left(7^{2}, x^{2}+3 y^{2}+21 z^{2}\right)>2$ since $7^{2}=(\pm 5)^{2}+3 \times(\pm 1)^{2}+21 \times(\pm 1)^{2}$. If $p \neq 7$ and $r\left(p^{2}, x^{2}+6 y^{2}+12 z^{2}-6 y z\right)>2$, then $p^{2}=x^{2}+6 y^{2}+12 z^{2}-6 y z$ for some $x, y, z \in \mathbb{Z}$ with $2 \mid y(y-z)$ and $y^{2}+z^{2}>0$, hence by (4.2) we
have $p^{2}=x^{2}+3 u^{2}+21 v^{2}$ for some $x, u, v \in \mathbb{Z}$ with $u^{2}+7 v^{2}>0$, and thus $r\left(p^{2}, x^{2}+3 y^{2}+21 z^{2}\right)>2$. By Lemma 4.1, if $p \neq 7$ then

$$
\frac{r\left(p^{2}, \operatorname{gen}\left(x^{2}+3 y^{2}+21 z^{2}\right)\right)}{r\left(1, \operatorname{gen}\left(x^{2}+3 y^{2}+21 z^{2}\right)\right)}=p+1-\left(\frac{-7}{p}\right)
$$

and hence
$r\left(p^{2}, x^{2}+3 y^{2}+21 z^{2}\right)+r\left(p^{2}, x^{2}+6 y^{2}+12 z^{2}-6 y z\right)=4\left(p+1-\left(\frac{-7}{p}\right)\right)>4$.
So we still have $r\left(p^{2}, x^{2}+3 y^{2}+21 z^{2}\right)>2$ if $r\left(p^{2}, x^{2}+6 y^{2}+12 z^{2}-6 y z\right) \leqslant 2$. As $r\left(m^{2}, x^{2}+3 y^{2}+21 z^{2}\right) \geqslant r\left(p^{2}, x^{2}+3 y^{2}+21 z^{2}\right)>2$, we can write $24 n+25=m^{2}$ as $x^{2}+3 y^{2}+21 z^{2}$ with $x, y, z \in \mathbb{Z}$ and $y^{2}+7 z^{2}>0$. This proves the claim.

By the claim, there are $x, y, z \in \mathbb{Z}$ such that $24 n+25=x^{2}+3 y^{2}+21 z^{2}$ and $y^{2}+7 z^{2}>0$. As $3 y^{2} \not \equiv 25 \equiv 1(\bmod 4)$, either x or z is odd. If $2 \nmid x$, then $3\left(y^{2}+7 z^{2}\right) \equiv 25-x^{2} \equiv 0(\bmod 8)$ and hence by Lemma 3.2(ii) we can write $y^{2}+7 z^{2}$ as $y_{0}^{2}+7 z_{0}^{2}$ with y_{0} and z_{0} both odd. If $2 \nmid z$, then $x^{2}+3 y^{2} \equiv 25-21 z^{2} \equiv 4(\bmod 8)$ and hence by Lemma 3.2(i) we can write $x^{2}+3 y^{2}$ as $x_{1}^{2}+3 y_{1}^{2}$ with x_{1} and y_{1} both odd. Thus $24 n+25=a^{2}+3 b^{2}+21 c^{2}$ for some odd integers a, b, c. As $3 \nmid a$, either a or $-a$ has the form $6 w+1$ with $w \in \mathbb{Z}$. Write $b=2 u+1$ and $c=2 v+1$ with $u, v \in \mathbb{Z}$. Then

$$
24 n+25=(6 w+1)^{2}+3(2 u+1)^{2}+21(2 v+1)^{2}
$$

and hence $n=T_{u}+7 T_{v}+w(3 w+1) / 2$. This proves the universality of $(7,7,3,1,1,1)$ over \mathbb{Z}.
(b) Let $n \in \mathbb{N}$ and $r \in\{1,3\}$. Clearly,

$$
\begin{aligned}
& n=5 T_{x}+\frac{y(3 y+1)}{2}+\frac{z(3 z+r)}{2} \\
\Longleftrightarrow & 24 n+r^{2}+16=15(2 x+1)^{2}+(6 y+1)^{2}+(6 z+r)^{2} .
\end{aligned}
$$

There are two classes in the genus of $x^{2}+y^{2}+15 z^{2}$, and the one not containing $x^{2}+y^{2}+15 z^{2}$ has the representative

$$
\begin{align*}
x^{2}+4 y^{2}+4 z^{2}-2 y z & =x^{2}+\left(\frac{y}{2}-2 z\right)^{2}+15\left(\frac{y}{2}\right)^{2} \\
& =x^{2}+\left(2 y-\frac{z}{2}\right)^{2}+15\left(\frac{z}{2}\right)^{2} \tag{4.4}
\end{align*}
$$

If $24 n+r^{2}+16=x^{2}+4 y^{2}+4 z^{2}-2 y z$ with $x, y, z \in \mathbb{Z}$, then $2 \nmid x$ and $2 \mid y z$. Thus, in view of (4.4) and Lemma 3.1, we have

$$
\begin{equation*}
24 n+r^{2}+16 \in\left\{x^{2}+y^{2}+15 z^{2}: x, y, z \in \mathbb{Z}\right\} \tag{4.5}
\end{equation*}
$$

We claim that $24 n+r^{2}+16=x^{2}+y^{2}+15 z^{2}$ for some $x, y, z \in \mathbb{Z}$ with $\left(x^{2}+15 z^{2}\right)\left(y^{2}+15 z^{2}\right)>0$. This holds by (4.5) if $24 n+r^{2}+16$ is not a square. Now suppose that $24 n+r^{2}+16=m^{2}$ with $m \in \mathbb{Z}^{+}$. Let p be any prime divisor of m. Clearly, $p \geqslant 5$. Note that $r\left(5^{2}, x^{2}+y^{2}+15 z^{2}\right)>4$ since $5^{2}=(\pm 5)^{2}+0^{2}+15 \times 0^{2}=0^{2}+(\pm 5)^{2}+15 \times 0^{2}=(\pm 3)^{2}+(\pm 4)^{2}+15 \times 0^{2}$. If $r\left(p^{2}, x^{2}+4 y^{2}+4 z^{2}-2 y z\right)>2$, then $p^{2}=x^{2}+4 y^{2}+4 z^{2}-2 y z$ for some $x, y, z \in \mathbb{Z}$ with $2 \mid y z$ and $y^{2}+z^{2}>0$, hence by (4.4) $p^{2}=x^{2}+u^{2}+15 v^{2}$ for some $x, u, v \in \mathbb{Z}$ with $\left(x^{2}+15 v^{2}\right)\left(u^{2}+15 v^{2}\right)>0$, and thus $r\left(p^{2}, x^{2}+\right.$ $\left.y^{2}+15 z^{2}\right)>4$. When $p>5$, by Lemma 4.1 we have

$$
\frac{r\left(p^{2}, \operatorname{gen}\left(x^{2}+y^{2}+15 z^{2}\right)\right)}{r\left(1, \operatorname{gen}\left(x^{2}+y^{2}+15 z^{2}\right)\right)}=p+1-\left(\frac{-15}{p}\right)
$$

and hence
$r\left(p^{2}, x^{2}+y^{2}+15 z^{2}\right)+2 r\left(p^{2}, x^{2}+4 y^{2}+4 z^{2}-2 y z\right)=8\left(p+1-\left(\frac{-15}{p}\right)\right)>50$.
Thus we still have $r\left(p^{2}, x^{2}+y^{2}+15 z^{2}\right)>4$ if $r\left(p^{2}, x^{2}+4 y^{2}+4 z^{2}-2 y z\right) \leqslant 2$. As $r\left(m^{2}, x^{2}+y^{2}+15 z^{2}\right) \geqslant r\left(p^{2}, x^{2}+y^{2}+15 z^{2}\right)>4$, we can write $24 n+r^{2}+16$ as $x^{2}+y^{2}+15 z^{2}$ with $\left(x^{2}+15 z^{2}\right)\left(y^{2}+15 z^{2}\right)>0$. This proves the claim.

By the claim, there are $x, y, z \in \mathbb{Z}$ such that $24 n+r^{2}+16=x^{2}+y^{2}+15 z^{2}$ and $\left(x^{2}+15 z^{2}\right)\left(y^{2}+15 z^{2}\right)>0$. Since $15 z^{2} \not \equiv r^{2} \equiv 1(\bmod 4)$, either x or y is odd. Without any loss of generality, we assume that $2 \nmid x$. Since $y^{2}+15 z^{2}>0$ and $y^{2}+15 z^{2} \equiv r^{2}-x^{2} \equiv 0(\bmod 8)$, by Lemma 4.2 we can write $y^{2}+15 z^{2}=y_{0}^{2}+15 z_{0}^{2}$ with y_{0} and z_{0} both odd. Now, $24 n+r^{2}+16=$ $x^{2}+y_{0}^{2}+15 z_{0}^{2}$. Since $x^{2}+y_{0}^{2} \equiv r^{2}+1(\bmod 3)$, one of x^{2} and y_{0}^{2} is congruent to r^{2} modulo 3 and the other one is congruent to 1 modulo 3 . Thus $x^{2}+y_{0}^{2}=(6 u+r)^{2}+(6 v+1)^{2}$ for some $u, v \in \mathbb{Z}$. Write $z_{0}=2 w+1$ with $v \in \mathbb{Z}$. Then

$$
24 n+r^{2}+16=(6 u+r)^{2}+(6 v+1)^{2}+15(2 w+1)^{2}
$$

and hence $n=u(3 u+r) / 2+v(3 v+1) / 2+5 T_{w}$. This proves the universality of $(5,5,3, r, 3,1)$ over \mathbb{Z}.
(c) Let $n \in \mathbb{N}$. Apparently,

$$
\begin{aligned}
& n=T_{x}+5 T_{y}+z(3 z+2) \\
\Longleftrightarrow & 24 n+26=3(2 x+1)^{2}+15(2 y+1)^{2}+2(6 z+2)^{2} .
\end{aligned}
$$

There are two classes in the genus of $2 x^{2}+3 y^{2}+15 z^{2}$, and the one not containing $2 x^{2}+3 y^{2}+15 z^{2}$ has the representative
$g(x, y, z)=2 x^{2}+5 y^{2}+11 z^{2}+2 y z+2 x(y-z)=2(x+v)^{2}+3(u-2 v)^{2}+15 u^{2}$
with $u=(y+z) / 2$ and $v=(y-z) / 2$. If $24 n+26=g(x, y, z)$ with $x, y, z \in \mathbb{Z}$, then $y \equiv z(\bmod 2)$, and hence by (4.6) we have $24 n+26=2 a^{2}+3 b^{2}+15 c^{2}$ for some $a, b, c \in \mathbb{Z}$. So, in view of Lemma 3.1, we always have

$$
\begin{equation*}
24 n+26 \in\left\{2 x^{2}+3 y^{2}+15 z^{2}: x, y, z \in \mathbb{Z}\right\} . \tag{4.7}
\end{equation*}
$$

We claim that $24 n+26=2 x^{2}+3 y^{2}+15 z^{2}$ for some $x, y, z \in \mathbb{Z}$ with $y^{2}+5 z^{2}>0$. This holds by (4.7) if $12 n+13$ is not a square. Now suppose that $12 n+13=m^{2}$ with $m \in \mathbb{Z}^{+}$. Let p be any prime divisor of m. Clearly, $p \geqslant 5$. Note that $r\left(2 \times 5^{2}, 2 x^{2}+3 y^{2}+15 z^{2}\right)>2$ since

$$
2 \times 5^{2}=2 \times(\pm 5)^{2}+3 \times 0^{2}+15 \times 0^{2}=2(\pm 1)^{2}+3(\pm 4)^{2}+30 \times 0^{2}
$$

If $r\left(2 p^{2}, g(x, y, z)\right)>2$, then $2 p^{2}=g(x, y, z)$ for some $x, y, z \in \mathbb{Z}$ with $y^{2}+z^{2}>0$, hence by (4.6) $2 p^{2}=2 x^{2}+3 b^{2}+15 c^{2}$ for some $x, b, c \in \mathbb{Z}$ with $b^{2}+c^{2}>0$, and thus $r\left(2 p^{2}, 2 x^{2}+3 y^{2}+15 z^{2}\right)>2$. When $p>5$, by Lemma 4.1 we have

$$
\frac{r\left(2 p^{2}, \operatorname{gen}\left(2 x^{2}+3 y^{2}+15 z^{2}\right)\right)}{r\left(2, \operatorname{gen}\left(2 x^{2}+3 y^{2}+15 z^{2}\right)\right)}=p+1-\left(\frac{-5}{p}\right)
$$

and hence

$$
r\left(2 p^{2}, 2 x^{2}+3 y^{2}+15 z^{2}\right)+2 r\left(2 p^{2}, g(x, y, z)\right)=6\left(p+1-\left(\frac{-5}{p}\right)\right)>40
$$

Thus we still have $r\left(2 p^{2}, 2 x^{2}+3 y^{2}+15 z^{2}\right)>2$ if $r\left(2 p^{2}, g(x, y, z)\right) \leqslant 2$. As $r\left(2 m^{2}, 2 x^{2}+3 y^{2}+15 z^{2}\right) \geqslant r\left(2 p^{2}, 2 x^{2}+3 y^{2}+15 z^{2}\right)>2$, we can write $24 n+26$ as $2 x^{2}+3 y^{2}+15 z^{2}$ with $y^{2}+5 z^{2}>0$. This proves the claim.

By the claim, there are $x, y, z \in \mathbb{Z}$ such that $24 n+26=2 x^{2}+3\left(y^{2}+5 z^{2}\right)$ and $y^{2}+5 z^{2}>0$. By [24, Lemma 2.1], $y^{2}+5 z^{2}=y_{0}^{2}+5 z_{0}^{2}$ for some integers y_{0} and z_{0} not all divisible by 3 . Without any loss of generality, we simply assume that $3 \nmid y$ or $3 \nmid z$. Note that $3 \nmid x$ and $y \equiv z(\bmod 2)$. If $3 \nmid y z$, then $\varepsilon_{1} y \equiv \varepsilon_{2} z \equiv x(\bmod 3)$ for some $\varepsilon_{1}, \varepsilon_{2} \in\{ \pm 1\}$. If $3 \mid y$ and $3 \nmid z$ then $x+y+\varepsilon z \equiv 0(\bmod 3)$ for some $\varepsilon \in\{ \pm 1\}$; similarly, if $3 \nmid y$ and $3 \mid z$ then $x+\varepsilon y+z \equiv 0(\bmod 3)$. So, without loss of generality we may suppose that $x+y+z \equiv 0(\bmod 3)$ (otherwise we adjust signs of x, y, z suitably to meet our purpose). If $y \equiv z \equiv 0(\bmod 2)$, then $2 x^{2} \equiv 26(\bmod 4)$, hence $2 \nmid x$
and $y \equiv z(\bmod 4)$ since $y^{2}+5 z^{2} \equiv 0(\bmod 8)$, therefore
$2 x^{2}+3 y^{2}+15 z^{2}=2\left(\frac{y-5 z}{2}\right)^{2}+3\left(\frac{2 x+5 y+5 z}{6}\right)^{2}+15\left(\frac{2 x-y-z}{6}\right)^{2}$
with $(2 x+5 y+5 z) / 6$ and $(2 x-y-z) / 6$ both odd.
By the above, $24 n+26=2 a^{2}+3 b^{2}+15 c^{2}$ for some $a, b, c \in \mathbb{Z}$ with $2 \nmid b c$. As $3 \nmid a$ and $2 a^{2} \equiv 26-3-15 \equiv 0(\bmod 8), a$ or $-a$ has the form $2(3 w+1)$ with $w \in \mathbb{Z}$. Write $b=2 u+1$ and $c=2 v+1$ with $u, v \in \mathbb{Z}$. Then

$$
24 n+26=2(2(3 w+1))^{2}+3(2 u+1)^{2}+15(2 v+1)^{2}
$$

and hence $n=T_{u}+5 T_{v}+w(3 w+2)$. This proves the universality of $(6,4,5,5,1,1)$ over \mathbb{Z}.

Proof of Theorem 1.3(ii). (a) Let $n \in \mathbb{N}$ and $r \in\{1,2\}$. Apparently,

$$
\begin{aligned}
& n=T_{x}+5 \frac{y(3 y+1)}{2}+z(3 z+r) \\
\Longleftrightarrow & 24 n+2 r^{2}+8=3(2 x+1)^{2}+5(6 y+1)^{2}+2(6 z+r)^{2} .
\end{aligned}
$$

As mentioned Part (b) in the proof of Theorem 1.3(i), there are two classes in the genus of $x^{2}+y^{2}+15 z^{2}$, and the one not containing $x^{2}+y^{2}+15 z^{2}$ has the representative $x^{2}+4 y^{2}+4 z^{2}-2 y z$. If $12 n+r^{2}+4=x^{2}+4 y^{2}+4 z^{2}-2 y z$ with $x, y, z \in \mathbb{Z}$, then $2 \mid y z$ since $r^{2} \not \equiv x^{2}-2(\bmod 4)$. Thus, in view of (4.4) and Lemma 3.1, $12 n+r^{2}+4=x^{2}+y^{2}+15 z^{2}$ for some $x, y, z \in \mathbb{Z}$. If $x \equiv y(\bmod 2)$, then $z \equiv r(\bmod 2), x^{2}+y^{2} \equiv r^{2}-15 z^{2} \equiv 2 r^{2}(\bmod 4)$ and hence $x \equiv y \equiv r \equiv z(\bmod 2)$. So, x or y has the same parity with z. Without loss of generality we may assume that $y \equiv z(\bmod 2)$. Since $y^{2}+15 z^{2} \equiv 0(\bmod 4)$, we have $x \equiv r(\bmod 2)$. If $r=2$ and $y^{2}+15 z^{2}=0$, then $12 n+r^{2}+4=0^{2}+x^{2}+15 \times 0^{2}$ with $x \equiv 0 \equiv r(\bmod 2)$ and $x^{2}+15 \times 0^{2}>0$. If $r=1$, then $12 n^{2}+r^{2}+4=12 n+5$ is congruent to 2 modulo 3 and hence not a square. Thus, without loss of generality we may assume that $y^{2}+15 z^{2}>0$.

Observe that

$$
24 n+2 r^{2}+8=2\left(x^{2}+y^{2}+15 z^{2}\right)=2 x^{2}+3 u^{2}+5 v^{2}
$$

with $u=(y+5 z) / 2$ and $v=(y-3 z) / 2$ both odd. Since $3 u^{2}+5 v^{2} \equiv$ $2 r^{2}-2 x^{2} \equiv 0(\bmod 8)$ and $2\left(3 u^{2}+5 v^{2}\right)=y^{2}+15 z^{2}>0$, by Lemma 3.2 (iii) we can write $3 u^{2}+5 v^{2}$ as $3 y_{0}^{2}+5 z_{0}^{2}$ with y_{0} and z_{0} both odd. As $2\left(x^{2}+z_{0}^{2}\right) \equiv 2 x^{2}+5 z_{0}^{2} \equiv 2 r^{2}+8(\bmod 3)$, we have $x^{2}+z_{0}^{2} \equiv r^{2}+1 \equiv 2(\bmod 3)$
and hence we may write x or $-x$ as $6 u+r, z_{0}$ or $-z_{0}$ as $6 v+1$, and $y_{0}=2 w+1$, where u, v, w are integers. Therefore

$$
24 n+2 r^{2}+8=2 x^{2}+3 y_{0}^{2}+5 z_{0}^{2}=2(6 u+r)^{2}+3(2 w+1)^{2}+5(6 v+1)^{2}
$$

and hence $n=u(3 u+r) / 2+5 v(3 v+1) / 2+T_{w}$. This proves the universality of $(15,5,6,2 r, 1,1)$ over \mathbb{Z}.
(b) Let $n \in \mathbb{N}, s \in\{1,3,5\}$ and $t \in\{1,2\}$ with $(s, t) \neq(5,2)$. Apparently,

$$
\begin{aligned}
& n=T_{x}+\frac{y(5 y+s)}{2}+z(3 z+t) \\
\Longleftrightarrow & 120 n+3 s^{2}+10 t^{2}+15=15(2 x+1)^{2}+3(10 y+s)^{2}+10(6 z+t)^{2} .
\end{aligned}
$$

There are two classes in the genus of $3 x^{2}+10 y^{2}+15 z^{2}$, and the one not containing $3 x^{2}+10 y^{2}+15 z^{2}$ has the representative

$$
\begin{align*}
g(x, y, z) & =7 x^{2}+7 y^{2}+12 z^{2}+6(x+y) z+4 x y \\
& =3\left(\frac{x+y}{2}+2 z\right)^{2}+10\left(\frac{x-y}{2}\right)^{2}+15\left(\frac{x+y}{2}\right)^{2} \tag{4.9}
\end{align*}
$$

If $120 n+3 s^{2}+10 t^{2}+15=g(x, y, z)$ with $x, y, z \in \mathbb{Z}$, then we obviously have $x \equiv y(\bmod 2)$. Thus, in view of (4.9) and Lemma 3.1, $120 n+3 s^{2}+$ $10 t^{2}+15=3 x^{2}+10 y^{2}+15 z^{2}$ for some $x, y, z \in \mathbb{Z}$. If $x=z=0$, then $120 n+3 s^{2}+10 t^{2}+15=10 y^{2}$, hence $(s, t)=(5,1)$ and $y^{2}=12 n+10 \equiv$ $2(\bmod 4)$ which is impossible. So $x^{2}+5 z^{2}>0$, and hence by [24, Lemma 2.1] we can rewrite $x^{2}+5 z^{2}$ as $x_{0}^{2}+5 z_{0}^{2}$ with $x_{0}, z_{0} \in \mathbb{Z}$ not all divisible by 3. Without loss of generality, we simply assume that $3 \nmid x$ or $3 \nmid z$. Note that $3 \nmid y$ since $3 \nmid t$. If $3 \nmid x z$, then $\varepsilon_{1} x \equiv y \equiv \varepsilon_{2} z$ for some $\varepsilon_{1}, \varepsilon_{2} \in\{ \pm 1\}$. If $3 \mid x$ and $3 \nmid z$, then $x+y+\varepsilon z \equiv 0(\bmod 3)$ for some $\varepsilon \in\{ \pm 1\}$. If $3 \nmid x$ and $3 \mid z$, then $\varepsilon x+y+z \equiv 0(\bmod 3)$ for some $\varepsilon \in\{ \pm 1\}$. Without loss of generality, we just assume that $x+y+z \equiv 0(\bmod 3)$ (otherwise we may adjust signs of x, y, z suitably). Note that $x \equiv z(\bmod 2)$ and we have the identity

$$
\begin{equation*}
3\left(\frac{x+10 y-5 z}{6}\right)^{2}+10\left(\frac{x+z}{2}\right)^{2}+15\left(\frac{x-2 y-5 z}{6}\right)^{2}=3 x^{2}+10 y^{2}+15 z^{2} \tag{4.10}
\end{equation*}
$$

with $x_{1}=(x+10 y-5 z) / 6, y_{1}=(x+z) / 2$ and $z_{1}=(x-2 y-5 z) / 6$ all integral.

If $x \equiv z \equiv 1(\bmod 2)$, then $10 y^{2}=120 n+3 s^{2}+10 t^{2}+15-3 x^{2}-15 z^{2} \equiv$ $10 t^{2}(\bmod 4)$ and hence $y \equiv t(\bmod 2)$.

Now suppose that $x \equiv z \equiv 0(\bmod 2)$. Then $2 y^{2} \equiv 10 y^{2} \equiv 3 s^{2}+10 t^{2}+$ $15 \equiv 2\left(t^{2}+1\right)(\bmod 4)$ and hence $y \not \equiv t(\bmod 2)$. Observe that $2 t^{2}+2 \equiv 120 n+3 s^{2}+10 t^{2}+15=3 x^{2}+10 y^{2}+15 z^{2} \equiv x^{2}+z^{2}+2(t+1)^{2}(\bmod 8)$ and hence

$$
y_{1}=\frac{x+z}{2} \equiv\left(\frac{x}{2}\right)^{2}+\left(\frac{z}{2}\right)^{2}=\frac{x^{2}+z^{2}}{4} \equiv t(\bmod 2) .
$$

Thus

$$
z_{1}=x_{1}-2 y \equiv x_{1} \equiv \frac{x+z}{2}-3 z+5 y \equiv t+y \equiv 1(\bmod 2) .
$$

In view of the above, there are integers $x, y, z \in \mathbb{Z}$ with $x \equiv z \equiv 1(\bmod 2)$ and $y \equiv t(\bmod 2)$ such that $120 n+3 s^{2}+10 t^{2}+15=3 x^{2}+10 y^{2}+15 z^{2}$. Clearly, y or $-y$ has the form $6 v+t$ with $v \in \mathbb{Z}$. Write $z=2 w+1$ with $w \in \mathbb{Z}$. Since $x^{2} \equiv s^{2}(\bmod 5)$, we can write x or $-x$ as $10 u+s$ with $w \in \mathbb{Z}$. Therefore

$$
120 n+3 s^{2}+10 t^{2}+15=3(10 u+s)^{2}+10(6 v+t)^{2}+15(2 w+1)^{2}
$$

and hence $n=T_{w}+u(5 u+s) / 2+v(3 v+t)$. This proves the universality of $(6,2 t, 5, s, 1,1)$ over \mathbb{Z}.

5. Proof of Theorem 1.4

B.W. Jones and G. Pall [15] proved the following celebrated result.

Lemma 5.1. Let $n \in \mathbb{N}$ with $8 n+1$ not a square. Then

$$
\begin{aligned}
& \left|\left\{(x, y, z) \in \mathbb{Z}^{3}: x^{2}+y^{2}+z^{2}=8 n+1 \& 4 \mid x\right\}\right| \\
= & \left|\left\{(x, y, z) \in \mathbb{Z}^{3}: x^{2}+y^{2}+z^{2}=8 n+1 \& x \equiv 2(\bmod 4)\right\}\right|>0 .
\end{aligned}
$$

A. G. Earnest $[8,9]$ showed the following useful result.

Lemma 5.2. Let c be a primitive spinor exceptional integer for the genus of a positive ternary quadratic form $f(x, y, z)$, and let S be a spinor genus containing f. Let s be a fixed positive integer relatively prime to $2 d(f)$ for which $c s^{2}$ can be primitively represented by S. If $t \in \mathbb{Z}^{+}$is relatively prime to $2 d(f)$, then $c t^{2}$ can be primitively represented by S if and only if

$$
\left(\frac{-c d(f)}{s}\right)=\left(\frac{-c d(f)}{t}\right)
$$

Proof of Theorem 1.4. Fix $n \in \mathbb{N}$. Clearly,

$$
n=T_{x}+y^{2}+2 z(4 z+1) \Longleftrightarrow 8 n+2=(2 x+1)^{2}+8 y^{2}+(8 z+1)^{2} .
$$

So, it suffices to show that $8 n+2=x^{2}+y^{2}+8 z^{2}$ for some $x, y, z \in \mathbb{Z}$ with $x \equiv \pm 1(\bmod 8)$.

Case 1. n is not twice a triangular number.
In this case, $4 n+1$ is not a square. If $2 \mid n$, then by Lemma 5.1 we can write $4 n+1$ as $x^{2}+y^{2}+z^{2}$ with $2 \nmid x, 2 \mid y$ and $z \equiv 2(\bmod 4)$. If $2 \nmid n$, then there are $x, y, z \in \mathbb{Z}$ with $2 \nmid x$ and $y \equiv z \equiv 0(\bmod 2)$ such that $4 n+1=x^{2}+y^{2}+z^{2}$ and hence $y \not \equiv z(\bmod 4)$ since $y^{2}+z^{2} \equiv 5-x^{2} \equiv$ $4(\bmod 8)$. So we can always write $4 n+1=x^{2}+y^{2}+z^{2}$ with $2 \nmid x, 2 \mid y$ and $z \equiv 2 n-2(\bmod 4)$, hence

$$
8 n+2=2\left(x^{2}+y^{2}+z^{2}\right)=(x+y)^{2}+(x-y)^{2}+8\left(\frac{z}{2}\right)^{2}
$$

with $z / 2 \equiv n-1(\bmod 2)$, thus

$$
(x+y)^{2}+(x-y)^{2} \equiv 8 n+2-8(n-1)=10 \not \equiv 3^{2}+3^{2}(\bmod 16)
$$

and hence $x+\varepsilon y \equiv \pm 1(\bmod 8)$ for some $\varepsilon \in\{ \pm 1\}$.
Case 2. $n=2 T_{m}$ with $m \in \mathbb{N}$, and $2 m+1$ has no prime factor of the form $4 k+3$.

In this case, $2 m+1$ can be expressed as the sum of two squares. If $4 \mid m$, then

$$
8 n+2=2(2 m+1)^{2}=(2 m+1)^{2}+(2 m+1)^{2}+8 \times 0^{2}
$$

with $2 m+1 \equiv 1(\bmod 8)$. If $4 \nmid m$, then $2 m+1=u^{2}+(2 v)^{2}$ for some odd integers u and v, and hence

$$
\begin{aligned}
8 n+2 & =2\left(u^{2}+4 v^{2}\right)^{2}=2\left(\left(u^{2}-4 v^{2}\right)^{2}+(4 u v)^{2}\right) \\
& =\left(u^{2}-4 v^{2}+4 u v\right)^{2}+\left(u^{2}-4 v^{2}-4 u v\right)^{2}+8 \times 0^{2}
\end{aligned}
$$

with $u^{2}-4 v^{2} \pm 4 u v \equiv 1(\bmod 8)$.
Case 3. $n=2 T_{m}$ with $m \in \mathbb{N}$, and $2 m+1$ has a prime factor $p \equiv$ $3(\bmod 4)$.

By Lagrange's four-square theorem, we can write $p=a^{2}+b^{2}+c^{2}+d^{2}$, where a is an even number and b, c, d are odd numbers. Thus

$$
\begin{aligned}
p^{2} & =\left(a^{2}+b^{2}-c^{2}-d^{2}\right)^{2}+4\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right) \\
& =\left(a^{2}+b^{2}-c^{2}-d^{2}\right)^{2}+(2 a c+2 b d)^{2}+(2 a d-2 b c)^{2}
\end{aligned}
$$

and hence $(2 m+1)^{2}=x^{2}+(2 y)^{2}+(2 z)^{2}$ for some odd integers x, y, z. Observe that

$$
8 n+2=2(2 m+1)^{2}=(x+2 y)^{2}+(x-2 y)^{2}+8 z^{2}
$$

and $(x+2 y)^{2}+(x-2 y)^{2} \equiv 2-8 z^{2} \equiv 10 \not \equiv 3^{2}+3^{2}(\bmod 16)$. So one of $x+2 y$ and $x-2 y$ is congruent to 1 or -1 modulo 8 .

Now we give an advanced approach to Case 3. There are three classes in the genus of $x^{2}+y^{2}+32 z^{2}$ with the three representatives

$$
\begin{aligned}
& f_{1}(x, y, z)=x^{2}+y^{2}+32 z^{2} \\
& f_{2}(x, y, z)=2 x^{2}+2 y^{2}+9 z^{2}+2 y z-2 z x \\
& f_{3}(x, y, z)=x^{2}+4 y^{2}+9 z^{2}-4 y z
\end{aligned}
$$

f_{1} and f_{2} constitute a spinor genus while another spinor genus in the genus has the representative f_{3}. Since 2 is a a primitive spinor exceptional integer for this genus, by Lemma 5.2 we can write $2 p^{2}$ as

$$
f_{3}(u, v, w)=u^{2}+4 v^{2}+9 w^{2}-4 v w=u^{2}+(2 v-w)^{2}+8 w^{2}
$$

with $u, v, w \in \mathbb{Z}$. Since $2 \nmid u w$, we see that $8 n+2=2(2 m+1)^{2}=a^{2}+b^{2}+8 c^{2}$ for some odd integers a, b, c. As $a^{2}+b^{2} \equiv 2-8 c^{2} \equiv 10 \not \equiv 3^{2}+3^{2}(\bmod 16)$, a or b is congruent to 1 or -1 modulo 8 . This concludes our discussion of Case 3.

In view of the above, we have completed the proof of Theorem 1.4.
Remark 5.1. $f_{3}(x, y, z)$ in the proof of Theorem 1.4 is one of the very few spinor regular forms that are not regular. For more details, see [1].

References

[1] J. W. Benham, A. G. Earnest, J. S. Hsia and D. C. Hung, Spinor regular positive ternary quadratic forms, J. London Math. Soc., 42 (1990), 1-10.
[2] B. C. Berdnt, Number Theory in the Spirit of Ramanujan, Amer. Math. Soc., Providence, RI, 2006.
[3] J. M. Borevich and I.R. Shafarevich, Number Theory, Academic Press, New York, 1966.
[4] J. W. S. Cassels, Rational Quadratic Forms, Academic Press, London, 1978.
[5] D. Cox, Primes of the form $x^{2}+n y^{2}$, John Wiley \& Sons, New York, 1989.
[6] L. E. Dickson, Quaternary quadratic forms representing all integers, Amer. J. Math. 49 (1927), 39-56.
[7] L. E. Dickson, Modern Elementary Theory of Numbers, University of Chicago Press, Chicago, 1939.
[8] A. G. Earnest, Congruence conditions on integers represented by ternary quadratic forms, Pacific J. Math, 90 (1980), 325-333.
[9] A. G. Earnest, Representation of spinor exceptional integers by ternary quadratic forms, Nagoya Math. J, 93 (1984), 27-38.
[10] F. Ge and Z.-W. Sun, On some universal sums of generalized polygonals, Colloq. Math. 145 (2016), 149-155.
[11] S. Guo, H. Pan and Z.-W. Sun, Mixed sums of squares and triangular numbers (II), Integers 7 (2007), \#A56, 5pp (electronic).
[12] W. C. Jagy, Five regular or nearly-regular ternary quadratic forms, Acta Arith, 77 (1996), 361-367.
[13] W. C.Jagy, I. Kaplansky and A. Schiemann, There are 913 regular ternary forms, Mathematika, 44(1997), 332-341.
[14] W. C. Jagy, Integral Positive Ternary Quadratic Forms, Lecture Notes, 2014.
[15] B. W. Jones and G. Pall, Regular and semi-regular positive ternary quadratic forms, Acta Math. 70(1939), 165-191.
[16] J. Ju, B.-K. Oh and B. Seo, Ternary universal sums of generalized polygonal numbers, arXiv:1612.01157.
[17] Y. Kitaoka, Arithmetic of Quadratic Forms, Cambridge Tracts in Math., Vol. 106, 1993.
[18] B.-K. Oh, Ternary universal sums of generalized pentagonal numbers, J.Korean Math. Soc., 48 (2011) 837-847.
[19] B.-K. Oh and Z.-W. Sun, Mixed sums of squares and triangular numbers (III), J. Number Theory 129 (2009) 964-969.
[20] O. T. O'Meara, Introduction to Quadratic Forms, Springer-Verlag, New York, 1963.
[21] K. Ono, K. Soundararajan, Ramanujan's ternary quadratic form, Invent. Math. 130(1997), 415-454.
[22] S. Ramanujan, On the expression of a number in the form $a x^{2}+b y^{2}+c z^{2}+d w^{2}$, Proc. Cambridge Philos. Soc. 19 (1917), 11-21.
[23] Z.-W. Sun, Mixed sums of squares and triangular numbers, Acta Arith, 127 (2007), 103-113.
[24] Z.-W. Sun, On universal sums of polygonal numbers, Sci. China Math, 58 (2015), 1367-1396.
[25] Z.-W. Sun, A result similar to Lagrange's theorem, J. Number Theory, 162 (2016), 190-211.
[26] Z.-W. Sun, On $x(a x+1)+y(b y+1)+z(c z+1)$ and $x(a x+b)+y(a y+c)+z(a z+d)$, J. Number Theory, 171 (2017), 275-283.
[27] Z.-W. Sun, On universal sums $x(a x+b) / 2+y(c y+d) / 2+z(e z+f) / 2$, preprint, arXiv:1502.03056v3, 2017.
[28] Z.-W. Sun, Sequence A286944 in OEIS, http://oeis.org, 2017.
[29] T. Yang, An explicit formula for local densities of quadratic forms, J. Number Theory, 72 (1998), 309-356.
(Hai-Liang Wu) Department of Mathematics, Nanjing University, Nanjing 210093, People's Republic of China

E-mail address: whl.bookstore@qq.com
(Zhi-Wei Sun) Department of Mathematics, Nanjing University, Nanjing 210093, People's Republic of China

E-mail address: zwsun@nju.edu.cn

[^0]: 2010 Mathematics Subject Classification. Primary 11E25; Secondary 11D85, 11E20.
 Keywords. Universal sums, quadratic polynomials, ternary quadratic forms.
 Supported by the National Natural Science Foundation of China (Grant No. 11571162).

