(an + b)-COLOR COMPOSITIONS

DANIEL BIRMAJER, JUAN B. GIL, AND MICHAEL D. WEINER

ABSTRACT. For $a, b \in \mathbb{N}_0$, we consider (an+b)-color compositions of a positive integer ν for which each part of size n admits an+b colors. We study these compositions from the enumerative point of view and give a formula for the number of (an+b)-color compositions of ν with k parts. Our formula is obtained in two different ways: 1) by means of algebraic properties of partial Bell polynomials, and 2) through a bijection to a certain family of weak compositions that we call $domino\ compositions$. We also discuss two cases when b is negative and give corresponding combinatorial interpretations.

1. Introduction

A composition of a positive integer ν with k parts is an ordered k-tuple (j_1, \ldots, j_k) of positive integers called parts such that $j_1 + \cdots + j_k = \nu$.

Given a sequence of nonnegative integers $w = (w_n)_{n \in \mathbb{N}}$, we define a w-color composition of ν to be a composition of ν such that part n can take on w_n colors. If $w_n = 0$, it means that we do not use the integer n in the composition. Such colored compositions have been considered by many authors and continue to be of current interest. For a comprehensive account on the subject, we refer to the book by S. Heubach and T. Mansour [2].

If we let W_n be the number of w-color compositions of n, Moser and Whitney [4] observed that the generating functions $w(t) = \sum_{n=1}^{\infty} w_n t^n$ and $W(t) = \sum_{n=1}^{\infty} W_n t^n$ satisfy the relation $W(t) = \frac{w(t)}{1-w(t)}$, which means that the sequence $(W_n)_{n\in\mathbb{N}}$ is the invert transform of $(w_n)_{n\in\mathbb{N}}$.

In this paper, we consider the sequence of colors $w_n = an + b$ for $n \ge 1$, with $a, b \in \mathbb{N}_0$. Thus $w(t) = \sum_{n=1}^{\infty} (an + b)t^n$, and we have

$$w(t) = \sum_{n=1}^{\infty} (an+b)t^n = \frac{at}{(1-t)^2} + \frac{bt}{1-t} = \frac{(a+b)t - bt^2}{(1-t)^2}.$$

Therefore, $W(t)=\frac{w(t)}{1-w(t)}=\frac{(a+b)t-bt^2}{1-(a+b+2)t+(b+1)t^2}$, and so the number W_{ν} of (an+b)-color compositions of ν satisfies the recurrence relation

$$W_{\nu} = (a+b+2)W_{\nu-1} - (b+1)W_{\nu-2} \text{ for } \nu > 2, \tag{1.1}$$

with initial conditions $W_1 = a + b$ and $W_2 = (a + b)^2 + (2a + b)$.

2. Colored compositions with k parts

Let $c_{n,k}(w)$ be the number of w-color compositions of n with exactly k parts. In [3], Hoggatt and Lind derived the formula

$$c_{n,k}(w) = \sum_{\pi_k(n)} \frac{k!}{k_1! \cdots k_n!} w_1^{k_1} \cdots w_n^{k_n},$$
 (2.1)

where the sum runs over all k-part partitions of n, i.e. over all solutions of

$$k_1 + 2k_2 + \cdots + nk_n = n$$
 such that $k_1 + \cdots + k_n = k$

with $k_j \in \mathbb{N}_0$ for all j. Observe that the right-hand side of (2.1) is precisely the (n, k)-th partial Bell polynomial $B_{n,k}(1!w_1, 2!w_2, \dots)$ multiplied by the factor k!/n!. Thus (2.1) may be written as

$$c_{n,k}(w) = \frac{k!}{n!} B_{n,k}(1!w_1, 2!w_2, \dots), \tag{2.2}$$

and the total number of such compositions of n is $W_n = \sum_{k=1}^n c_{n,k}(w)$.

Proposition 1. Let $x = (x_n)_{n \in \mathbb{N}}$ and $y = (y_n)_{n \in \mathbb{N}}$ be sequences of non-negative integers, and let $a, b \in \mathbb{Z}$. Letting $c_{0,0}(w) = 1$ and $c_{m,j}(w) = 0$ for m < j, we have

$$c_{n,k}(ax + by) = \sum_{m=0}^{n} \sum_{j=0}^{k} {k \choose j} a^{j} b^{k-j} c_{m,j}(x) c_{n-m,k-j}(y).$$

Proof. Since $c_{n,k}(w) = \frac{k!}{n!} B_{n,k}(1!w_1, 2!w_2, ...)$, we can use basic properties of the partial Bell polynomials (see e.g. [1, Sec. 3.3]) together with the notation $!w = (n!w_n)$ to get

$$c_{n,k}(ax + by) = \frac{k!}{n!} B_{n,k}(!(ax + by))$$

$$= \frac{k!}{n!} \sum_{m=0}^{n} \sum_{j=0}^{k} \binom{n}{m} B_{m,j}(!(ax)) B_{n-m,k-j}(!(by))$$

$$= \frac{k!}{n!} \sum_{m=0}^{n} \sum_{j=0}^{k} \binom{n}{m} a^{j} B_{m,j}(!x) b^{k-j} B_{n-m,k-j}(!y)$$

$$= \frac{k!}{n!} \sum_{m=0}^{n} \sum_{j=0}^{k} \binom{n}{m} a^{j} b^{k-j} \frac{m!}{j!} c_{m,j}(x) \frac{(n-m)!}{(k-j)!} c_{n-m,k-j}(y)$$

$$= \sum_{m=0}^{n} \sum_{j=0}^{k} \binom{k}{j} a^{j} b^{k-j} c_{m,j}(x) c_{n-m,k-j}(y).$$

Theorem 2. The number of (an + b)-color compositions of ν with k parts is given by

$$c_{\nu,k}(an+b) = \sum_{j=0}^{k} a^{j} b^{k-j} \binom{k}{j} \binom{\nu+j-1}{\nu-k}.$$

Thus the total number of (an + b)-color compositions of ν is

$$W_{\nu} = \sum_{k=1}^{\nu} \sum_{j=0}^{k} a^{j} b^{k-j} {k \choose j} {\nu+j-1 \choose \nu-k}.$$
 (2.3)

Proof. We use the above proposition with the sequences $x_n = n$ and $y_n = 1$. Then

$$c_{\nu,k}(an+b) = \sum_{m=0}^{\nu} \sum_{j=0}^{k} \binom{k}{j} a^{j} b^{k-j} c_{m,j}(n) c_{\nu-m,k-j}(1)$$

$$= \sum_{j=0}^{k} a^{j} b^{k-j} \binom{k}{j} \sum_{m=j}^{\nu} \binom{m+j-1}{m-j} \binom{\nu-m-1}{k-j-1}$$

$$= \sum_{j=0}^{k} a^{j} b^{k-j} \binom{k}{j} \sum_{\ell=0}^{\nu-j} \binom{\ell+2j-1}{\ell} \binom{\nu-\ell-j-1}{k-j-1}$$

$$= \sum_{j=0}^{k} a^{j} b^{k-j} \binom{k}{j} \sum_{\ell=0}^{\nu-k} \binom{\ell+2j-1}{\ell} \binom{\nu-\ell-j-1}{\nu-k-\ell}$$

$$= \sum_{j=0}^{k} a^{j} b^{k-j} \binom{k}{j} (-1)^{\nu-k} \sum_{\ell=0}^{\nu-k} \binom{-2j}{\ell} \binom{j-k}{\nu-k-\ell}$$

$$= \sum_{j=0}^{k} a^{j} b^{k-j} \binom{k}{j} (-1)^{\nu-k} \binom{-j-k}{\nu-k}$$

$$= \sum_{j=0}^{k} a^{j} b^{k-j} \binom{k}{j} \binom{\nu+j-1}{\nu-k}.$$

Example 3. For some values of a and b, (2.3) gives nice formulas for the following sequences, listed in the OEIS [5]:

Compositions	Sequence	Compositions	Sequence
n-color	A001906	(2n-1)-color	A003946
(n+1)-color	A003480	2n-color	A052530
(n+2)-color	A010903	(2n+1)-color	A060801
(n+3)-color	A010908	(3n-1)-color	A055841

3. Combinatorial interpretation: Domino compositions

In this section, an n-domino is a tile of the form

$$\alpha \mid \beta$$
 with $0 < \alpha \le n$ and $0 \le \beta \le n$. (3.1)

A domino with $\beta = 0$ will be called a zero n-domino. An n-domino composition of ν is a weak composition of ν using n-dominos of the form (3.1). For example,

is a domino composition of 10 with 4-dominos corresponding to the weak composition (1, 1, 4, 0, 1, 3).

Definition 4. For $a, b \in \mathbb{N}_0$, $n, k \in \mathbb{N}$, and $j \leq k$, let $T_j^{a,b}(n,k)$ be the set of n-domino compositions of n+j with j nonzero n-dominos, available in a different colors, and k-j zero n-dominos available in b different colors. Let $T^{a,b}(n,k) = \bigcup_{j=0}^n T_j^{a,b}(n,k)$.

Lemma 5.

$$\left|T_j^{a,b}(n,k)\right| = a^j b^{k-j} \binom{k}{j} \binom{n+j-1}{n-k}.$$

Proof. Having k dominos, there are $\binom{k}{j}$ ways to choose the j nonzero dominos. Once the dominos are chosen, there are 2j+(k-j)=k+j spaces to place positive numbers whose sum is n+j. These are compositions of n+j with k+j parts and there are $\binom{n+j-1}{k+j-1}=\binom{n+j-1}{n-k}$ of them. Since the nonzero dominos come in a colors and the zero dominos in b colors, we need to multiply by a^jb^{k-j} to account for all of the possibilities. \square

Theorem 6. For any given $a, b \in \mathbb{N}_0$, there is a bijection φ between $T^{a,b}(\nu,k)$ and the set of (an+b)-color compositions of ν with k parts.

Proof. We start by discussing the case when a=1. Let (D_1,\ldots,D_k) be an element of $T^{1,b}(\nu,k)$ with j nonzero ν -dominos. For a nonzero domino D, we define $\varphi(D)$ by

$$\boxed{\alpha \mid \beta} \longrightarrow (\alpha + \beta - 1)_{\beta},$$

where the notation $(i)_{\ell}$ means part i with color ℓ . For a zero domino D with color $\delta < b$, we define $\varphi(D)$ by

$$\boxed{\alpha \mid 0}_{\delta} \longrightarrow (\alpha)_{\ell}$$
, where $\ell = \alpha + \delta$.

If we denote the nonzero dominos by $(\alpha_1, \beta_1), \ldots, (\alpha_j, \beta_j)$, and the zero dominos by $(\alpha_{j+1}, 0), \ldots, (\alpha_k, 0)$, then by definition $(\alpha_1 + \beta_1) + \cdots + (\alpha_j + \beta_j) + \alpha_{j+1} + \cdots + \alpha_k = \nu + j$, and therefore, $(\alpha_1 + \beta_1 - 1) + \cdots + (\alpha_j + \beta_j - 1) + \alpha_{j+1} + \cdots + \alpha_k = \nu$. In other words, $(\varphi(D_1), \ldots, \varphi(D_k))$ is an (n+b)-color composition of ν with k parts.

Conversely, let $((i_1)_{\ell_1}, \ldots, (i_k)_{\ell_k})$ be an (n+b)-color composition of ν such that j of its parts are of the form $(i)_{\ell}$ with $\ell \leq i$. If $(i)_{\ell}$ is such a part, then we define $\psi((i)_{\ell})$ by

$$(i)_{\ell} \longrightarrow \boxed{\alpha_i \mid \ell}$$
, where $\alpha_i = i - \ell + 1$,

and if part $(i)_{\ell}$ is such that $\ell = i + \delta > i$, then we define $\psi((i)_{\ell})$ by

$$(i)_{\ell} \longrightarrow \boxed{i} \boxed{0}_{\delta}.$$

In particular, the components of a domino $\psi((i)_{\ell})$ add to i+1 if $\ell \leq i$ or they add to i if $\ell > i$. Since $i_1 + \cdots + i_k = \nu$, we get that $(\psi((i_1)_{\ell_1}), \dots, \psi((i_k)_{\ell_k}))$ is a ν -domino composition in $T_j^{1,b}(\nu,k)$. Clearly, ψ is the inverse of φ .

For a>1 the argument is similar. In this case, for a nonzero domino $D_{\gamma}\in T^{a,b}(\nu,k)$ with color $1\leq \gamma\leq a$, we define $\varphi(D_{\gamma})$ by

$$\boxed{\alpha \mid \beta}_{\gamma} \longrightarrow (\alpha + \beta - 1)_{\ell}$$
, where $\ell = (\alpha + \beta - 1)(\gamma - 1) + \beta$,

and for a zero domino D_{δ} with color $1 \leq \delta \leq b$, we define $\varphi(D_{\delta})$ by

$$\alpha \mid 0$$
 {δ} \longrightarrow $(\alpha){\ell}$, where $\ell = a\alpha + \delta$.

The inverse map is obtained as follows. For a part i with color ℓ , $1 \le \ell \le ai + b$, write $\ell = qi + r$ with $0 < r \le i$ and define a ν -domino as follows:

if
$$q < a$$
: $(i)_{\ell} \longrightarrow \boxed{\alpha_i \mid r}_{q+1}$ with $\alpha_i = i - r + 1$,
if $q = a$: $(i)_{\ell} \longrightarrow \boxed{i \mid 0}_r$,

where the subscript outside the domino indicates its color.

Example 7. In the context of (n+2)-color compositions, we have

For example, the composition $(3_5, 1_2, 3_2)$ of 7 corresponds to

$$\begin{bmatrix} 3 & 0 \end{bmatrix}_2 \begin{bmatrix} 1 & 0 \end{bmatrix}_1 \begin{bmatrix} 2 & 2 \end{bmatrix}$$

As a direct consequence of Theorem 6 and Lemma 5, we obtain:

Corollary 8. The number of (an + b)-color compositions of ν with k parts is given by

$$c_{\nu,k}(an+b) = \sum_{j=0}^{k} a^{j} b^{k-j} {k \choose j} {\nu+j-1 \choose \nu-k}.$$

4. Other examples

We finish with two examples related to (n-1)-color and (n-2)-color compositions.

Example 9 (a = 1, b = -1). In this case, we have that

$$c_{\nu,k}(n-1) = \sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} \binom{\nu+j-1}{\nu-k}$$

is the number of compositions of ν with k parts with no part 1 and such that each part i>1 may be colored in i-1 different ways. This is also the number of n-color compositions of ν with k parts and no color 1.

Example 10 (a = 1, b = -2). Let $\mathscr{C}_{n-2}(\nu, k)$ be the set of compositions of ν with k parts such that:

- there is no part 2
- \circ each part i > 2 maybe colored in i 2 different ways.

If $\mathscr{C}_{n-2}^{1,\text{even}}(\nu,k)$ denotes the set of compositions in $\mathscr{C}_{n-2}(\nu,k)$ with an even number of 1's, and $\mathscr{C}_{n-2}^{1,\text{odd}}(\nu,k)$ is the set of compositions with an odd number of 1's, then we have

$$c_{\nu,k}(n-2) = \left| \mathscr{C}_{n-2}^{1,\text{even}}(\nu,k) \right| - \left| \mathscr{C}_{n-2}^{1,\text{odd}}(\nu,k) \right|,$$

which implies

$$c_{\nu,\nu}(n-2) = (-1)^{\nu},$$

$$c_{\nu,k}(n-2) = \sum_{j=1}^{k} (-1)^{k-j} \binom{k}{j} \binom{\nu-k-1}{2j-1} \text{ for } k < \nu.$$

Moreover, by (1.1), the sequence defined by $W_{\nu} = \sum_{k=1}^{\nu} c_{\nu,k} (n-2)$ satisfies the recurrence relation

$$W_1 = -1, \quad W_2 = 1,$$

$$W_{\nu} = W_{\nu-1} + W_{\nu-2} \ \ {\rm for} \ \nu > 2.$$

In other words, W_{ν} is the Fibonacci number $F_{\nu-3}$ and we get the identity

$$F_{\nu-3} = \sum_{k=1}^{\nu} \sum_{j=1}^{k} (-1)^{k-j} \binom{k}{j} \binom{\nu-k-1}{2j-1}.$$

Acknowledgement. We are grateful for the opportunity to present at the "48th Southeastern International Conference on Combinatorics, Graph Theory & Computing" in the spring of 2017. The results of this paper were inspired by Brian Hopkins' talk on *Color Restricted n-Color Compositions* and further conversations with him during the conference.

References

- L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions,
 D. Reidel Publishing Co., Dordrecht, 1974.
- [2] S. Heubach and T. Mansour, Combinatorics of Compositions and Words, Discrete Mathematics and its Applications (Boca Raton), CRC Press, Boca Raton, FL, 2010.
- [3] V. E. Hoggatt, D. A. Lind, Fibonacci and binomial properties of weighted compositions, J. Combin. Theory 4 (1968), 121–124.
- [4] L. Moser and E. L. Whitney, Weighted compositions, Canad. Math. Bull. 4 (1961), 39–43
- [5] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://oeis.org.

DEPARTMENT OF MATHEMATICS, NAZARETH COLLEGE, 4245 EAST AVE., ROCHESTER, NY 14618

PENN STATE ALTOONA, 3000 IVYSIDE PARK, ALTOONA, PA 16601