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Abstract

The computation of the thermodynamic properties of nuclear matter is a central task of theoretical nu-
clear physics. The nuclear equation of state is an essential quantity in nuclear astrophysics and governs
the properties of neutron stars and core-collapse supernovæ. The framework of chiral effective field
theory provides the basis for the description of nuclear interactions in terms of a systematic low-energy
expansion. In this thesis, we apply chiral two- and three-nucleon interactions in perturbative many-body
calculations of the thermodynamic equation of state of infinite homogeneous nuclear matter. The con-
ceptual issues that arise concerning the consistent generalization of the standard zero-temperature form
of many-body perturbation theory to finite temperatures are investigated in detail. The structure of many-
body perturbation theory at higher orders is examined, in particular concerning the role of the so-called
anomalous contributions. The first-order nuclear liquid-gas phase transition is analyzed with respect to
its dependence on temperature and the neutron-to-proton ratio. Furthermore, the convergence behavior
of the expansion of the equation of state in terms of the isospin asymmetry is examined. It is shown that
the expansion coefficients beyond the quadratic order diverge in the zero-temperature limit, implying a
nonanalytic form of the isospin-asymmetry dependence at low temperatures. This behavior is associated
with logarithmic terms in the isospin-asymmetry dependence at zero temperature.

Zusammenfassung

Die Berechnung der thermodynamischen Eigenschaften der Kernmaterie ist ein grundlegendes Problem
der theoretischen Kernphysik. Die nukleare Zustandsgleichung ist eine essentielle Größe der nuklearen
Astrophysik und bestimmt die Eigenschaften von Neutronensternen und Kernkollaps-Supernovae. Die
chirale effektive Feldtheorie stellt die Basis für die Beschreibung der Kernkräfte in der Form einer sys-
tematischen Entwicklung für niedrige Energieskalen dar. Ausgehend von chiralen Wechselwirkungen
zwischen zwei und drei Nukleonen wird in der vorliegenden Arbeit die thermodynamische Zustands-
gleichung von unendlicher gleichförmiger Kernmaterie mittels der Vielteilchenstörungstheorie berech-
net. Die konzeptuellen Aspekte hinsichtlich der konsistenten thermodynamischen Verallgemeinerung der
gewöhnlichen Form der Vielteilchenstörungstheorie bei verschwindender Temperatur werden ausführlich
behandelt. Die Struktur der Vielteilchenstörungstheorie bei höhere Ordnung wird untersucht, insbeson-
dere hinsichtlich der Rolle der sogenannten anomalen Beiträge. Der nukleare Phasenübergang erster
Ordnung von einer Kernflüssigkeit zu einem wechselwirkenden Nukleonengas wird hinsichtlich seiner
Abhängigkeit von der Temperatur und dem Verhältnis der Neutronen- und Protonendichten analysiert.
Des Weiteren wird das Konvergenzverhalten der Entwicklung der Zustandsgleichung in der Isospin-
Asymmetrie untersucht. Es wird gezeigt, dass die Entwicklungskoeffizienten höherer Ordnung im Grenz-
fall verschwindender Temperatur divergieren, was eine nichtanalytische Abhängigkeit von der Isospin-
Asymmetrie impliziert. Dieses Verhalten geht mit logarithmischen Termen in der Abhängigkeit von der
Isospin-Asymmetrie bei verschwindender Temperatur einher.





“There is a fascination in dealing with nuclear processes, with nuclear matter
with its tremendous density; a matter, however, that is inert on earth but is not inert
at all in most other large accumulations of matter in the universe. The dynamics of
nuclear matter is probably much more essential to the life of the universe than our
terrestrial atomic and molecular physics. After all, what is that physics? It deals with
the electron shells around nuclei that are only formed at very low temperatures on
a few outlying planets where the conditions are just right–where the temperature is
not too high, low enough to form those electron shells but high enough to have them
react with each other. These conditions are possible only because of the nearness of
a nuclear fire. Under the influence of that nuclear fire, self-reproducing units were
formed here on earth. And after billions of years of benign radiation from the solar
furnace, thinking beings evolved who investigate the processes that may be nearer to
the heart of the universe than the daily world in which we live.”

– Victor F. Weisskopf
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Introduction

In the final stage of the life of a massive star, when all its internal nuclear fuel is exhausted,
thermonuclear fusion in the stellar core comes to an end. The star can then no longer support
itself against its own gravitational pressure, which leads to a sudden collapse of the core ac-
companied by the violent repulsion of the star’s outer layers. The final product of this event—
a core-collapse supernova—is a compact stellar remnant referred to as a neutron star.1 With a
mass that typically lies in the range of 1-2 solar masses (M�) and a radius of only about 10 -14
km, neutron stars are composed of the densest material known to exist in the universe: homoge-
neous nuclear matter,—a dense fluid of strongly-interacting nucleons (neutrons and protons),—
the highly compressed and macroscopically extended form of the matter inside atomic nuclei.
The present thesis is concerned with the study of the thermodynamic properties of this matter,
i.e., with the computation and investigation of the nuclear equation of state (EoS).2

In neutron-star matter the electrostatic repulsion of protons is blocked by a charge-neutralizing
background of electrons (and muons). This leads to the notion of (infinite) nuclear matter
as the theoretical idealization of the matter inside atomic nuclei where finite-size effects are
neglected and only the strong interaction is taken into account.3 In this respect, (including
the Coulomb energy) atomic nuclei can, as a first approximation, be modelled as self-bound
liquid drops of nuclear matter [400]. In turn, some properties of nuclear matter can be inferred
from extrapolating properties of atomic nuclei (bulk limit). The most well-established nuclear
bulk property is the nuclear saturation point: isospin-symmetric nuclear matter at zero temper-
ature should be self-bound at a nucleon density of ρsat ' 0.17 fm−3 and an energy per nucleon
of Ē0,sat ' −16 MeV (cf. e.g., Ref. [42]).

As for any fluid that is self-bound at low temperatures, (infinite) nuclear matter is sub-
ject to a liquid-gas phase transition. The instability of expanding (thermally excited) nuclear
matter with respect to a phase separation has been linked to the underlying mechanism of
multifragmentation reactions observed in intermediate-energy heavy-ion collision experiments
[268, 23, 83, 299, 298, 426, 121, 93, 327, 194, 406, 280, 269].

Presumably the most prominent application of the nuclear EoS lies in the domain of astro-
physics, i.e., in the modelling of neutron stars and in simulations of core-collapse supernovæ
and binary neutron-star mergers. Since they are rotating and strongly magnetized objects, neu-
tron stars emit beams of electromagnetic radiation that make them detectable as pulsars. The
EoS of neutron-rich nuclear matter determines—via the Tolman-Oppenheimer-Volkoff equa-
tions [319, 393]—the mass-radius relation of neutron stars. In this respect, the recent observa-
tion and precise mass-measurement of two-solar-mass neutron stars—PSR J1614-2230 with a
mass of (1.97±0.04) M� [100] and PSR J0348+0432 with (2.01±0.04) M� [11]—places strong
constraints on the EoS of dense neutron-rich matter (at zero temperature).

1 To be precise, neutron stars represent only one of the final stages in stellar evolution, i.e., for progenitor stars
with masses (roughly) in the range 10M� . M . 25M�. Stars with masses below about 10M� form white
dwarfs at the end of their life cycle, and for stellar masses above about 25M� core collapse leads to a black
hole or leaves no remnant (pair-instability supernova) [193].
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The problem of calculating the nuclear EoS can (to a certain extent) be separated into two
aspects: the description of the strong nuclear interactions, and the computation of the EoS
from these interactions. Nowadays, the fundamental theory of the strong interaction is unam-
biguously considered to be the theory of quarks and gluons called quantum chromodynamics
(QCD), and the view of the strong nuclear interaction is that of a large-distance (low-energy)
residual interaction emerging (in an intricate and not yet completely understood way) from that
fundamental theory. Related to this, QCD is a strongly-coupled theory at nuclear energy scales,
and thus an approach towards the nuclear many-body problem that uses QCD directly is unfea-
sible (with the exception of numerical lattice simulations). Instead, an effective description of
the (residual) strong nuclear interaction in terms of an appropriate large-distance approximation
is needed.

A systematic approach based on general principles towards such an effective description of
the nuclear interaction is provided by chiral effective field theory (χEFT), the effective field
theory of low-energy QCD. In χEFT, the interactions of nucleons are organized in a hierar-
chical expansion that naturally includes multi-nucleon interactions. The low-energy constants
parametrizing the short-range part of these interactions are generally fixed by fits to nucleon-
nucleon scattering observables and properties of light nuclei. In that sense, (and with some
further qualifications, cf. Secs. 1.4 and 1.5), employing χEFT interactions in many-body calcu-
lations amounts to a prediction of the nuclear EoS from an underlying (effective) microscopic
theory.

Traditionally, the nuclear many-body problem has been complicated by the nonperturbative
features (related to the presence of high-momentum components) of phenomenological (i.e.,
not based on general EFT principles) high-precision models of the nuclear interaction. In con-
trast, in an EFT the ultraviolet momentum cutoff Λ is a variable parameter, and employing
χEFT interactions with suitably low cutoffs enables the use of many-body perturbation the-
ory. From a given large-cutoff model of the nuclear interaction (chiral or phenomenological),
low-momentum interactions can also be derived by means of a renormalization-group (RG)
evolution. These novel developments (χEFT, RG) have opened the way towards a systematic
investigation of the nuclear many-body problem.

By now, chiral low-momentum interactions have been used in perturbative nuclear matter cal-
culations by numerous authors [251, 106, 185, 191, 386, 91, 90, 107, 109]. In particular, in Ref.
[251] it was found that many of the equations of state commonly used in nuclear astrophysics
applications are inconsistent with perturbative χEFT-based calculations of the neutron-matter
EoS. All of these calculations—except for Refs. [107, 109] where the zero-temperature EoS
of isospin-asymmetric matter (ANM) was computed, and Ref. [394] where neutron matter at
finite temperature was examined—have been restricted to zero temperature and either isospin-
symmetric nuclear matter (SNM) or pure neutron matter (PNM). For astrophysical simulations
of core-collapse supernovæ and proto-neutron star dynamics, however, a global thermodynamic
nuclear EoS is required, i.e., an EoS that covers a wide range of temperatures, densities, and
isospin-asymmetries (roughly, 0 ≤ T . 100 MeV, 0 ≤ ρ . (4 − 6) ρsat, and 0 ≤ δ ≤ 1; cf.
Ref. [313]). The dependence of the EoS (given in terms of the free energy per particle) of

3 In this thesis, we use the expression equation of state to denote the set of relations between thermodynamic
variables that specify the complete thermodynamic information about the nuclear many-body system in equi-
librium; for the most part of this thesis, this corresponds to the free energy per particle of infinite homogeneous
nuclear matter as a function of its natural variables: F̄(T, ρn, ρp), or equivalently, F̄(T, ρ, δ).
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homogeneous nuclear matter on the isospin asymmetry δ = (ρn − ρp)/ρ (with ρn/p the neu-
tron/proton density, and ρ = ρn + ρp the total nucleon density; T is the temperature) can, as a
first approximation, be assumed to have a parabolic form:

F̄(T, ρ, δ) ' F̄(T, ρ, δ = 0) + F̄sym(T, ρ) δ2.

Within this approximation, the isospin-asymmetry dependence of the EoS is associated with
the difference of the free energy per particle of SNM (δ = 0) and PNM (δ = 1), i.e., with
F̄sym(T, ρ) := F̄(T, ρ, δ = 1) − F̄(T, ρ, δ = 0). The quantity F̄sym is called the symmetry free en-
ergy. Results from fits to nuclear binding energies and various nuclear many-body calculations
indicate an indeed approximately quadratic dependence on δ of the free energy per particle (at
zero temperature), and a quadratic dependence is routinely assumed in studies of (e.g.,) neutron-
star properties and neutron-rich atomic nuclei [192, 386, 189, 190, 371, 78]. Even so, it has been
shown that higher-order corrections with respect to the isospin-asymmetry dependence can still
have a significant influence on various properties of (e.g.,) neutron stars [359, 368, 68]. A par-
ticular objective of the present thesis is therefore to examine in more detail the accuracy of
the parabolic isospin-asymmetry approximation for different temperatures and densities, and to
investigate the question how improved parametrizations of the isospin-asymmetry dependence
can be constructed.

Nevertheless, based on its observed reasonable accuracy at zero temperature, the parabolic
approximation sets the strategy for the investigation of the thermodynamic nuclear EoS. After
having set up the computational framework, the first step is to study the nuclear EoS for the
limiting cases SNM (δ = 0) and PNM (δ = 1). Then, one extracts the symmetry free energy
F̄sym(T, ρ) and examines its density and temperature dependence. This sets the basis for a de-
tailed study of the isospin-asymmetry dependence of the EoS. In detail, the present thesis is
structured as follows.

• In Chapter 1 we summarize the main properties of QCD relevant for nuclear energy
scales. This then leads us to introduce the general framework of χEFT, which provides
the basis for our examination of various methods to construct effective low-momentum
nuclear potentials. The application of these potentials in nuclear many-body calculations
is discussed, and finally, we take a look at recent research results in the nuclear many-
body problem.

• Chapter 2 starts with a short overview of the standard formulation of many-body per-
turbation theory (MBPT) at zero temperature (T = 0). The consistent generalization of
MBPT to finite temperatures is (in fact) nontrivial, and is investigated in the remainder of
the chapter. The structure of finite-temperature MBPT at higher orders is studied, in par-
ticular, we investigate the cancellation of the so-called anomalous contributions in terms
of the self-consistent renormalization of the single-particle basis.

• In Chapter 3 we begin with the actual numerical nuclear many-body calculations. We
compute the thermodynamic EoS of isospin-symmetric nuclear matter (SNM) using var-
ious sets of chiral low-momentum (two- and three-nucleon) potentials in second-order

3 Since the nuclear interaction is finite-ranged, the thermodynamic limit exists (only) in case where the electro-
static repulsion of protons is “switched off”, cf. Refs. [179, 306, 307, 271, 402] and also [112, 84].
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MBPT. We examine the model dependence of the results, and benchmark against avail-
able empirical constraints. The sets of potentials which lead to consistent results are
then used to compute the EoS of pure neutron matter (PNM). Finally, the symmetry free
energy is extracted, and its density and temperature dependence is studied.

• In Chapter 4 we first review the general principles involved in the thermodynamic anal-
ysis of the nuclear liquid-gas phase transition, and then examine the dependence of the
associated instability region on temperature T and the isospin asymmetry δ = (ρn−ρp)/ρ.
In particular, we determine the trajectories of the critical temperature Tc(δ) and the frag-
mentation temperature TF(δ).

• Finally, in Chapter 5 we investigate in detail the dependence of the nuclear EoS (as ob-
tained in MBPT) on the isospin asymmetry δ for different temperatures T and nucleon
densities ρ. For the most part, we focus on the investigation of the Maclaurin expansion
of the free energy per particle F̄(T, ρ, δ) in terms of δ. It is shown that this expansion
constitutes a divergent asymptotic series at low temperatures, implying a non-polynomial
form of the isospin-asymmetry dependence in this regime. Moreover, it is shown that
at zero temperature this nonanalytic behavior is associated with logarithmic terms of the
form δ2n≥4 ln |δ|. The coefficient of the leading logarithmic term δ4 ln |δ| is extracted, and it
is shown that the inclusion of this terms overall leads to a considerably improved descrip-
tion of the isospin-asymmetry dependence of the zero-temperature EoS. Furthermore, we
identify additional nonanalyticities of the δ dependence at vanishing proton fraction.

The thesis is concluded thereafter. Three appendices are attached; in particular, in the first
appendix we provide a detailed discussion of the noninteracting nucleon gas, including the
application of MBPT for the derivation of relativistic correction terms.
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1. Nuclear Interactions and Many-Body
Problem

The modern theory of nuclear interactions is based on chiral effective field theory (χEFT), the
large-distance realization of the (fundamental) theory of the strong interactions of quarks and
gluons (“color force”) called quantum chromodynamics (QCD). A short overview of QCD is
given in Section 1.1 of this chapter. At energy scales Q . 1 GeV, QCD is strongly-coupled and
features highly nonperturbative phenomena such as color confinement and spontaneous chiral
symmetry breaking. Color confinement implies that quarks and gluons cannot appear as isolated
particles. Instead, the effective degrees of freedom at large length scales are hadrons: color-
neutral bound-states of quarks and gluons, such as the neutron, the proton, and in particular
also the pions (the Nambu-Goldstone bosons of the spontaneously broken chiral symmetry).

Since it is an emergent strong-coupling phenomenon, an explicit description in terms of QCD
of the nuclear interaction appears unfeasible. However, at sufficiently low energy scales the
quark-gluon substructure of nucleons is not resolved. This means that they can be described
as point particles, and a Lagrangian that governs their interactions can be set up in terms of a
low-energy expansion. The general principles involved in the construction of this Lagrangian
(the Lagrangian of χEFT) are discussed briefly in Sec. 1.2. In Sec. 1.3 we then examine the
hierarchy of effective two- and multi-nucleon interactions that emerges from χEFT.

In an EFT, the ultraviolet momentum cutoff Λ is a variable parameter. Employing low cut-
off scales Λ . 450 MeV has the benefit that the nonperturbative short-distance features of the
nuclear interactions (which are otherwise necessary for a realistic description) are evaded. Dif-
ferent methods to construct such low-momentum interactions are outlined in Sec. 1.4, where
we also present the sets of chiral two- and three-nucleon interactions used in this thesis. The
application of these interactions in nuclear many-body calculations is discussed in Sec. 1.5. In
Sec. 1.5, we also look at results from recent research activities that serve as a motivation for
and a guide towards the subsequent chapters.

1.1. Quantum Chromodynamics

QCD is a quantum gauge field theory with gauge group SU(3)color (“color group”). It de-
scribes the dynamics of massive spin-1/2 fermions called quarks and massless spin-1 bosons
called gluons, the SU(3)color gauge bosons. Historically, QCD emerged from the quark Model
[160, 436, 437] in which hadrons are classified as bound-states of three quarks (baryons) or
quark-antiquark pairs (mesons) according to the representations of the “flavor group” SU(3)F .1

In particular, the nucleon forms an isospin doublet with respect to the SU(2) subgroup of
SU(3)F . In its modern understanding, the dynamics of hadrons is understood as an emergent
phenomenon of strongly-coupled QCD, and their classification scheme according to SU(3)F is
traced back to the underlying flavor symmetry of the QCD Lagrangian. In the following, we
briefly describe how this comes about.
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1. Nuclear Interactions and Many-Body Problem

1.1.1. Asymptotic Freedom and Color Confinement

Related to the picture of hadrons as quark-gluon bound-states are two key properties of QCD:
asymptotic freedom and color confinement. Asymptotic freedom is fundamental for the appli-
cation of perturbative QCD in high-energy physics, and the property of color confinement is the
quintessence of the emergence of nuclear and hadronic physics from QCD. In the following,
after having introduced the QCD Lagrangian, we briefly discuss these two features, and their
relation to the renormalization-group flow of the strong coupling constant g.

QCD Lagrangian. The QCD Lagrangian LQCD is uniquely determined by the requirement
of local gauge invariance under the nonabelian group SU(3)color together with the general prin-
ciples of relativistic quantum field theory and the criterion of renormalizability. It is given by2

LQCD =
∑

f =u,d,s,c,b,t

ψ̄ f

(
i /D − m f

)
ψ f − 1

4
Ga
µνG µν

a , (1.1)

where where /D = γµDµ, with γµ the usual Dirac matrices. For each flavor f ∈ {u, d, s, c, b, t} the
quark field ψ f has three color components (corresponding to the fundamental triplet represen-
tation of SU(3)color), i.e., ψ f = (ψred

f , ψ
blue
f , ψ

green
f ). The gauge-covariant derivative Dµ is given

by

Dµ = ∂µ − igAµ , Aµ = taAa
µ, (1.2)

where Aa
µ, a ∈ {1, . . . , 8}, are the eight gluon fields (corresponding to the adjoint representation

of SU(3)color), and ta = λa/2 are the generators of SU(3)color (with λa the usual Gell-Mann
matrices). The parameter g is the strong coupling constant. The gluon field strength tensor Ga

µν

is given by

Ga
µν = ∂µAa

ν − ∂νAa
µ + g f abcAµ,bAν,c . (1.3)

where f abc are the structure constants of the Lie algebra su(3). Note that the last term in Eq.
(1.3) would be absent in an abelian gauge theory. It gives rise to gluonic self-interactions, i.e.,
in perturbation theory there are vertices involving three or four gluons, as shown in Fig. 1.1.

Figure 1.1.: Three-gluon vertex (order g) and four-gluon vertex (order g2)

1 Note that the quarks (“constituent quarks”) associated with this classification scheme have to be distinguished
from the “elementary” quarks of high-energy QCD. The quarks associated with the quark model constitute only
an approximative (but very useful) concept. Instead, hadrons themselves must be regarded as the large-distance
realization of QCD; they are bound-states of strongly-interacting quarks and gluons, and their structure is more
involved than the quark model assumes. In particular, “exotic” hadrons which are not allowed in the quark
model have been observed [316].

2 The so-called Θ term associated with the strong CP problem [21, 337, 413] is omitted here (it is not relevant for
the present discussion). We note also that if the criterion of renormalizability is given up, additional terms are
possible, but these terms would become relevant only at very high energies [414, 418, 413, 412].
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1. Nuclear Interactions and Many-Body Problem

Asymptotic Freedom. In addition to invariance under (local) gauge transformations as well as
Poincaré and CPT transformations, for m f = 0 the QCD action

∫
d4xLQCD is invariant under

the rescaling

xµ → λxµ, A→ λ−1A, ψ→ λ−3/2ψ. (1.4)

This scale invariance is however present only at the classical level but not in the full quan-
tum theory. The QCD vacuum can be pictured as a medium populated by “virtual” particle-
antiparticle fluctuations, and the properties of particles (excitations of the vacuum) are influ-
enced by this medium, leading to the general feature of a quantum field theory that the values
of the coupling constants (and any other parameters of the theory) depend on the energy scale
Q at which they are measured.

In quantum electrodynamics (i.e., in an abelian U(1) gauge theory) the strength of the fields
produced by a charged particle is also modified by such “virtual” effecs (vaccum polarization),
and the effective charge is screened at large distances, i.e., its value decreases with distance.
In QCD, however, the coupling g does not increase with decreasing distance but instead tends
to zero at very short length scales (this feature is also known as antiscreening): the theory is
asymptotically free. Asymptotic freedom is a distinct feature of relativistic nonabelian gauge
theories [87].

The scale dependence (renormalization-group flow) of g is described by the beta function (cf.
e.g, [305, 89])

β(g) =
∂g(Q)
∂ ln Q

. (1.5)

Eq. (1.5) is called the renormalization-group equation for the strong coupling constant. In the
regime where the coupling g is weak, the beta function can be calculated in perturbation theory.
The leading term in the expansion β(g) = β0g3 + β1g5 + . . . is given by [175, 176, 177, 333]

β0 = − 1
16π2

(
11 − 2

3
N f

)
, (1.6)

where N f ∈ [3, 6] is the number of flavors that have to be taken into account at a given energy
scale. Setting β(g) = β0g3, Eq. (1.5) can be integrated, yielding the leading-order result for the
running of the QCD fine-structure “constant” αs = g2/4π:

αs(Q) =
αs(Q0)

1 − 4πβ0αs(Q0) ln
(

Q2

Q2
0

) (1.7)

This equation defines the value of αs at a given energy scale Q, based on a normalization
point Q0 for which its value αs(Q0) needs to be inferred from experimental measurements.
For Nf < 33/2 the beta function is negative, thus, for QCD asymptotic freedom is realized:
the QCD fine-structure constant αs(Q) decreases logarithmically with increasing Q. The scale
dependence of αs(Q) is depicted in Fig. 1.2.
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1. Nuclear Interactions and Many-Body Problem

Color Confinement. As seen above, the strong coupling constant increases with decreasing
energy scales. The consequence of this is that the dynamics of quarks and gluons becomes very
complicated (and cannot be treated in perturbation theory) at low energies Q . 1 GeV or, equiv-
alently, large length scales ` & 0.2 fm. Associated with this nonperturbative regime of QCD
is the confinement of quarks and gluons into color-neutral bound-states (the hadrons). In
particular, quarks and gluons do not exist as isolated particles, and thus can be observed only
indirectly.3

The confining feature of QCD can be visualized by the following picture: as one increases
the distance between two quarks, narrow color flux lines are formed between the two quarks,
which tend to hold them together, and at a certain point break, leading to the formation of
quark-antiquark pairs, which together with the original two quarks then form hadrons. This
process (hadronization) is observed in high-energy collision experiments in the form of “jets”:
narrow cones of hadrons emitted from the collision center. Further evidence for confinement
comes from the large-Nc approximation of QCD [379, 422, 86], from the study of QCD-type
theories in lower space-time dimensions [380], and from numerical studies (in terms of lattice
QCD simulations [316]) of the heavy quark-antiquark (QQ̄) system where the QQ̄ potential was
observed to be Coulombic at short distances and linearly increasing at long distances [17]:

VQQ̄ ∼ −
e
r

+ σ r. (1.8)

The linear term proportional to σ (the “string tension”) renders the separation of the QQ̄ pair
energetically impossible.

Although various qualitative ideas have been conceived,4 the precise mechanism for color
confinement is still not fully understood at a theoretical level. In particular, no mathematical
proof (associated with the “mass-gap problem” [140]) that QCD is confining exists.

Figure 1.2.: (From [43]) Scale dependence of the QCD fine-structure constant αs(Q) es-
tablished by various types of measurements, compared to the QCD prediction
based on αs(MZ) = 0.1189 ± 0.00010, with MZ ' 91.2 GeV the Z-boson mass.

3 See e.g., Refs. [316, 305] for discussions of indirect evidence (from the analysis of data from high-energy
collision experiments) for quarks and gluons.

4 Another noteworthy one is the formation of chromoelectric flux tubes between color charges (dual Meissner
effect) [303, 284, 382]. For further ideas about confinement, cf. [334, 420] and the reviews [10, 285, 363].
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1. Nuclear Interactions and Many-Body Problem

1.1.2. Spontaneous Chiral Symmetry Breaking

In addition to confinement, the nonperturbative low-energy regime of QCD features another
property that is essential for nuclear and hadronic physics: the spontaneous breaking of (ap-
proximate) chiral symmetry (SχSB).5 Here, we briefly describe this feature and its relation to
the properties of the hadron spectrum, in particular nucleons and pions.

Chiral Limit. The QCD Lagrangian has an approximate global U(2)L × U(2)R symmetry in
flavor space, where “approximate” means that the symmetry is an exact symmetry of LQCD in
the chiral limit where the masses of the two lightest quarks (mu = 2.3+0.7

−0.5 MeV and md = 4.8+0.5
−0.3

MeV at a scale Q ' 2GeV [316]) are set to zero, i.e., m f = 0 for f = u, d.6 Writing ψ = (ψu, ψd),
the chiral limit of the QCD Lagrangian (restricted to f = u, d) reads

LQCD
chiral limit−−−−−−−→ ψ̄Li /DψL + ψ̄Ri /DψR − 1

4
Ga
µνG µν

a , (1.9)

where the two (left- and right-handed) chiral components of the quark fields ψL/R = 1
2 (1 ∓

γ5)ψ have been separated. The Lagrangian given by Eq. (1.9) is invariant under the global
transformations

(
ψL

ψR

)
U(2)L−−−−→

(
LψL

ψR

)
,

(
ψL

ψR

)
U(2)R−−−−→

(
ψL

RψR

)
, (1.10)

where L,R ∈ U(2). This U(2)L × U(2)R symmetry can be decomposed as U(1)L × U(1)R ×
SU(2)L × SU(2)R, where the transformations under the subgroups are given by Eq. (1.9) but
with L,R ∈ U(1) and L,R ∈ SU(2), respectively. Furthermore, the abelian part U(1)L ×U(1)R is
isomorphic to U(1)V × U(1)A. Here, the subscript “V” denotes a vector symmetry (a symmetry
that does not distinguish between the left- and right-handed components of the quark field),
and the subscript “A” labels an axial symmetry (a symmetry which treats fields with different
chirality in an opposite way). The transformations under U(1)V and U(1)A are given by

ψL,R
U(1)V−−−−→ exp (iΘ)ψL,R , ψL,R

U(1)A−−−−→ exp (iΘγ5)ψL,R. (1.11)

The group SU(2)L×SU(2)R is generally called the chiral symmetry group. A transformation
under its diagonal subgroup SU(2)V is given by

(
ψL

ψR

)
SU(2)V−−−−−→

(
VψL

VψR

)
, (1.12)

where V ∈ SU(2). Note that U(1)V (corresponding to baryon number conservation7) is a sym-
metry of the Lagrangian also for physical quark masses, mu , md , 0. U(1)A, SU(2)L and
SU(2)R are exact symmetries of LQCD only in the chiral limit, but SU(2)V (the isospin symme-
try) is exact also in the isospin limit of equal quark masses mu = md , 0.

5 Color confinement and spontaneous chiral symmetry breaking (SχSB) are thought to be connected [22, 75] (cf.
also [362]), but their exact relation is not yet fully understood.

6 It should be noted that this analysis can be extended to include the strange quark; i.e., setting m f = 0 for
f = u, d, s, a global U(3)L × U(3)R symmetry emerges, the SU(3)V subgroup of which is the flavor group of
the quark model. Since in this thesis we are concerned with nucleonic matter (only), we restrict the discussion
to the two-flavor case. The interactions of strange hadrons in nuclear matter are of interest in astrophysics
[180, 169], and their description in terms of SU(3) χEFT is pursued actively [329, 330].
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1. Nuclear Interactions and Many-Body Problem

Symmetry Breaking Pattern. Regarding the (approximate) global U(2)L × U(2)R symmetry,
QCD has the following symmetry breaking pattern

U(2)L × U(2)R = U(1)V × U(1)A ×
chiral symmetry︷               ︸︸               ︷

SU(2)L × SU(2)R

anomaly−−−−−→ U(1)V × SU(2)L × SU(2)R

spontaneous−−−−−−−−→ U(1)V × SU(2)V (1.13)

The group U(1)A, although it is a symmetry of the QCD Lagrangian (i.e., it is a symmetry at
the classical level), it is not a symmetry of QCD (i.e., the fully quantum theory). Its breaking is
due to the Adler-Bell-Jackiw anomaly of the axial current [7, 36] and instantons [381, 413].

At low energies, chiral symmetry is “spontaneously broken” to SU(2)V : SU(2)L×SU(2)R

is a symmetry of QCD (i.e., the full quantum theory), but only its diagonal subgroup SU(2)V is
manifest as a symmetry of the physical states present at low energies (i.e., the low-energy vac-
uum |0〉 and the hadron spectrum). In particular, the low-energy vacuum can be considered to be
populated by quark-antiquark fluctuations, and the quark-antiquark correlator ψ̄ψ = ψ̄uψu+ψ̄dψd

has a nonvanishing vacuum expectation value
〈
0
∣∣∣ ψ̄ψ

∣∣∣ 0〉, the so-called chiral condensate, which
serves as an order parameter for SχSB [since ψ̄ψ = ψ̄LψR + ψ̄RψL is invariant under SU(2)V but
not under SU(2)L × SU(2)R]. See (e.g.,) Refs. [86, 413, 390] and the appendix A.2 for more
details.

Pions as Nambu-Goldstone Bosons. A quantum field theory with a spontaneously broken
symmetry has to obey the Nambu-Goldstone theorem [172, 173, 302, 413]:

If there is a continuous symmetry group G (with generators Qi, i = 1, ...,NG) under
which the Lagrangian is invariant, but the vacuum is invariant only under a sub-
group H ⊂ G (with generators Qi, i = 1, ...,NH), then there must exist NG − NH

massless states with zero spin.

These Nambu-Goldstone bosons then carry the quantum numbers of the “broken” charges Qi,
i = NH + 1, ...,NG. This theorem has important implications for the hadron spectrum. To see
this, we consider the Noether currents ja

L,µ and ja
R,µ associated with the components SU(2)L and

SU(2)R of the chiral symmetry group:

ja
L,µ = ψ̄L(x)γµ

τa

2
ψL(x), ja

R,µ = ψ̄R(x)γµ
τa

2
ψR(x), (1.14)

with τ = (τ1, τ2, τ3) the isospin Pauli matrices. The vector and axial-vector currents are given
by

ja
V,µ = ja

R,µ + ja
L,µ = ψ̄(x)γµ

τa

2
ψ(x), ja

A,µ = ja
R,µ − ja

L,µ = ψ̄(x)γµγ5
τa

2
ψ(x), (1.15)

and the associated charges are given by

Qa
V =

∫
d3xψ†(x)

τa

2
ψ(x), Qa

A =

∫
d3xψ†(x)γ5

τa

2
ψ(x). (1.16)

7 We note that in the Standard Model (QCD plus electroweak theory) the U(1)V symmetry is anomalously broken
by nonperturbative effects in the electroweak sector (“sphalerons”), cf. [252, 240, 413]

10



1. Nuclear Interactions and Many-Body Problem

In the case of SχSB the “broken” generators are the axial charges Qa
A. Hence, the associated

Nambu-Goldstone bosons are pseudoscalar mesons, identified with the pions π+, π−, and π0.
Because chiral symmetry is also explicitly broken by the nonvanishing masses of up and down
quarks, pions have a small (compared to the other hadrons) but nonzero mass. In this sense they
are pseudo Nambu-Goldstone bosons. At small momenta they are weakly interacting particles.
This can be seen by considering the action of the HamiltonianHQCD on a state |πn〉with n pions:

HQCD |πn〉 ∼ HQCD

(
Qa1

A · · · Qan
A

)
|0〉 =

(
Qa1

A · · · Qan
A

)
HQCD |0〉 = 0. (1.17)

Thus, in the case of vanishing momenta, the n-pion state is energetically degenerate with the
vacuum |0〉.

The special nature of the pions as pseudo Nambu-Goldstone bosons is manifest in the Gell-
Mann–Oakes–Renner relation [162], which connects the chiral condensate, the quark masses,
the pion mass mπ ' 138 MeV, and the pion decay constant fπ ' 92.4 MeV:

m2
π f 2

π = −1
2

(mu + md)
〈
ψ̄ψ

〉
+ O(m2

u,d). (1.18)

Eq. (1.18) implies that, just like the chiral condensate, the pion decay constant fπ is a measure
for the strength of SχSB. The associated characteristic scale is Λχ ∼ 4π fπ ∼ 1 GeV (cf. e.g.,
Refs. [413, 356] for more details).

1.2. Chiral Effective Field Theory

In the following we briefly describe the general principles involved in the construction of the
Lagrangian of χEFT, and give its leading terms. More detailed reviews on χEFT and the gen-
eral principles of EFTs can be found in Refs. [130, 356, 40, 119, 283, 157, 267, 413, 305, 332].
Additional details are also given in the appendix A.2.

General Principles. The notion effective field theory (EFT) corresponds to a general quantum-
field theoretical framework that yields, for a given system, an effective (i.e., not fundamental)
description in terms of the degrees of freedom which are “active” at low energies. In most cases,
constructing an EFT corresponds to “integrating out” the details of the high-energy physics: in
the low-energy regime, short-distance effects are not resolved and can be included through con-
tact terms. By definition, an EFT is useful only for energies below a characteristic breakdown
scale ΛEFT above which the high-energy physics becomes relevant.

The general principles governing the construction of an EFT can be formulated as follows
[283, 356]:

• Identify the relevant energy scales and appropriate degrees of freedom.

• Identify the relevant symmetries and investigate if and how they are broken.

• Construct the most general Lagrangian consistent with these symmetries and symmetry
breaking patterns.

• Design an organizational scheme that can distinguish between more and less important
terms.

• Evaluate Feynman diagrams for the process under consideration up to the desired accu-
racy.
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1. Nuclear Interactions and Many-Body Problem

In general, an EFT is not renormalizable in the sense that the divergences occuring in per-
turbation theory (via loop diagrams) can be removed by a redefinition of a finite number of
parameters. Instead, an EFT has to be renormalized order by order, and additional counterterms
(contact terms) are needed at each order. The unknown constants parametrizing the contact
terms are called low-energy constants (LECs), and the values of these LECs have to be fixed
either by a fit to experimental data or by matching their values to an underlying high-energy
theory. See e.g., Refs. [412, 413, 40] for more details.

χEFT Lagrangian. Since the interactions between pions vanish at zero momentum transfer
(in the chiral limit) and the pion mass signifies the explicit breaking of chiral symmetry (cf.
Sec. 1.1.2), the Lagrangian of χEFT is arranged in powers of derivatives of pion fields and
powers of pion masses. Formally, it can be written as

LχEFT = Lππ + LπN + LNN + . . . , (1.19)

where Lππ describes the dynamics of pions (π) without nucleons (N), LπN collects πN interac-
tions, LNN the NN contact terms, etc.; the ellipsis represents terms with three or more nucleon
fields. The relativistic treatment of nucleons leads to certain problems (the time-derivative of
the relativistic nucleon field generates the large factor E ' M), which can be avoided by treating
nucleons as heavy static sources [222, 39] (“extreme nonrelativistic limit”, cf. the appendix A.2
for details). For the organization of nuclear interactions it is useful to organize the various terms
of the effective Lagrangian according to the so-called “index of interaction” ∆, which is given
by

∆ = d +
n
2
− 2, (1.20)

where the “chiral dimension” d counts the number of derivatives or pion mass insertions, and
n is the number of nucleon fields. The leading-order part of LEFT in this organization scheme
reads8

L ∆=0
χEFT =

1
2
∂µπ · ∂µπ − 1

2
m2

ππ
2 +

1 − 4α
2 f 2

π

(
π · ∂µπ

)
(π · ∂µπ) − α

f 2
π

π2∂µπ · ∂µπ +
8α − 1

8 f 2
π

m2
ππ

4

+ N†
(
i∂0 − gA

2 fπ
τ · (~σ · ~∇)π − 1

4 f 2
π

τ · (π × ∂0π)
)

N

− N†
(
gA(4α − 1)

4 f 3
π

(τ · π)
[
π · (~σ · ~∇)π

]
+

gAα

2 f 3
π

π2
[
τ · (~σ · ~∇)π

])
N

− 1
2

CS (N†N)(N†N) − 1
2

CT (N†~σN) · (N†~σN) + . . . , (1.21)

where M ' 938.9 MeV is the average nucleon mass, N = (p, n) is the (heavy) nucleon field
vector, and the vector π =

( 1√
2
(π+ + iπ−), i√

2
(π+ − iπ−),π0) collects the pion fields. The spin

Pauli-matrix vector ~σ = (σ1,σ2,σ3) is always multiplied with another vector quantity, and the
Pauli matrices in the vector ~σ act on the spinor part of N. The product of an isospin Pauli-matrix
vector τ = (τ1, τ2, τ3) with a pion field vector π is given by

τ · π = τ1
1√
2

(π+ + iπ−) + τ2
i√
2

(π+ − iπ−) + τ3π
0 =
√

2(τ−π+ + τ+π
−) + τ3π

0. (1.22)

8 In Eq. (1.21), the coefficient α is arbitrary, where different values of α correspond to different parametrizations
of the pion-field matrix U, cf. Eq. (A.39). The α dependence of LχEFT affects only (unobservable) off-shell
amplitudes, whereas physical on-shell amplitudes are invariant under a change of parametrization [130, 283].
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1. Nuclear Interactions and Many-Body Problem

The operators τ± = 1
2 (τ1 ± iτ2) and τ3 act on nucleon states in the following way:

τ− |p〉 = |n〉 , τ− |n〉 = 0,
τ+ |p〉 = 0, τ+ |n〉 = |p〉 ,
τ3 |p〉 = |p〉 , τ3 |n〉 = − |n〉 . (1.23)

In Eq. (1.21), the parameter gA ' 1.27 is the nucleon axial-vector coupling constant [316]; it
can be measured in neutron beta decay n→ p+e−+νe [170, 413, 40]. The low-energy constants
CS and CT can be fixed by fits to nucleon-nucleon scattering observables. The subleading terms
are given by (with additional LECs c1,2,3,4 and D, E)9

L ∆=1
χEFT =N†


−→∇2

2M
− igA

4M fπ
τ·

[
~σ · (←−∇∂0π − ∂0π

−→∇)
]
− i

8M f 2
π

τ·
[←−∇· (π × ~∇π) − (π × ~∇π) ·−→∇

]
 N

+ N†
(
4c1m2

π −
2c1

f 2
π

m2
ππ

2 +

(
c2 −

g2
A

8M

)
1
f 2
π

(∂0π · ∂0π)

+
c3

f 2
π

(∂µπ · ∂µπ) −
(
c4 +

1
4M

)
1

2 f 2
π

ε i jkεabcσiτa(∂iπb)(∂kπc)
)

N

− D
4 fπ

(N†N)
(
N†

[
τ · (~σ · ~∇)π

]
N
)
− 1

2
E(N†N)(N†τN) · (N†τN) + . . . . (1.24)

In Eqs. (1.21) and (1.24), the ellipses represent terms that are not relevant for the construction
of nuclear potentials up to fourth order (N3LO, cf. Sec. 1.3).

As for any EFT, the Lagrangian LχEFT has infinitely many terms, and thus gives rise to
an unlimited number of (increasingly complicated) interactions between pions and nucleons.
However, since these interactions are hierarchically ordered, this must not be regarded as a
flaw. Concerning the description of the low-energy dynamics of nucleons and pions up to a
certain degree of accuracy, χEFT is a well-controlled theory. Its limited range of applicability
and limited precision10 are what makes it an effective theory.

1.3. Hierarchy of Chiral Nuclear Interactions

For a given system, the usefulness (“effectiveness”) of a description in terms of an EFT relies
on the availability of two distinct energy scales that separate large- and short-distance effects.
In the case of low-energy nuclear (or hadronic) physics, these scales are given by the symmetry
breaking scale Λχ ∼ 4π fπ ∼ 1 GeV—the breakdown scale (“hard scale”) of χEFT—, and
a “soft scale” Q associated with the pion mass mπ or a (small) nucleon momentum.11 This
separation of scales implies the hierachical ordering of chiral nuclear interactions in terms of
powers of the expansion parameter Q/Λχ. For a given diagram contributing to the nuclear
interaction, it follows from the rules of covariant perturbation theory that (see Ref. [413])

• an intermediate nucleon line counts as Q−1,

• an intermediate pion line counts as Q−2,

• each derivative in any vertex counts as Q,

• each four-momentum integration counts as Q4.
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1. Nuclear Interactions and Many-Body Problem

Using this dimensional analysis and some topological identities, one finds the following formula
for the chiral power ν of a diagram involving a given number of nucleons [409, 410, 411, 283]:

ν = −2 +
∑

i

κi , κi = di − 3
2

ni + πi − 4, (1.25)

where di is the number of derivatives or pion mass insertions, ni is the number of nucleon fields,
and πi the number of pion fields at the vertex i. The hierarchy of nuclear interactions arising
from this power counting is depicted in Fig. 1.3 (contributions at order ν = 1 vanish due to
parity and time-reversal invariance [283, 409]).

NN Interactions 3N Interactions

LO

(Q/Λχ)0

NLO

(Q/Λχ)2

N2LO

(Q/Λχ)3 + . . .

+ . . .

+ . . .N3LO
(Q/Λχ)4

4N Interactions

+ . . .

Figure 1.3.: Hierarchy of chiral nuclear interactions [130]. Solid lines represent nucleons,
and dashed lines pions. Tiny dots, large solid dots, large solid squares and
large crossed squares denote vertices with ∆ = 0, 1, 2 and 4, respectively.

9 In Eq. (1.24), gradients with large (right- and left-handed) vector arrows [
−→∇ and

←−∇] act on the nucleon fields to
the right and left, respectively.

10 To be precise, the property of limited precision is not peculiar to effective field theories. Since perturbation
theory (the expansion in terms of powers of the coupling constant g) in general corresponds to an asymptotic
expansion with zero radius of convergence [146, 388, 118, 377, 136], also renormalizable theories can be
evaluated only to limited precision (even when the coupling is weak).

11 The separation of scales associated with SχSB is manifest in the large gap between the (average) pion mass
(mπ ' 138 MeV) and the masses of the lightest vector mesons, i.e., the rho (mρ ' 775 MeV) and the omega
meson (mω ' 782 MeV). Note also that the large mass of the η′ meson (which is close to the η0, the “would-
be” Nambu-Goldstone boson of spontaneous U(1)A breaking), mη′ ' 960 MeV, is explained in terms of the
axial anomaly, see Sec. 1.1.2 and [413, 316].
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1. Nuclear Interactions and Many-Body Problem

1.3.1. Two-Nucleon Interaction

For the various chiral NN interactions (evaluated in the heavy-baryon formalism) up to a given
order in the power counting, one can construct an effective NN potential (and similar for 3N,
4N , etc.). The potential matrix elements are defined as the sum of the diagrammatic ampli-
tudes of the irreducible components of the chiral interactions [410]. The reducible components
corresponding to purely nucleonic intermediate states are then reproduced by iterating the NN
potential in the Lippmann-Schwinger equation. The contributions to the chiral NN potential
can be organized as follows:

VNN = Vc.t. + V1π + V2π + . . . (1.26)

The contact (“c.t.”), one-pion exchange (“1π”) and two-pion exchange (“2π”) contributions up
to next-to-next-to-next-to-leading order (N3LO, ν = 4) are ordered in the following way [283]:

Vc.t. = V (0)
c.t. + V (2)

c.t. + V (4)
c.t. , (1.27)

V1π = V (0)
1π + V (2)

1π + V (3)
1π + V (4)

2π , (1.28)

V2π = V (2)
2π + V (3)

2π + V (4)
2π , (1.29)

where the superscript denotes the order ν with respect to the chiral power counting. (At N3LO
there are also the first three-pion exchange interactions, which are however negligible [283]).
The reducible part of two-pion exchange arises from the “planar box diagram” at next-to-leading
order (NLO). The corresponding time-ordered graphs are shown in Fig. 1.4. Notably, as a con-
sequence of the nonrelativistic treatment of nucleons (1/M expansion) the irreducible compo-
nent of the planar box diagram receives a contribution also from the four graphs with reducible
time-orderings, see Ref. [236] for details.

= + + + + +

Figure 1.4.: Planar box diagram: covariant Feynman diagram (left-hand side of the equal
sign) and corresponding time-ordered graphs (right-hand side). As noted in
the text, the irreducible component of the diagram receives, in addition to the
contribution from the first two graphs with irreducible time-orderings, also a
contribution the four graphs with reducible time-orderings.

The nucleon-nucleon potential VNN is an operator acting on (physical) two-nucleon states |ϕ〉,
i.e.,

|ϕ〉 =

∫
d3x1d3x2 |~x1~x2〉ϕ(~x1, ~x2) =

∫
d3k1d3k2 |~k1~k2〉 ϕ̃(~k1,~k2), (1.30)

where the coordinate-space [ϕ(~x1, ~x2)] and momentum-space [ϕ̃(~k1,~k2)] wave functions are spin-
isospin spinors. The potential can thus be represented as an integral operator acting on momen-
tum eigenstates |~k1~k2〉, i.e.,

VNN =

∫
d3k ′1d3k ′2d3k1d3k2 〈~k ′1~k ′2 |VNN|~k1~k2〉 |~k ′1~k ′2〉 〈~k1~k2| , (1.31)
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1. Nuclear Interactions and Many-Body Problem

where the matrix elements 〈~k ′1~k ′2 |VNN|~k1~k2〉 are operators in spin and isospin space. By transla-
tional and Galilei invariance, the matrix elements are diagonal with respect to the total momenta
~K = ~k1 + ~k2 and ~K′ = ~k ′1 + ~k ′2 and depend only on the relative momenta ~p = (~k1 − ~k2)/2 and
~p ′ = (~k ′1 − ~k ′2)/2. Therefore, we can write the matrix elements as

〈~k ′1~k ′2 |VNN|~k1~k2〉 = δ(~k ′1 + ~k ′2 − ~k1 − ~k2) 〈~p′|VNN|~p〉︸      ︷︷      ︸
≡VNN(~p ′,~p)

. (1.32)

Instead of using relative momenta as independent variables, one can use the momentum transfer
~q = ~k1 − ~k ′1 = ~p − ~p ′ and the average relative momentum ~k = (~p + ~p ′)/2 = (~k1 − ~k ′2)/2.
The contribution to the potential from the leading-order (LO) contact interaction is momentum
independent, and is given by

V (0)
c.t.(~p

′, ~p) = CS + CT ~σ1 · ~σ2. (1.33)

For the subleading contact interactions, cf. (e.g.,) Refs. [283, 384]. The leading-order one-pion
exchange potential, which represents the contribution to the NN interaction of longest range, is
given by

V (0)
1π (~p ′, ~p) = − g2

A

4 f 2
π

τ1 · τ2
(~σ1 · ~q )(~σ2 · ~q )

q2 + m2
π

. (1.34)

At NLO the one-pion exchange potential gets renormalized by several one-loop graphs and
counter-term insertions; the relevant diagrams are shown in Fig. 1.5. The first two diagrams at
the top of Fig. 1.5 renormalize the nucleon propagator and the next two the pion propagator.
The four diagrams at the bottom renormalize the pion-nucleon coupling constant. In the one-
loop diagrams, all vertices are from the leading order Lagrangian L ∆=0 given in Eq. (1.21),
whereas the counter-term insertions come from L ∆=2. At N2LO and N3LO, further corrections
arise; they renormalize various LECs, the pion-mass, and the pion-nucleon coupling,12 but do
not generate a pion-nucleon form-factor [283]. Therefore the one-pion exchange contributions
maintain the structure given by Eq. (1.34) up to (at least) N3LO. Two-pion exchange starts
at NLO and involves additional loop diagrams which have to be regularized. For more details
regarding the different NLO, N2LO and N3LO contribution to the NN potential, see Refs. [129,
283, 236, 227, 226].13 At N3LO, the chiral NN potential becomes a “high-precision” potential:
the description of NN scattering phase shifts reaches a precision comparable to “conventional”
phenomenological high-precision NN potentials such as the CD-Bonn potential [282] or the
AV18 potential [421].14

Figure 1.5.: One-pion exchange diagrams at order (Q/Λχ)2

12 At NLO this correction involves the so-called Goldberger-Treimann discrepancy [133, 283]; it leads to gA →
1.29.

13 Recently, also the N4LO contributions (as well as the dominant N5LO terms) have been worked out [123, 124].
14 See Ref. [281] for details and a comparison of chiral and conventional high-precision potentials.
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1. Nuclear Interactions and Many-Body Problem

The general form of the NN potential consistent with rotational invariance, exchange symme-
try, parity and time-reversal invariance, Hermiticity, and invariance under rotations in isospin
space (isospin symmetry) is given by [174]

VNN(~p ′, ~p) =VC + τ1 · τ2WC

+ (Vσ + τ1 · τ2WS ) ~σ1 · ~σ2

+ (Vσq + τ1 · τ2WT ) (~σ1 · ~q ) (~σ2 · ~q )

+ (VLS + τ1 · τ2WLS )i(~σ1 + ~σ2) · (~q × ~k)

+ (VσL + τ1 · τ2WσL) ~σ1 · (~q × ~k) ~σ2 · (~q × ~k)

+ (Vσk + τ1 · τ2WT2) (~σ1 · ~k ) (~σ2 · ~k ), (1.35)

where the coefficients Vα and Wα, α ∈ {C, S ,σq, LS ,σL,σk}, are functions of q = |~q|, k = |~k| and
|~q × ~k|. The on-shell potential matrix elements can be expressed solely in terms of the central
(C), spin (σ), tensor15 (σq), spin-orbit (LS ) and quadratic spin-orbit (σL) parts of the potential,
with coefficients that depend only on q = |~q| and k = |~k|. This follows from the identity [174]

(~σ1 · ~k)(~σ2 · ~k)q2 = − (~σ1 · ~q)(~σ2 · ~q)k2 − (~σ1 · ~q × ~k)(~σ2 · ~q × ~k) + (~σ1 · ~σ2)(~q × ~k)2

+ (~q · ~k)[(~σ1 × ~q)(~σ2 · ~k) + (~σ1 × ~k)(~σ2 · ~q)], (1.36)

and the fact that for on-shell scattering it is (~q × ~k)2 = q2k2 and (~q · ~k)2 = 0:

(~q × ~k) · (~q × ~k) = q2k2 − (~q · ~k)2 = q2k2 − [p2 − (p′)2

︸     ︷︷     ︸
=0 (on-shell)

]2. (1.37)

The isospin structure of the NN potential given by Eq. (1.35) is such that the nn and pp interac-
tions and the np interactions in the triplet channels with total isospin T = 1 are identical.16 This
situation (isospin symmetry) is also referred to as “charge independence”. If isospin-symmetry
breaking effects are taken into account than additional isospin structures appear as compared to
Eq. (1.35), i.e., τ3

1τ
3
2 (charge-independence breaking), τ3

1 + τ3
2 (charge-symmetry breaking with-

out isospin mixing), and τ3
1 − τ3

2 as well as [τ1 × τ2]3 (charge-symmetry breaking and isospin
mixing) [403, 131, 295]. Here, “charge symmetry” refers to the situation where the nn and pp
interactions are the same, but not necessarily equal to the np interactions in isospin triplet chan-
nels, and “isospin mixing” refers to the mixing between T = 1 and T = 0 states in the np system.

The parts of VNN(~p ′, ~p) that depend only on ~q = ~k1−~k ′1 lead to local coordinate-space potential
matrix elements: using 〈~x |~k〉 = e−i~k·~x /(2π)3/2 we obtain

〈~x ′1~x ′2|VNN|~x1~x2〉 =
1

(2π)6

∫
d3k1d3k ′2d3k1d3k2 〈~k ′1~k ′2 |VNN|~k1~k2〉 e−i(~k ′1 ·~x ′1+~k ′2 ·~x ′2) ei(~k1·~x1+~k2·~x2), (1.38)

which for 〈~k ′1~k ′2 |VNN|~k1~k2〉 = δ(~k ′1 + ~k ′2 − ~k1 − ~k2)VNN(~q) leads to a local potential, i.e.,

〈~x ′1~x ′2|VNN|~x1~x2〉 =
1

(2π)6

∫
d3k ′1d3k ′2d3k1VNN(~q) e−i(~k ′1 ·~x ′1+~k ′2 ·~x ′2) ei[~k1·~x1+(~k ′1+~k ′2−~k1)·~x2]

15 Note that the “tensor” part of the potential is often associated with the tensor operator S12 = 3(~σ1 · ~q ) (~σ2 · ~q ) −
~σ1 · ~σ2 instead of the σq part of Eq. (1.35), cf. (e.g,) Ref. [138].

16 Note however that since τ1 · τ2 = −3 for T = 0 but τ1 · τ2 = 1 for T = 1, the np interactions in the isospin
singlet singlet (T = 0) and isospin triplet (T = 1) channels are different.
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=
1

(2π)6

∫
d3k1d3q d3kVNN(~q) e−i[(~k1−~q)·~x ′1+(~k1−~k)·~x ′2] ei[~k1·~x1+(~k1−~q−~k)·~x2]

= δ(~x ′1 − ~x1)δ(~x ′2 − ~x2)
∫

d3qVNN(~q) ei~q·(~x1−~x2)

︸                      ︷︷                      ︸
VNN(~x1−~x2)

. (1.39)

Terms that depend also on ~k lead to a nonlocal potential. For such a potential, the coordinate-
space Schrödinger equation has the form

Tkinϕ(~x1, ~x2) +

∫
d3x ′1d3x ′2 〈~x1, ~x2|VNN|~x ′1~x ′2〉 ϕ(~x ′1~x

′
2) = i∂t ϕ(~x1, ~x2), (1.40)

where Tkin = ~k2
1/(2M) + ~k2

2/(2M), with ~k1,2 = −i~∇1,2. It will be instructive to rewrite this in
terms relative ~r (′) = ~x (′)

1 − ~x (′)
2 and center-of-mass coordinates ~R (′) = (~x (′)

1 + ~x (′)
2 )/2. In terms of

these coordinates, the two-nucleon state vector |ϕ〉 is given by

|ϕ〉 =

∫
d3rd3R |~r ~R〉ϕ(~r, ~R). (1.41)

For the potential matrix elements in terms of |~r ~R〉 states one obtains

〈~r ′~R ′|VNN|~r ~R〉 =
1

(2π)6

∫
d3 p ′d3K ′d3 p d3K δ(~K ′ − ~K)VNN(~p ′, ~p) e−i(~p ′·~r ′+~K ′·~R ′) ei(~p·~r+~K·~R)

= δ(~R ′ − ~R)
1

(2π)3

∫
d3 p ′d3 p VNN(~p ′, ~p) e−i~p ′·~r ′ ei~p·~r

︸                                               ︷︷                                               ︸
〈~r ′ |VNN |~r〉≡VNN(~r ′,~r)

. (1.42)

Using the ansatz ϕ(~r, ~R) = φ(~r)ξ(~R), the relative and center-of-mass parts of the Schrödinger
equation decouple, leading to

Trel φ(~r) +

∫
d3r ′ 〈~r ′|VNN|~r〉 φ(~r ′) = i∂t φ(~r), (1.43)

TR ξ(~R) = i∂t ξ(~R), (1.44)

where Trel = ~p 2/(M) and TR = ~K2/(4M), with ~p = −i~∇r and ~K = −i~∇R.

For a general NN potential, its nonlocal part can be associated with a velocity dependence.
This can be seen by expanding the wave-function φ(~r ′) as [344]

φ(~r ′) =φ(~r) + (~r ′ − ~r) · ~∇rφ(~r) + . . . = N[e−i(~r ′−~r)·~p] φ(~r), (1.45)

where “N[ ]” (normal ordering) means that the momentum operators should not act on the
coordinates in the expansion of the exponent. This shows that the potential can be represented
as an operator VNN(~p,~r) given by

VNN(~p,~r) =

∫
d3r ′VNN(~r ′,~r)N[e−i(~r ′−~r)·~p], (1.46)

and the coordinate-space Schrödinger equation can be written as

Trel φ(~r) + VNN(~p,~r) φ(~r) = i∂t φ(~r). (1.47)

For the general form of VNN(~p,~r) consistent with translational and Galilei invariance, rotational
invariance, exchange symmetry, parity and time-reversal invariance, Hermiticity, and isospin
symmetry, see Ref. [315].
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1.3.2. Multi-Nucleon Interactions

The leading-order contribution to the three-nucleon (3N) interactions appears at N2LO (in the
case of χEFT without explicit ∆(1232)-isobars) [127, 411, 134], and consists of the three dia-
grams shown in Fig. (1.3): a short-range 3N contact interaction, an intermediate-range one-pion
echange interaction, and a long-range two-pion exchange interaction. The contact interaction
arises from the last term of L ∆=1

χEFT [Eq. (1.24)] proportional to the low-energy constant E, and
is given by

V (3)
3N,c.t. =

E
2

∑

j,k

(τ j · τk). (1.48)

The one-pion exchange diagram proportional to the low-energy constant D arises from the
second-last term of L ∆=1

χEFT, is given by

V (3)
3N,1π = −D

gA

8 f 2
π

∑

i, j,k

~σ j · ~q j

~q 2
j + m2

π

(~σi · ~q j) (τi · τ j), (1.49)

where ~qi = ~k ′i − ~ki, with i = 1, 2, 3. The low-energy constants E and D are usually rewritten in
terms of dimensionless constants cE and cD as [53, 209]

E =
cE

f 4
π Λ̃χ

, D =
cD

f 2
π Λ̃χ

, (1.50)

where we set Λ̃χ = 700 MeV. Finally, the two-pion exchange contribution composes itself from
the terms proportional to c1,3,4 in L ∆=1

χEFT, and has the form

V (3)
3N,2π =

1
2

(
gA

2 fπ

)2 ∑

i, j,k

(~σi · ~qi) (~σ j · ~q j)
(~q 2

i + m2
π) (~q 2

i + m2
π)

Fab
i jk τ

a
i τ

b
j , (1.51)

where Fab
i jk is given by (with εabc the Levi-Civita tensor)

Fab
i jk = δab

(
−4c1m2

π

f 2
π

+
2c3

f 2
π

(~qi · ~q j)
)

+
c4

f 2
π

∑

c

εabcτc
k ~σk · (~qi × ~q j), (1.52)

resulting in c1 and c3 terms proportional to τi · τ j and a c4 term proportional to (τi × τ j) · τk. At
N3LO, there are additional 3N diagrams, and also the first 4N interactions. The N3LO multi-
nucleon diagrams do not involve new LECs, i.e., they are completely predicted from parameters
appearing in the LO two-nucleon sector [128, 384]. The N3LO three-nucleon interactions can
be organized as

V (4)
3N = V (4)

2π + V (4)
2π−1π + V (4)

ring + V (4)
1π−c.t. + V (4)

2π−c.t. + V (4)
1/m, (1.53)

where the different terms correspond to different types of diagrams (cf. [219, 38, 37] and also
[384] for details and explicit expressions). The various N3LO four-nucleon interactions have
been examined in Ref. [128].

At present, most nuclear many-body calculations with chiral interactions have employed the
N2LO three-nucleon potential but no higher-order multi-nucleon interactions. Progress towards
the implementation of higher-order multi-nucleon interactions has however been achieved in
recent works [386, 251, 106, 188].
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1.4. Low-Momentum Chiral Nuclear Potentials

Since χEFT is an effective theory valid only at energy scales below the breakdown scale Λχ ∼ 1
GeV, chiral nuclear potentials should to be regularized at a scale Λ < Λχ [283, 132]. Conse-
quently, the values of the low-energy constants (LECs) parametrizing the interactions depend
on the employed cutoff scale Λ. The LECs are generally fixed by fits to nucleon-nucleon (NN)
phase shifts and properties of light nuclei, and different values for the LECs can emerge de-
pending on the fitting scheme.17 Various sets of LECs can be found in the literature (cf. e.g.,
Refs. [67, 135, 283, 343]), all of which lead (by construction) to similar results in the few-body
sector. As a consequence, there are many different chiral potentials (different LECs, and differ-
ent cutoff scales) that can give an accurate description of few-nucleon observables. However,
this model independence cannot be expected to be maintained in the nuclear many-body sec-
tor, concerning both cutoff variations and fitting uncertainties, in particular since many-body
calculations are necessarily approximative. In order to obtain conclusive results, one should
therefore use a variety of many-body methods in combination with a large number of different
potentials (corresponding to different fitting schemes, different regularization methods, different
cutoff scales, and different orders in the chiral power counting).18

For large cutoffs (or equivalently, high resolution scales), however, in general a very strong
NN potential results at short distances (some details are discussed below), which impedes
convergence in various many-body frameworks [53]. It is therefore expedient to use poten-
tials constructed at low cutoff scales Λ . (450 − 500) MeV. In particular, by employing such
low-momentum nuclear potentials, many-body perturbation theory becomes a valid approach
to the nuclear many-body problem [55]. Regarding the construction of low-momentum po-
tentials, in the literature much emphasis has been put on the application of renormalization-
group (RG) methods that by construction leave few-nucleon low-energy observables invariant
[53, 154, 56, 153, 223]. In our many-body calculations we use potentials regularized “by hand”
via (re)fitting the LECs (the “n3lo” ones in Table 1.1) as well as potentials based on RG meth-
ods (the “VLK” ones).

The properties of the five different sets of NN and 3N potentials used in this thesis are sum-
marized in Table 1.1. The LECs parametrizing the potentials have all been fixed to few-nucleon
observables. In that sense, with the above qualifications considered, the results obtained from
these potentials in many-body calculations can be regarded as genuine predictions without ad-
ditional fine-tuning. The five potential sets of Table 1.1 provide an adequate basis for exploring
a significant variety of aspects (concerning many-body uncertainties) associated with the choice
of resolution scale and LECs. Of particular interest will be the comparison of nuclear potentials
defined at the same resolution scale but constructed via RG methods or by refitting LECs.

17 The uncertainties of the LECs associated with the fitting procedure must be strictly distinguished from their
(natural) scale dependence. Recently, a more systematic approach (based on Baysian statistics) regarding the
estimation of the LECs from few-nucleon data has been illustrated in Ref. [415] (cf. also [155]). Moreover, it
may eventually be possible to additionally constrain the values of the LECs by matching to lattice QCD simu-
lations [127, 145, 196]. These future developments can be expected to help constrain the (current) uncertainties
in the values of the LECs related to their determination via different fitting schemes.

18 In this thesis, we do not consider potentials constructed at different chiral orders. More specifically, we use the
N2LO three-nucleon interactions in combination with (various) N3LO two-nucleon potentials. Initial studies
concerning the order-by-order (in terms of the chiral power counting) convergence of nuclear many-body cal-
culations have been performed in [354, 355]. The consistent implementation of the N3LO chiral multi-nucleon
interactions remains a challenge in contemporary nuclear many-body theory, but progress toward this end is

20



1. Nuclear Interactions and Many-Body Problem

Λ (fm−1) n cE cD c1 (GeV−1) c3 (GeV−1) c4 (GeV−1)

n3lo500 2.5 2 -0.205 -0.20 -0.81 -3.2 5.4
n3lo450 2.3 3 -0.106 -0.24 -0.81 -3.4 3.4
n3lo414 2.1 10 -0.072 -0.4 -0.81 -3.0 3.4
VLK23 2.3 ∞ -0.822 -2.785 -0.76 -4.78 3.96
VLK21 2.1 ∞ -0.625 -2.062 -0.76 -4.78 3.96

Table 1.1.: Parameters of the different sets of chiral low-momentum NN (N3LO)
and 3N (N2LO) potentials used in this thesis, see text for details.

“n3lo” Potentials (n3lo414, n3lo450, n3lo500). Regarding the NN potential, a common way
to enforce a restriction to low momentum scales is to employ a smooth regulator function of the
form

f (p, p′) = exp
[
−(p/Λ)2n − (p′/Λ)2n

]
. (1.54)

The widely used N3LO two-nucleon potential constructed by Entem and Machleidt [125] (the
NN part of the NN+3N potential set denoted by “n3lo500”) uses the values Λ = 500 MeV and
n = 2. In addition, in this thesis we employ also chiral two-nucleon potentials constructed using
regulators with Λ = 450 MeV and n = 3 as well as Λ = 414 MeV and n = 10. In each case, the
NN potential is combined with the next-to-next-to-leading order (N2LO) chiral three-nucleon
interaction. We hereafter denote these three sets of chiral two- and three-nucleon potentials by
“n3lo500”, “n3lo450” and “n3lo414”. For each of these potential sets, the two-nucleon LECs
have been fixed by fits to NN phase shifts, and the 3N contact LECs, cE and cD, have been
adjusted to reproduce the triton (3H) binding energy and its (beta-decay) lifetime (see Refs.
[91, 90] for more details). With the cutoff scale and the regulator width taken from the respec-
tive NN regulator [and using the 3N regulator given by Eq. (3.34)], the different 3N potentials
are completely determined by the values of cE, cD and c1,3,4. Because of the different regulating
functions used in the respective potentials, different values of these LECs emerge from fits to
few-nucleon low-energy observables. The resulting values for the LECs that parametrize the
various N2LO three-nucleon diagrams are given in the first three rows of Table 1.1.

“VLK“ Potentials (VLK21, VLK23). As discussed above, an alternative scheme for obtain-
ing low-momentum nuclear interactions is to employ renormalization-group (RG) techniques
that by construction leave low-energy observables invariant. In the case of an evolution of the
NN potential based on half-on-shell K-matrix equivalence the resulting potential is usually de-
noted by Vlow-k(Λ), with Λ being now a sharp cutoff in momentum space [i.e., n = ∞ in terms
of Eq. (1.54)]. The basic mechanism of the evolution is described below. The K-matrix method
has the advantage of producing low-momentum NN potentials directly through the evolution of
partial-wave matrix elements, however, the inclusion of “induced” multi-nucleon interactions is
crucial (see below for discussion). In view of this, Nogga et al. [312] have used the chiral N2LO
3N interactions with the values of the c1,3,4 LECs equal to the ones extracted by the Nijmegen
group in an analysis of NN scattering data [343, 342]19 and determined cE and cD by fitting to

being achieved [106, 251, 386, 188].
19 We note here that the methods used by the Nijmegen group to determine c3,4 have been criticized in Ref. [126].

Nevertheless, using the Nijmegen values for c3,4 (in the case of the VLK three-nucleon potentials) in nuclear
many-body calculations can still be instructive—and was, in fact, found to be so in this thesis, cf. Secs. 3.2 and
3.3—concerning the impact of LEC uncertainties on nuclear matter properties.
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1. Nuclear Interactions and Many-Body Problem

the binding energies of 3H, 3He and 4He. The resulting LECs for two different Vlow-k potentials
(both constructed by evolving the n3lo500 NN potential) can be found in the last two rows of
Table 1.1. The two sets of Vlow-k two-nucleon and chiral N2LO three-nucleon potentials are
denoted by “VLK21” (Λ = 2.1 fm−1) and “VLK21” (Λ = 2.3 fm−1), respectively.

Renormalization-Group (RG) Evolution. For large cutoff scales, two-nucleon potentials that
reproduce NN scattering phase shifts well typically have a strong short-range repulsive com-
ponent (the “hard core”), and strong short-range tensor interactions [53].20 These features give
rise to a significant “coupling” of high- and low-momentum modes, i.e., the presence of large
off-diagonal matrix elements. The “nonperturbativeness” of this coupling is manifest in the
intermediate-state summations in perturbation theory. The perturbation series for the K-matrix21

for NN scattering (“Born series”) in a given partial wave is given by

KNN(p′, p) = VNN(p′, p) +
M

2π2−
∞∫

0

dq q2 VNN(p′, q)VNN(q, p)
p2 − q2 + . . . , (1.55)

where the dashed integral denotes the Cauchy principal value. The second order term in Eq.
(1.55) involves an integral over off-diagonal matrix elements and thus includes (off-diagonal)
high-momentum modes. As evident from the RG analysis of the K-matrix conducted below, the
high-momentum modes are not relevant for a reliable description of low-energy NN scattering,
and can be integrated out (i.e., decoupled from the low-momentum modes, and thus, completely
decoupled from low-energy NN observables) in terms of an evolution to low resolution scales.

K-Matrix Equivalence. We now briefly describe the evolution based on half-on-shell K-matrix
equivalence22 of a given input NN potential (e.g., the n3lo500 two-nucleon potential) to lower
cutoff scales. We start with the integral equation for the K-matrix:

KNN(p′, p; p2) = VNN(p′, p) +
M

2π2−
∞∫

0

dq q2 VNN(p′, q)KNN(q, p; p2)
p2 − q2 . (1.56)

We write (p′, p; p2) to indicate that the in-going nucleons with relative momentum p = |~p |
are on-shell, while the out-going nucleons with relative momentum p′ = |~p ′| are not. The
20 An additional source of nonperturbative behavior is the presence of few-nucleon bound (or nearly-bound)

states. In the case of the NN channel, the convergence behavior of the Born series (for free space, or for
NN scattering in a nuclear medium) can be studied in terms of the eigenvalue of VNNG0 (cf. [408]), where
the (free) nucleon propagator is given by G0(E) = 1/(E − H) [free-space] and G0(E) = QF/(E − H) [in-
medium], respectively (with QF the Pauli-blocking operator). This analysis has been performed in Ref. [55]
(see also [52, 53]): it was found that for sufficiently low cutoffs, the in-medium Born series becomes strongly
convergent if the medium is dense enough to suppress to deuteron bound-state (via Pauli blocking). The in-
medium properties of few-nucleon bound-states in nuclear matter have been investigated also in Ref. [398] (and
also in [212, 348, 349, 350]) using two different methods (a quantum statistical approach, and RMF); it was
found that light nuclei (i.e., 3H, 3He, etc.) are strongly suppressed (Pauli-blocked) for densities ρ & 0.1 fm−3.
Crucially, the presence of light nuclei in homogeneous nuclear matter (often referred to as light clusters in this
context) should be distinguished from the clustering of neutron-star matter at subsaturation densities (i.e., in
the crust) associated with the nuclear liquid-gas instability and Coulomb forces. The properties of neutron-star
matter at subsaturation densities are discussed further at the beginning of Chap. 4.

21 The K-matrix (also known as “reactance matrix“, “reaction matrix”, and “Heitler’s matrix“) corresponds (basi-
cally) to the real version of the T -matrix, and is defined as K = (T−1 + i)−1 = tan δ, with δ the phase shift for
the partial wave under consideration (see Refs. [309, 383, 282] for more details).

22 We follow [55] in the description. See also Refs. [56, 53] for a description of alternative methods (not based on
K-matrix equivalence) that lead to the same Vlow-k.
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1. Nuclear Interactions and Many-Body Problem

low-momentum version of Eq. (1.56) is obtained by imposing a sharp cutoff Λ:

Klow-k(p′, p; p2) = Vlow-k(p′, p) +
M

2π2−
Λ∫

0

dq q2 Vlow-k(p′, q)Klow-k(q, p; p2)
p2 − q2 . (1.57)

We demand the matching condition

Klow-k(p′, p; p2) = KNN(p′, p; p2) ∀ p′, p < Λ, (1.58)

in order to ensure that Vlow-k gives the same results for low-energy (two-nucleon) observables
as the input potential VNN. This implies that Vlow-k depends on Λ, and differentiating Eq. (1.57)
with respect to Λ leads to the following flow equation for Vlow-k(Λ):

d
dΛ

Vlow-k(p′, p) =
M

2π2

Vlow-k(p′, Λ)Klow-k(Λ, p;Λ2)
1 − (p/Λ)2 . (1.59)

Note that the K-matrix on the right-hand side of Eq. (1.59) is left side half-on-shell, as opposed
to the K-matrices in Eqs. (1.56) and (1.57), and therefore not RG-invariant. Because Eq. (1.59)
is asymmetric with respect to p and p′, it generates a non-Hermitian Vlow-k. This deficiency can
be cured by working with a symmetrized version of Eq. (1.59):

d
dΛ

Vlow-k(p′, p) =
M

4π2

(
Vlow-k(p′, Λ)Klow-k(Λ, p;Λ2)

1 − (p/Λ)2 +
Klow-k(p′, Λ;Λ2)Vlow-k(Λ, p)

1 − (p′/Λ)2

)
, (1.60)

which preserves the on-shell K-matrix [54]. The low-momentum potential Vlow-k(Λ) can now
be obtained by integrating the flow equation numerically, using the input potential as the initial
condition. The resulting RG flow of the triplet S -wave (3S 1) matrix elements is depicted in Fig.
1.6. Notably, for cutoffs in the range Λ . 2 fm−1, the RG evolved potential has been found to
be approximately universal [53, 54], i.e., independent of the input potential.

Figure 1.6.: (From [53]) Vlow-k evolution of momentum-space matrix elements (3S 1-channel)
of the chiral N3LO two-nucleon potential from Ref. [129].

“Induced” Multi-Nucleon Interactions. For applications outside of the NN sector, an evolu-
tion of the NN potential based on K-matrix equivalence implies certain problems concerning
the consistent implementation of multi-nucleon interactions. From a general viewpoint, multi-
nucleon interactions are required in an effective low-energy description of the nuclear interac-
tion to parametrize unresolved short-distance effects in multi-nucleon channels. For instance,
in 3N scattering diagrams generated by iterated NN interactions, resonances can appear in the
intermediate states (“virtual excitations”, cf. Fig. 1 in [182]). A consistent evolution of the
NN interaction to lower cutoffs has the same effect: high-momentum modes are not taken into
account explicitly, but included via 3N contact terms, i.e., cE and cD would have to be refit to be
consistent with an NN potential evolved to lower cutoffs. In addition, of course, the evolved NN
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1. Nuclear Interactions and Many-Body Problem

potential corresponds to new values of the NN LECs (as evident in the different “n3lo” values
for c1,3,4 in Table 1.1)—but these new values are not known if an RG evolution of partial-wave
matrix elements is employed. In Ref. [312] (see also [55]) the (somewhat provisional) approach
was taken to use for each cutoff Λ the (same) Nijmegen values of c1,3,4 and adjust cE(Λ) and
cD(Λ) to the 3H, 3He and 4He binding energies. A better method (SRG) is discussed below.

To summarize, additional 3N interactions (in terms of new values of the relevant LECs,
cE,D,1,2,3 in the N2LO case) are “induced” when intermediate-state excitations (such as the ∆-
isobar) and high momentum modes are integrated out.23

Similarity Renormalization Group. A much celebrated RG method is the “similarity renormal-
ization group” (SRG) [55, 223, 184, 153, 154, 168], which is based on a continuous sequence
of unitary transformations (with flow parameter λ) of the nuclear Hamiltonian, i.e.,

Hλ = UλHUλ ≡ Trel + Vλ, (1.61)

where H = Trel+V is the input Hamiltonian with relative kinetic energy operator Trel and nuclear
potential V . The SRG method is more flexible (compared to the K-matrix method), since there
are many possible choices for the unitary operator Uλ. Concerning the application of the SRG
method to the NN interaction, in most cases a choice was made that drives VNN towards a band-
diagonal form [53, 153], cf. Fig. 1.7. The SRG method can evolve also multi-nucleon potentials
to lower resolution scales, i.e., V = VNN + V3N + . . . in Eq. (1.61); thus, “induced” multi-nucleon
interactions can be taken into account explicitly.24

Figure 1.7.: (From [53]) SRG evolution of momentum-space matrix elements (3S 1-channel)
of the chiral N3LO two-nucleon potential from Ref. [129].

1.5. Nuclear Many-Body Problem and Astrophysics

We have completed our discussion of the construction of chiral low-momentum two- and three-
nucleon potentials at this point. The question now is how to calculate from these potentials the
thermodynamic properties of the nuclear many-body system? There exist various (complemen-
tary) methods that allow to compute nuclear many-body properties from a given nuclear poten-
tial. The most basic one is many-body perturbation theory (MBPT), which treats the nuclear
potentials as a perturbation with respect to a (solvable) reference state (e.g., the noninteracting
Fermi gas). Regarding “conventional” high-precision NN potentials (e.g., CD-Bonn, AV18)
the application of MBPT is impeded by the nonperturbative properties of these potentials, but,
as discussed in Sec. 1.4, with chiral potentials constructed at low resolution scales MBPT can

23 These two effects are (of course) not really separable; this point is emphasized (e.g.,) in Ref. [53].
24 The consistent SRG evolution of both NN and 3N potentials has been achieved only relatively recently, cf.

[223, 184, 154]. In this thesis we do not use SRG evolved potentials. We reiterate that nevertheless, the
potential sets of Table 1.1 provide an adequate basis for the investigation of the model dependence of results in
nuclear many-body calculations.
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1. Nuclear Interactions and Many-Body Problem

be expected to be a valid and systematic approach. In this thesis we use MBPT to compute
the thermodynamic properties of infinite nuclear matter. The general framework of MBPT (for
both zero temperature, T = 0, and finite temperature, T , 0) is investigated in detail in the next
chapter. Three other methods that have been used for nuclear matter calculations with (chiral)
nuclear potentials are:

• the Brueckner-Hartree-Fock (BHF) method: The first-order approximation in a general
zero-temperature scheme—often referred to as the “Brueckner-Goldstone theory”—that
was designed to deal with the nonperturbative short-distance features of conventional
NN potentials by (formally) resumming to all orders the contributions associated with
in-medium scattering of excited states above the Fermi sphere (i.e., the particle-particle
ladder diagrams of MBPT, cf. Sec. 2.3.2), see Refs. [95, 42, 338, 101, 171] for details.
The resummation is carried out by constructing an effective in-medium interaction called
the G-matrix (or “Brueckner reaction matrix”), which is defined in terms of the operator
equation (the “Bethe-Goldstone equation”)

G = VNN + VNN
QF

E0 − T G, (1.62)

where E0 is the ground-state energy of a (solvable) reference system with (one-body)
Hamiltonian T , and QF is the Pauli-blocking operator. The original perturbation series
of MBPT in terms of VNN is then replaced by a modified series (involving G instead
of VNN) to avoid the double-counting of diagrams (called the “hole-line expansion” or
“Brueckner-Bethe-Goldstone expansion”).25 Nuclear many-body calculations within this
scheme have been restricted mostly to the BHF level.26 BHF calculations with chiral
potentials were performed, e.g., in Refs. [275, 274]. The Brueckner theory has been
generalized to finite temperatures in different ways [50, 48, 15, 266, 345], and was applied
in thermodynamic nuclear many-body calculations (e.g.,) in Refs. [16, 266, 345].

• the Self-Consistent Green’s Functions (SCGF) method: The SCGF method is based on the
self-consistent computation of the in-medium propagators or Green’s functions in Fourier
(Matsubara) space, corresponding to the resummation to all orders of (a given class of)
perturbative contributions to the propagators (cf. e.g., [225, 367, 346, 71]). The thermo-
dynamic information is then extracted from the propagators in terms of various identities
[143, 102]. SCGF calculations with chiral nuclear potentials have been performed, e.g.,
in Refs. [73, 106], in the ladder approximation; this generalizes (in a sense) the (finite-
temperature) BHF method such that also hole-hole ladders are (formally) resummed and
several identities connecting thermodynamic quantities and single-particle properties are
preserved (“conserving approximation”) [346, 30].

25 However, it should be noted here that, if based on a large-cutoff (free-space) NN potential, the G-matrix still
contains a significant coupling between low- and high-momentum modes, see Ref. [53] for details.

26 Higher order contributions have been included, e.g., in [366]. It should be noted that Brueckner-theory calcu-
lations based on a high-precision NN potential only have failed to reproduce the empirical saturation point of
isospin-symmetric nuclear matter. The obtained results form a band (the “Coester band” [85]) that misses the
empirical saturation point. This deficiency can be improved by including 3N interactions, or relativistic effects
(“Dirac-Brueckner-Hartree-Fock”), cf., e.g., Ref. [62, 353]. We note also that in Ref. [274] the empirical sat-
uration point has been reproduced in BHF by using chiral NN and 3N potentials with explicit ∆-isobars and
tuning only cE and cD. Note that the ∆-N mass splitting (m∆ −mN ' 293 MeV) is not a large quantity in χEFT.
This point is discussed further below, and in Sec. 3.3.3.
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• Quantum Monte Carlo (QMC) methods: QMC encompasses a large family of methods
based on solving the (many-body) Schrödinger equation (for a large but finite number of
particles) computationally in terms of a repeated random sampling (Monte Carlo method).
As such, QMC methods are truly nonperturbative, but in general the computational re-
sources required are rather large (as compared to MBPT). Different QMC methods have
been used in (zero-temperature) nuclear many-body calculations with chiral potentials,
cf. e.g., Refs. [352, 347, 165, 424, 385].

In addition to MBPT and the above three methods, further many-body methods have been devel-
oped and applied in nuclear matter calculations; e.g., the coupled-cluster theory [181, 187, 361],
variational approaches [8, 300], and nuclear lattice simulations [130]. Compared to MBPT, the
great majority of these methods are (however) computationally much more expensive, in par-
ticular if high numerical precision is required.

At this point one should note that the use of free-space nuclear potentials—i.e., potentials de-
rived from diagrams describing (NN, 3N, etc.) scattering processes that take place in vacuum—
to compute nuclear many-body properties raises some concerns. The structure and effective
interactions of nucleons embedded in a dense nuclear medium deviate (to a certain extent) from
those in free space, and additional scales are involved in the nuclear many-body problem as
compared to the case of few nucleons in free space.27 Such nontrivial medium effects are (if
at all) only partially included in the various many-body frameworks; [e.g., in MBPT partic-
ular classes of diagrams correspond to corrections to the nucleon mass in the presence of the
medium (cf. Sec. 2.5.5), and in the Brueckner-Goldstone framework the G-matrix is an effective
in-medium potential].

The question that arises is as to whether a more manifest inclusion of nucleon structure effects
is possible (and expedient for a proper treatment of the nuclear many-body problem). At the
EFT level, changes in the structure of nucleons can be accounted for by including (in addition
to nucleons and pions) also nucleon excited states (e.g., the ∆-resonance [316]) as degrees of
freedom. Nuclear many-body calculations using nuclear χEFT-based potentials with explicit ∆-
isobars included have been performed recently in Ref. [274]. Since most of the available chiral
nuclear potentials are based on pion-nucleon χEFT, we do not consider ∆-improved potentials
in this thesis.

As a related medium effect, we note that in (perturbative) nuclear matter calculations the
impact of 3N interactions is rather large (cf. Sec. 3.3 and (e.g.,) [90, 91]) compared to what
would be expected from the chiral hierarchy. This may be seen as an indication that, regarding
the chiral power counting, a more consistent approach should address the new scales associated
with the nuclear medium, i.e., the Fermi momentum and excitations of nucleons. Such an in-
medium chiral perturbation theory based on an expansion around the zero-temperature ground-
state of nuclear matter has been developed and studied in [318, 317, 254, 293, 245, 253], cf. also
[130, 156]. A different approach was taken in [279, 237, 151] where the perturbative many-body
diagrams have been ordered in terms of pion masses and momentum and the Fermi momentum
(as well as the nucleon-∆ mass splitting, in the ∆-full version [151]); the framework has been
extended to finite temperatures in Ref. [150] (see also the review [209]).

27 These effects become particularly evident by adopting the fundamental point of view that hadrons are bound-
states of strongly-interacting quarks and gluons. Clearly, for densities considerably above nuclear saturation
density a description of dense matter in terms of hadronic point particles becomes less meaningful or even
genuinely wrong (for the case of a transition to deconfined QCD matter at these densities); cf. (e.g.) Refs.
[149, 169] and [31, 195] for general aspects and Refs. [210, 389] for different perspectives on this point.
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Altogether, these concerns should not be thought of as invalidating an approach based on
free-space potentials (constructed from chiral pion-nucleon dynamics). But it should be clear
that this method must not be considered as the prior route to a realistic description of nuclear
thermodynamics, and should be complemented by other approaches. Furthermore, the above
discussion makes evident the importance of empirical constraints that can be used as bench-
marks for nuclear many-body calculations. In the present thesis, we will benchmark our nuclear
many-body calculations against various empirical constraints, in particular (of course) the em-
pirical saturation point of isospin-symmetric nuclear matter. An important recent contribution
regarding constraints on the EoS of dense neutron-rich matter comes from the observation and
precise measurement of two-solar-mass neutron stars [100, 11]. Any EoS that leads to a neutron-
star mass-radius relation M(R) which does not support a neutron star with M ' 2M� is ruled
out, which at first glance appears to favor neutron-star models with primarily nucleonic degrees
of freedom [100, 197, 256, 190, 192], and challenges models that include substantial contribu-
tions from “exotic” (non-nucleonic) hadronic matter, i.e., hyperons, pion or kaon condensates,
or deconfined quark matter (“hybrid star”).28 “Exotic” hadrons or deconfined quark matter may
however still be present in the inner core of the star [288, 289, 370, 248]. As an example, we
show in Fig. 1.8 the M(R) plot of Ref. [100] where the M(R) results for various equations of
state based on purely nucleonic degrees of freedom as well as nucleons plus “exotic” hadrons
are compared. Included are also two equations of state for compact stars composed entirely of
self-bound quark matter (“strange stars” [51, 423, 9, 180], a so far only theoretical concept).

Figure 1.8.: (From [100]) Neutron-star mass-radius relation M(R) for several equations of
state (blue lines: nucleonic, pink lines: nucleonic plus “exotic”, green lines:
strange stars; see Refs. [100, 259] for details). The horizontal bands show con-
straints from neutron-star measurements, including the two-solar-mass PSR
J1614-2230. The regions colored in different shades of gray correspond to
general constraints from neutron-star dynamics and general relativity (includ-
ing the “causality border” where the speed of sound in the star begins to ex-
ceed the speed of light, cf. [122] for discussion). Any EoS which leads to a
M(R) line that does not intersect the PSR J1614-2230 band is ruled out.

28 In particular, in order to support neutron stars with M ' 2M�, the EoS has to be sufficiently stiff (i.e., involve a
high incompressibility) at high densities, which is complicated by introducing additional degrees of freedom.
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In Ref. [352], the mass-radius relation corresponding to the EoS of pure neutron matter
(protons and electrons in the star have been neglected) computed within this thesis has been
constructed. The results are shown in Fig. 1.9. Since it is based on (chiral) low-momentum
interactions, this EoS is by construction restricted to densities below about twice nuclear satu-
ration density, ρ . 2 ρsat, which lies below the central densities reached in massive neutron stars
ρ ∼ (4−6) ρsat [260, 189, 197, 417]. In view of this issue, several phenomenological mean-field
models—relativistic mean-field (RMF) models based on phenomenological nucleon-meson La-
grangians [360, 341, 169] as well as energy-density functionals based on phenomenological
Skyrme interactions [374]—have been benchmarked to the thermodynamic nuclear EoS of
isospin-symmetric nuclear matter and pure neutron matter derived within this thesis [352]. The
neutron-star matter EoS and mass-radius relation obtained from the constrained models (reach-
ing to higher densities) are also shown in Fig. 1.9. One sees that none of the models is consistent
with the two-solar-mass constraint. However, since for the high densities required for two-solar-
mass neutron stars there are no substantial constraints (in addition to the condition that M(R)
reaches 2M� for R ' (10−14) km, cf. Refs. [396, 263, 261]) on the properties of dense baryonic
matter, this failure should not be taken too seriously. But it suggests to consider (in addition
to modifying the high-density behavior of the mean-field models used in [352]29) additional
constraints for mean-field models in terms of the isospin-asymmetry dependent nuclear EoS.
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Figure 1.9.: (From [352]) Neutron-star mass-radius relation and pressure as a function of
nucleon density (inset) obtained from the nuclear EoS (“N3LO414 + 3NF”)
computed within this thesis as well as results from different mean-field models
(red, blue and green lines) benchmarked to the thermodynamic “N3LO414 +
3NF” results, see text and Ref. [352] for more details. Since they are based
on low-momentum interactions, the “N3LO414 + 3NF” results are restricted to
densities 0 ≤ ρ . 2ρsat and (as a consequence) to masses M . 0.5 M�. The
solid lines show the results where the neutron-star crust has been modelled as
a homogeneous fluid, and the dashed lines the results where a more realistic
model of the crust is included. The yellow lines show the results based on
the “Ska35s20-09” EoS where for ρ ≥ 4.5 ρsat the EoS is replaced by that of a
liquid with constant speed of sound equal to the speed of light.

29 See also [189, 190, 251] where an alternative approach towards the extension to high-densities of the EoS from
chiral nuclear potentials in MBPT was considered, i.e., a parametrization using piecewise polytropes.
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After their creation in core-collapse supernovæ, (proto-)neutron stars cool rapidly to tem-
peratures below the MeV scale (cf. [322, 335, 427, 180]) where the free energy density of
nuclear matter can be identified with the ground-state energy density to very good accuracy.
The observation of two-solar-mass neutron stars thus sets constraints on the nuclear EoS at zero
temperature. Concerning the finite-temperature EoS, a major application lies in the domain of
(computationally very demanding) simulations of core-collapse supernovæ and binary neutron-
star mergers (cf., e.g., Refs. [294, 28, 27, 224, 25]), where (basically) the nuclear EoS serves
as an input for solving (numerically) the gravitational and hydrodynamics problems involved.
Such simulations are important for understanding the details of the collapse mechanism, general
aspects of heavy-element nucleosynthesis [387, 294, 224], and for the interpretation of expected
observations of gravitational wave forms linked to binary neutron star (or neutron star—black
hole) mergers [26, 372, 340].30 A noteworthy study regarding the nuclear-physics side of these
issues was performed in Ref. [251], where the results for the ground-state energy density of
pure neutron matter obtained from various chiral nuclear potentials (including generous uncer-
tainty estimates for the contribution from 3N interactions) in MBPT were compared to several
phenomenological equations of state commonly used in nuclear astrophysics. The results of
this study are shown in Fig. 1.10. One sees that most of the phenomenological equations of
state are inconsistent with the results obtained from the chiral nuclear potentials. The analy-
sis of Ref. [251] as well as the vast majority of nuclear many-body calculations with χEFT-
based potentials in general, however, were restricted to the zero-temperature case and either
PNM or SNM. Extending these studies to finite temperature and variable neutron-to-proton ra-
tio is a major motivation, and thus, the central objective of this thesis is the investigation of
the thermodynamic equation of state of isospin-asymmetric nuclear matter from low-
momentum chiral nuclear potentials in many-body perturbation theory.
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Figure 1.10.: (From [251]) Comparison of the zero-temperature EoS of pure neutron mat-
ter (ground-state energy per particle “E/N” as function of neutron density “n”)
from perturbative calculations using chiral nuclear potentials (red band) with
phenomenological equations of state commonly used in core-collapse super-
nova simulations (blue and black lines), cf. Ref. [251] for details.

30 For the case of black hole—black hole mergers, gravitational waves have been observed recently [1, 2].
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2. Many-Body Perturbation Theory

The approach to the thermodynamic nuclear many-body problem (i.e., the problem of comput-
ing the EoS of infinite homogeneous nuclear matter) used in this thesis is many-body pertur-
bation theory (MBPT). This approach is motivated by the use of (chiral) nuclear interactions
constructed at low resolution scales, for which a perturbative treatment is expected to be valid.
MBPT is based on a separation of the Hamiltonian H = T +V into a reference Hamiltonian
T and a perturbation V. The many-body problem is then set up as an expansion in terms of
V, where all contributions are evaluated with respect to eigenstates of T . In this chapter, we
investigate in detail this framework (MBPT), both at zero temperature and at finite temperature.

To set up the notation, we define
∣∣∣Ψp

〉
as the energy eigenstates of a many-fermion system

with HamiltonianH = T +V, i.e.,

H
∣∣∣Ψp

〉
= (T +V)

∣∣∣Ψp

〉
= Ep

∣∣∣Ψp

〉
. (2.1)

Furthermore, we define
∣∣∣Φp

〉
as the energy eigenstates of the unperturbed system with Hamilto-

nian T , i.e.,

T
∣∣∣Φp

〉
= Ep

∣∣∣Φp

〉
. (2.2)

The unperturbed Hamiltonian is diagonalized by a set of orthonormal single-particle states |ϕi〉,
i.e.,1

T =
∑

i

εi a†i ai, (2.3)

with single-particle energies εi. The creation and destruction operators a†i and ai are defined by
creating or destroying single-particle states |ϕi〉 in the Fock states

∣∣∣Φp

〉
=

∣∣∣η1η2 . . . η∞; Np

〉
, with

occupation numbers ηi ∈ {0, 1}, where Np =
∑

i ηi is the number of particles in the state
∣∣∣Φp

〉
.

It will be useful to start by taking T as the noninteracting Hamiltonian, soV is the interaction
Hamiltonian. For clarity and without loss of generality, (for the most part of this chapter) we
consider two-body (2B) interactions only, i.e., the interaction Hamiltonian is

V =
1
2!

∑

i jkl

〈ϕiϕ j|V2B|ϕkϕl〉 a†i a†jalak ≡ 1
2!

∑

i jkl

V i j,kl
2B a†i a†jalak. (2.4)

Using this setup, in Sec. 2.1 we then construct the zero-temperature perturbation series for the
ground-state energy2

E0(εF , Ω) = E0(εF , Ω) + λE0;1(εF , Ω) + λ2E0;2(εF , Ω) + λ3E0;3(εF , Ω) + O(λ4), (2.5)

1 The states |ϕi〉 are solutions to the single-particle Schrödinger equation under the boundary conditions imposed
by the confining volume Ω.

2 The artifical parameter λ (the “interaction strength”) is introduced for bookkeeping reasons only.
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where E0(εF , Ω) is the energy of the unperturbed ground state |Φ0〉. The Fermi energy εF is in
one-to-one correspondence with the number of particles in the system via N =

∑
i Θ(εF − εi),

and Ω is the confining volume. In Sec. 2.2 we then derive the perturbation series for the grand-
canonical potential

A(T, µ, Ω) = A(T, µ, Ω) + λA1(T, µ, Ω) + λ2A2(T, µ, Ω) + λ3A3(T, µ, Ω) + O(λ4), (2.6)

where T is the temperature and µ is the chemical potential. To describe an infinite homogeneous
system one can fix the single-particle states |ϕi〉 by using periodic boundary conditions in a cu-
bic box, and then (for the actual numerical many-body calculations) take the thermodynamic
limit.3 Crucial concerning the thermodynamic limit is the appearance of energy denominators in
the expressions for (certain) higher-order perturbative contributions to E0(εF , Ω) and A(T, µ, Ω),
respectively. In the ground-state formalism, the energy denominators vanish (only) at boundary
of the respective integration regions,4 but in the grand-canonical case they can be zero in the
interior of the integrals; the corresponding energy-denominator poles are however ficticious,
since they are not present if all perturbative contributions whose diagrammatic representations
transform into each other under cyclic vertex permutations are evaluated together. The differ-
ent behavior of the energy denominators at zero and at finite temperature will play a major role
in Chap. 5.

The various contributions to E0(εF , Ω) and A(T, µ, Ω) are analyzed in terms of diagrams in
Sec. 2.3. We will distinguish between “skeleton” and “non-skeleton” diagrams, where non-
skeletons are diagrams that involve several skeleton parts connected via “articulation lines”.
All diagrams that appear in the ground-state formalism are also present in the grand-canonical
case, however, in the grand-canonical formalism there are additional types of non-skeletons,
called “anomalous diagrams”. The skeletons and non-skeletons that appear also in the ground-
state formalism are correspondingly called ”normal”. In both cases, additional non-skeletons
arise if an additional one-body operator is added to the perturbation Hamiltonian V. Classes
of contributions that have the same structure as (a subset of) the additional ones arising in that
way are referred to as “insertions”. In the ground-state formalism, there is exactly one insertion
type, referred to as “one-loop” insertions: contributions from (normal) non-skeletons with first-
order parts. In the grand-canonical (and the canonical) formalism there are additional insertion
structures, and a major part of this chapter deals with the problem of identifying and interpreting
this feature.

In the zero-temperature formalism the expression associated with an individual diagram is
unique, but in the grand-canonical formalism this is not the case: there are several ways in-
dividual diagrams can be evaluated. We will consider three different prescriptions to evaluate
diagrams, referred to as the “cyclic formula”, the “direct formula”, and the “reduced for-
mula”.5 Concerning the expressions that emerge from these formulas, the ones obtained for
(certain) non-skeletons require special attention, i.e.,

• non-skeletons that involve an even number of identical energy denominators: the expres-
sions for these diagrams obtained from the direct or the reduced formula diverge in the

3 In this setup, the various contributions in Eqs. (2.5) and (2.6) all scale linearly with Ω, leading to perturba-
tion series for the ground-state energy density and the grand-canonical potential density, respectively, cf. the
beginning of Sec. 2.3.

4 This holds for the perturbative contributions to the ground-state energy but not for the “self-energies” X[n]. This
is why the regularization symbol “R” in Eq. (2.8) appears also in the zero-temperature case.

5 For the sum of all contributions that emerge from each other under cyclic permutations of interaction operators
in the ensemble average, the three formulas lead to equivalent (but not necessarily identical) expressions.
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thermodynamic limit. This is due to contributions from the vicinity of symmetric energy-
denominator poles and therefore.

• non-skeletons with more than two skeleton parts: for each formula, these diagrams lead
to expressions that diverge in the zero-temperature limit.6

These two features are artifacts: if the cyclic formula (where each diagram is evaluated to-
gether with its cyclic permutations) is used, no energy-denominator poles appear, and for the
sum of all (normal and anomalous) non-skeletons at each order the T → 0 limit is nonsingular.
Thus, there are no serious obstacles if one treats consistently all contributions at a given pertur-
bative order. However, the above two features do become relevant if the single-particle basis
is “renormalized” in terms of a self-consistent single-particle potential beyond Hartree-Fock.
More specifically, we will consider the self-consistent “renormalization” of T andV according
to

T → T + X(ℵ)
[n] , and V → T − X(ℵ)

[n] , (2.7)

with one-body operators X(ℵ)
[n] =

∑
i X(ℵ)

[n];i a†i ai =
∑n
ν=1

∑
i X(ℵ)

ν;i a†i ai, where X(ℵ)
ν;i is defined via

Xν;i(εF) =
δER

0;ν,non-insertion[Θ−i ; {εX[n];i}]
δΘ−i

, and Xℵ
ν;i(T, µ) =

δAR,ℵ
ν,non-insertion[ f −i ; {εXℵ

[n];i
}]

δ f −i
,

(2.8)

respectively. Here, “ν” refers to the perturbative order, “ℵ” refers to the particular way the non-
insertion contributions are evaluated in the grand-canonical case (“direct” or “reduced”), “R”
refers to a regularization of terms with symmetric energy-denominator poles required to make
the thermodynamic limit well-defined, and εX(ℵ)

[n] ;i are the single-particle energies in the T +X(ℵ)
[n]

reference system.7

In the zero-temperature case, identifying the effect of Eq. (2.7) is straightforward: single-
particle energies in the energy-denominators are renormalized (in terms of εX[n];i), and there
are additional (normal) non-skeletons with −X2, . . . , −Xn vertices, which have the structure of
“one-loop” insertions. The −X1 vertices are cancelled by the previous “one-loop” insertions,
and −X2, . . . , −Xn vertices can be cancelled by expanding the energy denominators about the
Hartree-Fock ones.8 In the grand-canonical (and the canonical) case, the situation is more in-
volved; in particular, additional cancellations appear (whose precise form depends on the choice
of ℵ), but to identify these cancellations a reorganization of the grand-canonical (canonical)
perturbation series is required. More specifically, in Sec. 2.4, we will reorganize the grand-
canonical perturbation series by evaluating the various perturbative contribution in terms of
cumulants (truncated correlation functions). In the cumulant formalism (i) the expressions for
normal non-skeletons are such that all Fermi-Dirac distributions correspond to distinct single-
particle states, and (ii) the contributions from anomalous diagrams are zero; instead, there now
additional contributions from unlinked diagrams that are “connected” via higher cumulants:
these contributions correspond to the additional insertions present at finite temperature.

6 In the case of the reduced formula, only anomalous non-skeletons with more than two skeleton parts contain
terms that diverge as T → 0.

7 For a discrete spectrum, the regularization “R” is not required, but the perturbation series corresponding to the
{T + X(ℵ)

[n] ,V − X(ℵ)
[n] } setups with n ≥ 2 are then not well-behaved for large systems. Notably, however, in

the finite-temperature case a different “regularization” would be needed for a discrete spectrum, i.e., one that
explicitly excludes the contributions from “accidentally” vanishing energy denominators; otherwise, there are
terms that diverge in the zero-temperature limit, see Sec. 2.3.4 for details.

8 In other terms, in the zero-temperature case the {T + X1,V − X1} setup is equivalent to the {T ,V} one with
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Furthermore, in Sec. 2.4 we show that the cumulant formalism can be generalized to construct
(starting from the canonical ensemble) a perturbation series for the free energy

F(T, µ̃, Ω) = F (T, µ̃, Ω) + λF1(T, µ̃, Ω) + λ2F2(T, µ̃, Ω) + λ3F3(T, µ̃, Ω) + O(λ4), (2.9)

where the auxiliary parameter µ̃ is fixed by the condition
∑

i f̃ −i = N and therefore satisfies

µ̃
T→0−−−→ εF (here, f̃ −i denotes the Fermi-Dirac distribution with µ̃ as the chemical potential).

Compared to the grand-canonical perturbation series, the perturbation series for the free energy
involves additional higher-cumulant contributions, called “correlation bonds”. The origin of
these terms is the “substitution” of µ̃ for the particle number N in Eq. (2.9) in terms of a Legen-
dre transformation of cumulants. It can be seen that if the reduced formula is used the sum of the
two types of higher-cumulant contributions vanishes at each order in the zero-temperature limit
(in the “isotropic case”). Since in the “reduced” case the expressions for normal diagrams have
the same form as in the ground-state formalism (in the cumulant formalism), it follows that Eq.
(2.9) provides a consistent thermodynamic generalization of the ground-state formalism. This is
not the case for the grand-canonical perturbation series, which in general does not lead to con-
sistent results, as discussed in Sec. 2.5. Moreover, in Sec. 2.5 we also examine in more detail the
effect of the self-consistent “renormalization” of T andV, in both the grand-canonical and the
canonical formalism. In particular, we examine the case where (formally) n = ∞ in Eq. (2.7),
referred to as the “fully-renormalized” case. We will find that (only) the “fully-renormalized”
grand-canonical and canonical perturbation series are equivalent, and for ℵ = “reduced” one
obtains “statistical quasiparticle” [96, 32, 74, 48, 47] relations for the particle number and the
entropy.

2.1. Zero-Temperature Formalism

For the derivation of the perturbation series for the ground-state energy E0(εF , Ω) one con-
siders the adiabatic “switching on and off” of the interaction; i.e., the Hamiltonian is mod-
ified according to H → Hε(t) = T + e−ε |t|V, where ε is infinitesimal. Under the condi-
tion that the ground state |Ψ0〉 of the many-fermion system evolves adiabatically9 from the
ground state of the unperturbed system |Φ0〉, the Gell-Mann–Low theorem [161] (cf. also
Ref. [143] pp.61-64) gives the following formula for the energy shift of the ground state,
∆E0 = E0 − E0 = 〈Ψ0 | H |Ψ0〉 / 〈Ψ0 |Ψ0〉 − 〈Φ0 | T |Φ0〉 / 〈Φ0 |Φ0〉:

∆E0 = lim
ε→0+

〈Φ0|Uε(∞)V|Φ0〉
〈Φ0|Uε(∞)|Φ0〉 . (2.10)

The Dyson operator Uε(t) = eiT t e−iHε t is formally given by the following series:

Uε(t) =

∞∑

n=0

(−i)n

n!

t∫

0

dtn · · · dt1 e−ε(tn+...+t1)P[VI(tn) · · ·VI(t1)
]
, (2.11)

with P[. . .] the time-ordered product, andVI(t) the interaction-picture representation ofV:

VI(t) = eiT tV e−iT t =
1
2!

∑

i jkl

V i j,kl
2B a†I,i(t)a

†
I, j(t)aI,l(t)aI,k(t), (2.12)

resummed “one-loop” insertions, and the {T +X[n],V−X[n]} setups with n ≥ 2 are somewhat contrived in that
case, since they lead to additional contributions but do not cancel any previous ones.
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with a(†)
I,i (t) = eiT t a(†)

i e−iT t. For clarity, we restrict the discussion to the case of a (fermionic)
system with only one species (i.e., a pure substance). The general case is readily obtained by
introducing for each particle species ξ separate particle numbers Nξ and Fermi energies εF;ξ.

2.1.1. Linked-Cluster Theorem

From Eqs. 2.10 and 2.11, the expression for the energy shift ∆E0 is given by

∆E0 = lim
ε→0+

∞∑
n=0

(−i)n

n!

∞∫
0

dtn · · · dt1 e−ε(tn+...+t1) 〈Φ0

∣∣∣P[VI(tn) · · ·VI(t1)
]VI(0)

∣∣∣Φ0
〉

∞∑
n=0

(−i)n

n!

∞∫
0

dtn · · · dt1 e−ε(tn+...+t1) 〈Φ0

∣∣∣P[VI(tn) · · ·VI(t1)
] ∣∣∣Φ0

〉 . (2.13)

To evaluate (the numerator and denominator of) Eq. (2.13) one needs to evaluate the ground-
state expectation values of a time-ordered product of creation and destruction operators, i.e.,

〈Φ0| P[ a†I,in(tn)a†I, jn(tn)aI,kn(tn)aI,ln(tn) · · · a†I,i1(t1)a†I, j1(t1)aI,k1(t1)aI,l1(t1)
] |Φ0〉 . (2.14)

By Wick’s theorem, Eq. (2.14) is equal to all fully-contracted versions of the time-ordered string
of creation and destruction operators, keeping track of the signs coming from the fermionic
anticommutation relations while rearranging the operators to ensure the contracted terms are
adjacent in the string. To evaluate the contractions, we note that

∂

∂t
a†I,i(t) = eiT t [iT , a†i ]− e−iT t = iεiai ⇒ a†I,i(t) = a†i eiεit, (2.15)

∂

∂t
aI,k(t) = eiT t [iT , ak]− e−iT t = −iεkak ⇒ aI,k(t) = ak e−iεkt . (2.16)

Using the fact that the unperturbed ground state |Φ0〉 (the filled Fermi sea) corresponds to the
occupation of all single-particle states with energies εi below the Fermi energy εF , one finds
that the contractions of time-independent creation and destruction operators are given by (cf.
e.g., [178] pp.205-217)

a†i ak = δik Θ(εF − εi) =: δikΘ
−
i , aka

†
i = δik

(
1 − Θ(εF − εi)

)
=: δikΘ

+
i . (2.17)

The different ways of contracting the creation and destruction operators in Eq. (2.14) can be
represented by so-called Hugenholtz diagrams: for each quadruple of creation and destruction
operators a†iνa

†
jν
akνalν at time tν one draws a black dot (vertex), a green line for every a†a type

contraction, and a black line for every aa† type contraction. For example, the four diagrams in
Fig. 2.1 represent possible contributions to the third summand in the numerator and the fourth
summand in the denominator in Eq. (2.13). Diagram (a) in Fig. 2.1 is a linked cluster, i.e., there
are no unconnected parts. In contrast, diagrams (b,c,d) have each one vertex that is not linked
to any other vertex and thus are composed of two separate linked clusters. The green lines in
Fig. 2.1 are called hole lines, since a contraction a†iνaiν′ can be associated with the “destruction”
of a single-particle state |φiν〉 = |φiν′ 〉 in the filled Fermi sea at time tν and its recreation at (a
later or equal) time tν′ . Similarly, the black lines are called particle lines: a contraction aiνa

†
iν′

is

9 This assumption is justified only for the “isotropic case”, i.e., for a infinite homogeneous system with rotation-
ally invariant interactions (and no external potential), see Secs. 2.4.6 and 2.5 and Refs. [246, 218]. Here, we
assume that the adiabatically evolved state coincides with the true ground state of the interacting system.
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associated with the propagation of a fermion in an unoccupied state |φiν〉 = |φiν′ 〉 above the filled
Fermi sea.

(a) linked (b) unlinked (c) unlinked (d) unlinked

Figure 2.1.: Hugenholtz diagrams representing possible (linked or unlinked) contractions of
three quadruples of creation and destruction operators. Green lines represent
holes, black lines particles.

We now denote by Γn a linked-cluster contribution associated with the expectation value of
P[VI(tn) · · ·VI(t1)

]
, and byΓnk1

1 ,...,nkν
ν

the contribution given by the sum of all diagrams consisting

of k1n1 + . . . + kνnν separate linked clusters (with nk1
1 + . . . + nkν

ν = n), where ki is the number of
subclusters of order ni. The number of ways the n interaction operators can be partitioned into
the subgroups specified by Γnα1

1 ,...,nανν is given by [6, 178, 143]

1
α1! · · ·αν!

n!
(n1!)α1 · · · (nν!)αν . (2.18)

For instance, Γ11,21 is given by the three diagrams (b,c,d) of Fig. 2.1, which all give equivalent
contributions10 since different time orderings are summed over in Eq. (2.11). Eqs. (2.11) and
(2.18) show that the expression for Γnα1

1 ,...,nανν is given by

(
Γnα1

1 ,...,nανν =
1

α1! · · ·αν! (Γn1)
α1 · · · (Γnν)

αν

)
(2.19)

Eq. (2.19) is called the factorization theorem. Denoting by Γ (0)
n a linked-cluster contribution

corresponding to
〈P[VI(tn) · · ·VI(t1)

]VI(0)
〉
, Eq. (2.13) is given by

∆E0 =

(
Γ (0)

1 + Γ (0)
2 + Γ (0)

3 + . . .
)(∑ 1

α1!α2!··· (Γ1)α1(Γ2)α2 · · ·
)

∑ 1
α1!α2!··· (Γ1)α1(Γ2)α2 · · · =

∞∑

n=0

Γ (0)
n . (2.20)

This is known as the linked-cluster theorem for the perturbation series for the ground-state
energy shift ∆E0. The expression for ∆E0 is therefore given by

(
∆E0 = lim

ε→0+

∞∑

n=0

(−i)n

n!

∞∫

0

dtn · · · dt1 e−ε(tn+...+t1) 〈Φ0

∣∣∣P[VI(tn) · · ·VI(t1)
]VI(0)

∣∣∣Φ0
〉

linked

)

(2.21)

10 Note that if the time-ordering had been fixed [as in Eq. (2.22)], this would not be the case. The time-ordered
expressions for diagrams (b,d) differ from the one for diagram (c), see Eqs. (2.197) and (2.198).
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2.1.2. Time-Independent Representation

To carry out the time integrals, we consider the equivalent form of Eq. (2.21) with fixed time-
ordering:

∆E0 = lim
ε→0+

∞∑

n=0

(−i)n
∫

∞>tn>...>t1>0

dtn · · · dt1 e−ε(tn+...+t1) 〈Φ0 | VI(tn) · · ·VI(t1)VI(0) |Φ0〉linked .

(2.22)

The ground-state expectation value in Eq. (2.22) can be written as〈
Φ0

∣∣∣Vn e−i∆Entn · · ·V1 e−i∆E1t1V0

∣∣∣Φ0

〉
linked

, (2.23)

where ∆Eν = εkν + εlν − εiν − ε jν is the excitation energy associated with the interaction operator
Vν.11 In terms of intermediate states |Φν〉 (i.e, the states of the system between times tν and tν−1)
and corresponding energy levels Eν, Eq. (2.23) reads

〈Φ0| Vn e−i(En−E0)tn |Φn〉 · · · 〈Φ2| V1 e−i(E1−E2)t1 |Φ1〉 〈Φ1| V0 |Φ0〉 , (2.24)

i.e., ∆En = En − E0 and ∆Eν,n = Eν − Eν−1. For example, for the diagram shown in Fig. 2.2 one
has12

E3 = ∆E3 + E0 = εk + εl − εi − ε j + E0,

E2 = ∆E2 + E3 = ∆E3 + ∆E2 + E0 = εp + εq + εk + εl − εa − εb − εi − ε j + E0,

E1 = ∆E1 + E2 = ∆E3 + ∆E2 + ∆E1︸                ︷︷                ︸
−∆E0

+E0 = εp + εq − εi − ε j︸              ︷︷              ︸
−∆E0

+E0.

Inserting n − 1 factors 1 = eiE0(tν−tν), where ν = 1, . . . , n − 1, Eq. (2.23) becomes〈
Φ0

∣∣∣Vn e−i(En−E0)(tn−tn−1) · · ·V2 e−i(E2−E0)(t2−t1)V1 e−i(E1−E0)t1V0

∣∣∣Φ0

〉
linked

. (2.25)

This suggests to introduce the n new variables ζ1, . . . , ζn defined as ζν = tν − tν−1 (where t0 = 0),
i.e., 〈

Φ0

∣∣∣Vn e−iEnζn · · ·V1 e−iE1ζ1V0

∣∣∣Φ0

〉
linked

, (2.26)

where Eν = Eν − E0 are the energies of the intermediate states relative to the (unperturbed)
ground-state energy. The variables ζν can be represented by red dashed lines (“time-cuts”) that
intersect the various contraction lines, as shown in Fig. 2.2. For each ζν the corresponding
energy Eν is the sum of the energies of the intersected particle lines minus the sum of the
energies of the intersected hole lines.

t3 t2 t1 t0 = 0

i

l

k

j

p

b
q

a

ζ3 ζ2 ζ1

Figure 2.2.: “Time-cuts” (red dashed lines) in a linked cluster of fourth order.

11 The subscript “ν” inVν refers only to the labeling of single-particle states.
12 Note that the subscript “0” in E0 refers to both the ground state and the time t0 = 0.
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Substituting the “time-cut” variables ζν, Eq. (2.21) is given by

∆E0 = lim
ε→0+

∞∑

n=0

(−i)n

∞∫

0

dζn · · · dζ1 e−ε(nζn+...+ζ1)
〈
Φ0

∣∣∣Vn e−iEnζn · · ·V1 e−iE1ζ1V0

∣∣∣Φ0

〉
linked

. (2.27)

The time integrations can now be carried out (the integrals converge because of the adiabatic
exponential); letting ε → 0 afterwards, one obtains the following final expression for ∆E0:

(
∆E0 =

∞∑

n=0

(−1)n

〈
Φ0

∣∣∣∣∣Vn
1
En
· · ·V1

1
E1
V0

∣∣∣∣∣Φ0

〉

linked

)
(2.28)

Eq. (2.28) was first derived by Goldstone [171], and is often called the Goldstone formula.13

2.2. Grand-Canonical Perturbation Theory

Following closely the methods established in the previous section, we now derive the perturba-
tion series for the grand-canonical potential A(T, µ, Ω) = A(T, µ, Ω) + ∆A(T, µ, Ω), where the
unperturbed contribution is given by (cf. e.g., Ref. [15] pp.67-77)

(
A(T, µ, Ω) = − 1

β

∑

i

ln
(
1 + e−β(εi−µ)

))
(2.29)

Here, β = 1/T is the inverse temperature. In principle, the derivation of the perturbation series
for A(T, µ, Ω) can be completely taken over to the canonical ensemble, yielding a perturba-
tion series for the free energy F(T,N, Ω), cf., e.g., Refs. [137, 167, 324]. By definition, the
states

∣∣∣Φp

〉
=

∣∣∣η1η2 . . . η∞; Np

〉
involved in the evaluation of the perturbative contributions to

F(T,N, Ω) are subject to the constraint Np = N. The constraint Np = N renders this naive
canonical perturbation theory practically useless, since it implies that single-particle states can-
not be summed independently. This is why the standard form of finite-temperature MBPT is
(for all practical purposes) restricted to the grand-canonical ensemble.

2.2.1. Linked-Cluster Theorem

The grand-canonical partition function Y(T, µ, Ω) is given by

Y =
∑

p

〈
Ψp

∣∣∣ e−β(H−µNp)
∣∣∣Ψp

〉
=

∑

p

〈
Ψp

∣∣∣ e−β(T−µNp) U (β)
∣∣∣Ψp

〉
, (2.30)

13 See also Refs. [60, 218, 391, 101] for discussions regarding the relation of Eq. (2.28) with the “standard” (i.e.,
not based on QFT methods) Rayleigh-Schrödinger (RS) and self-consistent Brillouin-Wigner (BW) perturba-
tion series: the Goldstone formula can be considered more convenient as the (equivalent) RS for technical
reasons (linked-cluster theorem), and the BW has deficiencies concerning its convergence behavior in the
many-body sector. Moreover, we note that in Refs. [218, 217] a derivation (“resolvent method”) of the Gold-
stone formula that does not rely on the adiabatic “switching on and off” of the interaction is discussed. The
resolvent method involves the expansion of the interacting ground-state |Ψ0〉 in terms of the unperturbed states∣∣∣Φp

〉
; as discussed in [218, 217], the coefficients in this expansion vanish in the thermodynamic limit, i.e.,

for an infinite system the eigenstates of T and H do not belong to the same Hilbert space, and in particular,
〈Ψ0 |Φ0〉 = 0 in that case (note that in the “standard’ RS method, 〈Ψ0 |Φ0〉 , 0 is postulated). Note also that in
the adiabatic formalism one finds that 〈Ψ0 |Φ0〉 ∝ eαε

−1
in general, cf. Ref. [143] pp.61-64 (see also Ref. [179]

p.55) and Ref. [115] pp.359-376.
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where the finite-temperature Dyson operator U (β) = e−βT eβH is given by Wick rotating Eq.
(2.11) to imaginary time (t → −iτ) and setting ε = 0, i.e.,

U (β) =

∞∑

n=0

(−1)n

n!

β∫

0

dτn · · · dτ1 P[VI(τn) · · ·VI(τ1)
]
. (2.31)

Changing the basis used to evaluate the partition function we obtain

Y =
∑

p

〈
Φp

∣∣∣ e−β(T−µN) U (β)
∣∣∣Φp

〉
≡ Tr

[
e−β(T−µN) U (β)

]
, (2.32)

whereN =
∑

i a†i ai is the number operator. Introducing the statistical operator corresponding to
the unperturbed system % = Y−1 e−β(T−µN), with Y =

∑
p

〈
Φp

∣∣∣ e−β(T−µN)
∣∣∣Φp

〉
the unperturbed

partition function, one obtains the following expression for the difference of grand-canonical
potentials ∆A = A −A:

∆A = − 1
β

ln

Tr[%U (β)]︷  ︸︸  ︷
〈U (β)〉 = − 1

β
ln

[ ∞∑

n=1

(−1)n

n!

β∫

0

dτn · · · dτ1
〈P[VI(τn) · · ·VI(τ1)

]〉 ]
, (2.33)

where 〈. . .〉 denotes the ensemble average in the unperturbed system. The finite-temperature
interaction-picture creation and destruction operators are given by [cf. Eqs. (2.15) and (2.16)]

a†I,i(τ) = a†i eτεi , aI,k(τ) = ak e−τεk . (2.34)

The finite-temperature version of Wick’s theorem states that the ensemble average of a string
of creation and destruction operators is given by the sum of all fully-contracted versions of that
string. From the fermionic commutation relations and the cyclic property of the trace one finds
that the nonvanishing contractions are given by (cf. [143] pp.238-240)

a†i ak = δik f −i , aka
†
i = δik f +

i . (2.35)

where f −i = 1/
[
1 + exp

(
β(εi − µ)

)]
is the Fermi-Dirac distribution function, and f +

i = 1 − f −i =

1/
[
1 + exp

( − β(εi − µ)
)]

. Denoting again the contribution with n linked vertices by Γn, one
obtains the finite-temperature version of the linked-cluster theorem:

∆A = − 1
β

ln
[∑ 1

α1!α2! · · · (Γ1)α1(Γ2)α2 · · ·
]

= − 1
β

ln
[

eΓ1+Γ2+...
]

= − 1
β

∞∑

n=1

Γn. (2.36)

Hence, the counterpart of Eq. (2.21) for the grand-canonical potential is

(
∆A = − 1

β

∞∑

n=1

(−1)n

n!

β∫

0

dτn · · · dτ1
〈P[VI(τn) · · ·VI(τ1)

]〉
linked

)
(2.37)

Note that the derivation of the grand-canonical perturbation series involves no adiabatic hypo-
thesis (no “switching on and off” of the interaction).
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2.2.2. Time-Independent Representations

The time-ordered version of Eq. (2.37) is

∆A =
1
β

∞∑

n=0

(−1)n
∫

β>τn>...>τ0>0

dτn · · · dτ0 〈VI(τn) · · ·VI(τ0)〉linked , (2.38)

where we have relabeled dummy indices for convenience, i.e., to match those used in Fig. 2.2.
For reasons that will become evident in the end of this section we now cast Eq. (2.38) in a
different form. From the cyclic property of the trace we obtain

∫

β>τn>...>τ0>0

dτn · · · dτ0 Tr
[
%Vn e−∆EnτnVn−1 e−∆En−1τn−1 · · ·V0 e−∆E0τ0

]

=

∫

β>τn>...>τ0>0

dτn · · · dτ0 Tr
[
%Vn−1 e−∆En−1τn−1 · · ·V0 e−∆E0τ0Vn e−∆Enτn

]
e∆Enβ

=

∫

β>τ0>τn>...>τ2>0

dτn · · · dτ0 Tr
[
%Vn e−∆EnτnVn−1 e−∆En−1τn−1 · · ·V0 e−∆E0τ0

]
e∆E0β, (2.39)

where in the first step we have used the relations %ai = ai% e(εi−µ)β and %a†i = a†i % e−(εi−µ)β

(cf. [143] pp.233-239), and in the second step we have relabeled indices. This procedure can be
continued further until after in total n+1 cyclic exchanges the original expression is reproduced.
The expressions obtained by cyclic exchanges are all equivalent, so we can write Eq. (2.38) as

∆A =
1
β

∞∑

n=0

(−1)n

n + 1

( n∑

ν=0

∫

Dν

dτn · · · dτ0 e−(∆Eν+1+...∆En)(β−τ0) 〈VI(τn) · · ·VI(τ0)〉linked

)
, (2.40)

where we have used that ∆E0 + . . . + ∆En = 0 to rewrite the additional energy exponential
obtained from the cyclic exchanges. The different integration domains D0, . . . ,Dn are given by

Dν : β > τν > τ1 > τ0 > τn > . . . > τν+1 > 0. (2.41)

The integral to be evaluated for the contribution with domain Dν is
∫

Dν

dτn · · · dτ0 e−∆En xn−...−∆E1 x1 , (2.42)

where we have introduced for every integration domain specific variables x1, . . . , xn defined as
xα = τα − τ0 for α = 1, . . . , ν and xα = τα − τ0 + β for α = ν + 1, . . . , n. With these variables
all integration domains have the same integrand. In terms of the variables xν, the integration
domains are given by

Dν : β − τ0 > xν > . . . > x1 > 0 > xn − β > . . . > xν+1 − β > −τ0. (2.43)

This is equivalent to

Dν : β > τ0 > 0 & β > xn > . . . > xν+1 > β − τ0 > xν > . . . > x1 > 0. (2.44)

Hence, the sum of the n integration domains is given by
n∑

ν=0

Dν : β > τ0 > 0 & β > xn > . . . > x1 > 0. (2.45)

39
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The τ0 integral can now be carried out, giving a factor β. Renaming the variables xν → τν we
obtain the following formula for the perturbative contribution to the grand-canonical potential:

∆A =

∞∑

n=0

(−1)n

n + 1

∫

β>τn>...>τ1>0

dτn · · · dτ1 〈VI(τn) · · ·VI(τ1)VI(0)〉linked (2.46)

To evaluate the (imaginary-)time integrals, we proceed analogous to the zero-temperature case.
In terms of intermediate states, the ensemble average in Eq. (2.46) reads

∑

p

〈
Φp

∣∣∣ %Vn e−(En−Ep)τn |Φn〉 · · · 〈Φ2| V1 e−(E1−E2)τ1 |Φ1〉 〈Φ1| V0

∣∣∣Φp

〉
. (2.47)

Introducing again n “time-cut” variables ζ1, . . . , ζn defined as ζν = τν − τν−1 (with τ0 = 0) we
obtain [cf. Eqs. (2.25) and (2.26]

∑

p

〈
Φp

∣∣∣ %Vn e−Enζn · · ·V1 e−E1ζ1V0

∣∣∣Φp

〉
linked

, (2.48)

where Eν = Eν − Ep are the intermediate-state energies relative to the state
∣∣∣Φp

〉
. With these

substitutions the expression for ∆A becomes

∆A =

∞∑

n=0

(−1)n

n + 1

∫

β>ζ1+...+ζn

dζn · · · dζ1

〈
Vn e−ζnEn · · ·V1 e−ζ1E1V0

〉
linked

. (2.49)

ℜ(z)

ℑ(z)

C

(a) contour C

ℜ(z)

ℑ(z)

C ′

(b) contour C ′

Figure 2.3.: Contours C and C′ in the complex plane.

The restriction on the integration region in Eq. (2.49) can be removed by inserting the integral

1
2πi

∮

C

dz
z

ez(ζ1+...+ζn−β) = Θ(β − ζ1 − . . . − ζn), (2.50)

where the contour C is running parallel to the imaginary axis from i∞− a to −i∞− a, as shown
in plot (a) in Fig 2.3. The expression for ∆A is then given by

∆A =

∞∑

n=0

(−1)n

n + 1
1

2πi

∞∫

0

dζn · · · dζ1

∮

C

dz
z

ez(ζ1+...+ζn−β)
〈
Vn e−ζnEn · · ·V1 e−ζ1E1V0

〉
linked

. (2.51)
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The contour C can be continuously deformed into the contour C′ given by the infinite semicircle
displayed in plot (b) in Fig 2.3. If a is chosen such that a > Eν ∀ν, then all ζν integrals are
convergent, and the integration order can be freely interchanged. Carrying out the ζν integrals
leads to (

∆A =

∞∑

n=0

(−1)n

n + 1
1

2πi

∮

C′
dz

e−βz

z

〈
Vn

1
En − z

· · ·V1
1

E1 − z
V0

〉

linked

)
(2.52)

This formula [and Eqs. (2.53) and (2.55] was first derived by Bloch and de Dominicis [49]. The
following expression results from Eq. (2.38) by carrying out the integrals in the same way:

(
∆A = − 1

β

∞∑

n=0

(−1)n

2πi

∮

C′
dz

e−βz

z2

〈
Vn

1
En − z

· · ·V1
1

E1 − z
V0

〉

linked

)
(2.53)

We refer to Eq. (2.52) as the “cyclic formula”, and to Eq. (2.53) as the “direct formula”.
The cyclic formula is symmetric with respect to intermediate states: following Ref. [49], we
substitute η = z + Ep in the cyclic formula and find

∆A =

∞∑

n=0

(−1)n

n + 1
1

2πi

∮

C′
dη e−β(η−E0)

〈
Vn

1
En − η · · ·V1

1
E1 − ηV0

1
E0 − η

〉

linked
. (2.54)

Note that here, E0 is not the unperturbed ground-state energy but the energy of the state asso-
ciated with V0. This is the energy of to the “external” state |Φp〉, i.e., E0 ≡ Ep, and η = E0

corresponds to z = 0 in the cyclic formula. Eq. (2.54) shows that if all intermediate-state ener-
gies Eν are distinct, the contributions from the n+1 poles in the cyclic formula are all equivalent,
and equal to n + 1 times the contribution from z = 0. When O intermediate-state energies are
identical there is a pole of order O , which appears O times as z = 0 if “cyclically related”
diagrams are summed; this leads to

(
∆A =

∞∑

n=0

(−1)n 1
O

Res
z=0

e−βz

z

〈
Vn

1
En − z

· · ·V1
1

E1 − z
V0

〉

linked

)
(2.55)

where O is the order of the pole at z = 0. We refer to Eq. (2.55) as the “reduced formula”.14

One can evaluate diagrams using either the direct, the cyclic, or the reduced formula, but
consistency requires that all “cyclically related” diagrams are evaluated in the same way. For
individual diagrams the expressions obtained from the three formulas are equivalent (but not
identical) only if the diagrams are invariant under cyclic vertex permutations. For the sum of all
cyclic permutations of a given (non-invariant) diagram they give equivalent (but not identical)
results. The expressions obtained from the cyclic formula for “cyclically related” diagrams
are (by construction) identical, and for the sum of all “cyclically related” diagrams the n + 1
poles in the cyclic formula all give equivalent (but not identical) expressions. For diagrams
with an even number of identical energy denominators, the direct and the reduced formula lead
to expressions that diverge in the thermodynamic limit (due to contributions from the vicinity
14 Note that the reduced formula leads to expressions that are similar to the ones obtained in the ground-state

formalism. Compared to the Goldstone formula, for a given (normal) diagram Eq. (2.55 gives additional
contributions from “accidentally” vanishing energy denominators, but these contributions are irrelevant in the
thermodynamic limit [see Sec. 2.3.4]. Contributions with O > 1 appear only for anomalous diagrams whose
defining feature is the presence of “identically” vanishing energy denominators.
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of symmetric energy-denominator poles).15 These singularities are however ficticious, since
they do not appear if the cyclic formula is used: Eq. (2.54) is regular in the limit where a certain
number of energies E0, . . . ,En become equal, as can be seen by (iteratively) applying l’Hôpital’s
rule. More specifically, it is

lim
Eν→Eν′

∮

C′
dη

e−β(η−E0)

(En − η) · · · (E0 − η)
=

∮

C′
dη

e−β(η−E0)

(En − η) · · · (E0 − η)

∣∣∣∣∣
Eν=Eν′

, (2.56)

lim
Eν→Eν′′

∮

C′
dη

e−β(η−E0)

(En − η) · · · (E0 − η)

∣∣∣∣∣∣
Eν=Eν′

=

∮

C′
dη

e−β(η−E0)

(En − η) · · · (E0 − η)

∣∣∣∣∣
Eν=Eν′=Eν′′

, (2.57)

etc. In the case of the direct and the reduced formula, the left sides of these equations are
singular.

2.3. Diagrammatic Analysis

In this section we examine in more detail the various diagrammatic contributions (and corre-
sponding analytic expressions) to the perturbation part of the ground-state energy E0(εF , Ω) and
the grand-canonical potential A(T, µ, Ω), respectively. For the most part, we consider two-body
(2B) interactions only. The generalization to N -body interactions (with N > 2) does not in-
volve any additional conceptual complications. The three-body (3B) case N = 3 is examined
briefly in Sec. 2.3.7).

At this point, we specify the single-particle basis. For a “sufficiently large” homogeneous
system where boundary effects are negligible, one can adopt periodic boundary conditions on a
cube of side Ω1/3 (“Born–van Karman conditions“).16 The noninteracting single-particle states
are then given by plane-wave states, i.e.,

|ϕi〉 ∼ |ϕ~k〉 , with 〈~x |ϕ~k〉 = ϕ~k(~x) =
1√
Ω

ei~k·~x, (2.58)

with momentum quantum numbers ~k = 2π
Ω1/3 (n1, n2, n3), ni ∈ Z. The corresponding single-

particle energies are

εi ∼ ε(|~k|), with ε(|~k|) = 〈ϕ~k|Tkin|ϕ~k〉 =
|~k|2
2M

. (2.59)

The potential matrix elements are given by [cf. Eq. (1.32)]

V i j,kl
2B ≡ V i j,kl

2B δk+l,i+ j ∼ 〈ϕ~k ′1ϕ~k ′2 |V2B|ϕ~k1
ϕ~k2
〉 =

1
Ω
δ~k′1+~k′2,~k1+~k2

V2B(~p′, ~p). (2.60)

In the thermodynamic limit where the spectrum becomes continuous, the Kronecker delta
δ~k′1+~k′2−~k1−~k2

in Eq. (2.61) is replaced by a delta function according to

δ~k′1+~k′2,~k1+~k2

{N,Ω}→∞−−−−−−→ (2π)3

Ω
δ(~k′1 + ~k′2 − ~k1 − ~k2), (2.61)

15 This situation occurs for non-skeleton diagrams that impose an even number identical of energy denominators.
Note that the energy-denominator poles themselves are excluded since the contour integration (residue sum) in
Eqs. (2.52), (2.53) and (2.55) is performed outside the ensemble average.

16 For a discussion of this choice of the single-particle basis, see (e.g.,) Ref. [82].
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and sums over states are replaced by integrals, i.e.,

∑

i

{N,Ω}→∞−−−−−−→ Ω

(2π)3

∫
d3ki. (2.62)

For convenience, we will often stick to the condensed “index notation”. To point out explicitly
that a certain relation implies a continuous spectrum, we will sometimes use the following
shorthand notation

∑

i

{N,Ω}→∞−−−−−−→
∫

i
. (2.63)

A diagram with N two-body vertices involves 2N contractions, thus there are 4N − 2N = 2N
index summations, which by Eq. (2.62) give a scale factor Ω2N . The N different potential
matrix elements bring a scale factor Ω−N , and between each two vertices there is momentum
conservation, thus for a linked cluster there are N −1 delta functions, contributing a scale factor
Ω−(N−1). Altogether, we find the required linear scaling of linked clusters for a homogeneous
system in the thermodynamic limit, i.e., Ω2NΩ−NΩ−(N−1) = Ω. Similarly, one finds that the
“self-energies” X[n] (i.e., functional derivatives of linked clusters) scale as Ω 0 = 1, as required.

2.3.1. Classification of Hugenholtz Diagrams

Denoting by Rh and Rp the number of outgoing hole and particle lines connected to the right of
a given vertex, and by Lh and Rp the ones to the left, all vertices are subject to the condition

Rp − Rh + Lh − Lp = 0. (2.64)

The first-order (“Hartree-Fock”) diagram and the two second-order diagrams are shown in Fig.
2.4 below. At third order there in total fourteen different diagrams, which are displayed in Figs.
2.5, 2.7, and 2.8. One can distinguish between the following classes of diagrams:

• skeletons: diagrams that cannot be disconnected by cutting only two lines.

• normal non-skeletons: diagrams that can be disconnected by cutting either two hole or
two particle lines, but not by cutting one hole and one particle line.

• anomalous non-skeletons: diagrams that can be disconnected by cutting one hole and
one particle line.

Skeletons and normal non-skeletons are referred to as normal diagrams, and anomalous non-
skeletons are also called anomalous diagrams. The severable lines of non-skeleton diagrams
are called “articulation lines”. Cutting all articulation lines (and suitably reconnecting the cutted
lines), a given non-skeleton can be associated with a number of skeleton parts. Each skeleton
part can be associated with either an “anomalous” connection or with “normal” connection.
Normal non-skeletons involve always at least one higher-order (i.e., beyond first order) skele-
ton part. A given articulation line can be involved in various subdiagram connections (“cycles”,
cf. Fig. 2.7), in particular, in both “anomalous” connection and “normal” connections.

By Eq. (2.60), the states corresponding to the hole and particle articulation line associated with
an anomalous diagram must coincide. Since at zero temperature the momentum distributions
for holes and particles have zero overlap, Θ−i Θ

+
i = Θ−i (1 − Θ−i ) = 0, the contributions from
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anomalous diagrams are zero in the ground-state formalism. Anomalous diagrams however
do contribute in the grand-canonical formalism, giving rise to terms of the form [cf. e.g., Eq.
(2.113)]

β f −i f +
i =

∂ f −i
∂µ

T→0−−−→ ∂Θ(µ − εi)
∂µ

= δ(µ − εi); (2.65)

i.e., there is a nonzero contribution to A(T = 0, µ, Ω). Such terms, i.e., terms of the form
∼ βn∂n f −i /∂µ

n, are called anomalous terms. In addition, we will find that in finite-temperature
MBPT beyond second order, there are terms ∼ βK∂n f −i /∂µ

n with K < n. Such terms, which
vanish in the zero-temperature limit, are referred to as “pseudo-anomalous” terms. Anoma-
lous and “pseudo-anomalous” terms are collectively referred as anomalous contributions.17

(a) first-order (b) second-order normal (c) second-order anomalous

Figure 2.4.: Hugenholtz diagrams at first and second order. In the case of the second-order
anomalous diagram the red squares mark the two articulation lines.

Higher-Order Skeletons. Skeletons beyond second order can be classified according to their
intermediate vertices and their behavior under cyclic vertex permutations. The three third-
order skeletons are shown in Fig. 2.5; they belong to the following three classes of (cyclically
invariant) diagrams:

• hh-ladders: intermediate vertices have only hole lines, with (Lh, Lp,Rh,Rp) = (2, 0, 2, 0).

• pp-ladders: intermediate vertices have only particle lines, with (Lh, Lp,Rh,Rp) =

(0, 2, 0, 2).

• ring diagrams: intermediate vertices have each two hole and two particle lines, with
(Lh, Lp,Rh,Rp) = (1, 1, 1, 1).

At higher orders, however, many additional skeletons that do not fall into this classification
scheme appear. At fourth order there are already 24 such additional skeletons, which are shown
in Fig. 2.6.18 The 24 “extra” skeletons at fourth order can be divided into eight different types
(A1, A2, A3, B1, B2, C1, C2, C3) according to their transformation behavior under cyclic
vertex permutations; note that they contain already all additional possibilities for intermediate
vertices without instantaneous contractions (Lh, Lp,Rh,Rp) = (0, 0, 2, 2), (2, 2, 0, 0), (1, 0, 2, 1),
(0, 1, 1, 2), (2, 1, 1, 0), (1, 2, 0, 1).

(a) hh-ladder (b) pp-ladder (c) ring

Figure 2.5.: Ladder and ring diagrams at third order.

17 Note that the T → 0 limit of anomalous terms is discontinuous for a discrete spectrum, cf. also Ref. [246]. This
feature can be associated with the fact that the chemical potential at zero temperature is quantized for a discrete
spectrum.
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(a) Type A1 (b) Type A1 (c) Type A1 (d) Type A1

(e) Type A2 (f) Type A2 (g) Type A2 (h) Type A2

(i) Type A3 (j) Type A3 (k) Type A3 (l) Type A3

(m) Type B1 (n) Type B1 (o) Type B1 (p) Type B1

(q) Type C1 (r) Type C1 (s) Type C1 (t) Type C1

(u) Type B2 (v) Type B2 (w) Type C2 (x) Type C3

Figure 2.6.: “Extra” skeletons at fourth order. The diagrams labeled “A1”, “A2”, “A3”, “B1”
and “C1” correspond to quadruples of diagrams connected via cyclic vertex
permutations. The two “B2” diagrams are each invariant under two consecutive
permutations, and transform into each other under one cyclic vertex permuta-
tion; the diagrams “C2” and “C3” are invariant under cyclic vertex permutations.

Self-Consistent Renormalization. The essential difference between skeletons and non-skeletons
is that skeletons can (with the exception of the first-order diagram) involve only vertices cor-
responding to N -body operators with N ≥ 2, but non-skeletons also vertices with N = 1.
Consider the case where the reference and perturbation Hamiltonians, T and V, are redefined
in terms of an additional one-body Hamiltonian X =

∑
α Xαa†αaα according to19

T → T + X, and V → V −X. (2.66)

The new perturbation series about T +X involves exactly the same skeletons as the one about T ,
but there are additional non-skeletons with −Xα vertices. Classes of contributions that have the
same structure as (a subset of) the additional ones arising due to the change from the {T ,V} to
the {T +X,V−X} setup are referred to as “insertions”. In the ground-state formalism there is
only insertion type, referred to as (normal) “one-loop” insertions: (normal) non-skeletons with
first-order skeleton parts (“one-loop” vertices). In particular, normal non-skeletons without

18 See also Fig. 3 in Ref. [373] or Fig. 6.1. in Ref. [378], which include the fourth-order normal and anomalous
non-skeletons appearing in Hartree-Fock perturbation theory (HFPT), i.e., the perturbation expansion about
the self-consistent Hartree-Fock Hamiltonian TX[1] = T + X[1]

1 . The total number of HFPT diagrams at order
n = 2, 3, 4, 5, 6 is NHF(n) = 1, 3, 39, 840, 27300, cf. [Online Encyclopedia of Integer Sequences (OEIS)].
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first-order parts do not contain insertion structures. This crucial feature is discussed in Sec.
2.3.5.

In the grand-canonical formalism, however, there are additional insertion structures, but
to identify these structures a reorganization of the contributions associated with normal and
anomalous non-skeletons is required. Following Ref. [18], we refer to this reorganization as
“disentanglement”. The “disentanglement” to all orders is achieved by reevaluating the ensem-
ble averages in the respective formula in terms of cumulants (truncated correlation functions).
There are two essentially different ways the “disentanglement” can be performed, correspond-
ing to the use of either the direct of the reduced formula, and in each case the additional insertion
structures are associated with anomalous contributions (in the “reduced” case, with anomalous
terms only).

The point is now that insertions can be removed through a suitable choice of the one-body
Hamiltonian X =

∑
α Xαa†αaα, i.e., by identifying Xα with functional derivatives of non-

insertion contributions.

Ground-State Formalism. Consider in the ground-state formalism the case where Xi is given by
the expression for the self-consistent Hartree-Fock self-energy

X1;α(eF ) =
δE0;1[Θ−α]
δΘ−α

=
∑

β

V̄αβ,αβ2B Θ−β, (2.67)

where eF is the Fermi energy corresponding to the ground-state associated with T + X1. It is
easy to see that the perturbation series about T +X1 has the same structure as the one about T ,
except that there are no (normal) non-skeletons with “one-loop” vertices: these are cancelled
by the additional −X1;α insertions.

In the “isotropic case” the unperturbed single-particle states in the {T + X1,V − X1} setup
are again plane waves, i.e.,

〈~x |ϕα〉 {N,Ω}→∞−−−−−−→ ϕ~k(~x) =
1√
Ω

ei~k·~x . (2.68)

This can be seen as follows. Given Eq. (2.68) holds, the Fermi energy eF is fixed by

N =
∑

α

Θ(eF − εα − X1;α)
{N,Ω}→∞−−−−−−→

∫
Ω

(2π)3 d3k Θ
(
eF − ε(|~k|) − X1(eF ; |~k|)), (2.69)

where we have used that (by rotational invariance) X1 depends only on the magnitude |~k| of the
plane-wave momentum ~k. Eq. (2.69) then defined a Fermi momentum kF up to which states are
“summed”. The Fermi energy εF in the {T ,V} setup is fixed by

N =
∑

i

Θ(εF − εi)
{N,Ω}→∞−−−−−−→

∫
Ω

(2π)3 d3k Θ(εF − ε(|~k|), (2.70)

which (since N is fixed) defines the same Fermi momentum kF (for a different Fermi energy).
In each case, the distribution functions are then given by Θ(kF − k). This implies (for a given
value of N) that X1;α(eF ) = X1;i(εF), i.e.,

X1;α(eF )
{N,Ω}→∞−−−−−−→ X1;i(εF) =

δE0;1[Θ−i ]
δΘ−i

=
∑

a

V̄ ia,ia
2B Θ−a . (2.71)

19 The bold-faced greek indices “α” refer to the single-particle states associated with the new reference Hamilto-
nian T + X.
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2. Many-Body Perturbation Theory

It is then easy to see that Eq. (2.68) gives the solutions to the unperturbed Schrödinger equation
in the {T + X1,V −X1} setup, with energy eigenvalues

ei = εi + X1;i(εF). (2.72)

In the “isotropic case”, for a given diagram without first-order parts, the change from {T ,V} to
{T + X1,V − X1} is then equivalent to the resummation (in the {T ,V} setup) of all its higher-
order “cousins” with additional “one-loop” vertices, which renormalizes the single-particle en-
ergies in the energy denominators according to

E ({εi})→ E ({εi + X1;i(εF)}) ≡ E ({εX1;i(εF)}). (2.73)

This resummation is possible only in the case of “one-loop” insertions: normal non-skeletons
without first-order parts are not of the simple insertion type, and contain no resummable struc-
tures. In other terms, the change from {T + X1,V −X1} to {T + X[n],V −X[n]}, where

X[n] =

n∑

ν=1

Xν =

n∑

ν=1

∑

i

Xν;ia
†
i ai, (2.74)

leads to new non-skeletons with −Xν≥2 insertions but does not remove any previous diagrams.
Note that the energy eigenvalue equation for the {T + X[n],V − X[n]} setup becomes a self-
consistent one for with n ≥ 2. This is due to the presence of the energy denominators in the
expression for Xν≥2, i.e, in the n = 2 case we have

ei = εi + X1;i(εF) + X2;i(εF; {ea}), (2.75)

where

X[2];a(εF; {ea}) =
δE0;2,normal[Θ−a ; {ea}]

δΘ−a
= −
∫

jkl

Ha jkl

ek + el − ea − e j
+ −
∫

i jk

Pi jka

ek + ea − ei − e j
, (2.76)

with

Ha jkl = −1
2

V̄a j,kl
2B V̄kl,a j

2B Θ−jΘ
+
kΘ

+
l , Pi jka =

1
2

V̄ i j,ka
2B V̄ka,i j

2B Θ−i Θ
−
jΘ

+
k . (2.77)

Denoting the solution of Eq. (2.75) by εX[2];i(εF), the energy denominators in the
{T + X[2],V −X[2]} setup are given by

E ({εX[2];i(εF)}). (2.78)

In the zero-temperature case, the {T +X[n],V−X[n]} setups with n ≥ 2 are however somewhat
contrived: no previous diagrams are cancelled in that case, and the resummation of the addi-
tional −X2, . . . ,−Xn vertices in terms of a geometric series leads back to Hartree-Fock energy
denominators, i.e., to the {T + X1,V −X1} setup.

Grand-Canonical Formalism. The generalization of Eq. (2.67) to the grand-canonical case is
given by

X1;α(T, µ) =
δA1[ f −α]
δ f −α

=
∑

β

V̄αβ,αβ2B f −α, (2.79)
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2. Many-Body Perturbation Theory

and the change from {T ,V} to {T + X1,V − X1} removes all (normal and anomalous) non-
skeletons with “one-loop” vertices.

In the “isotropic case”, the solutions to the unperturbed Schrödinger equation in the
{T + X1,V − X1} setup are still plane waves, but the single-particle energies are now given
by the self-consistent equation

ei = εi + X1;i[ f −ea
(T, µ)], (2.80)

where f −ei
(T, µ) denotes the Fermi-Dirac distribution with ei as the single-particle energies. We

will denote the solution to Eq. (2.80) as εX1;i(T, µ), and the corresponding Fermi-Dirac distribu-
tion as f −X1,i(T, µ). The “isotropic case” of Eq. (2.79) is then given by

X1;α(T, µ)
{N,Ω}→∞−−−−−−→ X1;i(T, µ) =

δA1[ f −i ; {εX1;i}]
δ f −i

=
∑

i

V̄ ia,ia
2B f −X1,i. (2.81)

Thus, contrary to the zero-temperature case where the distribution functions are invariant un-
der the self-consistent renormalization of the single-particle basis (in the “isotropic case”), in
the grand-canonical formalism the change from {T ,V} to {T + X1,V − X1} renormalizes not
only the energy denominators but also the Fermi-Dirac distributions. Furthermore, in the grand-
canonical formalism the change from {T + X1,V − X1} to {T + Xℵ

[n],V − Xℵ
[n]} does remove

certain (anomalous) contributions, but this is obscured in the standard “contraction” formal-
ism. After the reorganization of the grand-canonical series in terms of cumulants, however,
identifying the effect of the additional anomalous −Xν≥2 insertions is straightforward: in the
cumulant formalism, the anomalous contributions are represented by unlinked normal diagrams
connected via “insertion-lines” (“higher-cumulant connections”), i.e., symbolically for the case
of three diagrams Γn1 , Γn2 , and Γn3:

[Γn1—Γn2—Γn3]
ℵ. (2.82)

In the standard “contraction” formalism, consistency requires that all contributions related via
cyclic vertex permutations are evaluated in the same way. By construction, the cumulant for-
malism “messes up” the relations between “cyclically related” diagrams (cf. Sec. 2.4.3); one
then needs to evaluate all higher-cumulant contributions and normal (non-skeleton) diagrams
“D” at a given order in the same way, i.e., symbolically

(
[Γn1—Γn2—Γn3]

ℵ + [Dn1+n2+n3]
ℵ
)

(2.83)

For ℵ = “direct” it is straightforward to show (using time-dependent methods, cf. Sec. 2.5.1))
that the following factorization property holds (where all relative time-orderings of the subdia-
grams are summed):

(
[Γn1—Γn2—Γn3]

direct = −β[Γ direct
n1

—Γ direct
n2

—Γ direct
n3

]
)

(2.84)

This contribution is then cancelled by the corresponding contribution with a −Xdirect
n1

vertex, i.e.,

(−Xdirect
n1

) —Γ direct
n2

—Γ direct
n3

. (2.85)
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If −Xdirect
n3

vertices are present, then there are also the contributions

Γ direct
n1

—Γ direct
n2

— (−Xdirect
n3

), (2.86)

(−Xdirect
n1

) —Γ direct
n2

— (−Xdirect
n1

). (2.87)

which also cancel each other. If the insertion-lines are placed on different lines of Γ direct
n2

, then
these are the only cases that appear, since Γ direct

n2
cannot be replaced by a one-body vertex; in

particular, in that case the contribution given by Eq. (2.82) cannot be cancelled by including
Xdirect

n2
vertices. Only if the two insertion-lines are connected to the same line, there are also

contributions where Γ direct
n2

is replaced by −Xdirect
n2

.
Notably, in the {T + Xdirect

[n] ,V − Xdirect
[n] } setup with n ≥ 6 the zero-temperature limit of the

(formal) expressions for the “self-energies” and the various perturbative contributions does not
exist. This is due to the feature that normal non-skeletons without first-order parts are not inser-
tions, and the fact that the “direct” expressions for normal non-skeletons with K skeleton parts
involve terms that scale as βK−2 (cf. the last paragraph of Sec. 2.3.4).

For ℵ = “reduced” it is straightforward to show that the following factorization property
holds (cf. Sec. 2.4.3)

(
[Γn1—Γn2—Γn3]

reduced = −β[Γ reduced
n1

—Γ reduced
n2

—Γ reduced
n3

+ R]
)

(2.88)

where R T→0−−−→ 0 (i.e. R is “pseudo-anomalous”). For the factorized part of the higher-cumulant
terms (which is anomalous) the same cancellation combinatorics as in the “direct” case applies,
but with “reduced” self-energies. In contrast to the ℵ = “direct” case, if ℵ = “reduced” the
{T+Xreduced

[n] ,V−Xreduced
[n] } setups have a well-behaved zero-temperature limit (for all values of n),

and the T → 0 limit of the “fully-renormalized” perturbation series reproduces the Goldstone
formula in the “isotropic case”, cf. Sec. 2.5.2.

In Refs. [96, 20] it is claimed that the “pseudo-anomalous” term in Eq. (2.88) is in fact zero,
i.e., (

R = 0
)

(2.89)

We will show that R = 0 only for selected contributions (cf. Sec. 2.4.3), but leave a full proof to
future research.20 If R = 0 to all orders, then the expression for the entropy that results from the
“fully-renormalized” perturbation series (for ℵ = “reduced”) matches the corresponding one
for a free Fermi gas. This corresponds to the notion of “statistical quasiparticles”.

For both the ℵ = “direct” and the ℵ = “reduced” case (as well as the zero-temperature case),
the existence of the thermodynamic limit in the {T + Xℵ

[n],V −Xℵ
[n]} setups with n ≥ 4 requires

a regularization procedure (“R”), since in that case certain anomalous contributions are absent,
which would however be required to cancel contributions (from non-skeletons) from the vicin-
ity of symmetric energy-denominator poles;21 this is discussed in Sec. 2.3.6.
20 Note added in corrected version: the property R = 0 is (of course) a straightforward consequence of the linked-

cluster theorem (in other terms, the factorization property Eq. (2.84) holds for any ℵ).
21 The expressions for X(ℵ)

ν≥4 also need to be regularized, but this is included in the regularization procedure. To be
precuse, we note here also that the regularization is also required for terms antisymmetric poles, i.e., to remove
the ambiguity associated with the integration order.
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“Self-Energies”. As evident from the above discussion, in the “isotropic case” the energy
eigenvalue equation for the {T + X(ℵ)

[n] ,V −X(ℵ)
[n] } setup is given by

ei = εi + X1;i(εF) +

n∑

ν=2

Xν;i(εF; {ea}), and ei = εi + X1;i[ f −ei
(T, µ)] +

n∑

ν=2

Xℵ
ν;i[ f −ei

(T, µ)],

(2.90)

in the zero-temperature and grand-canonical case, respectively.22 We denote the solutions to
these equations as ei = εX(ℵ)

[n] ;i for each case. The self-consistent “self-energy” of order n is then
given by

X(ℵ)
[n] =

n∑

ν=1

X(ℵ)
ν , (2.91)

where the expressions for X(ℵ)
ν;i are

Xν;i(εF) =
δER

0;ν,non-insertion[Θ−i ; {εX[n];i}]
δΘ−i

, and Xℵ
ν;i(T, µ) =

δAR,ℵ
ν,non-insertion[ f −i ; {εXℵ

[n];i
}]

δ f −i
.

(2.92)

Here, “R” refers to the regularization procedure specified in Sec. 2.3.6, and “non-insertion”
refers to contributions that are not of the insertion type, i.e., contributions (evaluated in terms
of cumulants) from skeletons and non-skeletons without first-order parts, i.e., normal non-
skeletons with −X2, . . . ,−Xn−1 vertices are not counted as insertions and are therefore
included in Eq. (2.92).23

For the following discussion it will be useful to define also the perturbative equivalent of
these self-energies, i.e., we define

Sν;i(εF) =
δER

0;ν,non-insertion[Θ−i ; {εi}]
δΘ−i

, and S ℵ
ν;i(T, µ) =

δAR,ℵ
ν,non-insertion[ f −i ; {εi}]

δ f −i
. (2.93)

The main reason for the introduction of the perturbative self-energies is that it allows to write
down more concise expressions for non-skeleton contributions. Note that X1,i(εF) = S1,i(εF),
which is a special feature of the Hartree-Fock case at zero-temperature (in the “isotropic case”).

2.3.2. Evaluation of Hugenholtz Diagrams

The contractions specified by a given Hugenholtz diagram can be carried out in different ways,
e.g., in the case of the first-order (or Hartree-Fock) contribution one has the (direct and ex-
change) contributions

∑

i jkl

V i j,kl
2B

(
a†i a†jalak + a†i a†jalak

)
=

∑

i jkl

[
V i j,kl

2B δikδ jl − V i j,kl
2B δilδ jk

] ×

Θ−i Θ

−
j

f −i f −j
. (2.94)

22 The distinction between differentℵ’s in the grand-canonical case is relevant only for non-insertion contributions
from (normal) non-skeletons, which appear first at order ν = 4.

23 Note that this implies that {T + X[∞],V −X[∞]} ≡ {T + X1,V −X1} in the zero-temperature case.
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The potential matrix elements satisfy the exchange symmetry V i j,kl
2B = PLPRV i j,kl

2B , with ex-
change operators PL/R = −P12,24 and Hermiticity implies that V i j,kl

2B = [Vkl,i j
2B ]∗. The two contri-

butions given by Eq. (2.94) can be written in compact form by introducing the antisymmetrized
two-body potential V̄2B = A 2B

L V2B, with antisymmetrization operator A 2B
(L) = (1 − P12)(L). The

expressions for the first-order contributions to the ground-state energy and the grand-canonical
potential are then given by25

E0;1 =
1
2

∑

i j

V̄ i j,i j
2B Θ−i Θ

−
j , A1 =

1
2

∑

i j

V̄ i j,i j
2B f −i f −j . (2.95)

In general, for a given diagram the overall sign factor is given by (−1)`+h, where ` is the number
of loops formed by different hole and particle lines in the diagram (loops formed by lines of
one type only are not counted) plus the number of instantaneous contractions, and h is the
number of hole lines in the diagram (cf. e.g., Ref. [178] pp.227-231). The number of all
possible contractions can be identified by applying to the matrix element associated with each
vertex the permutation operators PL/R, modulo permutations that lead to expressions which
are equivalent under the mutual relabeling of indices. For instance, the contractions for the
second-order anomalous diagram are given by26

∑

contractions

= (−1)3+3
[
P2V i j, jl

2B

] [
P1V la, ja

2B

]
(2.96)

with P1/2 = 1+PL +PR +PLPR = A 2B
L (1+PR), corresponding to in total 16 different con-

tractions. By contrast, the second-order normal diagram involves only 4 different contractions:
∑

contractions

= (−1)2+2
[
P2V i j,kl

2B

] [
P1Vkl,i j

2B

]
(2.97)

where P1/2 = 1 + PL = A 2B
L . For a given diagram the antisymmetrizer A 2B

L always leads to a
nonequivalent contribution; the additional factor left after extracting the antisymmetrizers A 2B

L
is the “multiplicity”M of the diagram. In the cases above,M2,normal = 1 andM2,anomalous = 4.
For a given non-skeleton only the multiplicity of the corresponding skeletons has to be deter-
mined (which can be done by counting pairs of equivalent lines, cf. [378] pp.356-362); the
multiplicity of the whole diagram is equal to the product of the multiplicities of the various
skeleton-parts multiplied with the number of possible ways the articulation lines can be placed:

Mnon-skeleton =Marticulation ×
∏

parts

Mparts. (2.98)

For instance, in the case of the second-order anomalous diagram the two subskeletons (first-
order diagrams) have M = 1, and there are four different but equivalent ways of placing the
articulation lines, thusM2,anomalous = 4 × 1 = 4.
24 The subscripts L and R indicate that the Pauli exchange operator P12 acts on the index tuple corresponding to

the creation (L) and destruction operators (R), respectively: PLV i j,kl
2B = −V ji,kl

2B and PRV i j,kl
2B = −V i j,lk

2B . The
distinction between L and R permutations is introduced for convenience, i.e., to identify in a simple way the
number of equivalent contractions for a given diagram.

25 The different ways the contractions can be realized for a given Hugenholtz diagrams can be visualized by so-
called “Goldstone diagrams” where each Hugenholtz vertex a†i a†jakal is split up in two Goldstone vertices a†i ak

and a†jal connected by an interaction line. For the various Goldstone diagrams for the first- and second-order
contributions, cf. (e.g.,) Fig. 20.15 in Ref. [178].

26 The subscripts in P1/2 refer to the labeling of Hugenholtz vertices (cf. Fig. 2.2). For the diagrams considered
here it is P1 = P2, but this is not the case in general; e.g., in the case of diagram (a) of Fig. 2.8 two of the
permutation operators are given by P3,1 = A 2B

L and one by P2 = A 2B
L (1 + PR). In most cases, the particular

form of the P operators is (of course) not unique.
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2.3.3. Ground-State Energy up to Third Order

Here, we give the expressions for the contributions up to third order in the zero-temperature
formalism (in the {T ,V} setup, referred to as the “bare” case from now on). In addition, we
examine the resummation of “one-loop” insertions in terms of a geometric series.

Skeletons. The expression for the second-order normal diagram (M = 1, ` = 2, h = 2)
is

E0;2,normal = − 1
4

∑

i jkl

V̄ i j,kl
2B V̄kl,i j

2B

Θ−i Θ
−
jΘ

+
kΘ

+
l

εk + εl − εi − ε j
. (2.99)

The expressions for the hh-ladder (M = 1, ` = 2, h = 4), the pp-ladder (M = 1, ` = 2, h = 2),
and the ring diagram (M = 8, ` = 3, h = 3) are given by

E0;3,hh-ladder =
1
8

∑

i jabkl

V̄ i j,kl
2B V̄ab,i j

2B V̄kl,ab
2B

Θ−i Θ
−
jΘ
−
aΘ
−
bΘ

+
kΘ

+
l

(εk + εl − εi − ε j)(εk + εl − εa − εb)
, (2.100)

E0;3,pp-ladder =
1
8

∑

i jklpq

V̄ i j,kl
2B V̄kl,pq

2B V̄ pq,i j
2B

Θ−i Θ
−
jΘ

+
kΘ

+
l Θ

+
pΘ

+
q

(εk + εl − εi − ε j)(εp + εq − εi − ε j)
, (2.101)

E0;3,ring =
∑

i jaklp

V̄ i j,kl
2B V̄ka,ip

2B V̄ pl,a j
2B

Θ−i Θ
−
jΘ
−
aΘ

+
kΘ

+
l Θ

+
p

(εk + εl − εi − ε j)(εp + εl − εa − ε j)
. (2.102)

These expressions are readily generalized for higher-order ladder and ring diagrams. In the
thermodynamic limit the state sums become integrals, and the integral kernels of Eqs. (2.99)-
(2.102) diverge at the boundary of the respective integration regions.

Non-Skeletons with First-Order Parts. The remaining two normal third-order diagrams are
the two normal “one-loop” diagrams shown in Figs. 2.8 (a) and (d). The sum of these two
contributions is given by (Marticulation = 2, ` = 3, h = 4 andMarticulation = 2, ` = 3, h = 3)

E0;3,one-loop = − 1
4

∑

i jkl

V̄ i j,kl
2B V̄kl,i j

2B

Θ−i Θ
−
jΘ

+
kΘ

+
l

(εk + εl − εi − ε j)2

(
Θ−i X1;i + Θ−j X1; j − Θ+

k X1;k − Θ+
l X1;l

)
,

(2.103)

where X1;a(εF , Ω) =
∑

a V̄ab,ab
2B Θ−b is the first-order self-energy. Using Θ−i Θ

−
i = Θ−i and Θ+

kΘ
+
k =

Θ+
k , the sum of all second-order normal diagrams with different numbers of “one-loop” inser-

tions is given by multiplying the integrand in Eq. (2.99) with a factor

∞∑

n=0

(X1;i + X1; j − X1;k − X1;l

εk + εl − εi − ε j

)n

=

(
1 − X1;i + X1; j − X1;k − X1;l

εk + εl − εi − ε j

)−1

. (2.104)

Hence, the resummation of “one-loop” insertions leads to the renormalization of the single-
particle energies in the energy denominator of Eq. (2.99) according to

εi → εX1;i = εi + X1;i. (2.105)

This straightforward resummation of (normal) “one-loop” insertions in terms of a geometric
series is possible only in the ground-state formalism. The grand-canonical case is examined in
Secs. 2.3.4 and 2.4.3.

52



2. Many-Body Perturbation Theory

2.3.4. Grand-Canonical Potential up to Third Order

Here, we examine the (formal) expressions for the various contributions up to third order in the
grand-canonical formalism, in the “bare” case, and evaluated in the standard way (“contraction
formalism”). In particular, we discuss certain intricacies associated with energy denominators
as well as the appearance of terms that diverge in the zero-temperature limit.

Skeletons. The second- and third-order skeletons are invariant under cyclic permutations, thus
the different formulas give equivalent (but not identical) expressions for these diagrams. For the
case where the energy denominator is nonzero, the expression obtained from the direct formula
for the second-order normal diagram is given by

Adirect,E,0
2,normal = − (−1)

β
〈V2BV2B〉2,normal

[
Res
z=0

e−βz

z2

1
E − z

+ Res
z=E

e−βz

z2

1
E − z

]

= − 1
4

E,0∑

i jkl

V̄ i j,kl
2B V̄kl,i j

2B

[ f −i f −j f +
k f +

l

εk + εl − εi − ε j
− 1
β

f −i f −j f +
k f +

l − f +
i f +

j f −k f −l
(εk + εl − εi − ε j)2

]
, (2.106)

where we have used f −i f −j f +
k f +

l e−βE = f +
i f +

j f −k f −l . The part of the integrand proportional to
β−1 gives a vanishing contribution, as can be seen by relabeling indices i → k, j → l. The
remaining part coincides with the expression obtained from the reduced formula, and the index
sum becomes a principal value integral in the thermodynamic limit.27 From the cyclic formula
one obtains for the second-order normal diagram the expression

Acyclic,E,0
2,normal =

(−1)
2
〈V2BV2B〉2,normal

[
Res
z=0

e−βz

z
1

E − z
+ Res

z=E

e−βz

z
1

E − z

]

= − 1
8

E,0∑

i jkl

V̄ i j,kl
2B V̄kl,i j

2B

f −i f −j f +
k f +

l − f +
i f +

j f −k f −l
εk + εl − εi − ε j

. (2.107)

The contributions from the residues at z = 0 and z = E are equivalent, as can be seen by
relabeling indices i → k, j → l. However, keeping both contributions has the advantage that in
that case the integrand is regular at E = 0, i.e.,28

( f −i f −j f +
k f +

l − f +
i f +

j f −k f −l )
1
E

= f −i f −j f +
k f +

l
1 − e−βE

E

E→0−−−→ β f −i f −j f +
k f +

l . (2.108)

This reproduces the expression obtained (from each formula) by evaluating the contour integral
for E = 0:

AE =0
2,normal = −β

8

E =0∑

i jkl

V̄ i j,kl
2B V̄kl,i j

2B f −i f −j f +
k f +

l . (2.109)

This contribution can therefore be included by letting E → 0 in Eq. (2.107).29 Such contribu-
tions from “accidentally” vanishing denominators diverge in the zero-temperature limit β→ ∞.

27 The vanishing part propertional to β−1 however does play a certain role in the resummation of “one-loop”
insertions if the direct formula is used, cf. Sec. 2.4.3.

28 Note that the zero-temperature limit of terms ∼ e−βE must always be evaluated together with the respective

product of Fermi-Dirac distributions, i.e., f +
i f +

j f −k f −l e−βE T→0−−−→ Θ−i Θ
−
jΘ

+
kΘ

+
l .

29 This is general, cf. Eqs. (2.56) and (2.57).
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For a continuous spectrum these contributions have measure zero, but in the discrete situtation
they would have to be excluded “by hand” to obtain well-behaved results at low temperatures.30

From now on we consider only the expressions obtained for nonzero energy denominators. At
higher orders, “accidentally” vanishing denominators arise not only for vanishing E ’s but also
when different E ’s coincide. For instance, the “cyclic” expressions for the third-order ladder
and ring diagrams are given by

Acyclic
3,hh-ladder =

1
24

∑

i jabkl

V̄ i j,kl
2B V̄ab,i j

2B V̄kl,ab
2B f −i f −j f −a f −b f +

k f +
l

×
[ 1
E1E2

− e−βE1

E1(E2 − E1)
− e−βE2

E2(E1 − E2)

]
E1=εk+εl−εi−ε j
E2=εk+εl−εa−εb

(2.110)

Acyclic
3,pp-ladder =

1
24

∑

i jklpq

V̄ i j,kl
2B V̄kl,pq

2B V̄ pq,i j
2B f −i f −j f +

k f +
l f +

p f +
q

×
[ 1
E1E2

− e−βE1

E1(E2 − E1)
− e−βE2

E2(E1 − E2)

]
E1=εk+εl−εi−ε j
E2=εp+εq−εi−ε j

, (2.111)

Acyclic
3,ring =

1
3

∑

i jaklp

V̄ i j,kl
2B V̄ka,ip

2B V̄ pl,a j
2B f −i f −j f −a f +

k f +
l f +

p

×
[ 1
E1E2

− e−βE1

E1(E2 − E1)
− e−βE2

E2(E1 − E2)

]
E1=εk+εl−εi−ε j
E2=εp+εl−εa−ε j

, (2.112)

where the expressions in the square brackets [. . .] are regular (as expected) in the (single or

combined) limits E1 → 0, E2 → 0, and E1 → E2, e.g., [. . .]
E1→0,E2→0−−−−−−−−→ β2/2. In each case, for a

discrete spectrum (see Sec. 2.3.5) the three terms in [. . .] are equivalent.31

Non-Skeletons with First-Order Parts Only. There is one such diagram at second order [di-
agram (c) of Fig. 2.4], and five such diagrams at third order (shown in Fig. 2.7), which we
tentatively label according to the number of instantaneous contractions (“loops”). Diagrams of
this kind either transform into each other under cyclic permutations of the interaction vertices
(e.g., the two-loop diagrams), or are invariant under cyclic permutations (e.g., the second-order
anomalous and three-loop diagrams), so the cyclic, the direct, and the reduced formula are
equivalent in that case.32 The expressions for the second-order anomalous diagram, the sum of
the three two-loop diagrams, as well as the sum of the two three-loop diagrams are given by

A2,anomalous = − β

2

∑

i jb

V̄ i j,i j
2B V̄ jb, jb

2B f −i f −j f +
j f −b , (2.113)

A3,two-loop =
β2

2

∑

i jab

V̄ i j,i j
2B V̄ ja, ja

2B V̄ab,ab
2B f −i f −j f +

j f −a f +
a f −b , (2.114)

A3,three-loop =
β2

6

∑

i jab

V̄ i j,i j
2B V̄ ja, ja

2B V̄ jb, jb
2B f −i f −j f +

j f −a f −b ( f +
j − f −j ), (2.115)

where we have used that Marticulation = 8, ` = 4, h = 4 for diagrams (a,b,c), Marticulation = 8,
` = 4, h = 5 for diagram (d) andMarticulation = 8, ` = 4, h = 4 for diagram (e) of Fig. 2.7.
30 Note that the contributions from “accidentally” vanishing denominators do not appear if Wick’s theorem is

applied not to the ensemble average but to the individual terms in the partition sum, cf. Ref. [277].
31 For instance, in the ring contribution the second term in [. . .] transforms into the first one under i→ l, j→ k.
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(a) two-loop (b) two-loop (c) two-loop

(d) three-loop (e) three-loop

Figure 2.7.: Third-order anomalous diagrams involving only first-order “parts”. Articulation
lines are marked by red squares. Note that in the case of the “three-loop”
diagrams, the articulation lines form a “cycle”.

(a) one-loop (b) one-loop (c) one-loop

(d) one-loop (e) one-loop (f) one-loop

Figure 2.8.: Third-order diagrams corresponding to normal (a,d) and anomalous (b,c,e,f)
“one-loop” insertions on the second-order diagram. Articulation lines are
marked by red (anomalous) and black (self-energy) squares. The upper and
lower three diagrams transform into each other under cyclic permutations.

Non-Skeletons with First- and Higher-Order Parts, “Disentanglement”. The remaining six
third-order diagrams are shown in Fig. 2.8;33 they correspond to normal and anomalous “one-
loop” insertions onto the second-order normal diagram. The diagrams (a,b,c) transform into
each other via cyclic vertex permutations, and similar for (d,e,f). In the following, we examine
(assuming a discrete spectrum) the formal expressions obtained for these diagrams. Using the
direct formula, and suitably labeling indices, we obtain for the sum of the four anomalous “one-
loop” diagrams (b,c,e,f) the expression

Adirect
3,one-loop(b+c+e+f) =2 ×

{
− (−1)2

β
〈V2BV2BV2B〉(b)+(e)

[
Res
z=0

e−βz

z2(−z)(E − z)
+ Res

z=E

e−βz

z2(−z)(E − z)

]}

=
1
4

∑

i jkl

V̄ i j,kl
2B V̄kl,i j

2B f −i f −j f +
k f +

l

[
pseudo-anomalous︷                    ︸︸                    ︷

− 2
β

(1 − e−βE

E 3

)
+

2
E 2

anomalous︷︸︸︷
−β

E

]

×
(

f +
i S 1;i + f +

j S 1; j − f −k S 1;k − f −l S 1;l

)
. (2.116)

32 This can be seen explicitly from Eqs. (2.52) and (2.53), since for vanishing excitation energies the only effect of
the additional factor (−β−1z−1) in the direct formula is to reproduce the factor (n + 1)−1 in the cyclic formula.

33 Each diagram could also be counted as two diagrams (with half multiplicity); e.g., in the case of diagram (a)
there is one with a “one-loop” insertion onto the upper line and one with an insertion onto the lower line
(corresponding to insertions on the line with index i and j, respectively).
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where E = εk +εl−εi−ε j. Only the last term in the square brackets is an anomalous term of the
form ∂ f −i /∂µ; the other terms involve f −i f +

i factors, but vanish in the zero-temperature limit; we
call terms of this kind “pseudo-anomalous terms”. For the sum of the two normal “one-loop”
diagrams from Fig. 2.8, the direct formula gives the expression

Adirect
3,one-loop(a+d) = − (−1)2

β
〈V2BV2BV2B〉(a)+(d)

[
Res
z=0

e−βz

z2

1
(E − z)2 + Res

z=E

e−βz

z2

1
(E − z)2

]

=
1
4

∑

i jkl

V̄ i j,kl
2B V̄kl,i j

2B f −i f −j f +
k f +

l

[
pseudo-anomalous︷                     ︸︸                     ︷

2
β

(1 − e−βE

E 3

)
− e−βE

E 2

double-normal︷︸︸︷
− 1

E 2

]

×
(

f −i S 1;i + f −j S 1; j − f +
k S 1;k − f +

l S 1;l

)
. (2.117)

Here, “double-normal” refers to the presence of a squared (“double”) Fermi-Dirac distribution,
i.e., f −i f −i in the first term. The sum of all third-order self-energy and anomalous “one-loop”
diagrams is equivalent to three times the expression obtained from the cyclic formula for the
sum of (for instance) diagrams (a) and (b), which leads to34

A(cyclic)
3,one-loop(a+b+c+d+e+f) = − 1

4

∑

i jkl

V̄ i j,kl
2B V̄kl,i j

2B

f −i f −j f +
k f +

l

E 2

( double-n.︷︸︸︷
1

pseudo-anom.︷ ︸︸ ︷
− e−βE

anom.︷      ︸︸      ︷
−βE e−βE

)

×
(

f −i S 1;i + f −j S 1; j − f +
k S 1;k − f +

l S 1;l

)
, (2.118)

which (as expected) is well-defined in the thermodynamic limit, in contrast to Eqs. (2.116),
(2.118) and (2.119), which involve symmetric poles. The remaining “pseudo-anomalous” term
in Eq. (2.118) can be removed by means of f −i f −i = f −i − f −i f +

i and f +
k f +

k = f +
k − f −k f +

k . This
leads to

A“disentangled”
3,one-loop(a+b+c+d+e+f) = − 1

4

∑

i jkl

V̄ i j,kl
2B V̄kl,i j

2B

f −i f −j f +
k f +

l

E 2

( normal︷                         ︸︸                         ︷
S 1;i + S 1; j − S 1;k − S 1;l

anomalous︷                                                 ︸︸                                                 ︷
−βE

(
f +
i S 1;i + f +

j S 1; j − f −k S 1;k − f −l S 1;l

) )
. (2.119)

This represents the “disentangled” form (for ℵ = “reduced”) of the contribution from the third-
order “one-loop” diagrams. In particular, the “normal” part of Eq. (2.119) has the same form as
the expression for the normal “one-loop” diagrams in the ground-state formalism, but without
“double-normal” terms.

Finally, we note that the contributions from non-skeletons with more than two parts involve
terms that diverge in the zero-temperature limit (for each formula). More specifically, for
such contributions there are higher-order derivatives of the exponential e−βz, leading to (“non-
anomalous”) terms∼ βK≥1. For instance, for the case of the second-order normal diagram with
two normal “one-loop” insertions the contour integral in the “direct” case is given by35

− 1
β

Res
z=0

e−βz

z2

1
(E − z)3 =

β

2!
e−βE

E 2 + O(β0). (2.120)

34 To obtain Eq. (2.118) explicitly as the sum of Eqs. (2.116) and (2.117) one needs to identify various cancellations
that become apparent only after suitably relabeling the indices of various terms.

35 In the T → 0 limit the exponential term needs to be evaluated together with the Fermi-Dirac distributions.
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Such (“non-anomalous”) βK≥1 terms are artifacts. In the present case, they are not present if the
reduced formula is used, and thus cancel in the cyclic sum of diagrams. In general, however,
terms that diverge in the zero-temperature limit arise also if the reduced formula is used (i.e., for
anomalous diagrams with more than two parts), and the “cancellation” of these terms involves
the sum of various (not cyclically related) normal and anomalous non-skeletons at a given order.
In the non-skeleton sum, the βK≥1 terms then correspond to anomalous terms of order K, i.e.,
terms that involve derivatives of order K of Fermi-Dirac distributions. The “cancellation” of the
(“non-anomalous”) βK≥1 terms to all orders follows from Eq. (2.88) and the fact that for normal
non-skeletons the reduced formula leads to terms that are nonsingular at zero temperature. The
“cancellation” of the βK≥1 terms is however “dissolved” in the {T + Xdirect

[n] ,V − Xdirect
[n] } setups

with n ≥ 6. This is due to the fact that normal non-skeletons without first-order parts are not
insertions, in contrast to higher-cumulant contributions without first-order parts. At sixth order
in the perturbation series, the first normal non-skeletons with more than two higher-order parts
appear, i.e., normal non-skeletons with three second order parts (one or two of which can be
−X2 vertices). If the direct formula is used, such diagrams lead to (“non-anomalous”) βK≥1

terms in the (formal) expressions for the self-energies. This feature corresponds to the notion
that for the {T +Xdirect

[n] ,V−Xdirect
[n] } setups with n ≥ 6 the zero-temperature limit does not exist.36

2.3.5. Normal Non-Skeletons without First-Order Parts

Here we show that normal non-skeletons without first-order parts are not insertions. Restricting
the discussion to the ground-state formalism (without loss of generality), we examine the case
of the fourth-order non-skeletons with two second-order parts, denoted as “Γ2,2”. The expres-
sions for these diagrams can be expressed in terms of the second-order perturbative self-energy,
i.e.,

S2;a(εF) =
δE0;2,normal[Θ−a ; {εa}]]

δΘ−a
=

S H
2;a︷                    ︸︸                    ︷∑

jkl

Ha jkl

εk + εl − εa − ε j
+

S P
2;a︷                    ︸︸                    ︷∑

i jk

Pi jka

εk + εa − εi − ε j
. (2.121)

where the functions Ha jkl and Pi jka are given by Eq. (2.77). The six Γ2,2 diagrams are shown in
Fig. 2.9.37 The expression for the sum of the first two diagrams (a,b) is then given by

E0;4,Γ2,2(a+b) = −1
4

∑

abmn

V̄ab,mn
2B V̄mn,ab

2B Θ−aΘ
−
bΘ

+
mΘ

+
n

∑

jkl

Ha jkl

1/[(E1)2E2]︷                                     ︸︸                                     ︷[
1

E1(E2 + E1)E1
+

1
E1(E2 + E1)E2

]

︸                                                  ︷︷                                                  ︸
1

(E1)2
S H

2;a

,

(2.122)

where E1 = εm +εn−εa−εb is corresponds to the “large” part (large vertices in Fig. 2.9), and
E2 = εk +εl−εa−ε j to the “small” part (small vertices). The expression for the sum of the
diagrams (c,d) is similar, but involves S P

2;a instead of S H
2;a. Both expressions have a “factorized”

36 In the {T + Xdirect
[n] ,V − Xdirect

[n] } setups with 2 ≤ n < 6, there are also βK≥1 terms, i.e., the ones from normal
non-skeletons with (multiple) −X2, . . . , Xn vertices, but the −X2, . . . , Xn vertices can be cancelled by expanding
the energy denominators about the Hartree-Fock ones.

37 Note that diagram (a) is a cyclic permutation of diagram (b), and similar for diagrams (c,d). Diagrams (e) and
(f) are each one cyclic permutation of themselves. The other six cyclic vertex permutations are anomalous
diagrams.

57



2. Many-Body Perturbation Theory

form similar to the one of the normal “one-loop” diagrams [cf. Eq. (2.103)]; i.e., they have the
form of the first term in a geometric series in terms of 1

E1
S H

2;a and 1
E1

S P
2;a, respectively. However,

this series would renormalize hole and particle energies differently, i.e., according to S H
2;a and

S P
2;a, respectively. This is in contrast to the effect of additional normal non-skeletons from
−X[n] vertices, which are always of the “one-loop” insertion form, corresponding to a geometric
series in 1

E1
X[n]. Furthermore, inspecting the corresponding diagrams with multiple second-

order normal subdiagrams one finds that they do not “factorize”. In fact, already in the “Γ2,2”
case there are additional “nonfactorizable” contributions where the energy-denominator sum
does not simplify: diagrams (e) and (f) of Fig. 2.9.

(a) Γ2,2 (b) Γ2,2 (c) Γ2,2 (d) Γ2,2

(e) Γ2,2 (f) Γ2,2

Figure 2.9.: The six “Γ2,2” diagrams. For clarity, in each case one of the two skeleton parts
is drawn with smaller vertex dots.

2.3.6. Regularization of Energy Denominators and Thermodynamic
Limit

For a continuous spectrum, to obtain nonsingular expressions certain diagrams need to be eval-
uated “together with their cyclic permutations” (i.e., the cyclic formula has to be used). This
requirement however severly restricts the manipulations allowed on the expressions for individ-
ual contributions. In particular, the cumulant formalism (“disentanglement”) and the “renor-
malization” of T and V in terms of higher-order (ν ≥ 4) “self-energies” are well-defined for a
discrete spectrum, but these manipulations involve terms (with symmetric energy-denominator
poles) that diverge in the thermodynamic limit. For a continuous spectrum, these manipulations
therefore require a regularization procedure. This regularization must be such that it leaves the
cyclic formula invariant. We adopt the following procedure: for a given diagram, we add in the
energy denominators to each independent Eν an infinitesimal imaginary part iξν, and then take
the average with respect to sgn(ξν), i.e., for the case where there are no linear combinations of
E ’s in the energy denominators38 one has (where ξ1 , ξ2 , . . . , ξn)

1
(E1)q

1 · · · (En)q
n

regularization (R)−−−−−−−−−−−→ 1
(E R

1 )q
1 · · · (E R

n )q
n

:=
1
2n

∑

sgn(ξ1),...,sgn(ξn)

1
(E1 + iξ1)q1 · · · (En + iξn)qn

(2.123)

38 For the case with linear combination of energy denominators one fixes the magnitude of the infinitesimal
imaginary parts such that |ξν| , ξν′ ∀{ν, ν′}. Averaging with respect to sgn(ξν) then leads again to finite-part
integrals.
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In the thermodynamic limit, this is equivalent to

1
(E1)q

1 · · · (En)q
n

regularization (R)−−−−−−−−−−−→ P

(E1)q1
· · · P

En)qn
, (2.124)

where the finite part P is defined via (where a < x < b)

P

∫ b

a
dt

f (t)
(t − x)q =

1
(q − 1)!

dq

dxq −
∫ b

a
dt

f (t)
t − x

=
1

(q − 1)!
dq

dxq

[∫ x−ε

a
dt

f (t)
t − x

+

∫ b

x+ε

dt
f (t)

t − x

]
.

(2.125)

For instance, for q = 1, P is the Cauchy principal value; for q = 2, P is Hadamard’s finite
part. The equivalence of Eqs. (2.123) and (2.124) follows from the generalized Plemelj identity
[19]

1
(E + iξ)q =

P

(E )q
1

+
iπ(−1)q

(q − 1)!
sgn(ξ)δ(q−1)(E ). (2.126)

The expressions obtained from the cyclic formula are invariant under the regularization pro-
cedure “R” defined by Eq. (2.123) and (2.124), respectively, as required. The proper “direct”
and “reduced” expressions for a continuous spectrum are then constructed by (suitably) sepa-
rating the various terms in the regularized “cyclic” expressions. This procudure involves a quite
tricky point [249, 429, 242] that leads to correction terms to the expressions obtained from the
“direct” and “reduced” formula, Eqs. (2.53) and (2.55), respectively: the decomposition of the
regularized cyclic expressions and the thermodynamic limit do not commute. In particular, per-
forming the decomposition before taking the thermodynamic limit in general leads to wrong
results. This is because the value of an integral that involves several principal parts depends
on the integration order. The cyclic formula does not depend on the integration order, but the
thermodynamic limit of Eqs. (2.53) and (2.55) does, and depending on the integration order,
different correction terms are needed.

To illustrate this point, we consider the regularized cyclic expression for the third-order
hh-ladder diagram:

AR
3,hh-ladder∼

1
3

∑

i jabkl

[. . .]
{
P

E1

P

E2
− e−βE1

P

E1

P

E2 − E1
− e−βE2

P

E2

P

E1 − E2

}
. (2.127)

Separating the three summands and relabelling indices leads to

AR
3,hh-ladder∼

1
3


∑

i jabkl

+
∑

kli jab

+
∑

abkli j


[. . .]

P

E1

P

E2
. (2.128)

For a discrete spectrum the three terms in the above formula are identical, leading to the “re-
duced” formula results for AR

3,hh-ladder. Performing then the thermodynamic limit, this leads to
the (incorrect) result

AR,wrong
3,hh-ladder∼

∫

i jabkl
[. . .]

P

E1

P

E2
. (2.129)

Instead, performing the thermodynamic limit already in Eq. (2.127) and then separating the
summands and relabelling indices leads to

AR
3,hh-ladder∼

1
3

{∫

i jabkl
+

∫

kli jab
+

∫

abkli j

}
[. . .]

P

E1

P

E2
. (2.130)
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By the Poincaré-Bertrand transformation formula [242], this is equivalent to

AR
3,hh-ladder∼

∫

i jabkl
[. . .]

{
P

E1

P

E2
− π

2

3
δ(E1)δ(E2)

}
T→0−−−→

∫

i jabkl
[. . .]

1
E1E2

, (2.131)

which deviates from Eq. (2.129) in terms of the additional delta function term. This term van-
ishes in the T → 0 limit, since in that limit the energy-denominator poles lie on the boundary
of the integration region.

The third-order hh-ladder diagram is invariant under cyclic permutations, and Eqs. (2.127),
(2.130), and (2.131) are equivalent. The distinction between “cyclic”, “direct” and “reduced”
expressions comes with the disentanglement of higher-order non-skeleton diagrams where not
all parts of the respective cyclic expressions are considered. The procedure to construct the
proper disentangled “direct” and “reduced” expressions for a continuous spectrum can be for-
mulated as follows. We start with the sum L of all diagrams Lm in a given cyclic group,
all evaluated with the cyclic formula (ℵ = “cyclic”), and fix the integration order i j . . . for
all diagrams. Averaging over all corresponding “cyclic” permutations of the integration order
C[i j . . .], the restriction ℵ = “cyclic” can be omitted,39 i.e., symbolically,

L =

∫

i j...

∑

m

Lℵ=“cyclic”
m =

1
|C|

∫

C[i j...]

∑

m

Lℵ
m. (2.132)

We now apply the disentanglement, which leads to

L =
1
|C|

∫

C[i j...]


∑

m

Dℵ
m + {Γ ℵ—Γ ℵ}

 , (2.133)

where Dm denotes the (disentangled) normal diagrams, and {Γ ℵ—Γ ℵ} the higher-cumulant
terms. Applying the regularization, these two terms can be separated, i.e.,

L =
1
|C|

∫

C[i j...]

∑

m

DR,ℵ
m +

1
|C|

∫

C[i j...]
{ΓR,ℵ—ΓR,ℵ} (2.134)

This formula specifies the rules to construct the (“direct” and “reduced”) higher-order renor-
malizations of the single-particle basis (i.e., in terms of functional derivatives of the first term
in Eq. (2.134)) for a continuous spectrum.

2.3.7. Contributions from Three-Body Interactions

With three-body interactions included the interaction Hamiltonian isV = V2B +V3B, with

V3B =
1
3!

∑

i jaklm

V i ja,klp
3B a†i a†ja

†
aapalak. (2.135)

The matrix elements V i ja,klm
3B ≡ V i ja,klp

3B δk+l+p,i+ j+a satisfy the exchange symmetries V i ja,klm
3B =

QL QR V i ja,klm
3B , with exchange operators QL/R ∈ {−P12,−P13,−P23, P12P13, P12P23}, and by

time-reversal invariance they obey V i ja,klm
3B = Vklm,i ja

3B . The rules for the evaluation of diagrams

39 To be precise, it would be sufficient to average the integration order with respect to the subset of cyclic permu-
tations that leave the diagrams invariant.
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are similar to the two-body case. In particular, we introduce the antisymmetrized three-body
potential V̄3B = A 3B

(L) V3B, with antisymmetrization operator A 3B
(L) = (1−P12)(L)(1−P13 −P23)(L).

Reducible Vertices. There is one important simplification for three-body vertices that have
at least one instantaneous contraction (which we call “reducible vertices”). For instance, the
diagram (cf. Fig. 2.10) for the first-order three-body contribution, E3B

0;1 = 〈Φ0 | V3B |Φ0〉 and
A3B

1 = 〈V3B〉, respectively, is given by a three-body vertex with three instantaneous contrac-
tions; we denote this as N3B = 3. The expressions for E3B

0;1 and A3B
1 are given by (usingM = 1,

` = 3, h = 3)

E3B
0;1 =

1
6

∑

i ja

V̄ i ja,i ja
3B Θ−i Θ

−
jΘ
−
a , A3B

1 =
1
6

∑

i ja

V̄ i ja,i ja
3B f −i f −j f −a . (2.136)

These expressions can be written in terms of an effective in-medium two-body potential V̄DD2B

generated from the genuine three-body potential, i.e.,

(
V̄ i j,kl

DD2B =
∑

a

V̄ai j,akl
3B ×


Θ−a
f −a

)
(2.137)

Note that the effective two-body potential V̄ i j,kl
DD2B is a function of the macroscopic parameters

(“DD” stands for “density dependent”). In terms of V̄ i j,kl
DD2B the first-order contributions read

E3B
0;1 =

1
2

∑

i j

V̄ i j,i j
DD2B

3
Θ−i Θ

−
j , A3B

1 =
1
2

∑

i j

V̄ i j,i j
DD2B

3
f −i f −j . (2.138)

A diagram that involves three-body vertices of the reducible kind only has the same structure as
the corresponding diagram with only two-body vertices. With three-body interactions included,
the contribution from all diagrams with two-body and/or reducible three-body vertices is then
given by substituting in the expressions for the “pure“ two-body diagrams for the matrix ele-
ments V̄ i j,kl

2B the quantity V̄ i j,kl
2B + αV̄ i j,kl

DD2B, where α = 1/N3B.40 For instance, for each of the two
second-order two-body (2B-2B) diagram there are then in total four diagrams (3B-3B, 2B-3B,
3B-2B, 2B-2B); the 3B-3B normal and the 2B-3B anomalous diagram are shown in Fig. 2.10.
Except for the first-order diagram where N3B = 3, all reducible three-body vertices have either
one or two instantaneous contractions, N3B ∈ {1, 2}. For skeletons only vertices with N3B = 1
are possible, since a vertex with N3B = 2 can be disconnected by cutting the two other lines.

To summarize, for the case of reducible diagrams, i.e., diagrams that involve three-body
vertices of the reducible kind only, the results obtained in an analysis of “pure” two-body con-
tributions can be immediately taken over to the case where three-body interactions are included.

(a) first-Order (b) 3N-3N normal (red.) (c) 2N-3N anomalous

Figure 2.10.: Selected Hugenholtz diagrams with reducible three-body vertices (blue dots).

40 To proof the relation α = 1/N3B, consider an arbitrary two-body skeleton, and replace one vertex by an N3B = 1
vertex; with α = 1 the multiplicity of the diagram is unchanged, which establishes α = 1/N3B for skeletons.
The general relation α = 1/N3B then follows by considering the various possibilities for the linking of the
contraction lines of N3B = 1, 2, 3 vertices.
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Irreducible Vertices. There are of course also three-body vertices without instantaneous con-
tractions (N3B = 0). Here, no such simplification is possible; these vertices are accordingly
called “irreducible”. The first diagram with irreducible vertices is the irreducible 3B-3B dia-
gram shown in Fig. 2.11. The sum of contractions for this diagram is given by

∑

contractions

=(−1)3+3A 3B
L V i ja,klm

3B A 3B
L Vklm,i ja

3B , (2.139)

i.e, M = 1, ` = 3 and h = 3. The evaluation of the expressions for the irreducible 3B-3B
diagram is otherwise similar to the one for the second-order normal (2B-2B) diagram, and we
obtain (using the cyclic formula)

A3B-3B,cyclic
2,normal(irr.) = − 1

72

∑

i jaklm

V̄ i ja,klm
3B V̄klm,i ja

3B

f −i f −j f −a f +
k f +

l f +
m − f −k f −l f −m f +

i f +
j f +

a

εk + εl + εm − εi − ε j − εa
. (2.140)

At higher orders there are also diagrams (skeleton and non-skeleton) that involve both two-body
(or reducible three-body) vertices and irreducible three-body vertices.

(a) 3B-3B normal (irr.)

Figure 2.11.: Irreducible contribution from three-body interactions at second-order.

2.4. Cumulants and Canonical Perturbation Theory

We now introduce a different (but equivalent) way of evaluating the grand-canonical perturba-
tion series: the cumulant (“semi-invariant”) formalism of Brout and Englert [65].41 The cu-
mulant formalism leads to the “disentanglement” of normal and anomalous non-skeleton con-
tributions, in the sense that no “double-normal” terms appear and for anomalous contributions
the “time-ordering” constraint associated with the standard representation in terms of articu-
lation lines is removed.42 In addition, the cumulant formalism provides a way to construct a
“workable” perturbation series for the canonical ensemble, which reproduces the ground-state
perturbation series in the zero-temperature limit (in the “isotropic case”).

2.4.1. Cumulant Formalism

The formal expression for the perturbative contribution to the grand-canonical potential [cf. Eq.
(2.33)] is given by ∆A = − 1

β
ln[1 − β ∑∞

n=1 λ
nAn]. Expanding the logarithm we find

∆A =

∞∑

n=1

λn
∑

k

∑

{ai},{bi}
βb1+...+bk−1

(
b1 + . . . + bk

b1, . . . , bk

)
(Aa1)

b1 · · · (Aak)
bk

b1 + . . . + bk

∣∣∣∣∣
a1b1+...+akbk=n

, (2.141)

41 The paper by Brout and Englert [65] (see also Refs. [63, 65, 64, 214]) actually discusses exclusively
the generalized case (correlation-bond formalism) to be discussed in Sec. 2.4.1. The “disentanglement”
(“désenchevêtrement”) of the grand-canonical perturbation series was first discussed by Balian, Bloch and
de Dominicis [18].
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where Aν = − 1
β

(−1)ν

ν!

β∫
0

dτν · · · dτ1 〈P[VI(τν) · · ·VI(τ1)
]〉. In Eq. (2.141), the quantity in large

brackets is a multinomial coefficient. Note that the ensemble average contains no “linked”
prescription, i.e., at this point we consider both linked and unlinked contributions to each of
the Aν. In the standard approach (“contraction formalism”) the unlinked terms are cancelled by
the respective ”product terms” (as required by the linked-cluster theorem), but we will find that
certain unlinked contributions remain in cumulant formalism.

To set up the formalism, we define Gi1...in as the ensemble average of a fully-contracted (in-
dicted by paired indices) sequence of creation and destruction operators, i.e.,

Gi1...in = 〈a†i1ai1 · · · a†inain〉 , (2.142)

where some of the index tuples may be identical. In Eq. (2.142), all contractions are of the hole
type. For the case where there are also particles we introduce the notation

Gk1···km
i1···in = 〈a†i1ai1 · · · a†inainak1a

†
k1
· · · akma†km

〉 . (2.143)

Gk1···km
i1···in can be expressed in terms of derivatives of the unperturbed partition function Y:

Gk1···km
i1···in =

1
Y

∂

∂[−βεi1]
· · · ∂

∂[−βεin]

(
1 − ∂

∂[−βεk1]

)
· · ·

(
1 − ∂

∂[−βεkm]

)
Y. (2.144)

This shows that the upper indices can be “lowered” iteratively, i.e., Gk1···km
i1···in = Gk1···km−1

i1···in −Gk1···km−1
i1···inkm

.
The following general relation is readily verified:

(
Gk1···km

i1···in =
∑

P⊂{1,...,m}
(−1)|P|Gi1···in{kν}ν∈P

)
(2.145)

It is now sufficient to consider only hole-type G’s. The cumulants Ki1...in are defined by

(
Ki1...in =

∂n lnY
∂[−βεi1] · · · ∂[−βεin]

)
(2.146)

Evaluating Eq. (2.146) iteratively determines the K’s in terms of the G’s:

Ki1 =Gi1 , (2.147)
Ki1i2 =Gi1i2 − Gi1Gi2 , (2.148)
Ki1i2i3 =Gi1i2i3 − G[i1i2Gi3] + 2Gi1Gi2Gi3 , (2.149)
Ki1i2i3i4 =Gi1i2i3i4 − G[i1i2i3Gi4] − G[i1i2Gi3i4] + 2G[i1i2Gi3Gi4] − 3Gi1Gi2Gi3Gi4 ; (2.150)

where the squared brackets imply all permutations among indices (modulo permutations that
lead to equivalent expressions), e.g., G[i1i2Gi3i4] = Gi1i2Gi3i4 + Gi1i3Gi2i4 + Gi1i4Gi2i3 . The relations

42 Both normal and anomalous non-skeletons impose a particular diagrammatic structure, i.e., a particular “time-
ordering” of vertices (such that the articulation lines are either “normal” or “anomalous”). Note however that in
the standard “contraction” formalism, anomalous contributions in general arise not only anomalous diagrams
but also from normal non-skeletons, cf. Eqs. (2.117) and (2.118). In contrast, in the cumulant formalism,
anomalous contributions arise only from higher cumulants.
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between the K’s and the G’s can be inverted iteratively; the first few relations are

Gi1 =Ki1 , (2.151)
Gi1i2 =Ki1Ki2 +Ki1i2 , (2.152)
Gi1i2i3 =Ki1Ki2Ki3 +K[i1i2Ki3] +Ki1i2i3 , (2.153)
Gi1i2i3i4 =Ki1Ki2Ki3Ki4 +K[i1i2Ki3Ki4] +K[i1i2Ki3i4] +K[i1i2i3Ki4] +Ki1i2i3i4; (2.154)

and in general [142] (
Gi1···in =

∑

P∈ partitions
of {1,...,n}

∏

I∈P

K{iν}ν∈I

)
(2.155)

Eqs. (2.145), (2.146) and (2.155) provide the basis for the evaluation of (grand-canonical) en-
semble averages of creation and destruction operators in terms of cumulants.

2.4.2. Cumulant Representation of Linked Clusters

In the case of the grand-canonical ensemble the higher cumulants vanish for the case where not
all indices are equal, i.e., Gi1···in =

∏n
ν=1Kiν for i1 , i2 , . . . , in. For skeletons (where all lines

carry different indices) this implies that, concerning the evaluation in terms of cumulants, the
obtained expression are the same as in the standard approach. This is however not the case for
diagrams with repeated indices, i.e., normal and anomalous non-skeletons.

Normal Non-Skeletons. Such diagrams correspond to G’s where repeated indices appear in
the subscripts or in the superscripts. For repeated indices also higher cumulants contribute.
Without loss of generality we consider the case where only one hole line carries insertions, i.e.,
we consider Gk1···km

i1···ina···a. Using the relations ∂ f −i /∂(−βεi) = f −i f +
i and f +

i = 1 − f −i we find

Gk1···km
i1···inaa ∼ KaKa +Kaa = f −a f −a + f −a f +

a = f −a , (2.156)

Gk1···km
i1···inaaa ∼ KaKaKa +

(
3
1

)
KaaKa +Kaaa = f −a f −a f −a + 3 f −a f +

a f −a + f −a f +
a ( f +

a − f −a ) = f −a .

(2.157)

One sees that, [in contrast to the situation in the contraction formalism, cf. Eq. (2.117)], the
articulation lines carry only a single Fermi-Dirac distribution, i.e.,

(
Gk1···km

i1···ina···a = Gk1···km
i1···ina

)
(2.158)

From Eq. (2.145) it then follows that also Gk1···kma···a
i1···in = Gk1···kma

i1···in . Note that this implies that the
resummation of normal “one-loop” insertions in terms of a geometric series has the same form
as in the ground-state formalism if the reduced formula is used (but not if the direct formula is
used, see below).

We will now rewrite Eq. (2.158) in a more explicit combinatorial form. For this, we introduce
the notation f ≡ f −a as well as Gn ≡ Gi1···in and Kn ≡ Ki1···in , where iν = a ∀ν. It is easy to see
that Kn can be written as

Kn =

n∑

k=1

xk,n f k, (2.159)

64



2. Many-Body Perturbation Theory

where the numbers xk,n satisfy the recursion relation

xk,n = k xk,n−1 − (k − 1) xk−1,n−1, (2.160)

with starting value x1,1 = 1. Note that x1,n = 1 and xk,n = (−1)k−1xk,n. It is also easy to see that
Gn can be written as

Gn =
∑

{m`}∑L
`=1 m`=n

m1≥m2≥...≥mL

N{m` }

L∏

`=1

Km`
, (2.161)

where the numbers N{m`} are given by

N{m`} =

(
n

m1

) (
n − m1

m2

)
· · ·

(
n − m1 − . . . − mL−2

mL−1

)

Θ1! · · ·ΘM!
, (2.162)

where Θ1, . . . , ΘM are the numbers of identical m`’s in the set {m`}.43 Eq. (2.158) is then equiv-
alent to

(
∀n ∈ N : Nk,n :=

∑

{m`}∑L
`=1 m`=n

m1≥m2≥...≥mL

N{m`}

L∏

`=1

xk`,m`
= 0, ∀ k =

L∏

`=1

k` ∈ [2, n]
)

(2.163)

together with N1,n = 1, which is however trivial since the only contribution to N1,n is from Kn,
which has the term x1,n f = f . For instance, for n = 4 it is44

• N2,4 = x2,4 + N{3,1}x1,3 + N{2,2}x1,2 = −7 + 4 + 3 = 0.

• N3,4 = x3,4 + N{3,1}x2,3 + N{2,2}(x2,2 + x2,2) + N{2,1,1} = 12 − 12 − 6 + 6 = 0.

• N4,4 = x4,4 + N{3,1}x3,3 + N{2,2}x2,2x2,2 + N{2,1,1}x2,2 + 1 = −6 + 8 + 3 − 6 + 1 = 0.

For n = 5 it is

• N2,5 = x2,5 + N{4,1} + N{3,2} = −15 + 5 + 10 = 0.

• N3,5 = x3,5 + N{4,1}x2,4 + N{3,2}(x2,3 + x2,2) + N{3,1,1} + N{2,2,2} = 50 − 35 − 40 + 15 + 10 = 0.

• N4,5 = x4,5 + N{4,1}x3,4 + N{3,2}(x3,3 + x2,3x2,2) + N{3,1,1}x2,3 + N{2,2,1}(x2,2 + x2,2) = −60 + 60 +

50 − 30 − 30 + 10 = 0.

• N5,5 = x5,5 + N{4,1}x5,4 + N{3,2}(x3,3x2,2) + N{3,1,1}x3,3 + N{2,2,1}x2,2x2,2 + 1 = 24 − 30 − 20 +

15 + 20 − 10 + 1 = 0.

43 For instance, G14 has a contribution N{4,4,2,2,2}K4K4K2K2K2, where N{4,4,2,2,2} =

(
14
4

)(
10
4

)(
6
2

)(
4
2

)

2!3! .
44 We omit the trivial factors N{n} = 1, N{1,...,1} = 1, and x1,p = 1; e.g., with the trivial factors included, the

expression for N3,4 reads N3,4 = N{4}x3,4 + N{3,1}x2,3x1,1 + N{2,2}(x2,2x1,2 + x1,2x2,2) + N{2,1,1}x1,2x1,1x1,1.
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This will be taken as sufficient to “proof” Eq. (2.158) and Eq. (2.163), respectively.45

Anomalous Non-Skeletons. The expressions that arise from anomalous diagrams correspond to
G’s with a certain number of identical upper and lower indices, i.e., Gk1···kma···a

i1···ina···a . It is sufficient to
consider the term Ga···a

i1···ina···a, which by Eq. (2.145), using the previous relation Gi1···ina···a = Gi1···ina

and denoting by l is the number of a’s that appear as upper indices, is given by

(
Ga···a

i1···ina···a =
∑

P⊂{1,...,l}
(−1)|P|Gi1···ina···a {aν}ν∈P =

∑

P⊂{1,...,l}
(−1)|P|Gi1···ina = 0

)
(2.164)

i.e., if evaluated in terms of cumulants, the contributions associated with anomalous diagrams
are zero. In the next section we will find that the anomalous contributions arise instead from
unlinked diagrams connected via higher cumulants.

2.4.3. Cumulant Representation of Unlinked Clusters

We now evaluate the remaining contributions in Eq. (2.141), i.e., the contributions from un-
linked clusters and products of (linked or unlinked) clusters. In the standard approach these
contributions cancel each other (by virtue of the linked-cluster theorem), but we will find that
certain unlinked terms survive in the cumulant formalism, and that these terms generate the
(“disentangled”) anomalous contributions which are missing so far.

Simply-Connected Diagrams. Each of the unlinked or product contributions contains terms
that diverge superlinearly (∝ Ων, ν ≥ 2) in the thermodynamic limit. These unphysical terms
must still cancel each other in the cumulant formalism. To identify the cancellation of the su-
perlinearly divergent terms, we write the expression for a general unlinked contribution to Gklm...

i ja,...
as

An,unlinked =

[
1
β

1
α1! · · ·αν! (Γn1)

α1 · · · (Γnν)
αν

]

nα1
1 +...+nανν =n

. (2.165)

The corresponding product terms are given by

βAn1 An−n1,unlinked =

[
1
β

1
(α1 − 1)! · · ·αν! (Γn1)

α1 · · · (Γnν)
αν

]

nα1
1 +...+nαm

ν =n

,

...

βn(An1)
α1 · · · (Anm)αν =

[
1
β

(Γn1)
α1 · · · (Γnν)

αν

]

nα1
1 +...+nανν =n

. (2.166)

The linked-cluster theorem implies the cancellation of the unlinked and product terms for con-
tributions to Gkl...

i j,... from first (“single-index”) cumulants, i.e., the contributions from

Gklm...
i ja,... ∼ KiK jKa · · · K̄kK̄lK̄m · · · , (2.167)

45 The correctness of Eq. (2.158) and Eq. (2.163), respectively, to all orders can be inferred from Luttinger’s
alternative derivation [277] of the mean-occupation number formalism (the fully-renormalized ℵ = “direct”
case, cf. Sec. 2.5.1).
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where we have used the notation K̄k = 1 − Kk. The next contributions are the ones with one
double-index cumulant, i.e.,

Gklm...
i ja,... ∼ δi jKiiKa · · · K̄kK̄lK̄m · · · + {similar terms}. (2.168)

Note that whereas for a selection of α unlinked diagrams the terms with first cumulants diverge
as Ωα, because of the delta function in Eq. (2.168) the terms with double-index cumulants
diverge as Ωα−1, and similarly for other higher cumulants, e.g.,

Gklm...
i ja,... ∼ δi jδiaKiii · · · K̄kK̄lK̄m · · · + {similar terms}. (2.169)

If (for a given higher cumulant) the paired indices belong to the same subdiagram, the linked-
cluster theorem again applies. If the paired indices belong to different subdiagrams, then only
those product terms contribute where the linked subdiagrams do not belong to different factors
but to the same factor Aαν

nν,unlinked. However, by the linked-cluster theorem all of these contri-
butions cancel each other, since the subdiagrams with paired indices take the role of a linked
contribution, and the same combinatorics applies. Hence, the first nonvanishing contribution
is the one of order Ω where each subdiagram is connected to another one by a single pairing
of indices, because in that case only the term An,unlinked remains, and therefore no cancellation
takes place. The remaining contributions are then all possible unlinked diagrams where the di-
agrams are simply-connected in terms of index pairings. The index pairings can be represented
by “insertion-lines” (“higher-cumulant connections”); the diagrams contributing at third order
are shown in Figs. 2.12 and 2.13, where the insertion-lines are colored in dark red.

(a) (Γ1)
3[Gij;ab;cd]s.-c. (b) (Γ1)

3[Gij;ab;cd]s.-c. (c) (Γ1)
3[Gij;ab;cd]s.-c.

(d) (Γ1)
3[Gij;ab;cd]s.-c.

Figure 2.12.: Simply-connected diagrams involving three first-order diagrams, (Γ1)3. Dia-
grams (a,b,c) correspond to the three terms with two double-index cumulants,
diagram (d) to the triple-index cumulant; each diagram represents 23 different
(equivalent) index pairings. The four diagrams are in one-to-one correspon-
dence with the two-loop (a,b,c) and three-loop (d) diagrams of Fig. 2.7.

For a given simply-connected contribution with diagrams (Γn1)
{kn1 }
{in1 }
· · · (Γnν)

{knν }
{inν } (where {in} and

{kn} are the indices of the hole and particle lines for each diagram) we introduce the notation
[
G{kn1 };...;{knν }
{in1 };...;{inν }

]

s.-c.
, (2.170)

where “s.-c.” stands for “simply-connected”. The simply-connected diagrams up to third order
are given by

(
Γ1

)
i j
(
Γ1

)
ab :

[
Gi j;ab

]
s.c.

= 22 × δiaKiiK jKb, (2.171)
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(
Γ2,normal

)kl
i j
(
Γ1

)
ab :

[
Gkl

i j;ab

]
s.c.

= 22 × δiaKiiK jKbK̄lK̄k − 22 × δkaKkkKiK jKbK̄l, (2.172)
(
Γ1

)
i j
(
Γ1

)
ab
(
Γ1

)
cd :

[
Gi j;ab;cd

]
s.c.

= 3 × 23 × δiaKiiK jcKbKc + 23 × δiaδicKiiiK jKbKd,

(2.173)

where the prefactors correspond to the number of equivalent pairings of indices for each con-
tribution. The simply-connected diagrams for

(
Γ1

)
i j
(
Γ1

)
ab
(
Γ1

)
cd are shown in Fig. 2.12. It is

readily verified that the contributions from
(
Γ1

)
i j
(
Γ1

)
ab and

(
Γ1

)
i j
(
Γ1

)
ab
(
Γ1

)
cd reproduce the ex-

pressions for the second-order anomalous and the third-order two- and three-loop anomalous
diagrams (cf. Sec. 2.3.4), respectively. The three diagrams for

(
Γ2,normal

)kl
i j
(
Γ1

)
ab are shown in

Fig. 2.13.

(a) (Γ2,normalΓ1)[Gkl
ij;ab]s.-c. (b) (Γ2,normalΓ1)[Gkl

ij;ab]s.-c. (c) (Γ2,normalΓ1)[Gkl
ij;ab]s.-c.

Figure 2.13.: Simply-connected diagrams for Γ2,normalΓ1 (only the cases where the
insertion-line is on the upper hole line of Γ2,normal are shown). Diagrams (a)
and (c) can be seen as the analogs of the third-order “one-loop” diagrams
(e) and (f) of Fig. 2.8. Diagram (b) has no counterpart in the contraction
formalism.

“Direct” and “Reduced” Factorization. In the standard representation of “anomalous con-
tributions” (cf. footnote42) in terms of non-skeletons with “anomalous” articulation lines, the
particular “time-ordering” of diagram (b) of Fig. (2.13) does not occur. This lack of any “time-
ordering” constraint is the crucial feature that leads to the “direct” factorization property [Eq.
(2.84)], see Sec. 2.5.1 for the proof. The “reduced” factorization property [Eq. (2.88)] follows
from the fact that for a simply-connected diagram with N subclusters, there is a product of
derivatives of Fermi-Dirac distributions

∏

ν

∂nν f −iν
∂µnν

, (2.174)

where
∑
ν nν = N − 1. To generate an anomalous term of order N − 1, this requires a factor βK

with K = N − 1, while for K < N − 1 a “pseudo-anomalous” term results. If the subclusters
are not overlapping in time, there are N − 1 “identically” vanishing energy denominators. The
z = 0 residue in the “reduced” case is then of order N − 1, and the contribution where the N − 1
derivatives from the residue act on the exponential e−βz gives a factor βN−1 multiplied with the
“reduced” expressions for the subclusters, i.e., the factorized part of Eq. (2.88). The other terms
from the z = 0 residue as well as the contributions with partially overlapping subclusters are
all “pseudo-anomalous”, and comprise the “R” term in Eq. (2.88). We now show that R = 0
for selected contributions. For the “one-loop” case (which is discussed below) R = 0 follows
from the resummability of normal and anomalous “one-loop” insertions in the “direct” case. In
the “reduced” case, the normal “one-loop” insertions are resummable in terms of a geometric
series, and the factorized “reduced” term is also resummable. In the case where there are several
higher-order diagrams the cancellation is more involved. For instance, for Γ2,normalΓ2,normal there
are six different time-orderings. Denoting by E1,2 the energy denominators associated with the
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two diagrams, the residue sum for the two non-overlapping time-orderings (where O = 2) is
given by

2 × 1
O

Res
z=0

e−βz

z(−z)
1

(E1 − z)(E2 − z)
=

β

E1E2
− 1

E 2
1 E2
− 1

E1E 2
2

, (2.175)

The R term is comprised of the second and third term in the above equation together with the
contributions from the four overlapping time-orderings, i.e.,

R[Γ2,normalΓ2,normal] ∼ − 1
E 2

1 E2
− 1

E1E 2
2

+
2

E1(E1 + E2)E2
+

1
E 2

1 (E1 + E2)
+

1
(E1 + E2)E 2

2

= 0.

(2.176)

For the case of a third- and a second-order diagram, Γ3Γ2,normal, there are three energy denom-
inators, denoted by E1,2 (corresponding to Γ3, which can be either a ladder, a ring, or a normal
“one-loop” diagram) and E3 (corresponding to Γ2,normal), and ten different time-orderings. In
that case, the R term is given by

R[Γ3Γ2,normal] ∼ − 1
E 2

1 E2E3
− 1

E1E 2
2 E3
− 1

E1E2E 2
3

+
1

E1E2(E2 + E3)E3
+

1
E1E 2

2 (E2 + E3)
+

1
E1E2(E1 + E3)E3

+
1

E 2
1 E2(E1 + E3)

+
1

(E1 + E3)(E2 + E3)

[
1

E1E2
+

1
E1E3

+
1

E2E3
+

1
E 2

3

]

= 0. (2.177)

Based on these findings we assume that R = 0 to all orders. However, a general proof that
R = 0 should be attempted in future research (see footnote 20).

“One-Loop” Insertions. For higher-cumulant diagrams without higher-order parts such as
those of Fig. 2.12 it does not matter which formula (“direct”, “cyclic”, “reduced”) is used;
the corresponding anomalous Hugenholtz diagrams transform into each other under cyclic ver-
tex permutations, so the three formulas are equivalent for the time-ordered sum of the various
higher-cumulant diagrams. This is not the case for (equal-index) higher-cumulant diagrams
with higher-order parts, e.g., the Γ2,normalΓ1 diagrams of Fig. 2.12. The time-ordered sum of all
Γ2,normalΓ1 diagrams does contain all their cyclic permutations, but this argument does not work
here: in the contraction formalism, the contributions from these diagrams correspond to the
ones from anomalous “one-loop” diagrams, which transform into normal “one-loop” diagrams
under cyclic vertex permutations. In other terms, the correspondence between cyclic vertex per-
mutations and cyclic permutations of interaction operators in the ensemble average is not valid
for equal-index higher-cumulant terms. The absence of this correspondence is of course due to
the evaluation of ensemble averages via cumulants.

It will now be instructive to evaluate the Γ2,normalΓ1 contribution as well as the normal “one-
loop” contribution D3,one-loop explicitly using both the reduced and the cyclic formula. In the
“reduced” case, the sum of the residues for the non-overlapping (a,c) and overlapping (b) time-
orderings are given by

2 × 1
O

Res
z=0

e−βz

z
1

(E − z)(−z)
+ Res

z=0

e−βz

z
1

(E − z)2 =
β

E
− 1

E 2 +
1
E 2 =

β

E
, (2.178)
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where we have used O = 2 for the non-overlapping case. Eq. (2.178) reproduces the anomalous
part of Eq. (2.119). The normal part is (of course) reproduced by D reduced

3,one-loop.
If the direct formula is used, the residue sum is given by

− 1
β

[
2 × Res

z=0

e−βz

z2

1
(E − z)(−z)

+ 2 × Res
z=E

e−βz

z2

1
(E − z)(−z)

+ Res
z=0

e−βz

z2

1
(E − z)2 + Res

z=E

e−βz

z2

1
(E − z)2

]

=
β

E
− 1

E 2 +
e−βE

E 2 + . . . , (2.179)

where the ellipses denote terms that vanish by relabeling indices. The first-term ∼ β leads to
the anomalous part and the second term to the normal part of Eq. (2.119), as follows from

∑

i jkl

[
− 1

E 2 +
e−βE

E 2

]
f −i f −j f +

k f +
l

(
S1;i f +

i + S1; j f +
j − S1;k f −k − S1;l f −l

)

=
∑

i jkl

f −i f −j f +
k f +

l

E 2

(
S1;i + S1; j − S1;k − S1;l

)
. (2.180)

This implies that Ddirect
3,one-loop = 0, which can easily be seen explicity. The “direct” expression for

the sum of all normal “one-loop” insertions can in fact be derived explicitly by noting that the
time-dependent (time-ordered) “direct” expression for (e.g.,) the second-order normal diagram
with K = 0, . . . ,∞ normal “one-loop” insertions on a given line has the form

∞∑

K=0

∫

β>τK+1>...>τ0>0

dτK+1 · · · dτ0 e−E (τK+1−τ0)(−S )K =

∫

β>τK+1>τ0>0

dτK+1dτ0 e−(E +S ) (τK+1−τ0), (2.181)

where S is shorthand for the first-order perturbative self-energy correction to the particle and
hole energies. The remaining time integrals in the above equation are equivalent to the “direct”
residue sum for the second-order normal diagram, leading to

β

ES
− 1

E 2
S

+
e−βES

E 2
S

=
β

E

(
1 − S

E
+

S 2

E 2 +
S 3

E 3 + . . .

)
− 1

E 2

(
1 − 2

S
E

+ 3
S 2

E 2 + 4
S 3

E 3 + . . .

)

+
e−βE

E 2

(
1 − 2

S
E

+ 3
S 2

E 2 + 4
S 3

E 3 + . . .

) (
1 − βS +

β2S 2

2!
− β3S 3

3!
+ . . .

)
.

(2.182)

Adding a factor f −i f −j f +
k f +

l and summing over indices, in the expanded case (right side of the
above equation) the third-order terms∼ S cancel each other. The terms that diverge as T → 0
would be cancelled by the corresponding terms from diagrams with both normal and anomalous
“one-loop” insertions. Correspondingly, the second and third term in the resummed version (left
side) cancel if the f −i f −j f +

k f +
l factor is renormalized by resumming all anomalous “one-loop”

insertions (in that case the self-energy becomes the self-consistent one, S → X). However,
terms that diverge as T → 0 remain if higher-cumulant contributions associated with (certain)
non-skeleton self-energies beyond sixth order are “resummed” and ℵ = “direct”.

2.4.4. Correlation-Bond Formalism

The cumulant formalism can be adapted to construct a “workable” perturbation series for the
canonical ensemble.46 We start with the standard finite-temperature perturbation series for the
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interaction contribution to the free energy ∆F = F − F (cf. Sec. 2.2), which can be written as

∆F =

∞∑

n=1

λn
∑

k

∑

{ai},{bi}
βb1+...+bk−1

(
b1 + . . . + bk

b1, . . . , bk

)
(Fa1)

b1 · · · (Fak)
bk

b1 + . . . + bk

∣∣∣∣∣
a1b1+...+akbk=n

, (2.183)

where Fν = − 1
β

(−1)ν

ν!

β∫
0

dτν · · · dτ1 〈P[VI(τν) · · ·VI(τ1)]〉N , with 〈. . .〉N denoting the (unper-

turbed) canonical ensemble average involving states with
〈
Φp

∣∣∣N
∣∣∣Φp

〉
= N (where N is fixed).

The crucial idea leading to the “proper” canonical perturbation series F(T, µ̃, Ω) is to evaluate
Eq. (2.183) not directly, but in terms of a Legendre transform with respect to the (logarithm of)
the unperturbed grand-canonical partition function, i.e., all ensemble averages are taken with
respect to an unperturbed grand-canonical ensemble. Crudely speaking, this method effectively
“shifts” the constraint

〈
Φp

∣∣∣N
∣∣∣Φp

〉
= N to the level of diagrams, resulting in new contributions

from (simply-connected) unlinked diagrams; we refer to these contributions as “correlation
bonds” (slightly modifying the use of this term compared to Ref. [65]).

The canonical-ensemble average of a fully-contracted [hole-type, cf. Eq. (2.145] string of
creation and annihilation operators is given by

Gi1...in = 〈a†i1ai1 · · · a†inain〉N =
1
Z

∂nZ
∂[−βεi1] · · · ∂[−βεin]

, (2.184)

where Z(T,N, Ω) is the partition function of the unperturbed canonical ensemble. The cumu-
lants are now given by

Ki1...in =
∂n lnZ

∂[−βεi1] · · · ∂[−βεin]
. (2.185)

The decisive step is now to evaluate the cumulants not directly but using the Legendre transfor-
mation (

lnZ(T,N, Ω) = lnY(T, µ̃, Ω) − µ̃∂ lnY(T, µ̃, Ω)
∂µ̃

)
(2.186)

Here, µ̃ is the chemical potential of an unperturbed grand-canonical system with the same mean
particle number as the interacting canonical system, i.e., N = − 1

β
∂ lnY/∂µ̃ =

∑
a f̃ −a . Here, f̃ −a

denotes the Fermi-Dirac distribution with µ̃ as the chemical potential, i.e., f̃ −a := f −a (T, µ̃, Ω).
With N being fixed, N =

∑
a f̃ −a determines µ̃ as a functional of the spectrum {εa}, which we

bring into effect by means of an implicit equation:
(
J (µ̃, {εa}) :=

∑

a

f̃ −a − N = 0
)

(2.187)

46 A different (and more well-known) method to derive F(T, µ̃, Ω) was introduced earlier by Kohn and Luttinger
[246], see Sec. 2.5.3 for details. The Brout-Englert method (correlation-bond formalism) is conceptually
clearer (since it starts from the canonical ensemble), and has the great benefit that it manifests the inser-
tion nature of the additional (correlation-bond) contributions that arise due to the change from A(T, µ, Ω) to
F(T, µ̃, Ω). In particular, the zero-temperature limit of F(T, µ̃, Ω) involves the cancellation of “anomalous in-
sertions” (higher cumulants with equal indices) and correlation bonds [see Sec. 2.4.6, and also Ref. [215]];
identifying these cancellations at higher orders is much more complicated in the Kohn-Luttinger formalism.
We also note that in Ref. [214] it has been argued that the canonical-ensemble perturbation series F(T, µ̃, Ω)
can also be derived from an asymptotic expansion of the Laplace transform of the grand partition function via
contour integrals, cf. [214] for details.
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Eq. (2.187) entails that (in contrast to the grand-canonical perturbation series) also higher cu-
mulants with distinct indices contribute; these are the correlation-bond contributions.

To see how the correlation bonds arise we now derive the expressions for the first few cumu-
lants. From Eqs. (2.185) and (2.186) the first (“single-index”) cumulants are given by

Ki =
∂ lnY
∂[−βεi]

+
∂ lnY
∂[βµ̃]

(
∂[βµ̃]
∂[−βεi]

)

J

+ N
(
∂[βµ̃]
∂[−βεi]

)

J

= f̃ −i . (2.188)

The expression for Ki1i2 (with i1 , i2) is then given by

Ki1i2 =

(
∂Ki1

∂[−βεi2]

)

J

=
∂Ki1

∂[βµ̃]

(
∂[βµ̃]
∂[−βεi2]

)

J

. (2.189)

The term (∂[βµ̃]/∂[−βεi2])J is given by

(
∂[βµ̃]
∂[−βεi]

)

J

= −
[
∂J (µ̃, {εα})

∂[βµ̃]

]−1
∂J (µ̃, {εα})
∂[−βεi]

= − f̃ −i f̃ +
i∑

α f̃ −α f̃ +
α

= O(1/N). (2.190)

Hence, Ki1i2 is a function of εi1 , εi2 , µ̃({εα}), and also explicitly of {εα} through the term
∂J /∂[βµ̃] =

[∑
α f̃ −α f̃ +

α

]−1. The expression for Ki1i2i3 with i1 , i2 , i3 is then given by

Ki1i2i3 =

(
∂Ki1i2

∂[−βεi3]

)

J

=
∂Ki1i2

∂[βµ̃]

(
∂[βµ̃]
∂[−βεi3]

)

J

− ∂Ki1

∂[βµ̃]
∂J (µ̃, {εα})
∂[−βεi2]

∂

∂[−βεi3]

[
∂J (µ̃, {εα})

∂[βµ̃]

]−1

,

(2.191)

The higher K’s then follow by iteration.47 Both terms in Eq. (2.191) are of order O(1/N3);
it is then straightforward to show that

[Ki1...in
]
ia,ib ∀a,b∈[1,n] = O(1/Nn−1). Thus, altogether, the

relevant contributions from higher cumulants are again given by simply-connected diagrams:
multiply-connected diagrams give a vanishing contribution to the free energy density in the
thermodynamic limit.48

2.4.5. Free Energy up to Third Order

The perturbation series for ∆F involves the same diagrams as the one for ∆A, but for each higher
cumulant there are, in addition to the equal-index terms (anomalous contributions), several
terms with a number of distinct indices, e.g., Kia ∼ Kia + δiaKii, and Kiac ∼ Kiac + δiaKiic +

δicKiai + δacKiaa + δiaδicKiii. The expression for F(T, µ̃, Ω) is therefore given by

F(T, µ̃, Ω) = F (T, µ̃, Ω) + ∆A(T, µ̃, Ω) + Fcorr.-bond(T, µ̃, Ω), (2.192)

where Fcorr.-bond(T, µ̃, Ω) denotes the additional contributions from higher cumulants with dis-
tinct indices. For orientation we give here the explicit expression for the first few cumulants
with only distinct indices (in shorthand notation):

Ki1i2 =
1( − ω)
K (1)

i1
K (1)

i2
, (2.193)

47 Note that the recursion formula for Ki1...in given by Eq. (B.12) in [65] is not valid; e.g., for Ki1i2i3 it misses the
second term in Eq. (2.191).

48 In the grand-canonical case, the linked-cluster theorem implies that the multiply-connected diagrams in fact
cancel, but the same cancellation is not evident here (i.e., for the canonical case).
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Ki1i2i3 =
1

(−ω)2K
(2)
[i1
K (1)

i2
K (1)

i3] +
ω(1)

(−ω)3K
(1)
i1
K (1)

i2
K (1)

i3
, (2.194)

Ki1i2i3i4 =
1

(−ω)3K
(3)
[i1
K (1)

i2
K (1)

i3
K (1)

i4] +
2

(−ω)3K
(2)
[i1
K (2)

i2
K (1)

i3
K (1)

i4] +

[
1

(−ω)3

](1)

K (2)
[i1
K (1)

i2
K (1)

i3
K (1)

i4]

+
1( − ω)

[
ω[1]

( − ω)3

](1)

K (1)
i1
K (1)

i2
K (1)

i3
K (1)

i4
, (2.195)

where ω :=
∑
α f̃ −α f̃ +

α , and the superscripts “(n)” denote the nth derivative with respect to µ̃.
The derivative terms are given by ω(n) = ∂nω

∂[βµ̃]n =
∑
α

∂n+1 f̃ −α
∂[βµ̃]n+1 and K (n)

i = ∂nKi
∂[βµ̃]n =

∂n f̃ −i
∂[βµ̃]n . The

expressions for cumulants with a subset of equal indices are obtained from the distinct-index
cumulants via Ki1···inaa = ∂

∂[−βεa]Ki1···ina, e.g., Kiaa = K (1)
i K (2)

a /(−ω).

The correlation-bond contributions are represented by the same diagrams as the anomalous
contributions; e.g., the third-order contributions are given by the diagrams given in Figs. 2.12
and 2.13. None of these contributions involve equal-index cumulants connected to higher-order
parts, so the direct, cyclic, and reduced formula are equivalent. For the contribution from two
first-order diagrams one finds (from the cyclic formula):

F
[
(Γ1)2

]
corr.-bond =

(−1)
2

Res
z=0

e−βz

z(−z)
1

(2!)2
︸                   ︷︷                   ︸

−β/8

∑

i jab

V̄ i j,i j
2B V̄ab,ab

2B
[Gi j;ab

]
s.-c.︸     ︷︷     ︸

22×K
(1)
i K(1)

a K jKb
(−ω)

= −
(
A[1]

1
)2

2A[2] . (2.196)

where we have introduced the notation A[0]
n (T, µ̃, Ω) = An(T, µ̃, Ω) and A[m,0]

n (T, µ̃, Ω) =

[(m − 1)!]−1∂mAn(T, µ̃, Ω)/∂µ̃m, with A0 = A. For the sum of diagrams (a) and (c) as well
as for diagram (b) one obtains (from the cyclic formula) the expressions

F
[
Γ2,normalΓ1

]
a+c

corr.-bond =
1
12

∑

i jklab

V̄ i j,kl
2B V̄kl,i j

2B V̄ab,ab
2B
−1 + e−βE +βE

E 2

[Gkl
i j;ab

]
s.-c., (2.197)

F
[
Γ2,normalΓ1

]
b

corr.-bond =
1
24

∑

i jklab

V̄ i j,kl
2B V̄ab,ab

2B V̄kl,i j
2B

1 − e−βE −βE e−βE

E 2

[Gkl
i j;ab

]
s.-c., (2.198)

The expression for [Gkl
i j;ab]s.-c. [cf. Eq. (2.172)] is invariant under the multiplication with a fac-

tor exp(−βE ) and the simultaneous relabeling of indices i j ↔ kl; the energy denominator is
symmetric under i j↔ kl (and the potential matrix elements are invariant). Hence, the “pseudo-
anomalous” terms in Eqs. (2.197) and (2.198) cancel. The sum of the remaining terms leads
to

F
[
Γ2,normalΓ1

]
corr.-bond = −

A[1]
1 A[1]

2,normal

A[2] . (2.199)

The expression for the contributions from
(
Γ1

)3 is given by (cyclic formula)

F
[
(Γ1)3

]
corr.-bond =

(−1)2

3
Res
z=0

e−βz

z(−z)2

1
(2!)3

︸                     ︷︷                     ︸
β2/48

∑

i jabcd

V̄ i j,i j
2B

2!
V̄ab,ab

2B

2!
V̄cd,cd

2B

2!
[Gi j;ab;cd

]
s.-c.. (2.200)
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The possible distinct-index cumulants for [Gi j;ab;cd]s.-c. are given by 24 × KiaK jc and 8 × Kiac.

The contribution from 24 × KiaK jc is given by
(

A[1]
1

)2

2
(
A[2]

)2 β2 ∑
i j V̄ i j,i j

2B f̃ −i f̃ +
i f̃ −j f̃ +

j . The two terms in

the expression for the triple-index cumulant [cf. Eq. (2.194)] give the following contributions:

8 × 1( − ω)2
K (2)

[i K (1)
a K (1)

c] ∼
(
A[1]

1
)2

2
(A[2])2 β2

∑

i j

V̄ i j,i j
2B f̃ −i f̃ +

i f̃ −j ( f̃ +
i − f̃ −i ), (2.201)

8 × ω[1]

( − ω)3
K (1)

i K [1]
a K [1]

c ∼ −
(
A[1]

1
)3A[3]

3
(A[2])3 . (2.202)

The contributions from 24×KiaK jc and the one from the first term of 8×Kiac (note the additional
factor 3 from the permutations) sum up to (A[1]

1 )2A[2]
1 /[2(A[2])2]. The remaining contributions

from mixed equal-index–distinct-index cumulants are given by

24 ×
(
δiaKiiK jc +Kiaδ jcK j j

)
∼ A[1]

1

2
(A[2])2 β

∑

i jc

V̄ i j,i j
2B V̄ jb, jb

2B f̃ −i f̃ −j f̃ +
j f̃ −b (2 f̃ +

i ), (2.203)

8 ×
(
δiaKiic + δicKiai + δacKiaa

)
∼ A[1]

1

2
(A[2])2 β

∑

i jc

V̄ i j,i j
2B V̄ jb, jb

2B f̃ −i f̃ +
i f̃ −j f̃ −b ( f̃ +

i − f̃ −i ). (2.204)

These two contributions add up to −A[1]
1 A[1]

2,anomalous/A[2]. Overall, the contribution from
(
Γ1

)3 is
then given by

F
[
(Γ1)3

]
corr.-bond = −

A[1]
1 A[1]

2,anomalous

A[2] +

(
A[1]

1
)2A[2]

1

2
(A[2])2 −

(
A[1]

1
)3A[3]

3
(A[2])3 . (2.205)

Note that terms ∝ A[n≥3] [or ∝ ω(ν≥1) in Eqs. (2.194) and (2.195)] are “pseudo-anomalous”, i.e.,

A[n≥3] T→0−−−→ −
∑

i

∂n−1Θ(µ̃ − εi)
∂µ̃n−1

∣∣∣∣∣
n≥3

= 0. (2.206)

2.4.6. Zero-Temperature Limit

If the reduced formula is used, in the cumulant formalism the expressions for normal diagrams
match (in the zero-temperature limit) the corresponding ones in ground-state formalism. The
zero-temperature limit of the perturbation series for the free energy F(T, µ̃, Ω) is then given by

F(T, µ̃, Ω)
T→0−−−→ E0(εF , Ω) + δE0(εF , Ω), (2.207)

where by definition µ̃
T→0−−−→ εF . The term δE0(εF , Ω) is comprised entirely of anomalous terms,

i.e., it corresponds to the sum of the factorized “reduced” parts of the higher-cumulant contri-
butions up to the considered perturbative order. If the adiabatic zero-temperature formalism of
Sec. 2.1 is valid it should be δE0(εF , Ω) = 0. In the following, we analyze selected contribu-
tions to δE0 and show that they cancel (only) in the case of an infinite homogeneous system
with rotationally invariant interactions (“isotropic case”). Note that in the following, if we refer
to the contribution from a given higher-cumulant term we always mean the factorized part of
Eq. (2.88).
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For any quantity g(~k1, . . . ,~kn) that depends on a set of single-particle momenta {~k1, . . . ,~kn},
we define its average with respect the (unperturbed) Fermi surface as

〈
g(~k1, . . . ,~kn)

〉
F

:=

∑
~k1···~kn

g(~k1, . . . ,~kn)
∏n

i=1 δ(kF − ki)∑
~k1···~kn

∏n
i=1 δ(kF − ki)

, (2.208)

where kF is the Fermi momentum defined by εF = k2
F/(2M), and ki = |~ki|. Then, in the “isotropic

case”, the following factorization property holds
( 〈

g1(~k1, ~q) g2(~k2, ~q)
〉
F

=
〈
g1(~k1, ~q)

〉
F

〈
g2(~k2, ~q)

〉
F

)
(2.209)

This is because by rotational invariance, g1 and g2 can be written as functions of k1, q, θ1 and
k2, q, θ2, respectively, where θ1,2 = ^̂̂(~k1,2, ~q). In the Fermi-surface average the two independent
angles θ1 and θ2 are integrated over; carrying out the angular integrals in the Fermi-surface
average of g1(~k1, ~q)g2(~k2, ~q) then leads to an integrand G1(p, k)G2(q, k) that has no angular de-
pendence, i.e., in shorthand notation

∫

~k,~p,~q
g1(p, k, θ)g2(p, k, θ′) δk1δk2δq =

∫

k,p,q
G1(p, k)G2(q, k) δk1δk2δq = G1(kF , kF)G2(kF , kF),

(2.210)

which proofs Eq. (2.209).

Second Order. We now show that the second-order contribution to δE0 vanishes in the isotropic
case. The second-order contributions to δE0 can be written as

F2,anomalous
T→0−−−→ −1

2

∑

i

δA1

δ f̃i

δA1

δ f̃i
δi, F2,corr.-bond

T→0−−−→ −1
2

∑

i j

δA1

δ f̃i

δA1

δ f̃ j

δiδ j

(−ωF)
, (2.211)

where ωF :=
∑

i δi denotes the number of states on the Fermi surface, and δi := δ(εF − εi). With
X1;i := δA1/δ f̃i, Eq. (2.211) reads

F2,anomalous
T→0−−−→ − 1

2

〈
S 2

1

〉
F
ωF , F2,corr.-bond

T→0−−−→ 1
2
〈S1〉2F ωF , (2.212)

where 〈 f 〉F :=
∑

i δiX1;i/
∑

i δi. The vanishing of δE0;2 in the “isotropic case” follows then as the
trivial case of Eq. (2.209) where the two quantities in the Fermi-surface average are independent.
Note also that in general δE0;2 ≤ 0, i.e.,

δE0;2 = −ωF

2

〈(
S1 − 〈S1〉F

)2
〉

F
≤ 0. (2.213)

This shows that, at second order in MBPT, in the “anisotropic case” the energy of the state that
adiabatically evolves from the unperturbed ground state (as calculated in the adiabatic zero-
temperature formalism) is larger than the energy of the “true” ground-state (as obtained from
the zero-temperature limit of the canonical perturbation series).

The generalization for the case of a system with multiple species (where for each species ξ
there is an associated Fermi energy εF,ξ) is straightforward. Because the higher cumulants can
connect only equal-species lines, the contributions to δE0;2 are now given by

F2,anomalous
T→0−−−→ −1

2

∑

i,ξ

δA1

δ f̃i,ξ

δA1

δ f̃i,ξ
δi,ξ, F2,corr.-bond

T→0−−−→ −1
2

∑

i j,ξ

δA1

δ f̃i,ξ

δA1

δ f̃ j,ξ

δi,ξδ j,ξ

(−ωF,ξ)
,

(2.214)
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where δi,ξ := δ(εF,ξ−εi) andωF,ξ :=
∑
α δα,ξ. With S1;i,ξ := δA1/δ f̃i,ξ and 〈 f 〉F,ξ :=

∑
i δi,ξ fi/

∑
i δi,ξ,

Eq. (2.214) reads

F2,anomalous
T→0−−−→ − 1

2

∑

ξ

〈
(S1;ξ)2

〉
F,ξ
ωF,ξ, F2,corr.-bond

T→0−−−→ 1
2

∑

ξ

〈
S1;ξ

〉2

F,ξ
ωF,ξ, (2.215)

which again shows that δE0;2 vanishes in the “isotropic case”. In the following we restrict the
discussion to the one-species case.

Double-Index Cumulants. The above analysis is readily generalized for any contribution
∼ Γν1 · · ·ΓνN+1 , where all diagrams Γnk are connected via double-index cumulants Ki j only.
Since there are N + 1 diagrams, one has N double-index cumulants, which can be either
equal-index or distinct-index ones. The contribution to δE0;

∑
νi with N equal-index cumulants

Ki1i1 · · · KiN iN has the form

Ki1i1 · · · KiN iN ∼
∑

i1···iN
gi1···iN

i1i1···iNδi1 . . . δiN = 〈g〉F ωN
F , (2.216)

where gi1···iN
i1i1···iN = g1;i1i1 · · · gN;iN iN The contribution where the cumulant with index i1 is a distinct-

index one has the form

Ki1a1Ki2i2 · · · KiN iN ∼
∑

i1a1i2···iN
ga1i2···iN

i1i2···iN
δa1

(−ωF)
δi1 . . . δiN = − 〈g〉F ωN

F , (2.217)

the one with two leading distinct-index cumulants is given by

Ki1a1Ki2a2Ki3i3 · · · KiN iN ∼
∑

i1a1i2a2i3···iN
ga1a2i3···iN

i1i2i3···iN
δa1

(−ωF)
δa2

(−ωF)
δi1 . . . δiN = 〈g〉F ωN

F , (2.218)

etc. In Eqs. (2.216), (2.217) and (2.218), the last equality (which holds for the “isotropic case”
only) corresponds to the generalization of Eq. (2.209) for multiple g’s.

There are
(
N
1

)
contributions with one distinct-index cumulant,

(
N
2

)
with two distinct-index

cumulants, etc. The vanishing of any contribution to δE0 that involves double-index cumulants
only then follows from the identity

N∑

k=0

(−1)k

(
N
k

)
= 0. (2.219)

In particular, this shows the cancellation of the third-order contributions from Γ2,normalΓ1 as well
as the double-index ones from (Γ1)3. To proof that δE0,3 = 0 in the “isotropic case”, it remains
to show that also the triple-index contributions from (Γ1)3 cancel each other.

Multi-Index Cumulants. The cancellation of contributions to δE0 that involve cumulants with
more than two indices is less straightforward. For instance, the contributions to δE0,n+p+q from
three diagrams [∼ ΓnΓpΓq] connected via triple-index cumulants are given by

Kiii ∼
∑

i

Sn;iSp;iSq;iδ
′
i , (2.220)

Kiia ∼
∑

ia

Sn;iSp;iSq;aδ
′
i

δa

(−ωF)
, (2.221)
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Kiai ∼
∑

ia

Sn;iSp;aSq;iδ
′
i

δa

(−ωF)
, (2.222)

Kaii ∼
∑

ia

Sn;aSp;iSq;iδ
′
i

δa

(−ωF)
, (2.223)

Kiab ∼
∑

iab

Sn;iSp;aSq;b
δaδb

(−ωF)2δ
′
i +

∑

iab

Sn;iSp;aSq;b
δiδb

(−ωF)2δ
′
a +

∑

iab

Sn;iSp;aSq;b
δiδa

(−ωF)2δ
′
b,

(2.224)

where δ′i := ∂δ(εF − εi)/∂εF = −∂δ(εF − εi)/∂εi. Note that we have omitted the “pseudo-
anomalous” term from Kiab (which vanishes by itself in the zero-temperature limit), cf. Eq.
(2.194). In the “isotropic case”, the contributions with correlation-bonds simplify, i.e.,

Kiia ∼ − 〈Sq〉F
∫

i
Sn;iSp;iδ

′
i , (2.225)

Kiai ∼ − 〈Sp〉F
∫

i
Sn;iSq;iδ

′
i , (2.226)

Kaii ∼ − 〈Sn〉F
∫

i
Sp;iSq;iδ

′
i , (2.227)

Kiab ∼ 〈Sp〉F 〈Sq〉F
∫

i
Sn;iδ

′
i + 〈Sn〉F 〈Sq〉

∫

i
Sp;iδ

′
i + 〈Sn〉F 〈Sp〉

∫

i
Sq;iδ

′
i . (2.228)

By partial integration one finds that the contributions fromKiii is identical to the one fromKiab,
i.e.,

Kiii ∼
∫

i
δi
∂

∂εi
(Sn;iSp;iSq;i) = 〈Sp〉F 〈Sq〉F

∫

i
Sn;iδ

′
i + 〈Sn〉F 〈Sq〉F

∫

i
Sp;iδ

′
i + 〈Sn〉F 〈Sp〉F

∫

i
Sq;iδ

′
i .

(2.229)

Similarly, one finds that the contributions from Kiia, Kiai, and Kaii add up to twice the negative
contribution from Kiab, i.e.,

Kiia ∼ − 〈Sp〉F 〈Sq〉F
∫

i
Sn;iδ

′
i − 〈Sn〉F 〈Sq〉F

∫

i
Sp;iδ

′
i , (2.230)

Kiai ∼ − 〈Sn〉F 〈Sp〉F
∫

i
Sq;iδ

′
i − 〈Sp〉F 〈Sq〉F

∫

i
Sn;iδ

′
i , (2.231)

Kaii ∼ − 〈Sn〉F 〈Sp〉F
∫

i
Sq;iδ

′
i − 〈Sn〉F 〈Sq〉F

∫

i
Sp;iδ

′
i . (2.232)

This shows the vanishing of any contribution to δE0 from three diagrams connected with triple-
index cumulants, in particular the third-order one from three first-order diagrams [∼ (Γ1)3].

The cancellations that lead to the vanishing of δE0 become more involved for increasingly
complicated multi-index cumulant contributions, i.e., for increasing numbers of indices and for
contributions with multiple multi-index cumulants. No direct proof of the vanishing of δE0 to
all orders seems to be available. However, an indirect argument that δE0 = 0 to all orders (in
the “isotropic case”) has been given by Luttinger and Ward [278] (see also Ref. [65]); this is
discussed in Sec. 2.5.2.
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2.5. Role of Higher-Cumulant Contributions

In rigorous statistical mechanics different thermostatistical ensembles are equivalent in the ther-
modynamic limit [402, 216, 84, 179, 92, 271, 202, 306, 307]. However, this equivalence need
not apply for an approximative treatment via perturbation theory. The question arises how the
perturbation series for the grand-canonical potential A(T, µ, Ω) and the canonical one for the
free energy F(T, µ̃, Ω) are related to each other. In particular, we have seen in Sec. 2.4.6 that
the zero-temperature limit of F(T, µ̃, Ω) reproduces the adiabatic ground-state perturbation se-

ries (in the “isotropic case”), F(T, µ̃, Ω)
T→0−−−→ E0(εF , Ω), where the particle number is fixed,

N =
∑

i f̃ −i =
∑

i Θ
−
i , and thus µ̃

T→0−−−→ εF . The expression for the free energy obtained from
A(T, µ, Ω) is given by

F̆(T, µ, Ω) = A(T, µ, Ω) + µ N̆(T, µ, Ω), with N̆(T, µ, Ω) = −∂A(T, µ, Ω)
∂µ

. (2.233)

There is no reason to expect that F̆(T = 0, µ, Ω) = E0(εF , Ω) for fixed N = N̆(T = 0, µ, Ω) =∑
i Θ
−
i , or more generally, that F̆(T, µ, Ω) = F(T, µ̃, Ω) for fixed N = N̆(T, µ, Ω) =

∑
i f̃ −i .

We are therefore lead to the task to determine which formalism should be used, the grand-
canonical one, or the canonical formalism. Clearly, the investigation of this issue involves the
analysis of the higher-cumulant contributions, which appear in a different form in the grand-
canonical (anomalous insertions, i.e., higher cumulants with equal indices) and the canonical
(anomalous insertions and correlation bonds) perturbation series, and in particular the effects of
“removing” these contributions via the self-consistent “renormalization” of T andV according
to T → T + Xℵ

[n] andV → T − Xℵ
[n], where Xℵ

[n];i =
∑

i Xℵ
[n];i =

∑n
ν=1

∑
i Xℵ

ν;i, and49

Xℵ
ν;i(T, µ, Ω) =

δAR,ℵ
ν,non-insertion[ f −i ; {εXℵ

[n];i
}]

δ f −i
, Xℵ

ν;i(T, µ̃Xℵ
[n]
, Ω) =

δFR,ℵ
ν,non-insertion[ f̃ −i ; {εXℵ

[n];i
}]

δ f̃ −i
,

(2.234)

in the grand-canonical and the canonical case, respectively (see Sec. 2.3.1 for more details).
Note that in the canonical case also the auxiliary chemical potential is “renormalized”, i.e.,
µ̃→ µ̃Xℵ

[n]
, where (by construction)

∑
i f̃ −i =

∑
i f̃ −

Xℵ
[n];i

.

The change from the {T ,V} to the {T + Xℵ
[n],V − Xℵ

[n]} setup removes all higher-cumulant
insertions (i.e. the factorized parts of the higher-cumulant terms) with “insertion diagrams”
Γ1, . . .Γn (in addition, normal “one-loop” insertions are removed), as depicted in Fig. 2.15.
Insertion diagrams are identified as follows: consider three diagramsΓn1 , Γn2 , andΓn3 connected
via higher cumulants: Γn1—Γn2—Γn3 , where the insertion-lines are placed on different lines of
Γn2 . Then Γn1 and Γn3 are insertion diagrams; this situation is depicted in Fig. 2.14 for the case
of first-order diagrams. If the insertion diagrams are placed on the same line of Γn2 , then also Γn2

is an insertion diagram. In other terms, for a given higher-cumulant chain, an insertion diagram
is a diagram that can be replaced by a one-body vertex. The perturbation series in the {T +

Xℵ
[n],V − Xℵ

[n]} setup is then given by all skeletons plus all normal non-skeletons without first-
order (“one-loop”) parts, plus higher-cumulant contributions that involve insertion diagrams of
orders greater than n, plus additional normal non-skeletons with −Xℵ

2 , . . . , X
ℵ
n vertices.

49 Here, “non-insertion” refers to contributions not of the insertion type, i.e., skeletons and normal-non-skeletons
without first-oder parts, and normal non-skeletons with −X2, . . . ,−Xn−1 vertices.
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In a sense, the change from {T +Xℵ
[n−1],V−Xℵ

[n−1]} to {T +Xℵ
[n],V−Xℵ

[n]} corresponds to the
“resummation” of higher-cumulant insertions with Γn insertion diagrams. However, (except for
n = 1) this “resummation” involves not only the renormalization of the distribution functions (as
in Sec. 2.5.1) but also the renormalization of energy denominators (in particular regarding the
energy eigenvalue equations that determine the renormalized single-particle energies, cf. Sec.
2.3.1), as well as the emergence of new normal non-skeleton contributions from −Xℵ

n vertices.

(a) (Γ1)
2(−X ) [Gij;a;cd]s.-c. (b) (Γ1)

2(−X ) [Gi;ab;cd]s.-c. (c) (Γ1)(−X )2 [Gi;a;cd]s.-c.
Figure 2.14.: Additional higher-cumulant contributions from −X1 vertices (small red dots)

for diagram (a) of Fig. 2.12.

A(T, µ, Ω)

Γ1

��

T→0 // Ĕ0(µ,Ω)

AX[1](T, µ, Ω)

Γ2

��

T→0 // Ĕ0;X[1](µ,Ω)

AX[2](T, µ, Ω)

...

��

T→0 // Ĕ0;X[2](µ,Ω)

AX[∞](T, µ, Ω) T→0 // E0(εF , Ω)

F(T, µ̃, Ω)

Γ1

��

T→0 // E0(εF , Ω)

FX[1](T, µ̃X[1] , Ω)

Γ2

��

T→0 // E0(εF , Ω)

FX[2](T, µ̃X[2] , Ω)

...

��

T→0 // E0(εF , Ω)

FX[∞](T, µ, Ω) T→0 // E0(εF , Ω)

Figure 2.15.: Formal hierarchy of renormalized perturbation series in the grand-canonical
and the canonical formalism. The downwards arrows denote the change from
the {T + X[n−1],V] − X[n−1]} setup to the {T + X[n],V] − X[n]} setup, cor-
responding to the hierarchical “resummation” of higher-cumulant insertions
with first order (Γ1), second-order (Γ2), etc. insertion diagrams. The sub-
scripts “X[n]” refers to the corresponding self-consistent renormalization of
the single-particle energies and (in the canonical case) the auxiliary chemical
potential. The dashed arrows denote the zero-temperature limit of the free
energy at each level (in the “isotropic case”, for the case where the reduced
formula is used).

In the “fully-renormalized” (n = ∞) perturbation series no higher-cumulant contributions
remain, and ensemble equivalence is recovered, i.e., the “fully-renormalized” canonical and
grand-canonical perturbation series are equivalent. The zero-temperature limit of both series
however does not exist if ℵ = “direct” (in general, for n ≥ 6, see the last paragraph of Sec.
2.3.4).50 In contrast, if ℵ = “reduced”, the zero-temperature limit exists, and the “bare” and the
various “renormalized” canonical perturbation series all have the same zero-temperature limit
at each perturbative order (in the “isotropic case”): the Goldstone formula E0(εF , Ω).51 This is
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not the case for (the free energy obtained from) the various grand-canonical perturbation series,
where the zero-temperature limit does not lead to the Goldstone formula, with the exception of
“fully-renormalized” series (in the “isotropic case”, for ℵ = “reduced”). This strongly suggests
that the “bare” and the “only partially resummed” grand-canonical series are deficient. In the
“bare” case, this is particularly evident for a system with a first-order liquid-gas phase transition
(cf. Sec. 2.5.4). The deficiency of the (not “fully-renormalized”) grand-canonical perturbation
series can also be seen by analyzing in more detail the renormalization of the Fermi-Dirac
distributions (cf. Sec. 2.5.5).

In the following, we examine these features (in particular, the properties of the “fully-
renormalized” perturbation series) in more detail. Note that for notational convenience we
leave out the regularization symbol “R” as well as the formula symbol “ℵ”. Moreover, we will
distinguish explicitly between ℵ = “direct” and ℵ = “reduced” only when necessary.

2.5.1. Resummation of Higher-Cumulant Contributions

Here, we show the resummation of higher-cumulant insertions renormalizes the distribution
functions. Note that we use ℵ = “direct” throughout this section.

Anomalous Insertions. The (“direct”) time-dependent expression for a diagram of order n
(the “main” diagram) with a single diagram of order p (the “sub” diagram) attached on the line
with index a (which can be a hole or a particle line) via Kaa = f +

a f −a is given by [cf. Eq. (2.37)]

Γn(Γp) ∼ − 1
β

(−1)n
∫

β>τn>...τ1>0

dτn · · · dτ1 (−1)p
∫

β>τn+p>...τn+1>0

dτn+p · · · dτn+1 〈. . .〉main(n)+sub(p) ,

(2.235)

where we have summed over possible time orderings of the insertion diagram relative to the
normal diagram (the cumulant formalism is essential for this). Note that this proofs Eq. (2.84).
Without loss of generality, in the following we consider the grand-canonical case, and denote
by An,main =

∑
ai jkl...(. . .)main(n) the expression for the “main” diagram. Carrying out the time

integrals in Eq. (2.235) leads to52

(
Γn(Γp) ∼ (−β)

∑

ai jkl...

∂(. . .)main(n)

∂[−βεa]
δAp,sub

δ f −a

)
(2.236)

This equation shows the insertion nature [as defined in Sec. 2.3.1] of the anomalous contribu-
tions, i.e., the contributions from higher cumulants with equal indices: the contribution from
Γn(Γp) has the same form as the corresponding one where the “sub” diagram Γp is replaced by
the one-body vertex associated with the operator Sp =

∑
i Sp;ia

†
i ai, where

Sp;a =
δAp,sub

δ f −a
. (2.237)

50 Note that the nonexistence of the zero-temperature limit n ≥ 6 is entirely due to the “resummation” of higher cu-
mulants with equal indices. The “resummation” of correlation bonds does not lead to complications regarding
the T → 0 limit (this feature is also evident from the Kohn-Luttinger inversion method).

51 The canonical “renormalized” perturbation series lead (for ℵ = “reduced”) to the ground-state perturbation
series with renormalized energy denominators and additional normal non-skeletons with −X2, . . . , Xn vertices,
but this is (formally) equivalent to the Goldstone formula (i.e., the “bare” ground-state perturbation series).

52 Insertions on particles carry an additional minus sign, cf. Eq. (2.172), but this sign is cancelled by the additional
minus sign needed to correct for the sign from ∂ f +

k /∂[−βεk] = − f +
k f −k .
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We can now show explicitly that the resummation of the chain of anomalous insertions renor-
malizes the single-particle energies in the Fermi-Dirac distributions. The derivative operator
∂/∂[−βεa] in Eq. (2.236) transforms the f −a in (. . .)main(n) into f +

a f −a , and the functional deriva-
tive removes f −a and “

∑
a” in the expression for the insertion.53 The expression for a diagram of

order n with m =
∑L
ν=1 mν insertions of order k attached to the 1, . . . , L lines of the diagram has

the form
Γn(Γp)m ∼ (−β)m

m!

∑

a1...aL

∑

i jkl...

Υm
p (. . .)main(n). (2.238)

Summing over all possible {mν}, the insertion operator Υm
p is given by

Υm
p =

∑

{mν}

(
m

m1, . . . ,mL

) L∏

ν=1

[
Sp;aν

∂

∂[−βεaν]

]mν

=

[ L∑

ν=1

Sp;aν
∂

∂[−βεaν]

]m

, (2.239)

where
Sp;a =

δAsub(p)

δ f −a
. (2.240)

From Eqs. (2.238) and (2.239) it follows that the sum over all numbers of insertions m leads to
the renormalization of the distribution functions (in the expression for the “main” diagram):

∞∑

m=0

1
m!
Υm

p

{
f ∓aν

}
= exp

[ L∑

ν=1

Sp;aν
∂

∂εaν

] {
f ∓aν

}
=

{
1

1 + exp
( ± β (εaν + Sp;aν − µ)

)
}
≡

{
f ∓Sp;aν

}
.

(2.241)

So far, we have considered only the case of “first-degree” insertions, i.e., the case where the
sub diagrams do not carry insertions on themselves. The effect of “higher-degree”’ insertions
can be identified by applying the “first-degree” analysis at each level. Since at each level the re-
summation of the insertions renormalized the Fermi-Dirac distribution, resumming the infinite
chain of “higher-degree” insertions leads to the renormalization of the Fermi-Dirac distributions
in terms of self-consistent self-energies.

Self-Consistent Hartree-Fock. The partition of a given simply-connected diagram into a “main”
diagram and a number of insertion diagrams is (of course) ambiguous. In particular, in the
case where the “main” diagram and the insertion diagrams are of the same order, the factor-
ization theorem [Eq. (2.19)] gives the “wrong” factor, e.g., for first-order diagrams Γ1m+1 =

(Γ1)m+1/(m + 1)! , Γ1(Γ1)m/m!, so the above analysis does not apply in this case. The precise
effect (i.e., the structure of the resulting perturbation series) of the “resummation” of higher-
cumulant insertions can only be indentified in terms of the “renormalization” of T andV.

Nevertheless, it will be instructive to examine the resummation of higher-cumulant insertions
explicitly for the case of anomalous insertions that involve only first-order diagrams. (In that
case there is no energy-denominator renormalization and no additional non-skeletons with one-
body vertices). To start, consider the contributions from a first-order diagram with n “first-
degree” first-order insertion diagrams on one of the two contraction lines [e.g., diagram (d) of
Fig. 2.13]; in term of standard Hugenholtz diagrams, this corresponds to (the sum of) the n-loop
diagrams of order n. The expression for contributions of this kind can be written as

An,n-loop = − 1
β

(−β)n

n!

∑

a

[
S1;a

∂

∂[−βεa]

]n

lnY. (2.242)

53 Note that the functional derivative δ/δ f −a automatically includes the correct multiplicity factor for the placement
of insertion-lines.
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There is no “1-loop contribution”; the expression for first-order diagram (which has in fact two
loops) has the different form A1 = 1

2

∑
a

[
S1;a

∂
∂[−βεa]

]
lnY = 1

2 A“1,1-loop”. The “0-loop contribu-
tion” however has the “correct” formA = −β−1 lnY = A“0,0-loop”. The sum of the noninteracting
term, the first-order diagram, and the n-loop diagrams of order n = 2, . . . ,∞ is then given by

A + A1 +

∞∑

n=2

An,n-loop = −A1 +

∞∑

n=0

An,n-loop = −A1 − 1
β

∑

a

exp
(
− βS1;a

∂

∂[−βεa]

)
lnY.

(2.243)

To evaluate the second term
∑∞

n=0 An,n-loop we consider the Taylor series of lnY, i.e.,

lnY =
∑

i

ln
(
1 + exp

( − β(εi − µ)
))

=
∑

i

∞∑

ν=1

1
ν!

exp
(
νβ(εi − µ)

)
. (2.244)

Expanding the exponential in Eq. (2.243) then leads to

A + A1 +

∞∑

n=2

An,n-loop = −A1 +AS1 , AS1 =
1
β

∑

i

ln
[
1 + exp

( − β(εi + S1;i − µ)
)]

;

(2.245)

i.e., the resummation of all n-loop diagrams of order n = 2, . . . ,∞ leads to the renormalization
of the noninteracting term, and changes the sign of the first-order contribution.

The expression for the self-consistently renormalized noninteracting term is given by

AX1 =
1
β

∑

i

ln
[
1 + exp

( − β(εX1;i − µ)
)]

=
1
β

∑

a

∑

ν

1
ν!

[
− βX1;a

∂

∂[−βεa]

]ν
lnY. (2.246)

Inserting the diagrammatic expansion of X1;a one obtains all the diagrams of the type “non-
skeleton diagrams with first-order parts only” (An,m-loop, 2 ≤ m ≤ n), but in general with different
prefactors as those that appear in the original perturbation series. Given that the “remainder”
AX1 −

∑
2≤m≤n An,m-loop has the correct combinatorial factors for the self-consistent renormaliza-

tion of the negative first-order contribution, we have

A + A1 +
∑

2≤m≤n

An,m-loop = AX1 − A1;X1 , (2.247)

which corresponds to the self-consistent Hartree-Fock approximation for the grand-canonical
potential. A direct combinatorial proof of Eq. (2.247) is unnecessary, since Eq. (2.247) follows
trivially if one considers the change from the {T ,V} to the {T + X1,V −X1} setup.

Correlation Bonds. In the canonical case the “‘resummation” of higher-cumulants includes
also correlation bonds, i.e., the indices connected by cumulants need not be equal. Thus, in-
stead of Eq. (2.241) we have

∞∑

m=0

1
m!
Υm

p

{
f ∓aν

}
= exp

[ L∑

ν=1

Sp;bν
∂

∂εbν

] {
f ∓aν

}
≡

{
f ∓Sp;aν

}
. (2.248)

where the action of a derivative operator with subindex “ν” is restricted to quantities with the
same “ν”. For a given line ν ∈ [1, L], with index denoted by “i”, we expand the expontial

e−β
∑

a Sp;a
∂

∂[−βεa] f̃ ∓i = f̃ ∓i − βXp;i
∂

∂[−βεi]
f̃ ∓i − β

∑

a

Xp;a
∂[βµ̃]
∂[−βεa]

∂

∂[βµ̃]
f̃ ∓i + . . . (2.249)
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The next term in the exponential series involves also a contribution where the derivative acts on
the term ∂[βµ̃]/∂[−βεa], etc., inhibiting the explicit evaluation of Eq. (2.249). The effect of the
“resummation” can only be identified indirectly in terms of a redefintion of T andV. Since by
construction, in the {T + X[n],V −X[n]} setup it is

N =
∑

i

f̃ −X[p];i, (2.250)

if follows that that resumming the additional correlation bonds corresponds to renormalizing
the auxililary chemical potential, µ̃ → µ̃X[p] , such that the “particle number is conserved”, i.e.,
such that µ̃X[p] is the same functional of the renormalized spectrum {εX[p];a} as µ̃ is of the “bare”
spectrum {εa}.

2.5.2. Statistical Quasiparticles and Kohn-Luttinger-Ward Theorem

Here, we examine the properties of the “fully-renormalized” grand-canonical and canonical
perturbation series, respectively, for both ℵ = “direct” and ℵ = “reduced”.

A discussed at the beginning of this section, the “fully-renormalized” grand-canonical pertur-
bation series does not have any (factorited parts of) higher-cumulant contributions. However, it
involves the additional contribution

− 〈X[∞]〉 = −
∑

i

f −X[∞];i X[∞];i. (2.251)

With Xi ≡ X[∞];i for notational convenience, the expression for the “fully-renormalized” pertur-
bation series is then given by54

(
AX(T, µ, Ω) =

1
β

∑

a

ln(1 − f −X;a)

︸                ︷︷                ︸
AX(T,µ,Ω)

−
∑

a

f −X;a Xa + D[ f −; {εX;i}]
)

(2.252)

Since we are in the “fully-renormalized” situation, D is given by the sum of all normal dia-
grams that are not of the insertion type, plus additional normal non-skeletons with −X2, . . . , X∞
vertices. The self-consistent self-energy of order “∞” satisfies the relation

Xi =
δD

δ f −X;i
. (2.253)

The discussion of the canonical case is entirely similar, and the expression for the “fully-
renormalized” canonical perturbation series is given by

(
FX(T, µ̃X, Ω) = FX(T, µ̃X, Ω) −

∑

a

f̃ −X;a Xa + D[ f̃ −; {εX;i}]
)

(2.254)

By construction, it is
∑

i f̃ −X;i = N. Below, we will show that also
∑

i f −X;i = N, for both ℵ =

“direct” and ℵ = “reduced”. Thus, µ̃X = µ, and therefore55

FX(T, µ̃X, Ω) = F̆X(T, µ, Ω), (2.255)

54 An equation of this form was first derived (using combinatorial arguments only, cf. Eq. (35) in Ref. [18]) by
Balian, Bloch and de Dominicis [18], cf. also Refs. [48, 47, 45].

55 For ℵ = “direct” and n ≥ 6 it should be T , 0 in Eq. (2.255).
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where F̆X(T, µ, Ω) denotes the free energy obtained from Eq. (2.252). Thus, ensemble equiv-
alence is recovered in the “fully-renormalized” situation, and the “bare” grand-canonical and
canonical perturbation series can be seen to emerge from expanding the Fermi-Dirac distribu-
tions in the “fully-renormalized” series about the “bare” single-particle energies and about both
the “bare” single-particle energies and the “bare” auxiliary chemical potential, respectively. The
implications of this will be examined further in Sec. 2.5.5.

ℵ = “direct”. Following Balian, Bloch and de Dominicis [18] we now derive expressions
for various derived thermodynamic quantities in terms of the “fully-renormalized” distribution
functions f −X for ℵ = “direct”. We start by rewriting the expression for the “fully-renormalized”
grand-canonical potential [Eq. (2.252)] as

AX(T, µ, Ω) =
1
β

∑

a

[
f −X;a ln( f −X;a) + f +

X;a ln( f +
X;a)

]
+

∑

a

(εa − µ) f −X;a + D[ f −; {εX;i}]. (2.256)

Using ln( f +
X;a/ f −X;a) = −β (εa + Xa[ f −X;a] − µ) one finds that the functional derivative of AX with

respect to f −X;a vanishes56

δAX

δ f −X;a
=

1
β

ln( f +
X;a/ f −X;a) + εa − µ + Xa[ f −X ] = 0. (2.257)

From this, one finds that the grand-canonical expression for the particle number is given by

N̆X(T, µ, Ω) = −∂AX

∂µ
= − ∂̄AX

∂̄µ
+

∑

a

δAX

δ f −X;a︸︷︷︸
=0

∂ f −X;a

∂µ
=

∑

a

f −X;a, (2.258)

where ∂̄/∂̄µ means that the derivative does not act on the distribution functions. Eq. (2.258)
matches the corresponding relations for the free Fermi gas. In particular, Eq. (2.258) implies
that the “fully-renormalized” distribution functions f −X;a coincide with the exact mean occupa-
tion numbers of the unperturbed single-particle states [277] i.e.,

f −X;i = Tr[Y−1 e−β(H−µN) a†i ai]. (2.259)

If ℵ = “direct”, the “fully-renormalized” entropy however does not have a quasiparticle form.
This is due to the fact that for ℵ = “direct”, D has an explicit dependence on T , leading to

S̆X(T, µ, Ω) = −∂AX

∂T
= − ∂̄AX

∂̄T
+

∑

a

δAX

δ f −X;a︸︷︷︸
=0

∂ f −X;a

∂T

= −
∑

a

[
f −X;a ln( f −X;a) + f +

X;a ln( f +
X;a)

]
− ∂̄D
∂̄T

, (2.260)

which deviates from the free Fermi gas expression in terms of the last term ∂̄D/∂̄T . Finally,
from Eq. (2.258) one obtains for the “fully-renormalized” (”grand-canonical”) free energy F̆X =

µN̆X + AX the expression

F̆X(T, µ, Ω) =

FX(T,µ,Ω)︷                                ︸︸                                ︷
µ
∑

a

f −X;a +
1
β

∑

a

ln(1 − f −X;a)−
∑

a

f −X;a Xa + D[ f −; {εX;i}], (2.261)

56 A stationarity property holds also for F̆X(T, µ, Ω), i.e., F̆X(T, µ, Ω) is stationary with respect to variations of the
distribution functions under the constraint N =

∑
i f −X,i.
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which leads to the following expression for the internal energy ĔX = F̆X + TS̆ X:

ĔX(T, µ, Ω) =
∑

a

εa f −Xa
+ D[ f −; {εX;i}] − T

∂̄D

∂̄T
. (2.262)

Note that, as a consequence of the ∂̄D/∂̄T term, the functional derivative of ĔX(T, µ, Ω) does
not reproduce the “fully-renormalized” single-particle energies.

ℵ = “reduced”. If ℵ = “reduced”, then D has no explicit T dependence. This leads to “sta-
tistical quasiparticle” relations, i.e., (in contrast to the “direct” case) the expression for both the
particle number and the entropy match those for a free Fermi gas, and the functional derivative
of ĔX reproduces the “fully-renormalized” single-particle energies

δĔX

δ f −Xa

= εa + Xa. (2.263)

It should be noted that Eq. (2.263) and the existence of the “statistical quasiparticle” relation
for the entropy rely on the assumption that the “pseudo-anomalous” remainder R vanishes to all
orders [cf. Eq. (2.89)]. If R = 0 does not hold, then the “statistical quasiparticle” relations are
valid only asympotically as T → 0.57

In the “isotropic case”, Xi(T, µ, Ω) ≡ X(T, µ, |~k|), i.e., Xi is a function of the magnitude |~k|
of the plane-wave three-momentum ~k only (at fixed T and µ). For fixed T and µ the step
function Θ(µ − εi − Xi) then defines a certain momentum kF up to which states are summed,
i.e., Θ(µ − εi − Xi) ≡ Θ(kF − |~k|). The zero-temperature limit of the expression for the particle
number is then given by

N̆(T = 0, µ, Ω) =
Ω

(2π)3

∫
d3k Θ(kF − |~k|), (2.264)

which matches the relation N =
∑

i Θ(εF −εi) in the adiabatic zero-temperature formalism, with
εF = k2

F/(2M). Thus, we can write Θ(µ − εi − Xi) = Θ(εF − εi) and the zero-temperature limits
of the “fully-renormalized” expressions for the internal energy and free energy are given by

(
ĔX(T, µ, Ω)

T→0−−−→
∑

i

εiΘ(εF − εi)

︸              ︷︷              ︸
E0(εF ,Ω)

+ D[Θ(εF − εi)]︸           ︷︷           ︸
∆E0(εF ,Ω)

= E0(εF , Ω)
)

(2.265)

This result was first derived by Luttinger and Ward [278]. We emphasize that Eq. (2.265) does
not imply that the “bare” (i.e., “unrenormalized”) grand-canonical perturbation series (or, for
that matter, an only “partially renormalized” version) has the “correct” zero-temperature limit.
The “fully-renormalized” version is only formally equivalent to the “bare” one, but in general
leads to quite different results. This is in particular evident for a system with a first-order liquid-
gas phase transition (cf. Sec. 2.5.4).

The indirect argument due to Luttinger and Ward [278] (sometimes referred to as the “Kohn-
Luttinger-Ward theorem” [143, 394, 150, 144]) for the cancellation of the anomalous contri-
butions (higher-cumulant contributions) in the “isotropic case” is now basically as follows:

because F(T, µ̃, Ω)
T→0−−−→ E0(εF , Ω) + δE0(εF , Ω) and FX(T, µ̃X, Ω)

T→0−−−→ E0(εF , Ω), and since
FX(T, µ̃X, Ω) follows from F(T, µ̃, Ω) in terms of a partial resummation, it should be
δE0(εF , Ω) = 0 at each order.
57 See footnote 20.
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2.5.3. Kohn-Luttinger Inversion Method58

Eq. (2.255) suggests an alternative derivation of the “bare” canonical perturbation series
F(T, µ̃, Ω) in terms of an expansion of the chemical potential µ in the (unrenormalized) “grand-
canonical” free energy F̆(T, µ, Ω) about µ̃. To investigate this we start by considering a (formal)
expansion of µ in terms of the interaction strength: µ = µ0 +

∑∞
n=1 λ

nµn, where the unperturbed
value µ0 will be qualified later. The expansions of A(T, µ, Ω) and N̆(T, µ, Ω) = −∂A(T, µ, Ω)/∂µ
about µ0 are then given by

A(T, µ, Ω) =

∞∑

n=0

λn
∑

k
a1<...<ak{bi},c,d

(
b1 + . . . + bk

b1, . . . , bk

)
(µa1)

b1 · · · (µak)
bk

A[d]
c

d

∣∣∣∣∣∣
a1+...+ak+c=n

b1+...+bk=d

, (2.266)

∂A(T, µ, Ω)
∂µ

=

∞∑

n=0

λn
∑

k
a1<...<ak{bi},c,d

(
b1 + . . . + bk

b1, . . . , bk

)
(µa1)

b1 · · · (µak)
bk A[d+1]

c

∣∣∣∣∣∣
a1+...+ak+c=n

b1+...+bk=d

, (2.267)

where A[0]
c (T, µ0, Ω) = Ac(T, µ0, Ω) and A[d,0]

c (T, µ0, Ω) = [(d − 1)!]−1∂dAc(T, µ0, Ω)/∂µ̃d, with
A0(T, µ0, Ω) = A(T, µ0, Ω). The “chemical potential perturbations” µn, n ≥ 1, are now fixed by
the requirement that all terms in Eq. (2.267) beyond the leading term O(λ0) vanish, i.e.,

N̆(T, µ, Ω) = −A[1](T, µ0, Ω). (2.268)

The expression for µn(T, µ0, Ω) determined by Eqs. (2.267) and (2.268) is

µn(T, µ0, Ω) = − 1
A[2]

∞∑

n=0

λn
∑

k
a1<...<ak<n
{bi},c,d

(
b1 + . . . + bk

b1, . . . , bk

)
µb1

a1
· · · µbk

ak
A[d+1]

c

∣∣∣∣∣∣
a1+...+ak+c=n

b1+...+bk=d

. (2.269)

To obtain the explicit expression for µn(T, µ0, Ω), all previous terms µν(T, µ0, Ω), 1 ≤ ν < n, are
required.59 From Eqs. (2.266), (2.268) and (2.269) the expansion of the grand-canonical free
energy about µ0 is given by:60

F̆(T, µ, Ω) =A− µ0A[1]

︸       ︷︷       ︸
F (T,µ0,Ω)

+

∞∑

n=1

λnAn +

∞∑

n=2

λn
∑

k
a1<...<ak<n
{bi},c<n,d

(
b1 + . . . + bk

b1, . . . , bk

)
µb1

a1
· · · µbk

ak

A[d]
c

d

∣∣∣∣∣∣
a1+...+ak+c=n

b1+...+bk=d

︸                                                           ︷︷                                                           ︸
Fn,counter(T,µ0,Ω)

,

(2.270)

where we have separated the term with c = n in the expansion of A(T, µ, Ω). The additional
derivative terms (starting at order n = 2) arising from the expansion will be called “countert-
erms”. The explicit expressions for the first two counterterms are given by

F2,counter =
µ2

1A[2]

2
+ µ1A[1]

1 = −
(
A[1]

1
)2

2A[2] , (2.271)

58 This method was introduced by Kohn and Luttinger [246] as a means to (re)obtain the Goldstone formula from
the zero-temperature limit of the (“bare”) grand-canonical perturbation series. The method has been used in
perturbative nuclear many-body calculations to second order in Refs. [150, 394, 144]. The designation “Kohn-
Luttinger inversion method” has been adapted from R. J. Furnstahl [152].

59 The first three expressions are given by µ1(T, µ0, Ω) = − A[1]
1
A[2] , µ2(T, µ0, Ω) = −µ2

1
A[3]

A[2] − µ1
A[2]

1
A[2] − A[1]

2
A[2] , and

µ3(T, µ0, Ω) = −2µ2µ1
A[3]

A[2] − µ3
1
A[4]

A[2] − µ2
A[2]

1
A[2] − µ2

1
A[3]

1
A[2] − µ1

A[2]
2
A[2] − A[1]

3
A[2] .

60 Note that in the expression for the free energy the term −A[1] ∑∞
n=1 µn is cancelled by corresponding terms in

the expansion of A(T, µ, Ω), leading to the restrictions n ≥ 2 and {ai < n} in the last term in Eq. (2.270).
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F3,counter =µ2 (µ1A[2] + A[1]
1 )︸            ︷︷            ︸

= 0

+
µ3

1A[3]

3
+
µ2

1A[2]
1

2
+µ1A[1]

2 = −
(
A[1]

1
)3A[3]

3
(A[2])3 +

(
A[1]

1
)2A[2]

1

2
(A[2])2 −

A[1]
1 A[1]

2

A[2] ,

(2.272)

where we have inserted the explicit expression for µ1(T, µ0, Ω).61 One sees that at each order the
sum of the counterterms coincides with the sum of the correlation-bond contributions of Sec.
2.4.5.

It should be emphasized here that the equivalence of F(T, µ̃, Ω) and A(T, µ, Ω) in terms of the
above expansion is purely formal. Given an arbitrary truncation of the respective perturbation
series, to obtain F(T, µ̃, Ω) from F̆(T, µ, Ω) requires the truncation of the Taylor expansions of
A(T, µ, Ω) and ∂A(T, µ, Ω)/∂µ about µ0 at the same order n the grand-canonical perturbation
series is truncated at. The EoS associated with F(T, µ̃, Ω) then deviates from the one corre-
sponding to A(T, µ, Ω) in terms of the neglected terms in the Taylor expansions. This truncation
leads to the “inversion” of the grand-canonical perturbation series into the canonical F(T, µ̃, Ω).
In particular, the truncation amounts to Eq. (2.268) being interpreted not as an implicit equation
for µ0(T, µ, Ω) but for µ0(T,N, Ω), leading to the identification of µ0 with the auxiliary chemical
potential µ̃(T,N, Ω) [fixed by Eq. (2.187)] of the correlation-bond formalism.

2.5.4. Single-Phase Constraint

The use of many-body perturbation theory, i.e., the use of a noninteracting single-particle ba-
sis, corresponds to the assumption that the average distribution of particles is the same as in
the absence of interactions.62 In the case of a system with a liquid-gas phase transition, this
corresponds to the system being homogeneous also in the liquid-gas coexistence region: the
system is under the single-phase constraint. The single-phase constraint implies the existence
of a region in the interior of the coexistence region, the so-called spinodal region, where the
free energy F(T,N, Ω) is a concave function of Ω (at fixed N) and of N (at fixed Ω), i.e.,
∂2F(T,N,Ω)

∂Ω2 = −∂P(T,N,Ω)
∂Ω

= 1
Ω κT

> 0 and ∂2F(T,N,Ω)
∂N2 =

∂µ(T,N,Ω)
∂N = Ω

N2 κT
> 0, where κT is the isother-

mal compressibility).63Thus, in the spinodal region the stability requirement κ−1
T < 0 is violated,

which entails that the system is unstable with respect to infinitesimal density fluctuations (cf.
Refs. [4, 99, 44] for more details). In general, a Legendre transformation is invertible only for
convex functions (cf. Ref. [433]). Legendre-transforming the single-phase constrained (canon-
ical) free energy F(T,N, Ω) leads to a grand-canonical potential A(T, µ, Ω) that is multivalued
with respect to µ, as depicted in Fig. 2.16.64

Since for the single-phase constrained system the liquid-gas coexistence region corresponds
to a multivalued grand-canonical potential, the “bare” grand-canonical perturbation series
A(T, µ, Ω) (a single-valued function) cannot lead to an EoS with a phase transition [cf. also
the discussion below Eq. (4.31)]. In particular, given that E0(εF , Ω) has a spinodal region, this
means that the equation of state corresponding to A(T, µ, Ω) cannot have the “correct” zero-
temperature limit at any order in many-body perturbation theory. This deficiency need not
pertain for the renormalized versions of the grand-canonical perturbation series [given by AX[1] ,
AX[2] , etc., in Fig. 2.15]: a self-consistent procedure may very well have multiple solutions. In
fact, the “fully-renormalized” version, AX(T, µ, Ω), does reproduce the Goldstone formula in the
zero-temperature limit (in the “isotropic case”, forℵ = “reduced”). This may seem paradoxical,
since AX(T, µ, Ω) results (in a sense) from a partial resummation of the “bare” series A(T, µ, Ω).

61 The cancellation in Eq. (2.272) is general; using Eq. (2.270) it is straightforward to show that the expression for
a counterterm of order n involves only factors µb

a with a ≤ n/2.
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However, there is no paradox: in general, (many-body) perturbation theory yields only diver-
gent asymptotic series [14, 392, 377, 136], so there is no reason why a partially resummed
version may not deviate qualitatively from the original series.

F (N )

N

spinodal region

−A(µ)

µ

multivalued A(µ)

principal branch of A(µ)

convex hull of F (N )

spinodal region

nonconvex F (N )

Figure 2.16.: Sketch of the Legendre transformations between the free energy F(T,N, Ω)
and the grand-canonical potential A(T, µ, Ω) for a one-component system with
a liquid-gas phase transition (T and Ω are fixed). The blue lines (red in the
spinodal region) correspond to the single-phase constrained system, and the
black dashed lines to the stable equilibrium configuration. Between the spin-
odal (the boundary of the spinodal region) and the binodal (the coexistence
boundary) the free energy density is locally (but not globally) convex, corre-
sponding to a metastable region where the system is protected against phase
separation by a nucleation barrier. Note that in the high-density part of the
metastable region the pressure can be negative (cf. footnote8 in Chap. 4).

2.5.5. Mean-Field Renormalization of Distribution Functions65

The presence of additional higher-cumulant contributions (the correlation bonds) in the canoni-
cal perturbation series as compared to the grand-canonical one is in direct correspondence with
the different role of the chemical potential in both perturbation series. In the canonical series,
the auxiliary chemical potential µ̃ is an effective parameter that is subject to renormalization,
while in the grand-canonical one the chemical potential µ is a thermodynamic variable. In

65 The (reverse) Legendre transform of the principal branch of A(T, µ, Ω) produces the convex hull of F(T,N, Ω)
[cf. Fig. 2.16], corresponding to the stable equilibrium configuration, Fstable(T,N, Ω). The Legendre trans-
formation between Fstable(T,N, Ω) and Astable(T, µ, Ω) is then invertible. In the thermodynamic limit (cf.
[83, 84, 202] for discussions of the finite-system case), the phase coexistence region corresponds to the point
where P∞stable(T, µ)|T = −A∞stable(T, µ)|T has a kink (cf. also Refs. [428, 265] and [216] where this feature is ana-
lyzed within the context of rigorous statistical mechanics; and Ref. [99] for a discussion of the issue of metasta-
bility in this context), corresponding to the pressure P∞binodal(T, Ω) and the chemical potential µbinodal(T, Ω) of the
coexisting phases; this leads to the double-tangent form (in the one-component case, cf. [301]) of Fstable(T,N, Ω)
in the coexistence region, Fbinodal(T,N, Ω) = Abinodal(T, Ω) + N µbinodal(T, Ω).

63 When a self-consistent potential (cf. Sec. 2.5.2) is included the interactions are taken into account, but only in
an average way; cf. also Refs. [48, 143] for discussions.

64 In the thermodynamic limit, this corresponds to the free energy density F(T, ρ) being a concave function of
ρ and the free energy per particle F̄(T, Ω̄) a concave function of the volume per particle Ω̄ = Ω/N, i.e.,
∂F(T,ρρ)2

∂ρ2 =
∂µ(T,ρ)
∂ρ

= 1
ρ2κT

> 0 and ∂F̄(T,Ω̄)2

∂Ω̄2 = − ∂P(T,Ω̄)
∂Ω̄

= 1
Ω̄κT

> 0.
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2. Many-Body Perturbation Theory

the canonical case, the “resummation” of higher-cumulant contributions leads to the consistent
(i.e., such that the “correct” zero-temperature limit is preserved) renormalization of both the
auxiliary chemical potential µ̃ (via correlation bonds) and the single-particle spectrum {εi} (via
anomalous insertions), whereas in the grand-canonical case only the single-particle spectrum
{εi} gets renormalized (and the renormalization changes the zero-temperature limit in that case,
see Fig. 2.15). This implies that the resummation has a larger effect on the grand-canonical
case, and thus the only partially renormalized grand-canonical series [A, AX[1] , AX[2] , etc.] con-
stitute less well-behaved perturbation expansions as compared to the canonical ones [F, FX[1] ,
FX[2] , etc.], irrespective of the presence of a liquid-gas phase transition. In the following, we
examine these issues in more detail for the nuclear many-body system in terms of the resum-
mation of first-order insertions (“mean-field renormalization”). In particular, we compare the
results (from NN interactions only) from the grand-canonical and canonical perturbation series
in the mean-field approximation where the contributions from skeletons beyond first order are
neglected; this amounts to the restriction to terms with diagonal matrix elements V̄ i j,i j

NN . In this
approximation, the “bare” perturbation series for the grand-canonical potential density is given
by

A(T, µ) = A(T, µ) +

∞∑

n=2

An,anomalous(T, µ), (2.273)

where An,anomalous is the contribution of order n from anomalous diagrams with first-order parts.
The “bare” canonical perturbation series for the free energy density is (in the mean-field ap-
proximation) given by

F(T, µ̃) = F (T, µ̃) +

∞∑

n=2

Fn,anomalous(T, µ̃) +

∞∑

n=2

Fn,corr.-bond(T, µ̃), (2.274)

with Fn,corr.-bond the sum of all correlation-bond contribution of order n with first-order parts
only. Since only diagonal matrix elements are considered, in each case the resummation of the
higher-order terms leads to the “fully-renormalized” perturbation series, i.e., the self-consistent
Hartree-Fock (SCHF) approximation. As we will see below, the SCHF approximation leads to
a non-convex free energy density. This can be seen as an explicit proof that Eq. (2.273) is an
divergent asymptotic expansion (since the free energy density from the “bare” grand-canonical
series is necessarily convex).

Mean-Field Shift and Effective Mass. The resummation of first-order anomalous insertions
leads to renormalization of the single-particle energies in terms of the first-order self-consistent
self-energy X1;k(T, µ). For (infinite) nuclear matter, X1;k(T, µ) is to good accuracy a quadratic
function of k, which leads to the well-known “effective-mass approximation” [143, 41]

k2

2M
+ X1;k(T, µ) ' k2

2M∗(T, µ)
+ U(T, µ). (2.275)

The quantity M∗(T, µ) is called the “(self-consistent) effective mass”, and U(T, µ) is called the
“(self-consistent) mean-field shift”.
65 In this section (and the remainder of the thesis) we work directly in the thermodynamic limit, so no dependence

on Ω appears, the particle number N is replaced by the particle density ρ = N/Ω, and all quantities are replaced
by their respective densities; note that we use the same notation for the ”densities” as for the volume dependent
quantities.
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2. Many-Body Perturbation Theory

In the “effective-mass approximation”, the renormalized distribution functions are given by

f −X1;k(T, µ) ' 1

1 + exp
[
β
(

k2

2M∗ + U − µ
)] , f̃ −X1;k(T, λ) ' 1

1 + exp
[
β M

M∗
(

k2

2M + λ2

2M

)] ,

(2.276)

in the grand-canonical and the canonical case, respectively. In the canonical case, the additional
renormalization of the auxiliary chemical potential has been brought into effect in terms of

the parameter λ(T, ρ) defined via ρ(T, λ) =
∑

k f̃ −X1;k(T, λ); this implies that λ
T→0−−−→ kF . For

comparison, the unrenormalized grand-canonical and canonical distribution functions are given
by

f −k (T, µ) =
1

1 + exp
[
β
(

k2

2M − µ
)] , f̃ −k (T, λbare) =

1

1 + exp
[
β
(

k2

2M +
λ2

bare
2M

)] , (2.277)

where λbare(T, ρ) is defined via ρ(T, λbare) =
∑

k f̃ −k (T, λbare), with λbare
T→0−−−→ kF . (Note that the

change from f̃ −k to f̃ −X1;k now corresponds to the renormalization of the particle mass M).

Now, the point is that for a system with significant mean-field effects (e.g., nuclear matter)
the change from f̃ −k to f̃ −X1;k is much smaller as the one from f −k to f −X1;k. This is a consequence of
the presence of the mean-field shift U(T, µ) in the expression for f −X1;k. In the canonical case the
mean-field shift is effectively absorbed in the renormalization of the auxiliary chemical poten-
tial, and only a rescaling of the inverse temperature by a factor M/M∗ remains. From this, it can
be inferred that the “bare” grand-canonical perturbation series [∼ A] constitutes a considerably
less well-behaved perturbation series as the canonical one [∼ F].66 Similar arguments apply for
higher-order insertions and the partially renormalized grand-canonical series [AX1 , AX[2] , etc.].

Self-Consistent vs. Perturbative Results. To quantify the above assertions we now evaluate
numerically the nuclear EoS obtained from the respective perturbation series, neglecting all
skeleton contributions above first order (as well as 3N interactions), i.e., only (NN) mean-field
effects are taken into account. The “fully-renormalized” free energy density is then given by
the self-consistent Hartree-Fock expression, i.e., FX1(T, µ) = FX1(T, µ) −∑

a f −X1;a X1;a, with the
particle density given by ρ(T, µ) =

∑
a f −X1;a.67 The results for U(T, ρ) and M∗(T, ρ)/M, obtained

using the n3lo414 two-nucleon potential (cf. Table 1.1) are displayed in Fig. 2.17 for isospin-
symmetric nuclear matter. Also shown are the results for µ̃ = λ2

bare/(2M) and µ = λ2/(2M∗)−U.
One sees that compared to the prevalent scales (the ground-state energy per particle of at satu-
ration density is Ē0,sat ' −16 MeV) the mean-field shift U(T, ρ) is sizeable, and gives the main
contribution to the difference µ− µ̃, whose size is of the same order of magnitude. For compari-
son, we show also the “bare” results for U(T, ρ) and M∗(T, ρ)/M, i.e., the results obtained at the

66 See however the appendix A.1, in particular Table A.1, for a (somewhat contrived) counterexample.
67 We compute these quantities as follows. We first calculate X1(T, λ) for fixed λ: we start with the perturbative

self-energy S 1(T, λ), use the results to extract M∗(T, λ) and U(T, λ), then evaluate X1(T, λ) with the distribution
functions given by using M∗(T, λ) in Eq. (2.276), then extract again the effective mass and the mean-field shift
from the results, etc. This iterative procedure becomes stationary after about five to ten iterations. From the
self-consistent results for U(T, λ) and M∗(T, λ) it is straightforward to compute ρ(T, λ) and FX1 (T, λ). The
self-consistent Hartree-Fock free energy FX1 (T, λ) is obtained by evaluating the expressions for F (T, λ) and
F1(T, λ) with the renormalized distribution functions f̃ −X1;k(T, λ) [cf. Eqs. (2.254) and (2.255)]. More details
regarding the numerical evaluation of the various NN contributions are given in Sec. 3.1.
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2. Many-Body Perturbation Theory

first iteration step; one sees that the difference between the self-consistent and “bare” results is
rather small.68

The mean-field results (with the n3lo414 two-nucleon potential) for the free energy density
F(T, ρ) at T = 15 MeV are shown in Fig. 2.18, i.e., the curves shown are the canonical re-
sults obtained at the Hartree-Fock level [“HF” in Fig. 2.18] and including the second-order
higher-cumulant contributions [“HF+K” in the plot], as well as the self-consistent Hartree-
Fock [“SCHF”] results. The second-order higher-cumulant contributions, i.e., the anomalous
contribution F2,anomalous(T, ρ) [“Kanom.”] and the sum of the anomalous and the correlation-bond
contribution F2,h(T, ρ) = F2,anomalous(T, ρ) + F2,corr.-bond.(T, ρ) [“Kanom. + Kcorr.”], are shown ex-
plicitly (cf. Secs. 2.3.4 and 2.4.5 for the corresponding formulas). Moreover, we also show
the first-order grand-canonical results [“HF (G.C.)”] and the first-order grand-canonical results
with the second-order anomalous contribution included [“HF+K (G.C.)”].69 For comparison,
also the free Fermi gas results (“free”) are displayed. In Fig. 2.18, one sees that the “HF”, the
“HF+K”, and the “SCHF” curves are very similar, with the “HF+K” and the “SCHF” curves
lying almost on top of each other. This shows that, at the mean-field level, the “bare” canoni-
cal perturbation series is well-converged already at second order also for large temperatures (at
T = 0 there are no higher-cumulant insertions, so “HF” and “SCHF” are equivalent in that case,
cf. also [143]). The grand-canonical curves on the other hand deviate substantially from the
“SCHF” ones (which, within the mean-field approximation, correspond to the exact result).70

The inclusion of the second-order (anomalous) contribution gives only a small improvement.
As expected from the analysis of the renormalized distribution functions, the anomalous con-
tribution “Kanom.” is quite large (at high densities or large chemical potentials, respectively), but
the sum of the second-order higher-cumulant contributions “Kanom. +Kcorr.” is very small.
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Figure 2.17.: Results for U(T, ρ) and M∗(T, ρ)/M (main plots) as well as µ̃(T, ρ) and µ(T, ρ)
(inset), see text for details. In the main plots, the full lines correspond to the
self-consistent Hartree-Fock results, and the dotted lines to the “bare” results.

68 In the zero-temperature formalism the difference is (exactly) zero, i.e., HF=SCHF at T = 0, corresponding to
the absence of anomalous contributions. A somewhat larger difference at finite T however appears to have been
observed [using a different NN potential and a slightly different method to compute X1(T, λ)] in Ref. [346].

69 The Legendre transformation from the grand-canonical potential to the “grand-canonical” free energy has been
performed numerically using finite differences.

70 Note that from the “SCHF” results the exact (within the mean-field approximation) chemical potential µ(T, ρ)
can be computed from the thermodynamic relation µ(T, ρ) = ∂F(T, ρ)/∂ρ, which should agree [30] with the
“microscopic” µ = λ2/(2M∗) − U. We have found that the results for µ(T, ρ) obtained in this way match the
results obtained via µ = λ2/(2M∗)−U to good accuracy; this can be seen to justify the use of the effective-mass
approximation (at each iteration step) in the computation of the self-consistent Hartree-Fock self-energy.
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Figure 2.18.: Mean-field results71 for the free energy density F(T, ρ), see text for details.
The inset shows the results for the second-order cumulant contributions (in
the canonical framework). Only the “HF”, “HF+K ” and “SCHF” curves have a
nonconvex region. Note that the cumulant contributions “Kanom.” and “Kanom.+

Kcorr.” (in the inset) are given in terms of the canonical perturbation series;
the impact of “Kanom.” in the grand-canonical case can be inferred from the
difference of the “HF (G.C.)” and “HF+K (G.C.)” curves.

71 We note that we have evaluated the “bare” grand-canonical perturbation series (for both SNM and PNM)
also beyond the mean-field level, including the contributions from the chiral 3N interactions at N2LO [plots
not shown]. The “mixed” (NN-3N) second-order anomalous contribution is then the dominant term for large
values of µ, respectively (cf. Fig. 3.6). This has the effect that the grand-canonical potential becomes positive at
large chemical potential (roughly µ & 40 MeV), leading to a “maximal density” where the free energy density
“curves back” and becomes multivalued (a completely unphysical feature).
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In the last chapter we have investigated the framework of many-body perturbation theory
(MBPT) from a general point of view. The present chapter is now concerned with the applica-
tion of MBPT in actual (numerical) nuclear many-body calculations; i.e., we want to compute
the free energy per particle of infinite homogeneous nuclear matter F̄(T, ρ, δ), where ρ = ρn +ρp

is the total nucleon density and δ = (ρn − ρp)/ρ is the isospin-asymmetry parameter (ρn/p is the
neutron/proton density).

As noted in the introduction, the dependence of F̄(T, ρ, δ) on δ can as a first approximation
be described in terms of the symmetry free energy F̄sym(T, ρ) := F̄(T, ρ, δ = 1)− F̄(T, ρ, δ = 0).
The first step in the problem of computing the (global) nuclear EoS is therefore to study the
limiting cases δ = 0 and δ = 1, i.e., the EoS of isospin-symmetric nuclear matter (SNM) and
pure neutron matter (PNM).

Since nuclear matter is expected to have no ferromagnetic instability [229, 228, 355], we con-
sider only the spin-unpolarized case. Both SNM (given that isospin-symmetry breaking effects
are neglected) and PNM are then essentially one-component systems. For a one-component sys-
tem,1 the (“bare”) canonical perturbation series about the noninteracting Hamiltonian is given
by2

F̄(T, µ̃) = F̄ (T, µ̃)︸  ︷︷  ︸
≡F̄nonrel(T,µ̃)

+λF̄1(T, µ̃) + λ2F̄2,normal(T, µ̃) + λ2F̄2,totanom(T, µ̃) + O(λ3), (3.1)

where F̄ (T, µ̃) ≡ F̄nonrel(T, µ̃) corresponds to the free energy per particle of a nonrelativistic free
nucleon gas. As discussed in appendix A.1, (in the case of the “bare” series) it is useful to add
an additional relativistic (kinematical) correction term F̄corr(T, µ̃) to Eq. (3.1). This term is con-
structed via a perturbative expansion (to first order, in terms of the correlation-bond formalism)
of the relativistic kinetic energy Hamiltonian Trel about the nonrelativistic one Tnonrel. The sum

F̄nonint(T, µ̃) := F̄nonrel(T, µ̃) + F̄corr(T, µ̃) (3.2)

then reproduces the free energy per particle of a relativistic free nucleon gas to high accuracy.
In Eqs. (3.1) and (3.2), the auxiliary chemical potential µ̃ is fixed by

ρ(T, µ̃) =

∫
d3k
2π3

[
1 + exp

(
β(k2/(2M) − µ̃)

]−1

︸                               ︷︷                               ︸
≡nk

= −gτ αT 3/2Li3/2(x̃). (3.3)

where gτ ∈ {1, 2} is the isospin multiplicity, α = 2−1/2(M/π)3/2 with M ' 938.9 MeV the average
nucleon mass, x̃ = − exp(βµ̃), and Liν(x) =

∑∞
k=1 k−νxk is the polylogarithm of index ν. Note

that, for notational convenience, we have introduced a new notation for the (noninteracting)
Fermi-Dirac distribution functions, i.e., “nk” and “n̄k”, where n̄k = 1 − nk.

1 For isospin-asymmetric matter, i.e., for a two-component system, there are two different auxiliary “chemical
potentials” µ̃n and µ̃p.

2 We restrict the numerical computations to second-order MBPT in this thesis.
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In Eq. (3.1), the second-order “anomalous” (or higher-cumulant) contribution F̄2,totanom(T, µ̃)

is a purely thermal correction, i.e., F̄2,totanom
T→0−−−→ 0. The canonical-ensemble approach is

essential for a consistent treatment of such anomalous contributions. In particular, the “resum-
mation” of these contribution to all orders leads to the self-consistent renormalization of the
single-particle energies and the auxiliary chemical potential in the Fermi-Dirac distributions
(cf. Sec. 2.5). In a grand-canonical approach, only the single-particle energies would be renor-
malized, which implies that these “resummations” have a much larger impact in that case.

Notably, in Sec. 2.5.5 we have found that in the mean-field approximation (with two-body
interactions only) the effect of the resummation of anomalous contributions is negligible. This
motivatives the use of the unrenormalized canonical perturbation series for an initial study of
the nuclear many-body problem, i.e, without fully addressing convergence issues and theoreti-
cal uncertainties.

The great advantage of the “bare” (unrenormalized) series is that no self-consistency re-
quirements are involved. In particular, Eq. (3.3) can be easily inverted with respect to µ̃(T, ρ),
enabling computations at fixed nucleon density ρ. In addition, the thermodynamic derivatives
of the various terms in Eq. (3.1) can in principle all be calculated directly, i.e., by evaluating the
explicit expressions obtained for the derivatives.3 The effect of using self-consistently renor-
malized distribution functions should however be examined in more quantitative detail in future
studies.

Motivated by the above discussion, in this chapter we investigate the application of chiral
low-momentum two- and three-nucleon potentials in perturbative many-body calculations of
the thermodynamic EoS of isospin-symmetric nuclear matter (SNM) and pure neutron matter
(PNM), using unrenormalized canonical MBPT. In detail, the present chapter is organized as
follows.

• In Section 3.1 we discuss the partial-wave representation of the first- and second-order
two-body contributions.

• In Sec. 3.2 we discuss the approximative treatment of the (reducible) second-order con-
tributions from three-body interactions in terms of an effective in-medium two-body po-
tential.

• In Sec. 3.3 we then examine the dependence of the results for the equation of state of SNM
on the nuclear potential models, and benchmark the results against available empirical
constraints.

• Selecting among the potentials those which describe best the empirical constraints, we
study in more detail the thermodynamic EoS of SNM and PNM in Sec. 3.4.

• Finally, in Sec. 3.5 we extract, from the SNM and PNM results, the symmetry free energy,
entropy and internal energy, and study their density and temperature dependence.

3 For the perturbative contributions an explicit evaluation of the derivatives is however not practical in terms of
effort, since they can also be extracted numerically (using finite differences) when the numerical precision is
high enough. It would be much more difficult to achieve the sufficient precision in a self-consistent scheme.
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3.1. Partial-Wave Expansion

The numerical evaluation of the perturbative contributions from the NN potential can be facili-
tated by using partial-wave representation of the potential, i.e., the representation with respect
to coupled states |pJmJLS TmT 〉. The change from two-particle plane-wave states |~pσ1τ1σ2τ2〉
to partial-wave |pJmJLS TmT 〉 states is done in the following steps:

|~pσ1τ1σ2τ2〉 (i)−−−→ |~p S mS TmT 〉 (ii)−−−−→ |pLmLS mS TmT 〉 (iii)−−−−→ |pJmJLS TmT 〉 . (3.4)

The step (i) amounts to simple spin coupling and isospin coupling, step (ii) is associated with
the expansion

|~p 〉 =
∑

L,mL

4πiLY∗LmL
(θp, ϕp) |pLmL〉 , (3.5)

and step (iii) corresponds to total angular momentum coupling. The spherical harmonics
YL,mL(θ, ϕ) are given by

YL,mL(θ, ϕ) :=

√
(2L + 1)

4π
(L − mL)!
(L + mL)!

PmL
L (cos θ) eimLϕ, (3.6)

where PmL
L (cos θ) are the associated Legendre polynomials. Carrying out these steps one arrives

at

|~pσ1τ1σ2τ2〉 =
∑

J,L,S ,T

∑

mJ ,mL,mS ,mT

4πiLCJmJ
LmLS mS

CS mS
σ1σ2
CTmT
τ1τ2
|pJmJLS TmT 〉 , (3.7)

where CJmJ
LmLS mS

≡ 〈JmJLS |LmLS mS 〉 are Clebsch-Gordan coefficients.4 By the Wigner-Eckhart
theorem and assuming charge independence, the partial-wave matrix elements of the (antisym-
metrized) NN potential are given by5

〈pJmJLS TmT |V̄NN|p′J′mJ′L′S ′T ′mT ′〉 ≡ δJ,J′δmJ ,mJ′δS ,S ′δT,T ′δmT ,mT ′ 〈p|V̄ J,L,L′,S ,T
NN |p′〉 , (3.8)

With respect to |pJmJLS TmT 〉 states the antisymmetrizer is given by 1 − P12 = 1 − (−1)L+S +T .
Thus, the nonvanishing partial-wave channels are suject to the condition

L + S + T ∈ O (odd numbers). (3.9)

The “coupled channels” with components that are off-diagonal with respect to the angular mo-
mentum quantum number L occur only in channels with S = 1 and J = L + 1, and are subject
to

(L, L′) ∈ {(L, L), (L, L + 2), (L + 2, L), (L + 2, L + 2)}. (3.10)

In the following, we give the partial-wave expressions for the perturbative many-body contribu-
tions at first and at second order, for the case of isospin-symmetric nuclear matter.6

4 For simple spin and isospin coupling, the single-particle (iso)spins s, t = 1/2 are suppressed for notational
convenience.

5 For details regarding the partial-wave matrix elements of the different components of the NN potential (central,
spin, spin-orbit, tensor, etc.) we refer to Refs. [139, 236].

6 The corresponding expressions for pure-neutron matter (PNM) are given by Eqs. (3.16), (3.21) and (3.31)
without the factor (2T + 1), in Eq. (3.19) a factor (2T + 1)/2 is missig, in Eq. (3.30) a factor 2 is missing, and
in Eq. (3.27) the partial-wave sum is restricted to T = 1 and mT = −1 in the PNM case.
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First-Order Contribution. The first-order (Hartree-Fock) contribution from the NN potential to
the free energy density is given by

FNN
1 (T, µ̃) =

1
2

∑∫

σ1,τ1

d3k1

(2π)3

∑∫

σ2,τ2

d3k2

(2π)3 nk1nk2 〈~pσ1τ1σ2τ2|V̄NN|~pσ1τ1σ2τ2〉 . (3.11)

Changing the integration variables to ~p = (~k1 − ~k2)/2 and ~K = (~k1 + ~k2)/2 and performing the
partial-wave expansion we obtain7

FNN
1 (T, µ̃) =

1
2

∫
d3p
(2π)3

∫
d3K
(2π)3 J[~k1,~k2;~p, ~K] n|~K−~p |n|~K+~p |

∑

J,L,L′,S ,T

〈p|V̄ J,L,L′,S ,T
NN |p〉 (4π)2iL−L′

∑

mJ ,mL,mL′ ,mS ,mT

×
∑

σ1,τ1,σ2,τ2

C† JmJ
LmLS mS

CJmJ
LmL′S mS

C† S mS
σ1σ2
CS mS
σ1σ2
C†TmT
τ1τ2
CTmT
τ1τ2

YLmL(θp, ϕp)Y∗L′mL′ (θp, ϕp),

(3.12)

where the Jacobian is J[~k1,~k2;~p, ~K] = 8. Using the following identities (in that order)

• ∑
σ1,σ2

C† S mS
σ1σ2 CS mS

σ1σ2 = 1,

• ∑
τ1,τ2

C†TmT
τ1τ2 CTmT

τ1τ2 = 1,

•
∫ 1

−1
d cos θp

∫ 2π

0
dϕpYLmL(θp, ϕp)Y∗L′mL′

(θp, ϕp) = δL,L′δmLmL′ ,

• ∑
mL,mS

C† JmJ
LmLS mS

CJmJ
LmLS mS

= 1,

one arrives at

FNN
1 (T, µ̃) =

2
π3

∞∫

0

dp p2

∞∫

0

dK K2 Ξ(p,K)
∑

J,L,S ,T

(2J + 1)(2T + 1) 〈p|V̄ J,L,L,S ,T
NN |p〉 , (3.13)

where the function Ξ(p,K) is given by

Ξ(p,K) =

1∫

−1

d cos θK n|~K−~p |n|~K+~p | =
ln(1 + eη+2x) − ln

(
e2x + eη

)

x
(
e2η −1

) , (3.14)

with x = β K p
2M and η = β

(
K2+p2

2M − µ̃
)
.

In the zero-temperature case, the integration region for ~K is the volume of two identical
spherical caps which are given by the intersection of a sphere of radius κF by two parallel
planes whose distance from the center of the sphere is set by ~p and −~p. We therefore have

∫

|~K±~p|≤κF

d3K = 2
(
hπ
6

(3a2 + h2)
)

=
2π
3

(κF − p)2(2κF + p) , (3.15)

7 Note that we use the same symbol “T” for the temperature and for the total isospin. Note also that here ~K
denotes the average momentum and not the total momentum as in chapter 1.
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where a =

√
κ2

F − p2 is the radius of the base of the caps and h = κF − p is the height of the
caps. The expression for the first-order NN contribution to the ground-state energy per particle
is then given by

ĒNN
0;1 (kF) =

2
π

kF∫

0

dp p2
(
1 − 3p

2kF
+

p3

2k3
F

) ∑

J,L,S

(2J + 1)(2T + 1) 〈p|V̄ J,L,L,S ,T
NN |p〉 . (3.16)

First-Order Self-Energy. The first-order contribution to the (perturbative) self-energy from
the NN potential is given by

S NN
1,k1

(T, µ̃) =
∑∫

σ2,τ2

d3k2

(2π)3 nk2 〈~k1~k2 σ1τ1σ2τ2|V̄NN|~k1~k1 σ2τ2σ1τ2〉 (3.17)

The partial-wave expanded form is

S NN
1,k1

(T, µ̃) =

∫
d3k2

(2π)3 nk2

∑

J,L,L′,S ,T

〈p|V̄ J,L,L′,S ,T
NN |p〉 (4π)2iL−L′

∑

mJ ,mL,mL′ ,mS ,mT

∑

σ2,τ2

× C† JmJ
LmLS mS

CJmJ
L′mL′S mS

C† S mS
σ1σ2
CS mS
σ1σ2
C†TmT
τ1τ2
CTmT
τ1τ2

YLmL(θp, ϕp)Y∗L′mL′ (θp, ϕp). (3.18)

This expression can be simplified by noting that C† S mS
σ1σ2 CS mS

σ1σ2 takes the same values for each
value of σ1. We can thus average with respect to σ1, leading to

• 1
2

∑
σ1,σ2

C† S mS
σ1σ2 CS mS

σ1σ2 = 1
2

The angle θp is completely determined by k2 and θk2 , therefore we can use ϕk2 = ϕp and find

•
∫ 2π

0
dϕk2YLmL(θp, ϕp)Y∗L′mL′

(θp, ϕp) = 2πYLmL(θp, ϕp)YL′mL(θp, ϕp)δmL,mL′ ,

where YL,m(θ) denotes the spherical harmonics without the azimuthal part eimLϕ. Using the
identities (in that order)

• ∑
mJ ,mS

C† JmJ
LmLS mS

CJmJ
L′mLS mS

= 2J+1
2L+1δLL′ ,

• ∑
mL

YLmL(θp, ϕp)Y∗LmL
(θp, ϕp) 1

2L+1 = 1
4π ,

• ∑
τ2,mT

C†TmT
τ1τ2 CTmT

τ1τ2 = 2T+1
2 ,

one then finds

S NN
1,k1

(T, µ̃) =
1

4π

∞∫

0

dk2 k2
2 nk2

1∫

−1

d cos θk2

∑

J,L,S

(2J + 1) (2T + 1)
〈
p
∣∣∣ V̄ J,L,L,S ,T

NN

∣∣∣ p
〉
, (3.19)

where p = |~k1 − ~k2|/2.
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Second-Order Normal Contribution. The expression for the second-order normal contribution
from the NN potential is given by

FNN
2,normal(T, µ̃) = − 1

8


4∏

i=1

∑∫

σi,τi

d3ki

(2π)3

 〈12|V̄NN|34〉 〈34|V̄NN|12〉 nk1nk2 n̄k3 n̄k4 − n̄k3 n̄k4nk1nk2

k2
3

2M +
k2

4
2M −

k2
1

2M −
k2

2
2M

× (2π)3δ(~k1 + ~k2 − ~k3 − ~k4), (3.20)

where |12〉 ≡ |~p1σ1τ1σ2τ2〉 and |34〉 ≡ |~p2σ3τ3σ4τ4〉, with ~p1 = (~k1−~k2)/2 and ~p2 = (~k3−~k4)/2.
The partial-wave representation of this expression is given by8

FNN
2,normal(T, µ̃) = − 8

π2 M

∞∫

0

dp1 p2
1

1∫

−1

d cos θ1

∞∫

0

dp2 p2
2

1∫

−1

d cos θ2

∞∫

0

dK K2 G (p1, p2,K, θ1, θ2)
p2

2 − p2
1

×
∑

J,L1,L2,J′,L′1,L2,S

iL2−L1iL′1−L′2 〈p1|V̄ J,L1,L2,S ,T
NN |p2〉 〈p2|V̄ J′,L′2,L

′
1,S ,T

NN |p1〉 (2T + 1)
∑

mJ ,mS ,m′S

C(θ1, θ2).

(3.21)

where the function C(θ1, θ2) is a product of spherical harmonics and Clebsch-Gordan coeffi-
cients:

C(θ1, θ2) =YL1,(mJ−mS )(θ1)YL2,(mJ−m′S )(θ2)YL′2,(mJ−m′S )(θ2)YL′1,(mJ−mS )(θ1)

× CJmJ
L1(mJ−mS )S mS

CJmJ
L2(mJ−m′S )S m′S

CJ′mJ
L′2(mJ−m′S )S m′S

CJ′mJ
L′1(mJ−mS )S mS

, (3.22)

where againYL,m(θ) denotes the spherical harmonics without the azimuthal part eimϕ. The other
function G (p1, p2,K, θ1, θ2) is given by

G (p1, p2,K, θ1, θ2) = n|~K+~p1 |n|~K−~p1 |n̄|~K+~p2 |n̄|~K−~p2 | − n̄|~K+~p1 |n̄|~K−~p1 |n|~K+~p2 |n|~K−~p2 |, (3.23)

where the angles θ1,2 are measured with respect to ~K. Note that using the effective-mass ap-
proximation εk + S NN

1;k ' k2/(2M∗) + U, the effect of renormalizing the energy-denominator in
terms of the first-order perturbative self-energy9 amounts to multiplying Eq. (3.21) with a factor
M∗/M.

Second-Order Anomalous Contribution. The second-order anomalous contribution from the
NN potential is comprised of two terms, i.e.,

FNN
2,totanom(T, µ̃) = FNN

2,anomalous(T, µ̃) + FNN
2,corr.-bond.(T, µ̃), (3.24)

where the first term corresponds to the second-order anomalous diagram (Fig. 2.4), or equiva-
lently, to the equal-index (Γ1)2 contribution. It is given by

FNN
2,anomalous(T, µ̃) = − β

2


3∏

i=1

∑∫

σi,τi

d3ki

(2π)3

 nk1nk2 n̄k2nk3 〈12|V̄NN|12〉 〈23|V̄NN|23〉 . (3.25)

8 Here, the particular form of the expression that results from the partial-wave expansion depends on the choice
of the coordinate system. We choose a coordinate system where the average momentum ~K = (~k1 + ~k2)/2 =

(~k3 + ~k4)/2 is fixed in the z-direction.
9 This corresponds to the resummation of normal “one-loop” insertions, which at zero-temperature is equivalent

to the change from “bare” MBPT to Hartree-Fock perturbation theory, cf. Sec. 2.3 for details. Note also that
in Sec. 2.5.5 we have found that at T = 15 MeV the difference between the “bare” effective mass (perturbative
self-energy) and the self-consistent one (self-consistent self-energy) is rather small, cf. Fig. 2.17.
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This can be written as

FNN
2,anomalous(T, µ̃) = − β

2

∑∫

σ2,τ2

d3k2

(2π)3 nk2 n̄k2

∏

a∈{1,3}


∑∫

σaτa

d3ka

(2π)3 nka 〈a2|V̄NN|a2〉
 . (3.26)

The partial-wave representation of this expression is given by

FNN
2,anomalous(T, µ̃) = − 16

π2 β

∞∫

0

dkk2 nk n̄k

×

∞∫
0

dp p2 ∑
J,L,L′,S

iL−L′
〈

p
2

∣∣∣ V̄ J,L,L′,S ,T
NN

∣∣∣ p
2

〉 1∫
−1

dcos θpn|~p+~k|
∑

mJ ,mS ,mT

C′(θp)


2

, (3.27)

where θp^̂̂(~p,~k), and

C′(θp) =YL,(mJ−mS )(θp)YL′,(mJ−mS )(θp) CJmJ
L(mJ−mS ),S mS

CJM
L′(mJ−mS ),S mS

CS mS
1/2(mS−1/2),S mS

CTmT
1/2(mT−1/2),S mS

.

(3.28)

The expression for the second-order correlation-bond contribution reads [cf. Eq. (2.196)]10

FNN
2,corr.-bond(T, µ̃) =

(
∂FNN

1 (T, µ̃)
∂µ̃

)2 [
∂2A(T, µ̃)

∂µ̃2

]−1

, (3.29)

whereA(T, µ̃) is the expression for the noninteracting nonrelativistic grand-canonical potential
density, cf. Eq. (2.29), evaluated with µ̃ as the chemical potential. The term ∂2A(T, µ̃)/∂µ̃2 is
given by

∂2A(T, µ̃)
∂µ̃2 = −∂ρ(T, µ̃)

∂µ̃
= −2M

π2

∞∫

0

dp np = 2αT 1/2Li1/2(x̃), (3.30)

and from Eq. (3.13) one gets

∂FNN
1 (T, µ̃)
∂µ̃

=
2
π3

∞∫

0

dp p2

∞∫

0

dK K2∂Ξ(p,K)
∂µ̃

∑

J,L,S

(2J + 1)(2T + 1) 〈p|V̄ J,L,L,S ,T
NN |p〉 . (3.31)

We note that the µ̃ derivative of Ξ(p,K) can be given in closed form:

∂Ξ(p,K)
∂µ̃

=
β

x

2
ln(1 + eη+2x) − ln

(
e2x + eη

)

(eη − e−η)2 +
eη

(
1 − e4x

)
(
e2η −1

) (
eη + e2x) (1 + eη+2x)

 , (3.32)

where x and η are the same as in Eq. (3.14).

10 In the Kohn-Luttinger inversion method, this contribution corresponds to the second-order “counterterm” [cf.
Sec. 2.4.4].
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3.2. Three-Body Contributions and Effective Two-Body
Potential

Concerning the contributions from 3N interactions, in our nuclear many-body contributions we
will calculate the first-order 3N contribution exactly. At second order, only the reducible dia-
grams are taken into account and evaluated in terms of an approximative effective in-medium
two-body potential, called the “density dependent nucleon-nucleon” (DDNN) potential. This
approach can be justified by the results of Refs. [232, 117], where it was found that in general
the reducible contribution dominates.

Effective Two-Body Potential. As discussed in Sec. 2.3.7, the evaluation of reducible three-
body diagrams (i.e., diagrams where all three-body vertices have at least one closed nucleon
line) can be simplified by constructing an effective in-medium two-body potential, the ”den-
sity dependent nucleon-nucleon” (DDNN) potential. The (antisymmetrized) DDNN potential
V̄DDNN is generated from the genuine three-nucleon potential V̄3N by summing over the occu-
pied (as specified by the corresponding distribution function) nucleon states associated with the
closed line, cf. Eq. (2.137).

By construction, the matrix elements of the DDNN potential depend on the properties of
the medium, i.e., on temperature T as well as on the neutron and proton auxiliary chemical
potentials µ̃n/p. In addition, since the nuclear medium defines a frame of reference, the DDNN
potential depends also on the center-of-mass momentum ~K = (~k1 + ~k2)/2. This implies that the
partial-wave expansion in terms of |pJLS T 〉 states is not applicable for V̄DDNN. To overcome
this difficulty, in Ref. [206] the DDNN potential was constructed in the center-of-mass frame
approximation where the dependence of V̄DDNN on ~K is neglected. To test the quality of this
approximation, in the following we calculate the first-order three-body contribution first exactly
(using V̄3N) and then from V̄DDNN.11

Details regarding the construction of the DDNN potential can be found in [206, 71, 355].
The explicit expressions for the different components of the DDNN potential are given for
general isospin-asymmetric nuclear matter (ANM) in the appendix A.3. We note that, in order
to simplify the partial-wave expansion of the DDNN potential, the off-shell components of the
DDNN potential are extrapolated from the on-shell ones following the prescription given in Ref.
[206].

For each of the five sets of NN and 3N potentials of Table 1.1, the respective DDNN potential
V̄DDNN(Λ) is regularized using the same regulator used in the regularization of the corresponding
NN potential V̄NN(Λ), cf. Table 1.1 for the regulator properties.

First-Order 3N Contribution (Exact). The exact expression for the first-order three-body con-
tribution to the free energy density of SNM is given by

F3N
1 (Λ3N; T, µ̃) =


3∏

i=1

∑∫

σi,τi

d3ki

(2π)3

 nk1nk2nk3 f3N(~k1,~k2,~k3) 〈123|V̄3N|123〉 . (3.33)

The regulator f3N is usually taken to have the form (with n = 2) [191, 251]

f3N(P,Q) = exp
[
−

(
P2 + 3Q2/4

)n

(Λ3N)2n

]
, (3.34)
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with Jacobi momenta ~P = 1
2 (~k1 −~k2) and ~Q = 2

3 [~k3 − 1
2 (~k1 +~k2)]. For the first-order contribution

from chiral N2LO 3N interactions, we have found the influence of this regulator to be negligible
(see Fig. 3.3). Leaving out the regulator, the spin and isospin sums as well as the angular
integrals in the expression for F3N

1 (T, µ̃) can be carried out explicitly, leading to

F3N
1 (T, µ̃) =

∞∫

0

dk1
k1

2π2

∞∫

0

dk2
k2

2π2

∞∫

0

dk3
k3

2π2

(
K (cE)

3 +K (cD)
3 +K (Hartree)

3 +K (Fock)
3

)
nk1nk2nk3 ,

(3.35)

where the kernels K (cE), K (cD), K (Hartree) and K (Fock) are given by [151, 55]

K (cE)
3 = − 12cE

f 4
π Λ̃χ

k1k2k3, (3.36)

K (cD)
3 =

3gAcD

f 4
π Λ̃χ

k3

(
k1k2 − m2

π

4
ln

m2
π + (k1 + k2)2

m2
π + (k1 − k2)2

)
, (3.37)

K (Hartree)
3 =

3g2
A

f 4
π

k3

[
2 (c3 − c1) m2

π ln
m2

π + (k1 + k2)2

m2
π + (k1 − k2)2 − 4c3k1k2

+ (c3 − 2c1) m4
π

(
1

m2
π + (k1 + k2)2 −

1
m2

π + (k1 − k2)2

)]
, (3.38)

K (Fock)
3 =

g2
A

f 4
πk3

[
3c1m2

πH(k1)H(k2) +

(c3

2
− c4

)
X(k1)X(k2) + (c3 + c4) Y(k1)Y(k2)

]
. (3.39)

The functions H(ki), X(ki) and Y(ki) in the Fock-contribution are:

H(ki) = ki +
k2

3 − k2
i − m2

π

4k3
ln

m2
π + (ki + k3)2

m2
π + (ki − k3)2 , (3.40)

X(ki) = 2kik3 − m2
π

2
ln

m2
π + (ki + k3)2

m2
π + (ki − k3)2 , (3.41)

Y(ki) =
ki

4k3

(
5k2

3 − 3k2
i − 3m2

π

)
+

3
(
k2

i − k2
3 + m2

π

)2
+ 4m2

πk2
3

16k2
3

ln
m2

π + (ki + k3)2

m2
π + (ki − k3)2 . (3.42)

The many-body diagrams associated with the different kernels are depicted in Fig. 3.1. For pure
neutron matter (PNM), the direct and exchange contributions proportional to cE,D cancel each
other and the term proportional to c4 vanishes due to its isospin structure, see Ref. [206] for
details.

(a) cE (b) cD (c) Hartree (d) Fock

Figure 3.1.: Contributions to F1,3N from chiral 3N interactions at N2LO in chiral effective
field theory. Dashed lines represent pions.

11 Recently, a new method was developed in Res. [188] where the ~K dependence of V̄DDNN is averaged over.
In Ref. [107] it was found that at high densities this method improves visibly upon the center-of-mass frame
approximation.
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Numerical Results (3N). The different potential sets involve (by construction) different values
of cE,D,1,3,4. It is therefore interesting to compare the components of the first-order three-body
contribution proportional to different LECs. The results for the different components are shown
in the left plot of Fig. 3.2 as functions of the nucleon density ρ = ρn + ρp for T = 0 (using the
n3lo500 values for cE,D,1,3,4). One sees that the contributions from c3 dominates (in SNM there
is also a large contribution from c4). Although the different components are different for PNM
(where only c1,3 contribute) and SNM, the (full) result for F̄3N(T = 0, ρ) is almost the same for
both cases, as shown in the inset in the left plot of Fig. 3.2. In the right plot of Fig. 3.2, the
results for the five different potential sets are compared (for both SNM and PNM). One sees
that for the other potentials sets the differences between the SNM and PNM results are larger:
the difference is only slightly increased for n3lo414, but considerably larger for n3lo450 and in
particular for VLK21 and VLK23 (the results for VLK21 and VLK23 are almost identical). The
implications of the large size of the contributions from three-nucleon interactions for VLK21
and VLK23 (i.e., for the Nijmegen LECs) will be examined in detail in Sec. 3.3.
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Figure 3.2.: Left plot: different components of the first-order contribution from the three-
nucleon potential, F̄3N, evaluated for T = 0 and the n3lo500 LECs. The results
for the components proportional to c1 and c3 are shown for both SNM and
PNM. The inset shows the full results for SNM and PNM. Right plot: model
dependence of F̄3N at T = 0. The inset magnifies the behavior at low densities.

DDNN vs. 3N Results. To test the quality of the center-of-mass frame approximation for the
DDNN potential, we compare in Figs. 3.3(a) and 3.3(b) the results (for SNM) for the first-order
three-body contribution calculated using Eq. (3.35) with the results obtained using V̄DDNN in
the first-order NN contribution, Eq. (3.16). The quantity shown is the free energy per nucleon
F̄(T, ρ) = ρ−1F(T, ρ) as a function of the nucleon density ρ for temperatures T = (0, 25) MeV,
obtained using the LECs corresponding to VLK21 and n3lo500, respectively. In each plot, the
two insets magnify the behavior at low and at high densities. One sees that for sharp regulators
the temperature dependence of the results obtained from Eq. (3.35) is similar to the one of the
results obtained with the center-of-mass frame DDNN potential. For the relatively soft n = 2
regulator this is not the case in the high-density region, as is evident from Fig. 3.3(b) where
the results for n3lo500 are shown. Nevertheless, the deviations are in all cases small, which
suggests that it is justified to use V̄DDNN for the computation of the second-order reducible
diagrams.
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Figure 3.3.: First-order three-body contribution to the free energy per nucleon of SNM, cal-
culated with genuine 3N interactions, F̄3N, and with the center-of-mass frame
DDNN potential, F̄NN[DDNN]. In Fig. (a) we show also the results for the gen-
uine 3N contribution with a Jacobi momentum regulator with Λ3N = 2.1 fm−1

and n = 10.12 At zero temperature the results for F̄3N(Λ3N = ∞) and
F̄3N(Λ3N = 2.1 fm−1) overlap (at this zoom level).

3.3. Model Dependence and Benchmarks

As a benchmark for both the many-body framework and the various sets of nuclear two- and
three-nucleon potentials (cf. Table 1.1), we examine here the numerical results for the EoS of
isospin-asymmetric nuclear matter (SNM). Special attention is paid to the influence of the con-
tributions from three-nucleon interactions and the impact of the different second-order terms.13

3.3.1. Order-By-Order Results

In the following we examine the results for for the free energy per particle F̄(T, ρ) of SNM
obtained at different orders in MBPT. The first- and second-order results for F̄(T, ρ), plotted
as function of ρ for T = (0, 25) MeV, are shown in plots (a) and (b) of Fig. 3.4 for the case
where only the two-nucleon potential is included. One sees that with NN interactions only, no
saturation point, i.e., no local minimum of Ē0(ρ) = F̄(T = 0, ρ), is obtained, which is a well-
known feature of low-momentum potentials [55]. (Contrary to “traditional”, pre-χEFT ideas, cf.
Refs. [42, 55]) this however must not be interpreted as a deficiency originating from the use of
(“soft”) low-momentum potentials, but as one that arises from the omission of 3N interactions.
From the perspective of χEFT, the deficiency of the pure NN results is not surprising; without
multi-nucleon interactions the description of the nuclear interaction is incomplete.

12 To be precise, the regulator used to calculate the brown curves is given by f (a, b) = exp[−(a2 + 3
4 b2)2/Λ4

3N],
where a = 1

2 |k1 − k2| and b = 2
3 |k3 − 1

2 (k1 + k2)|. As this regulator is more restrictive than the usual one where a
and b are given by absolute values of (proper) Jacobi momenta, i.e., a = |~P| and b = | ~Q|, the effects of the latter
are even smaller.

13 The third-order ladder and ring contributions at zero temperature have been computed recently in Ref. [203]
(for the ladders, see also Refs. [107, 251]). It was found that for low-momentum potentials they give only a
comparatively small correction to the EoS. Since the focus of this thesis is an initial study of the full thermo-
dynamic parameter space of the EoS, we use second-order MBPT and benchmark the results against available
empirical constraints but do not consider the computationally more challenging third-order terms.
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Furthermore, in Fig. 3.4(a) one sees that at first order the n3lo500 two-nucleon potential
gives a much smaller contribution to the free energy per particle as compared to the (“softer”)
n3lo414, n3lo450, VLK21 and VLK23 two-nucleon potentials, which points to the decreased
perturbative quality of this NN potential. Even so, at second order (with the NN potential only)
the model dependence is substantially reduced, and the results obtained with all five potential
sets are in close agreement. The strong model-independence of the pure NN calculation at
second order is likely coincidental; in fact, with third-order contributions included the deviations
of the n3lo500 results become again more sizeable, cf. Ref. [90].
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Figure 3.4.: Free energy per nucleon F̄(T, ρ) of SNM at different stages in MBPT, calculated
using different sets of low-momentum NN and 3N potentials. The blue triangle
marks the empirical saturation point Ē0,sat ' −16 MeV, ρsat ' 0.17 fm−3 (cf. e.g.,
Refs. [42, 116]).

The results obtained from the different potential sets deviate again when (the chiral N2LO)
3N interactions are included at first order in MBPT, as can be seen in Fig. 3.4(c). For all po-
tential sets, the inclusion of the first-order 3N contribution leads to a local minimum of Ē0(ρ).
The obtained saturation points are closer to the empirical one for the n3lo potential sets as com-
pared to the VLK ones. The VLK results are still very similar; the deviations among the n3lo
results are more sizeable, but considerably smaller than the differences between the VLK and
n3lo results. The large deviations between the VLK and n3lo curves are entirely caused by the
significantly larger size of the first-order 3N contribution for the VLK sets, which can be traced
back to the larger value of c3 in the Nijmegen LECs, cf. Figs. 3.2 and 3.3.
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Finally, in Fig. 3.4(d) the second-order DDNN contributions are included. Here the results
become again more model-independent, but only in the case of zero temperature. At T = 25
MeV the curves are now considerably flatter in the case of VLK21 and especially VLK23 as
compared to the n3lo results. The reason for this behavior is the different size of the total
second-order normal contribution from 3N interactions in each case (the numerical results for
the different second-order contributions are examined in detail below). This contribution is
much larger for the VLK potential sets; at zero temperature it balances the large first-order 3N
contribution associated with the Nijmegen LECs, leading to results that are similar to those
obtained with the n3lo LECs. However, because of the much more pronounced temperature
dependence of the second-order DDNN contributions (as compared to the first-order three-
body contribution), this balance turns into overcompensation at finite T , leading to the observed
flattening of the F̄(T, ρ) curves with increasing temperature.14 For both VLK21 and VLK23
this flattening leads to the crossing of pressure isotherms (for VLK23 the pressure P = ρ2∂F̄/∂ρ
even becomes negative at high densities and high temperatures). Ultimately, the origin of this
behavior lies in the large values of the Nijmegen LECs (in particular the large value of c3).

3.3.2. Second-Order Contributions

To better understand the origin of the crossing of pressure isotherms found in the second-order
results (for VLK21 and VLK23), we examine here in more detail the different second-order con-
tributions for the various potential sets. The results for the different second-order normal con-
tributions to the free energy per particle of SNM are depicted in Figs. 3.5, where F̄2,normal[NN]
denotes the contribution where both potentials are V̄NN, F̄2,normal[mixed] is the contribution
where one potential is given by V̄NN and other one by V̄DDNN(T, ρ), and F̄2,normal[DDNN] de-
notes the case where both potentials are V̄DDNN(T, ρ). Furthermore, we define F̄2,normal[total] =

F̄2,normal[NN] + F̄2,normal[mixed] + F̄2,normal[DDNN].

The results for the second-order anomalous terms are shown in Fig. 3.6 (for n3lo4500; the
results for the other potential sets are similar); the contribution where both potentials are given
by V̄NN is denoted by F̄2,anomalous[NN], the one with two V̄DDNN(T, ρ) potentials is denoted by
F̄2,anomalous[DDNN], and the case where one interaction is given by V̄NN and the other one by
V̄DDNN(T, ρ) is denoted by F̄2,anomalous[mixed]. As can be seen in Fig. 3.6, the size of these con-
tributions is relatively large; in fact, in the high-density domain they give, together with the
respective correlation-bond terms, the largest contributions in the perturbation series. However,
the respective correlation-bond terms, the largest contributions in the perturbation series. How-
ever, the total higher-cumulant contributions, i.e., F̄totanom[. . .] = F̄2,anomalous[. . .]+F̄2,corr.-bond[. . .],
are comparatively small in size and (as expected) decrease with temperature. We reiterate that
the higher-cumulant terms correspond to the renormalization of the distribution functions; the
large size of the (second-order) anomalous contributions and the respective correlation-bond
terms as well as the substantial cancellation between these terms can be understood in terms of
the effective-mass analysis of the mean-field contributions to the self-energy and the auxiliary
chemical potential, cf. Sec. 2.5.5 for details.15 In particular, the large size of the individual
higher-cumulant terms reflects the inadequacy of the “conventional” grand-canonical version of
MBPT.
14 A similar (but more moderate, and without crossing pressure isotherms) flattening occurs also in the high-

density domain of the results obtained from n3lo450 and n3lo414. It is entirely absent in the case of n3lo500,
where the respective contribution is small (and has opposite sign).
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Figure 3.5.: Second-order normal contributions calculated for SNM from different potential
sets. The insets show the contributions which arise from the temperature and
density dependent DDNN potential.

In Fig. 3.5, one sees that the size of F̄2,normal[NN] increases with the resolution scale; among
the different NN potentials, n3lo500 gives rise to the largest contribution. For n3lo450 and
VLK23 (not shown) as well as for n3lo414 and VLK21 the results for F̄2,normal[NN] are very
similar, and feature non-monotonic behavior with respect to the density and temperature de-
pendence. In contrast, similar to the first-order 3N contributions, the pure DDNN contributions
F̄2,normal[DDNN] exhibit a continuous increase in magnitude with density as well as with tem-
perature. The size of the F̄2,normal[DDNN] contribution is noticeably larger for VLK21 (and for
VLK23). The size of the sum of the total additional DDNN contributions, F̄2,normal[mixed] +

F̄2,normal[DDNN], is then also the largest in that case. As discussed above, for the VLK potentials
the large second-order DDNN contributions counteracts the large first-order three-body contri-
bution, which (due to the more pronounced temperature dependence of the second-order con-
tributions) leads to the crossing of pressure isotherms. For the n3lo potentials F̄2,normal[DDNN]
is of smaller size; in the case of n3lo500 it is additionally suppressed by the mixed contribution
F̄2,normal[mixed], leading to an overall relatively small modification of the second-order normal
contribution when the DDNN potential is included.

15 We note that for PNM (results not shown) the size of the summed higher-cumulant contributions is even smaller
(. 0.1 MeV in the same range of densities of temperatures as seen in Fig. 3.6), with the individual contribu-
tions (anomalous and correlation-bond) being about half as large as for SNM, corresponding to the smaller
magnitude of mean-field effects in PNM.
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Figure 3.6.: (Left plot) Higher-cumulant contributions at second order arising from V̄NN

and V̄DDNN(T, ρ). (Right plot) Summed second-order cumulant contributions
(anomalous plus correlation bond). The results were obtained using n3lo450.

3.3.3. Effective-Mass Improved Results

Here, we examine the effect of including the effective-mass corrections M∗/M in the evaluation
of the second-order normal term. The effective-mass factors M∗/M receive a contribution from
both two-body and three-body interactions, i.e., their inclusion corresponds to the resummation
of normal “one-loop” insertions from both two-body and three-body interactions (“two-loop
insertions” in the latter case). We will find that in the case of n3lo414 and n3lo450 the inclu-
sion of the M∗/M factors leads to a better description of the saturation point. Note that at zero
temperature16 the M∗/M results correspond to a second-order calculation in Hartree-Fock per-
turbation theory (HFPT), cf. the discussion of renormalized MBPT in Sec. 2.5. Since nuclear
matter is subject to considerable mean-field effects, one can on general grounds consider the
HFPT treatment to be more well-converged as compared to the bare second-order calculation.17

In particular, this is supported by Ref. [352] where the zero-temperature results for n3lo414
(HFPT and bare second-order MBPT) have been compared to configuration interaction Monte-
Carlo (CIMC) results (based on the same potential set), cf. Table IV in [352]; it was found that
the M∗/M improved results are indeed closer to the CIMC ones. In the case of the n3lo500 po-
tential set, however, we will find that the M∗/M factors in fact lead to a poorer description of the
empirical saturation point. This behavior may be related to the decreased perturbative quality
of the n3lo500 two-nucleon potential associated with the larger cutoff scale Λ = 2.5 fm−3.

The SNM results for the temperature and density dependent effective-mass factors M∗(T, ρ)/M,
calculated by substituting V̄NN + 1

2 V̄DDNN for V̄NN in Eq. (3.19), are shown in Fig. 3.7. One sees
that M∗(T, ρ)/M decreases with density and increases with temperature and that M∗/M ≤ 1.
Hence, including the effective-mass factors leads to a reduction of the different second-order
normal contributions.18

16 HFPT corresponds to the renormalization of the single-particle spectrum in terms of the self-consistent first-
order self-energy, which is equivalent to the inclusion of the (perturbative) M∗/M correction only at T = 0.

17 In particular, this suggests that the effect of the resummation of first-order higher-cumulant insertions in the
second-order calculation (corresponding to second-order canonical HFPT) should be investigated in future
studies. However, based on the first-order (SCHF) results of Sec. 2.5.5 as well as the moderate temperature
dependence of the second-order normal contributions [cf. Eq. (2.276)], we expect no significant impact on the
results.

18 We note that higher-order contributions to the in-medium single-nucleon energies at or near zero temperature
have been calculated from chiral nuclear potentials in [191, 207, 204, 73] (cf. also [41, 434]). The higher-order
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Figure 3.7.: Effective-mass ratio M∗/M for SNM as a function of the nucleon density ρ and
the auxiliary chemical potential µ̃ (denoted by µ0 in the plot), respectively, for
different temperatures. Solid lines for n3lo414, dashed lines for n3lo450.

In Fig. 3.8 we then show the second-order results for F̄(T, ρ) with the effective-mass fac-
tors M∗/M included. One sees that the “flatness problem” of the finite-temperature VLK re-
sults is no longer present, and at T = 25 MeV the VLK results and the ones obtained from
n3lo450 and n3lo414 are in close agreement. At zero temperature nuclear matter is underbound
with the VLK21 potential (Ē0,sat = −12.73 MeV), the saturation density is somewhat small
(ρsat = 0.136 fm−3), and the compression modulus is K = 200 MeV. For VLK23 the saturation
point is close to the empirical value, i.e., Ē0,sat = −15.66 MeV and ρsat = 0.152 fm−3, and the
compression modulus K = 260 MeV is in agreement with empirical constraints (cf. Sec. 2.4).
However, for both VLK21 and VLK23 the zero-temperature curves are now somewhat steep for
densities just above saturation density, and the crossing of the pressure isotherms is therefore
still present as can be seen in the second plot in Fig. 3.8.

In the case of n3lo450 and n3lo414, the pure second-order calculation resulted in nuclear
matter that was slightly overbound at low temperatures. The M∗/M correction reduces the
large attractive contribution from the second-order normal term and improves the description
of nuclear matter at zero temperature for the n3lo414 and n3lo450 potentials. By contrast, with
n3lo500 the empirical saturation point is reproduced only in the bare second-order calculation
without the M∗/M correction (again, this agreement is likely coincidental).
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Figure 3.8.: Second-order results (SNM) with M∗/M factors included for F̄(T, ρ) and
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corrections increase the effective mass close to the bare mass in the vicinity of the Fermi surface.
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3.3.4. Discussion

In this chapter, so far, we have computed the (single-phase constrained) thermodynamic EoS of
isospin-symmetric nuclear matter (SNM) using NN and 3N chiral low-momentum potentials in
second-order many-body perturbation theory (MBPT). As noted in Sec. 1.4, chiral nuclear po-
tentials are not unique, and using various (sets of NN and 3N) potentials (in principle) enables
systematic estmimates of theoretical uncertainties. However, one should be aware that artifacts
can arise from various sources, e.g., from using potentials with unsuitable regulators or cutoff

scales in MBPT (see also Refs. [117, 251] for studies of these effects), or from deficiencies in
the fitting procedure carried out to fix the LECs [126].

In our calculations, we have seen that the differences in the results obtained from different
potential sets are predominantly from the contributions associated with the three-body interac-
tions, which depend sensitively on the choice of low-energy constants cE, cD and c1,3,4. The
dominant three-body contributions are the ones which are proportional to c3, and the crossing
of pressure isotherm present in the VLK21 and VLK23 results can be linked mainly to the
large value of this low-energy constant in the Nijmegen LECs.19 This suggests that, concern-
ing theoretical uncertainty estimates, a more systematic study of the uncertainties in the LECs
may be useful. It should however be emphasized that we have considered only the leading or-
der (N2LO) three-nucleon interactions. The N3LO multi-nucleon interactions have so far been
fully included only in PNM calculations at T = 0 [386, 251, 106] (cf. also [231, 238]), but
their implementation in SNM calculations remains a challenge at present. Both the inclusion
of N3LO multi-nucleon interactions as well as the inclusion of higher-order contributions in
MBPT may improve the results obtained with the VLK potentials. Moreover, the method used
to determine the three-nucleon LECs (in the VKL case) does not fully (properly) account for
“induced” (by the RG evolution) multi-nucleon interactions, cf. the discussion in Sec. 1.4. A
more consistent RG treatment (e.g., employing SRG transformations [186, 223, 184, 154]) may
also help to cure some of the deficiencies encountered with the Nijmegen LECs.

Our results may also indicate that in order to reduce the model dependence, it may be useful
to use nuclear interactions based on χEFT with explicit ∆ degrees of freedom. In the ∆-less
theory, contributions to the nuclear NN and 3N interactions from virtual ∆ excitations are not
included explicitly but only implicitly through the interaction vertices, i.e., parametrized by
contact terms, leading to larger values of the LECs and (presumably) a larger strength of the 3N
interaction in nuclear matter [210]. See also Ref. [274] , where a reduction of the contribution
to the nuclear EoS from 3N interactions was observed in BHF calculations with ∆-improved
chiral interactions.

Overall, the above considerations make clear that a quantitative analysis of theoretical uncer-
tainties would require further investigations. In view of this, we restrict most of the subsequent
computations to n3lo414 and n3lo450 because for these potential sets the many-body calcula-
tions can be considered to be free of artifacts, and for both sets the empirical saturation point is
well-reproduced and thermodynamic consistency is satisfied.

19 Strictly speaking, the crossing of pressure isotherms present in the VLK results is not an unphysical feature.
The crossing implies a negative coefficient of thermal expansion αΩ = Ω−1(∂Ω/∂T )P at high densities; i.e., as
follows from the relation (∂P/∂T )ρ = αΩ/κT (where κT is the isothermal compressibility, with κT > 0 outside
the spinodal), there would be a large decrease in pressure when the temperature is increased at fixed density.
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3.4. Thermodynamic Nuclear Equation of State

In the following we focus on the results obtained from n3lo414 and n3lo450 and examine in
more detail the thermodynamic EoS of isospin-symmetric nuclear matter (SNM) and pure-
neutron matter (PNM) obtained from these sets of chiral two- and three-nucleon potentials.20

This is motivated by the results of Sec. 3.3, where we have found that for these potential sets the
second-order calculation appears to be reasonable converged, and (with M∗/M factors included)
the empirical saturation point of isospin-symmetric nuclear matter (SNM) is reproduced to good
accuracy. For comparison, we examine also the SNM results obtained from n3lo500 without
effective-mass contributions only to study whether universal features at finite temperature can
arise starting from a realistic zero-temperature EoS.

The results for the free energy per nucleon F̄, the pressure P, the entropy per nucleon S̄ , and
the internal energy per nucleon Ē of SNM (δ = 0) and PNM (δ) are shown in Figs. 3.9 and 3.10,
respectively.21 Note that, as a consequence of the gτ factor in the density equation [Eq. (3.3)],
at the same density higher energy scales are probed in PNM. Note also that the uncertainty bars
obtained by varying the resolution scale (n3lo414 vs. n3lo450) are reduced in the case of PNM
as compared to the SNM results, which is due to the decreased magnitude of nuclear interac-
tions in PNM.

At T = 0 the entropy is zero and the system is in the ground state, i.e., F̄(T = 0) = Ē(T =

0) = Ē0, with Ē0 → 0 for ρ → 0. At finite temperature, however, F̄(T, ρ, δ) diverges loga-
rithmically (∼ ln ρ) in the zero-density limit, which is entirely caused by the noninteracting
contribution [cf. Eq. (A.12)]; the interaction contributions vanish for ρ → 0.22 At very low
temperatures, the internal energy per particle of PNM increases monotonically with increasing
density (as required by the absence of a liquid-gas instability in PNM), but otherwise there is a
local minimum at finite density.

In Fig. 3.10, the green dashed lines correspond to the model-independent “virial” equation of
state (VEoS) determined from neutron-neutron scattering phase shifts (cf. Sec. 3.4.2 for details).
The VEoS lines end where the fugacity is z = exp(µ/T ) = 0.5. PNM is thermodynamically sta-
ble, but for temperatures below a critical value Tc the Eos of SNM has a region, the so-called
spinodal region, where the free energy density F(T, ρ) is a nonconvex function of ρ and the
system is unstable with respect to infinitesimal density fluctuations [4]. The boundary of the
spinodal region (called the spinodal) is marked out explicitly in Fig. 3.9. The critical point is
shown as a circle (full circle for n3lo414, open circle for n3lo450). Since the free energy den-
sity F = ρF̄ becomes convex for ρ → 0 [cf. Eq. (A.13)], the zero-temperature endpoint of the
low-density part of the spinodal is located at a finite value of ρ (rougly, at ρ ' 2 · 10−4 fm−3).

More details on the results shown in Figs. 3.9 and 3.10 are given below, i.e., in Secs. 3.4.1
and 3.4.2.

20 The more involved case of isospin-asymmetric matter (ANM) is studied in chapters 3 and 4.
21 The thermodynamic derivatives involved in the computation of the pressure and the entropy have been evaluated

numerically using finite-difference methods (cf. Sec. 5.2.1).
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3.4.1. Isospin-Symmetric Nuclear Matter

Here, we examine the liquid-gas phase transition of SNM, and compare the values for addi-
tional key quantities that characterize the obtained EoS, i.e., the compression modulus K and
the critical point coordinates (Tc, ρc, Pc), with empirical estimates for these quantities.

Liquid-Gas Equilibrium. In the case of SNM, the nonconvexity of the (single-phase con-
strained) free energy density in the spinodal region entails that the chemical potential and pres-
sure isotherms are nonmonotonic functions of ρ. This implies that (for temperatures T < Tc)
there exist points (ρα(T ), Fα(T )) and (ρβ(T ), Fβ(T )) which have matching values of these quan-
tities [denoted by µm(T ) and Pm(T )] and therefore represent systems that can coexist in mutual
thermodynamic equilibrium. The points (ρα(T ), Fα(T )) and (ρβ(T ), Fβ(T )) define a bound-
ary (the coexistence boundary, or “binodal”) that encloses the spinodal. In the interior of that
boundary the equilibrium state corresponds to the coexistence of macroscopically large α and
β regions: the coexisting liquid and gas phases.

Between the spinodal and the binodal the (single-phase constrained) free energy density is lo-
cally convex (but not globally), corresponding to a metastable region where a finite disturbance
(a “germ” or “nucleus” of the new phase) is required to induce phase separation (nucleation);
in the interior of the spinodal, the system separates spontaneously (spinodal decomposition).
For SNM (but not for δ > 0, cf. Chap. 4) the binodal terminates at the critical point (Pc, ρc,Tc)
where the binodal touches the spinodal (cf. also Fig. 4.5), corresponding to critical behavior and
a second-order transition point [323, 110]. The different parts of the region of thermodynamic
instability are particularly exposed in the P(T, µ) curves. Here, the transition from metastability
to the unstable region with nonconvex free energy density is marked out by sharp bends, and the
single-phase constrained P(T, µ) curves are triple-valued for T < Tc [double-valued at T = 0
where the gas phase is empty (vacuum), cf. also Sec. 4.2.2].

The values of µm(T ) and Pm(T ) can be identified by constructing double tangents in the
F̄(T, ν) plots (where ν = 1/ρ is the volume per nucleon), i.e., for fixed temperature T < Tc one
finds values νa and νb (where νa > νb) for which23

F̄(T, να) − F̄(T, νβ) = −Pm(T ) (να − νβ),
∂F̄(T, ν)
∂ν

∣∣∣∣
να,νβ

= −Pm(T ). (3.43)

The EoS corresponding to (stable) liquid-gas equilibrium is then given by substituting the
single-phase constrained EoS with the double tangents, i.e., for ρ ∈ [ρα(T ), ρβ(T )] and T < Tc

the stable equilibrium configuration corresponds to F(T, ρ) = ρ µm(T ) − Pm(T ). The EoS
resulting from this construction (the “Maxwell construction” [216]) is compared to the single-
phase constrained results for F(T, ρ, δ = 0), µ(T, ρ, δ = 0) and P(µ,T, δ = 0) in Fig. 3.11.
Since the Maxwell construction does not preserve the curvature of F̄(T, ρ) at the boundaries
{ρα(T ), ρβ(T )} of the transition region, both P(T, ρ) and µ(T, ρ) are not differentiable at these
points. For ρ ∈ [

ρα(T ), ρβ(T )
]

the chemical potential and the pressure are constant and their
values given by µm(T ) and Pm(T ), respectively. In the P(T, µ) diagrams the transition region
thus corresponds to single points with coordinates (Pm(T ), µm(T )) [cf. also Fig. 2.16].

22 The ρ → 0 and the T → 0 limits (of the free energy per particle) do not commute. This is plausible, since the
ρ→ 0 at finite T corresponds to an ideal classical gas, but the T → 0 limit leads to the degenerate Fermi gas.

23 Note that the Maxwell construction neglects the effect of the interface that divides the coexisting phases, cor-
responding to the bulk limit where the contribution from the dividing interface vanishes (cf. Sec. 4.1.1 for de-
tails). We emphasite also that the “usual” Maxwell construction is applicable only for SNM but not for ANM;
in SNM neutrons and protons are thermodynamically indistinguishable (if charge-symmetry breaking effects
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3. Nuclear Many-Body Calculations

The temperature-density phase diagrams obtained by applying the Maxwell construction to
the n3lo414 and n3lo450 results (with the M∗/M factors included) as well as the n3lo500 re-
sults (without M∗/M factors) are shown in the fourth plot of Fig. 3.11. It should be noted that
the labeling of the single-phase “liquid” and “gas” parts in the phase diagram corresponds to
an only qualitative distinction in terms of a high- and a low-density fluid, respectively. Both
liquids and gases have the same symmetries (spatial homogeneity and rotational isotropy), and
hence are not distinguished in terms of a symmetry change. A strict distinction of the phases
is possible only in the coexistence region, but any two single-phase points can (in principle) be
connected by thermodynamic processes that do not cross the coexistence boundary. Concerning
temperature-pressure phase diagrams one usually distinguishes “liquid”, “gas”, and “supercrit-
ical fluid” phases in terms of isobaric or isothermal processes that cross or do not cross (in the
supercritical case) the coexistence line. For nuclear matter a more natural distinction would
be one in terms self-bound states: starting from a given state in the high-density region (com-
pressed nuclear matter), the freely (or, isentropically [301]) expanding system evolves to a
(metastable) self-bound liquid state at finite density if the internal energy of the original state is
not too high; states that are too energetic however evolve to “zero density”.24

-10

-8

-6

-4

-2

 0

 0  0.05  0.1  0.15  0.2  0.25  0.3

F
 [
M

e
V

 f
m

-3
]

ρ [fm
-3

]

T=0 MeV

T=10 MeV

T=15 MeV

Tc=17.4 MeV

T=20 MeV

T=25 MeV
-40

-30

-20

-10

 0

 0  0.05  0.1  0.15  0.2  0.25

µ
 [

M
e

V
]

ρ [fm
-3

]

T=0 MeV

T=10 MeV

T=15 MeV

Tc=17.4 MeV

T=20 MeV

T=25 MeV

 0

 1

 2

 3

 4

-50 -40 -30 -20 -10  0

P
 [
M

e
V

 f
m

-3
]

µ [MeV]

T=0 MeV

T=10 MeV

T=15 MeV
Tc=17.4 MeV

T=20 MeV

T=25 MeV

 0

 5

 10

 15

 20

 0  0.05  0.1  0.15

T
 [

M
e

V
]

ρ [fm
-3

]

gas

liquid

gas-liquid

n3lo500

n3lo450

n3lo414

Figure 3.11.: Single-phase constrained (dashed & solid lines) vs. stable-equilibrium (solid
lines) EoS of SNM (for n3lo414). The quantities shown are the free energy
density F(T, ρ), the (nucleon) chemical potential µ(T, ρ), and the pressure as
function of chemical potential, P(T, µ). Also shown is the temperature-density
phase diagram (for n3lo414, n3lo450 and n3lo500). The blue triangle and
the (black) dot(s) mark the empirical saturation point and the obtained critical
point(s), respectively.

are neglected), thus, thermodynamically SNM is a pure substance. ANM however is two-component system,
and the “usual” Maxwell construction is not applicable to describe the “bulk” equilibrium configuration; see
Chap. 4 for details.

24 The properties of self-bound states are examined in Sec. 4.2.
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“Observables”. The obtained SNM equations of state can be characterized by a few key quan-
tities, i.e., the saturation energy and density, the compression modulus (also known as the in-
compressibility, cf. [253]) K = 9ρ2 ∂2Ē0/∂ρ

2|ρ=ρsat , and the coordinates of the critical point
(Tc, ρc, Pc). The values for these quantities obtained from the second-order calculation (includ-
ing the M∗/M factors) with n3lo414 and n3lo450 are shown in Table 3.1. For comparison, we
also show the second-order n3lo500 results without M∗/M factors. For each of these equa-
tions of state the saturation point coordinates (Ē0,sat, ρsat) are close to the (semi)empirical values
obtained (e.g.,) from phenomenological Skyrme energy density functionals based on proper-
ties of finite nuclei [116]. The obtained values of K are in overall agreement with the value
K ' 250 ± 25MeV deduced from phenomenological mean-field models and from the anal-
ysis of nuclear giant monopole resonances (GMR) [407, 81, 243, 46, 430].25 Estimates for
the critical point have been made based on data from multifragmentation, nuclear fission, and
compound nuclear decay experiments in (e.g.,) Refs. [241, 121, 308, 314]; our obtained critical
point coordinates are in overall agreement with these estimates. In particular, the n3lo450 and
n3lo414 results are very close to the values Tc = 17.9 ± 0.4 MeV, ρc = 0.06 ± 0.02 fm−3, and
Pc = 0.31±0.07 MeV fm−3 inferred by Elliot et al. [121] from extrapolating multifragmentation
and compound nuclear decay data to the bulk limit.

Ē0,sat (MeV) ρsat (fm−3) K (MeV) Tc (MeV) ρc (fm−3) Pc (MeV fm−3)
n3lo500 (no M∗/M) -16.51 0.174 250 19.1 0.072 0.42
n3lo450 (M∗/M) -15.50 0.161 244 17.2 0.064 0.32
n3lo414 (M∗/M) -15.79 0.171 223 17.4 0.066 0.33

Table 3.1.: Saturation energy Ē0,sat and density ρsat, compression modulus K,
and the coordinates of the critical point (Tc, ρc, Pc), corresponding to
the EoS of SNM obtained from n3lo414, n3lo450 and n3lo500.26 In
the case of n3lo500 no M∗ corrections have been included.

3.4.2. Pure Neutron Matter

Here, we examine the PNM results shown in Fig. 3.10 in more detail. In particular, we discuss
the comparison of the low-density PNM results with the results obtained from nonperturbative
approaches to the many-body problem, i.e., the “virial” expansion and quantum Monte-Carlo
methods.

“Virial”27Expansion. At very low energies, where higher partial waves are unimportant, the in-
teraction between neutrons is characterized by the neutron-neutron S -wave scattering length as.
In the regime where as ' −18.5 fm is large compared to the interparticle separation, 1 � |kFas|
(with kF the neutron Fermi momentum), a perturbative approach to neutron matter is not reli-
able (cf. e.g., Ref. [59]). The model-independent “virial” equation of state (VEoS) computed by

25 Recently, however, a critical analysis of the extraction of K from the GMR data was performed in [375], where
it is claimed that K should be somewhat larger, i.e., 250 . K/MeV . 315.

26 Note that the value of the so-called critical compressibility factor is Zc = Pc/(Tcρc) ' 0.29 for both n3lo414 and
n3lo450. This is similar to the empirical values of Zc of various atomic or molecular fluids [97], but deviates
from the value Zc = 0.375 associated with equations of state of the van der Waals–Berthelot type [336].

27 A better name would maybe be “fugacity expansion” (the usual virial expansion [292, 201] corresponds to
organizing Eq. (3.44) into an expansion in powers of the density).
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Horowitz and Schwenk in Ref. [213] from neutron-neutron scattering phase-shifts provides a
benchmark for perturbative calculations of low-density neutron matter at nonzero temperature.
The VEoS is based on the expansion of the grand-canonical expressions for the pressure and
the density are expanded in powers of the fugacity z = exp(µ/T ), i.e.,

P(T, z, δ = 1) =
2T
λ3

[
z + z2b2(T ) + O(z3)

]
, ρ(T, z, δ = 1) =

2
λ3

[
z + 2z2b2(T ) + O(z3)

]
,

(3.44)

where µ is the neutron chemical potential, and λ =
√

2π/(MT ) is the neutron thermal wave-
length. The second virial coefficient can be calculated as [213, 216]

b2(T ) = −
√

2
8

+
1√
2 πT

∫ ∞

0
dE exp[−E/(2T )] δtot(E), (3.45)

where δtot(E) is the sum of the isospin-triplet elastic scattering phase shifts at laboratory energy
E. From the pressure and density as functions of the fugacity, the free energy per particle F̄, the
entropy per particle S̄ , and the internal energy per particle Ē follow again from standard ther-
modynamic relations (see [213] for details). The VEoS results for these quantities are shown as
green dashed lines in Fig. 3.10.28 One sees that in the case of F̄, P and S̄ there are almost no
visible deviations between the VEoS and the perturbative results. This seemingly perfect agree-
ment is however misleading, because the discrepancies corresponding to the different treatment
of the interactions in the “virial” and the perturbative approach are overpowered by the large
size of the (nonrelativistic) free Fermi gas contribution. The deviations are more transparent
in the case of the internal energy per particle due to cancellations of the free Fermi gas terms
in the free energy and the entropy. The VEoS and perturbative results are closer at larger tem-
peratures, since the EoS is less sensitive to the physics of large scattering lengths at higher
momentum scales.

The differences between the VEoS and the perturbative results for the internal energy per
particle are examined closer in Fig. 3.12 for T = 10 MeV. To depict the deviations more clearly
we have subtracted the noninteracting contributions, i.e., the quantity shown is Ēint = Ē− Ēnonint.
The VEoS results include uncertainty bands obtained from estimating the neglected third virial
coefficient as |b3(T )| ≤ |b2(T )|/2. We also show the perturbative results at the Hartree-Fock
(HF) level. One sees that compared to the HF results the second-order (M∗ improved) results
are in much closer agreement with the VEoS results. The second-order calculation still slightly
underpredicts the attraction present in the VEoS, in contrast to the pseudo-potential approach
based on NN scattering phase shift data that was explored in Ref. [351]. We conclude that while
the perturbative approach cannot fully capture the large-scattering-length physics of low-density
PNM, the resulting errors are reasonably small when second-order contributions are included
in MBPT.

MBPT vs. QMC Results. In recent years, the zero-temperature EoS of PNM has been com-
puted from chiral nuclear potentials within a variety of many-body frameworks [251, 424, 166,
106, 386, 192, 347, 181, 91, 13, 247, 191, 165]. In Fig. 3.13, we compare our results to ones
obtained from perturbative calculations in Refs. [251, 386] (red band in Fig. 8 in [251], cf. also
Fig. 1.10). In addition to the N2LO chiral three-neutron interactions, the calculations of Refs.
28 Note that we have added the relativistic correction term to the VEoS lines. In particular, the zero-density

limit of the internal energy per particle is given by Ē(T, ρ, δ)
ρ→0−−−→ Ēnonrel(T, ρ, δ) |ρ→0 + Ēcorr(T, ρ, δ) |ρ→0 =

3T/2 + 15T 2/(8M).
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[251, 386] also include the N3LO three- and four-neutron interactions. The uncertainty bands in
their results were obtained by allowing large variations of the LECs parameterizing the multi-
neutron interactions (c1,3). One sees that the (almost overlapping) results from n3lo414 and
n3lo450 lie within these bands. In Fig. 3.13 we also show results obtained from auxiliary-field
quantum Monte Carlo simulations with chiral N3LO two-nucleon (“AFQMC [NN]”) and N3LO
two-nucleon plus N2LO three-nucleon potentials (“‘AFQMC [NN+3N]”) by Wlazłowski et al.
[424]. The perturbative and the AFQMC results are very similar for densities ρ . 0.006 fm−3,
where both are in close agreement with the fixed-node QMC calculations (based on the AV18
potential) of Gezerlis and Carlson [164]. However, at higher densities the EoS obtained from
the AFQMC calculations (with 3N interactions included) is significantly more repulsive.
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3.5. Symmetry Free Energy, Entropy and Internal Energy

So far, we have considered only the limiting cases of isospin-symmetric nuclear matter (SNM)
and pure neutron matter (PNM). For the description of general isospin-asymmetric nuclear mat-
ter (ANM), the isospin-asymmetry parameter δ = (ρn − ρp)/(ρn + ρp) is most useful. If charge-
symmetry breaking effects are neglected, the various thermodynamic quantities are all even
functions of δ, and hence their Maclaurin expansion in terms of δ involves only even powers. It
has been validated in numerous many-body calculations (cf. Refs. [58, 435, 434, 109, 405, 148])
that already the leading quadratic term in the expansion provides a good approximation to the
exact δ dependence of the single-phase constrained nuclear EoS (at zero temperature). This
implies that the EoS of ANM can as a first approximation be constructed by interpolating the
SNM and PNM results, i.e., in the case of the free energy per particle it is

F̄(T, ρ, δ) ' F̄(T, ρ, δ = 0) + F̄sym(T, ρ) δ2, (3.46)

and similar for (e.g.,) the entropy per particle and the internal energy per particle. In Eq. (3.46),
F̄sym(T, ρ) = F̄(T, ρ, δ = 1) − F̄(T, ρ, δ = 0) is called the symmetry free energy.29 The sym-
metry entropy and the symmetry internal energy are related to the symmetry free energy via
S̄ sym = −∂F̄sym/∂T and Ēsym = F̄sym + TS̄ sym. Because of their important role in describing the
overall isospin-asymmetry dependence, it is of interest to examine the density and temperature
dependence of these quantities. The accuracy of Eq. (3.46) and the size of higher-order terms
in the Maclaurin expansion in terms of δ will be examined in Chapter 5.

The n3lo414 and n3lo450 result (with M∗/M factors) for F̄sym, TS̄ sym, and Ēsym in the left
column of Fig. 3.14 as functions of ρ at different temperatures are shown. In the insets we show
the noninteracting contribution to these quantities, i.e.,

F̄nonint,sym(T, ρ) = F̄nonrel(T, ρ, 1) − F̄nonrel(T, ρ, 0) + F̄corr(T, ρ, 1) − F̄corr(T, ρ, 0), (3.47)

in the case of the symmetry free energy. In the right column of Fig. 3.14 we show F̄sym, TS̄ sym,
and Ēsym as functions of temperature at different densities. One sees that in the considered
range of densities and temperatures, F̄sym is a monotonic increasing function of density and
temperature. The density and temperature dependence of TS̄ sym is more involved. At low
densities TS̄ sym decreases monotonically with T , but for densities ρ & 0.2 fm−3 a local minimum
is found at around T ' 10 MeV.30 The results from n3lo414 and n3lo450 are very similar for
densities well below saturation density, but at higher densities the dependence on the resolution
scale becomes significant. In particular, the decrease in the slope of F̄sym with increasing density
is more pronounced in the n3lo450 results. The T dependence of TS̄ sym approximately balances
that of F̄sym, and as a result their sum, the symmetry internal energy Ēsym, increases with density
but varies only very little with temperature. At densities near saturation density the deviations
of Ēsym(T, ρ ' ρsat) from its value at zero temperature are below 0.5 MeV.31

29 We emphasize that F̄(T, ρ, δ = 0) corresponds to the single-phase constrained EoS of SNM, i.e., without the
Maxwell construction applied. Eq. (3.46) is clearly valid only for the single-phase constrained system. The
effect of the nuclear liquid-gas phase transition (as well as the presence of light nuclei at low densities, cf. also
[212]) on the symmetry free energy (and the symmetry internal energy) has been examined in Ref. [399].

30 We note that the temperature dependence of F̄sym and TS̄ sym approaches linear behavior in the limit of vanishing
density, F̄sym(T, ρ→0) = −TS̄ sym(T, ρ→0) = T ln 2. This follows from Eq. (5.22).
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Figure 3.14.: Left column: results for F̄sym(T, ρ), TS̄ sym(T, ρ) and Ēsym(T, ρ), plotted as func-
tions of density. The insets show the respective noninteracting contribution
(free Fermi gas). Right column: F̄sym(T, ρ), TS̄ sym(T, ρ), and Ēsym(T, ρ) as
functions of temperature at different densities. The lines are interpolated,
with calculated data points at T = (0, 3, 5, 8, 10, 12, 15, 20, 25) MeV.

31 We note that, qualitatively, similar results (but differences can be seen) for the T dependence of F̄sym and Ēsym
were found in [399] (using a relativistic mean-field model), in contrast to the results for F̄sym obtained within
an in-medium χPT approach [144] (but note that a different definition of F̄sym was used in Ref. [144]).
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3. Nuclear Many-Body Calculations

In Fig. 3.15 we show the symmetry quantities with the noninteracting contributions sub-
tracted, e.g., F̄int,sym(T, ρ) = F̄sym(T, ρ) − F̄nonint,sym(T, ρ), as functions of T at different densi-
ties.32 In both cases the interaction contribution tends to counteract the T dependence of the
noninteracting contribution, as can be seen from the insets in Fig. 3.14. In the case of F̄sym

(and also TS̄ sym) the noninteracting contribution dominates, but in the case of Ēsym the size
of the noninteracting contribution and the interaction contribution is more balanced, and the
T dependence of both contributions approximately cancels each other, leading to the observed
approximate T independence at densities near saturation density ρsat ' 0.17 fm−3.

 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25

F_

in
t,
s
y
m

 [
M

e
V

]

T [MeV]

n3lo414

n3lo450

 

ρ=0.025 fm
-3

ρ=0.05 fm
-3

ρ=0.085 fm
-3

ρ=0.12 fm
-3

ρ=0.17 fm
-3

ρ=0.22 fm
-3

 0

 5

 10

 15

 20

 25

 30

 35

 0  5  10  15  20  25

E_

in
t,
s
y
m

 [
M

e
V

]

T [MeV]

ρ=0.025 fm
-3

ρ=0.05 fm
-3

ρ=0.085 fm
-3

ρ=0.12 fm
-3

ρ=0.17 fm
-3

ρ=0.22 fm
-3

n3lo414

n3lo450

 

 

Figure 3.15.: Temperature dependence of F̄sym,int and Ēsym,int at different densi-
ties. The lines are interpolated, with calculated data points at T =

(0, 3, 5, 8, 10, 12, 15, 20, 25) MeV.

Finally, in Fig. 3.16 we compare our results for the symmetry (free) energy at zero tempera-
ture to the results obtained by Drischler et al. [109] from calculations of the EoS of neutron-rich
matter using several renormalization group–evolved chiral nuclear two- and three-nucleon po-
tentials. For comparison we also show the results of Akmal et al. [8] obtained from variational
calculations using the AV18 two-nucleon [421] and the Urbana UIX three-nucleon potential
[331].33 While the results of Drischler et al. are compatible with our results, the calculations
by Akmal et al. predict a symmetry energy that deviates visibly from the n3lo414 and n3lo450
results. In Fig. 3.16 we also show recent empirical constraints obtained from the analysis of
isobaric analog states and neutron skins (IAS+NS) [94]. One sees that the n3lo414 and n3lo450
results lie in the IAS+NS bands in the entire constrained density region 0.04 . ρ/fm−3 . 0.16.

For densities close to nuclear saturation density the symmetry (free) energy at zero tempera-
ture is usually [371] expanded around J = F̄sym(T = 0, ρsat) in terms of x = (ρ/ρsat − 1)/3:

F̄sym(T = 0, ρ) = J + Lx +
1
2

Ksymx2 + O(x3), (3.48)

with L = 3ρsat∂F̄sym(T = 0, ρ)/∂ρ |ρ=ρsat the “slope parameter”, and Ksym = 9ρ2
sat∂

2F̄sym(T =

0, ρ)/∂ρ2 |ρ=ρsat the “symmetry incompressibility”. The density where the ground-state energy

32 We note that the temperature dependence of F̄int,sym(T, ρ) comes almost entirely from F̄int(T, ρ, δ = 0); the in-
teraction contribution to the free energy per particle of pure neutron matter has only a very weak T dependence
(for n3lo414 and n3lo450 and for the considered range of densities and temperature).

33 The results by Akmal et al. include relativistic boost corrections as well as an artificial correction term added to
reproduce the empirical saturation point of SNM (“corrected” in Table VI. and “A18+δv+UIX* ” in Table VII.
of Ref. [8]).
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3. Nuclear Many-Body Calculations

per particle of isospin-asymmetric nuclear matter has a local minimum is related to the param-
eters in the above expansion via ρsat(δ) ' ρsat[1− 3L δ2/K] (cf. Ref. [81]).34 The corresponding
compression modulus K(δ) obeys the approximate relation

K(δ) ' K + Kτ δ
2, Kτ = Ksym − 6L, (3.49)

where Kτ is usually called the “isobaric incompressiblity”. The empirical values of J = 29.0 −
32.7 MeV and to a lesser degree also L = 40.5 − 61.9 MeV are relatively well constrained
(values from [257], cf. also [370, 369, 263, 310, 311, 192, 386, 313]), whereas experimental
extractions of Kτ suffer from large uncertainties. For instance, from measurements of neutron
skin thicknesses [78] the value Kτ = −500+125

−100 MeV was extracted, which is compatible with
the value Kτ = −550 ± 100 MeV inferred from the giant monopole resonance measured in Sn
isotopes [270]. Theoretical studies using a selection of Skyrme interactions however led to an
estimate of Kτ = −370 ± 120 MeV [81].35 Our results for J, L and Kτ are given in Table 3.2.
They are in agreement with the mentioned constraints.
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Figure 3.16.: Results for F̄sym(T = 0, ρ), see text for details.

J (MeV) L (MeV) Kτ (MeV)
n3lo414 32.51 53.8 −424
n3lo450 31.20 48.2 −434

Table 3.2.: Symmetry energy at saturation density J, the slope parameter L, and the iso-
baric incompressibility Kτ, corresponding to the n3lo414 and n3lo450 results.

34 The densities ρsat(δ) correspond to stable self-bound states only for isospin asymmetries up to the neutron drip
point, δ ≤ δND, cf. Secs. 4.2.2 and 4.2.3.

35 We note that in each case a slightly different definition of Kτ is used, with the differences corresponding to
higher-order terms in Eq. (3.49) and finite-size effects, cf. Ref. [81].
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4. Nuclear Liquid-Gas Instability

In the last chapter we have obtained a “realistic” EoS of isospin-symmetric nuclear matter
(SNM) and pure neutron matter (PNM) from the sets of chiral NN and 3N potentials “n3lo414”
and “n3lo450”. Compared to PNM, the main feature of the EoS of SNM is a region where the
system is unstable with respect to the separation into two phases (liquid and gas). In this section
we study how this region changes when the isospin asymmetry δ = (ρn − ρp)/ρ is increased, or
equivalently, the proton fraction Y = ρp/ρ = (1 − δ)/2 is decreased.

If charge-symmetry breaking effects are neglected, SNM is effectively a pure substance with
one species (nucleons).1 In isospin-asymmetric nuclear matter (ANM), however, neutrons and
protons are thermodynamically distinguishable, i.e., ANM is a mixture of two species. It is a
generic feature of first-order liquid-gas phase transitions in mixtures that the composition of
the coexisting phases deviates from the global composition. In the case of isospin-asymmetric
nuclear matter this feature is often denoted as isospin distillation [426, 12, 111, 113]: in the
transition region the system separates into two phases whose proton concentrations deviate
from the global value of Y , with 0 ≤ Ygas < Y and Y < Yliquid < 0.5 for the case Y < 0.5.
These distillation effects are observed in intermediate-energy heavy-ion collision (cf. e.g., [426,
397, 273, 268]). As a consequence of the distillation effects in ANM, the “usual” Maxwell
construction (cf. Sec. 3.4.1) is not applicable for δ , 0, and the study of the liquid-gas phase
transition of ANM is more involved compared to the simpler case of SNM. For this reason, we
first review in Section 4.1 the general concepts and principles involved in the thermodynamic
analysis of a liquid-gas phase transition in mixtures. The discussion is based on Refs. [99, 296,
3, 34, 35, 33, 110].

In Section 4.2 we then apply these concepts to examine the isospin-asymmetry dependence
of the nuclear liquid-gas instability. We determine the trajectory of the critical temperature as
a function of the isospin asymmetry, and study the properties of self-bound states. It should
be emphasized that we are dealing with (bulk) nucleonic matter without Coulomb interactions
[255]. The “switching off” of the Coulomb interaction is necessary to really have a first-order
liquid-gas phase transition (coexistence of two bulk phases). For (finite) nuclear matter with
Coulomb interactions, the liquid-gas phase transition is replaced by an instability with respect
to the formation of finite-sized clusters, i.e., (possibly deformed) nuclei [23, 398, 399, 212,
328, 80], leading to the observed fragmentation events in intermediate-energy heavy-ion colli-
sions. In the case of neutron stars (and supernova cores), also the presence of electrons (and
muons) has to be taken into account. In particular, in the outer crust of neutron stars, the equi-
librium configuration is given by a nuclear crystal lattice of iron (56Fe) atoms. Further into the
crust, the iron atoms are fully-ionized owing to the higher density (“pressure ionization”). In

1 More precisely, nuclear matter is a (peculiar type of) azeotrope, with the special feature that the proton fraction
at the azeotropic point is (by charge symmetry) restricted to the value Yazeotr.(T, P) = 0.5, i.e., the location of
the azeotropic point is independent of the environmental parameters (e.g., temperature T and pressure P), in
contrast to usual (molecular) azeotropic substances [297]. Note also that the distillation effects in ANM have
(using the Ehrenfest scheme) led the authors of Ref. [301] to the conclusion that the liquid-gas transition of
ANM is a second-order phase transition, which is however invalid according to the modern classification in
terms of latent heat [323] (cf. also Refs. [110, 199] for additional clarification).
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the inner regions of the crust, more neutron-rich nuclei appear as a result of electron captures
(“neutronization”), and at densities ρ ' ρsat/3, neutrons drip out of the nuclei (cf. Sec. 4.2.2).
At the bottom of the crust (i.e., at the boundary between inhomogeneous and homogeneous
neutron-star matter), the competition between attractive nuclear and repulsive Coulomb interac-
tions (“frustration”) is expected to lead to the formation of spatially extended inhomogeneities
with nontrivial structures (so-called “pasta” shapes) [358, 357, 287, 286, 339, 183, 272] and
properties similar to (ordinary) liquid crystals [326, 80] (cf. also, e.g., [79]). This is similar
to the structures formed in certain organic compounds (surfactants) as a result of the interplay
of hydrophobic and hydrophilic components (cf. Ref. [80] pp.34-37, and [211]). “Pastas” are
expected to appear also in supernova cores (and possibly, also in intermediate-energy heavy-in
collisions). For a more thermodynamically oriented analysis of the effect of the (highly in-
compressible) charge-neutralizing background of electrons (and muons) on the properties of
the nuclear liquid-gas instability, see also Ref. [112] (and [304, 114]). For general discussions
of the thermodynamics and statistical mechanics of finite systems with long-range interactions,
see e.g., Refs. [84, 321].

Overall, the above considerations should bring into perspective that the nuclear liquid-gas
phase transition (in the bulk sense) is an idealized process that does not apply to the real world
without further qualification.

4.1. Thermodynamics of Phase Transitions

We consider an isolated macroscopic system with K species (labeled k = 1, . . . ,K) that fills
out a volume Ω. If for a given configuration the entropy S of the system decreases for all
variations that are consistent with the isolation constraints (fixed energy E and particle numbers
N1, . . . ,NK , and fixed Ω), then this configuration corresponds to an equilibrium state of the
system, i.e., (

[∆S ]E,Ω,N1,...,NK < 0
)

(4.1)

This fundamental principle [in a sense, a qualification of the (usual) second law of thermody-
namics] is known as the entropy maximum principle [70] (cf. also Refs. [220, 221, 84] for a
perspective based on information theory). If we consider a change described in terms of vari-
ables x1, x2, . . ., xν, the associated change of entropy can be expressed in terms of the Taylor
expansion

∆S =

∞∑

n=1

1
n!
δnS , (4.2)

where the variation of order n is given by

δnS =

ν∑

i1=1

· · ·
ν∑

in=1

∂S
∂xi1 · · · ∂xin

δxi1 · · · δxin . (4.3)

If the entropy is at a maximum in the original configuration, then it must be δS = 0, and
δmS < 0, where m is the order of the lowest nonvanishing variation. The condition δS = 0
is called the criterion of equilibrium, and δmS < 0 the criterion of stability. In general,
for a system with a liquid-gas phase transition, the transition region is comprised of regions of
metastable and unstable single-phase equilibrium, corresponding to different dynamical phase
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4. Nuclear Liquid-Gas Instability

separation mechanisms: nucleation and spinodal decomposition (also called spinodal fragmen-
tation) [4, 44, 3, 99, 239, 404, 83]. The surface delineating the metastable region (the binodal
or coexistence boundary) where the stability criterion is satisfied locally (but not globally) is
determined by the criterion of equilibrium (cf. [301] for a proof of this), and the criterion of
stability determines the boundary of the unstable region (the spinodal).

4.1.1. Criteria for Phase Coexistence

For the case of the system containing two subsystems given by a liquid cluster β immersed in
a gas α (drop system), with dividing interface ς, the condition of equilibrium is δS = δS (α) +

δS (β) + δS (ς) = 0. The relevant configuration changes correspond to heat or particle exchanges
between the subsystems or changes in their relative size, as well as changes concerning the
dividing interface. The expressions for δS (α), δS (β) and δS (ς) are then given by

δS (α) =
1

T (α) δE(α) +
P(α)

T (α) δΩ
(α) −

K∑

k=1

µ(α)
k

T (α) δN(α)
k , (4.4)

δS (β) =
1

T (β) dE(β) +
P(β)

T (β) δΩ
(β) −

K∑

k=1

µ(β)
k

T (β) δN(β)
k , (4.5)

δS (ς) =
1

T (ς) δE(ς) +
P(ς)

T (ς) δΩ
(ς) − σ

T (ς) δA −
K∑

k=1

µ(ς)
k

T (ς) δN(ς)
k , (4.6)

where A is the area and σ the pressure (surface tension) associated with the dividing interface.
The isolation constraint implies the following conditions:

δE = δE(α) + δE(β) + δE(ς) = 0, (4.7)

δΩ = δΩ(α) + δΩ(β) + δΩ(ς) = 0, (4.8)

δNk = δN(α)
k + δN(β)

k + δN(ς)
k = 0, (k = 1, . . . ,K). (4.9)

By the method of Lagrange multipliers one finds that the extremum of the entropy (subject to
the isolation constraints) is given by the following conditions:

T (α) = T (α) = T (ς), (4.10)

µ(α)
k = µ(α)

k = µ(ς)
k , (k = 1, . . . ,K), (4.11)

and
(
P(β) − P(α))dΩ(β) +

(
P(ς) − P(α))dΩ(ς) − σdA = 0, (4.12)

which are generally referred to as the conditions for thermal, chemical, and mechanical equilib-
rium, respectively. Treating the interface as a thin layer one has P(ς) ' P(α), and the condition
for mechanical equilibrium simplifies:

P(β) − P(α) = σ
∂A
∂Ω(β) , (4.13)

If the cluster β is spherical in shape with radius R, then ∂A/∂Ω(β) = 2/R, and we obtain

P(β) − P(α) =
2σ
R
. (4.14)

Eq. (4.14) is known as the Laplace relation [3]. If the subsystem β is sufficiently large (i.e,
1/R ' 0) the Laplace relation reduces to P(β) = P(α), which together with Eqs. (4.10) and (4.11)
forms the famous Gibbs conditions for the mutual equilibrium of two bulk phases α and β.
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4.1.2. Thermodynamic Stability Theory

To derive from the general stability criterion δmS < 0 the stability criteria for arbitrary ther-
modynamic potentials, it is more convenient to use instead of the entropy maximum principle
[∆S ]E,Ω,N1,...,NK < 0 the equivalent energy minimum principle [∆E]S ,Ω,N1,...,NK > 0 [99, 70].
Considering the stability of a simple (i.e., non-composite) system with respect to the separation
into two phases α (liquid) and β (gas), the expression for δ2E is given by

δ2E = δ2(E(α) + E(β)) = δ2E(α) + δ2E(β), (4.15)

where the contribution from the interface is neglected. Using the shorthand notation

E(α)
xi x j
≡ ∂2E(α)

∂x(α)
i ∂x(α)

j

, (4.16)

the expression for δ2E(α) reads

δ2E(α) =E(α)
S S

(
δS (α)

)2
+ 2E(α)

SΩδS
(α)δΩ(α) + E(α)

ΩΩ

(
δΩ(α)

)2
+

K∑

k=1

K∑

l=1

E(α)
NkNl

δN(α)
k δN(α)

l

+

K∑

k=1

2E(α)
NkS δN(α)

k δS (α) +

K∑

k=1

2E(α)
NkΩ

δN(α)
k δΩ(α), (4.17)

and similar for δ2E(β). The condition that the total entropy S , volume Ω, and particle numbers
N1 and N2 remain unchanged gives rise to the conditions

δS (α) = −δS (β), (4.18)

δΩ(α) = −δΩ(β), (4.19)

δN(α)
k = −δN(β)

k , (k = 1, . . . ,K). (4.20)

Furthermore, since the two subsystems (and hence their intensive properties) are originally
identical, it is

E(α)
xi x j

N(α) =
E(β)

xi x j

N(β) , (4.21)

where N(α/β) = N(α/β)
1 + . . . + N(α/β)

K . With these relations, the condition δ2E < 0 is equiva-
lent to δ2E(α) < 0. Dropping the superscripts “(α)”, and introducing the notation x1,...,K+2 ≡
S , Ω,N1, . . . ,NK and y(0)

a,b = Eab, we obtain as the stability criterion

K+2∑

a=1

K+2∑

b=1

y(0)
a,bδxaδxb > 0. (4.22)

By applying the sum-of-squares procedure, this becomes [34, 296]

K+2∑

k=1

ak

ak−1

(
δZk

)2
> 0, δZk =

K+2∑

j=k

gkk j

ak
δx j, (4.23)
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where the coefficients ak and gkk j are given by a0 = 1, and

ak = Det



y(0)
1,1 y(0)

1,2 · · · y(0)
1,k

y(0)
2,1 y(0)

2,2 · · · y(0)
2,k

...
...

. . .
...

y(0)
k,1 y(0)

k,2 · · · y(0)
k,k


, gki j = Det



y(0)
1,1 y(0)

1,2 · · · y(0)
1,k−1 y(0)

1, j

y(0)
2,1 y(0)

2,2 · · · y(0)
2,k y(0)

2, j
...

...
. . .

...
...

y(0)
k−1,1 y(0)

k−1,2 · · · y(0)
k−1,k−1 y(0)

k−1, j

y(0)
i,1 y(0)

i,2 · · · y(0)
i,k−1 y(0)

i, j



, (4.24)

where i ≥ k and j ≥ k. Since the variations δZk are all independent, and (δZk)2 ≥ 0, the stability
condition is given by

δ2E > 0 ⇔ a1,...,K+2 > 0. (4.25)

Obviously, Eqs. ( 4.23) and (4.24) correspond to only one possible sum of squares, with the oth-
ers given by permutations of the variables S , Ω,N1, . . . ,NK in the relation x1,...,K+2 =

S , Ω,N1, . . . ,NK . The stability criteria given by Eq. (4.25) can be greatly simplified with the
use of Legendre transformations. In fact, the ratio ak/ak−1 is given by (cf. Eqs. (31) and (35) of
Ref. [33])

ak

ak−1
= y(k−1)

kk , (4.26)

where y(k−1) is the Legendre transform of order k − 1 of y0 into (ξ1, . . . , ξk−1, xk, . . . , xν) space.
An important simplification is that the last term aν/aν−1 = y(K+1)

K+2,K+2 vanishes; for instance, for a
pure substance (K = 1) one has (fixing the order of variables as x1,2,3 = S , Ω,N):

y(0)(x1, x2, x3) =E(S , Ω,N), (4.27)

y(1)(ξ1, x2, x3) =E(S , Ω,N) + S
∂E(S , Ω,N)

∂S
= F(T, Ω,N), (4.28)

y(2)(ξ1, ξ2, x3) =F(T, Ω,N) + Ω
∂F(T, Ω,N)

∂Ω
= G(T, P,N). (4.29)

where G = F + PΩ is the Gibbs free energy. From ∂G/∂N = µ and the Gibbs-Duhem re-
lation G = µN it follows that y(2)

3,3 = 0, and similar for a different ordering of variables. The
relation y(K+1)

K+2,K+2 = 0 comes out automatically if the thermodynamic limit is performed, since
then only K + 1 variables exist, i.e., x1,...,K+1 = s, ρ1, . . . , ρK (with s = S/Ω the entropy den-
sity) or x1,...,K+1 = S̄ , Ω̄1, . . . , Ω̄K (with S̄ the entropy per particle, and Ω̄k = ρ−1

k = Ω/Nk the
volume per particle for each species). This implies that no analytic stability criterion exists for
the thermodynamic potential associated with the Legendre transformation of order K + 1 (i.e.,
the grand-canonical potential). Therefore, an analytical calculation within the grand-canonical
ensemble cannot produce an EoS with a spinodal instability, i.e., it cannot produce the single-
phase constrained EoS of a system with a liquid-gas phase transition [cf. also Sec. 2.5.4].

The expression for y(k−1)
kk is related to the Legendre transform y(k−2) via [33, 34]

y(k−1)
k,k = y(k−2)

k,k −
(
y(k−2)

k,k−1

)2

y(k−2)
k−1,k−1

. (4.30)

From the stability criteria, Eq. (4.25), it follows that both y(k−1)
k,k and y(k−2)

k−1,k−1 must be positive.
Moreover, for a suitable ordering of variables, y(k−2)

k,k > 0 is a stability criterion. Suppose y(k−2)
k−1,k−1
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decreases towards zero; then Eq. (4.25) shows that y(k−1)
k,k becomes negative before y(k−2)

k−1,k−1.
Hence, for a system with K species the necessary and sufficient stability criterion is (as
first derived by Beegle, Modell and Reid [34])

(
y(K)

K+1,K+1 > 0
)

(4.31)

Since there are (K + 2)! permutations of the thermodynamic variables S , Ω,N1, . . . ,NK , Eq.
(4.31) implies (K + 2)! equivalent stability criteria for thermodynamic potentials associated
with Legendre transformations of order K. Note also that Eq. (4.31) shows that the stability
boundary is invariant under K Legendre transformations.2

Pure Substance. For a pure substance (K = 1) the stability criterion is y(1)
2,2 > 0. This leads

to the following stability critera for thermodynamic potentials

x1,2,3 = S , Ω,N : FΩΩ = −
(
∂P
∂Ω

)

T,N
> 0, (4.32)

x1,2,3 = S ,N, Ω : FNN = −
(
∂µ

∂N

)

T,Ω
> 0, (4.33)

etc. Eqs. (4.32) and (4.33) imply that the system is stable if the free energy is a convex function
of N and Ω.

Binary Mixture. For a two-component mixture (K = 2) one has y(2)
3,3 > 0, leading to

x1,2,3,4 = S , Ω,N1,N2 : GN1N1 =

(
∂µ1

∂N1

)

T,P,N2

> 0, (4.34)

x1,2,3,4 = S , Ω,N2,N1 : GN2N2 =

(
∂µ2

∂N2

)

T,P,N1

> 0, (4.35)

etc. The necessary and sufficient stability criterion for first-order Legendre transforms follows
(using k = 2) from Eqs. (4.30) and (4.31), i.e, in the case of the free energy

FN1N1 FN2N2 −
(
FN1N2

)2
> 0. (4.36)

In addition, the (necessary but not sufficient) criterion y(1)
2,2 > 0 implies that FN1N1 > 0 and

FN2N2 > 0. Eq. (4.36) is equivalent to the condition that the determinant of the Hessian matrix
Hi j = [∂2F/(∂Ni∂N j)] is positive, Det[Hi j] > 0. The eigenvalues ζ± of the Hessian matrix are
given by

ζ±(T, Ω,N1,N2) =
1
2

Tr[Hi j] ± 1
2

√(
Tr[Hi j]

)2 − 4 Det[Hi j]. (4.37)

2 But note that (in the single-phase constrained treatment) the properties of the critical point are in general not
invariant under Legendre transformations. In particular, the isochoric heat capacity exhibits singular behavior
at the critical point: CΩ ∼ (T − Tc)−α, cf. Refs. [325, 419]. In terms of the single-phase constraint, this means
that the “thermal stability“ boundary where C−1

Ω = T−1(∂2E/∂S 2)Ω,N1,...,NK = 0 touches the spinodal at the
critical point [but is otherwise in the interior of the spinodal, as is evident from Eq. (4.31)]. This feature cannot
be obtained in an analytical calculation within the canonical ensemble, which is completely analogous to the
impossiblity of obtaining an unstable region in an analytical calculation within the grand-canonical ensemble.
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Requiring that the eigenvalues are positive give rise to the conditions

ζ− > 0 ⇔ Det[Hi j] > 0, (4.38)

ζ+ > 0 ⇔ Tr[Hi j] < 0 ∧ Det[Hi j] < −1
2

(
Tr[Hi j]

)2
. (4.39)

The system is stable if both eigenvalues ζ± are positive; for ζ− this is evident from Eq. (4.36);
if ζ+ is negative then Tr[Hi j] < 0, which is impossible if the system is stable, since stability
requires that both H11 = FN1N1 and H22 = FN2N2 are positive. Since by y(1)

2,2 > 0 it is also
FΩΩ > 0, the stability of the system implies that the free energy is a strictly convex function of
Ω (at fixed N1,N2) and of N1,N2 (at fixed Ω), but (in contrast to the pure-substance case) only
strict convexity with respect to N1,N2 constitues a sufficient stability criterion. In particular, the
“mechanical stability” criterion κ−1

T > 0 [where κT = Ω FΩΩ is the isothermal compressibility]
is a sufficient stability criterion only for a pure substance. Since FΩΩ > 0 implies κ−1

T > 0, the
inverse isothermal compressibility is positive in the stable region also for a mixture, but in that
case κ−1

T > 0 is not a sufficient stability criterion and the region where κ−1
T < 0 is a subregion of

the unstable region determined by y(2)
3,3 ≤ 0.

4.2. Nuclear Liquid-Gas Phase Transition

Using the general theory discussed in the previous section we now examine the isospin-asymmetry
dependence of the liquid-gas instability of bulk nuclear matter. The free energy per particle of
(single-phase constrained) isospin-asymmetric nuclear matter (ANM) is calculated using the
approximation

F̄(T, ρ, δ) ' F̄nonrel(T, ρ, δ) + F̄corr(T, ρ, 0) + F̄sym,corr(T, ρ) δ2 + F̄int(T, ρ, 0) + F̄sym,int(T, ρ) δ2,
(4.40)

i.e., only the isospin-asymmetry dependence of the nonrelativistic free Fermi gas term F̄nonrel is
treated exactly, but the (leading) relativistic correction F̄corr and the interaction contribution F̄int

are assumed to have a quadratic dependence on δ (“parabolic approximation”).

Higher-order effects in the isospin-asymmetry dependence of F̄int (and F̄corr) are examined
in the next chapter; we will find that Eq. (4.40) can be expected to be reasonably accurate at
the temperatures and densities relevant for the nuclear liquid-gas instability (the error of Eq.
(4.40) increases with density and decreases with temperature, and receives its main contribu-
tion from 3N interactions, which are small at the relevant densities). In particular, the error of
the parabolic approximation is smaller for F̄int (and F̄corr) as compared to F̄nonrel, which moti-
vates the exact treatment of the δ dependence of F̄nonrel.

The main motivation for Eq. (4.40) is however the fact that an approximative treatment of
the isospin dependence via an expansion in terms of δ for F̄(T, ρ, δ) misses the constraint that
(for a given temperature) the spinodal terminates at a value δ < 1; to enforce this constraint it
is crucial to treat the δ dependence of F̄nonrel(T, ρ, δ) exactly. This issue as well as the results
for Tc(δ) are discussed in Sec. 4.2.1. In Sec. 4.2.2 we then examine the properties of stable
self-bound states at zero temperature. Self-bound states exist only for isospin-asymmetries and
temperatures below certain values, and at nonzero temperature they are metastable (if surface
effects are neglected); these issues are studied in Sec. 4.2.3.
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4.2.1. Spinodal and Trajectory of Critical Temperature

To determine the spinodal of ANM we need to calculate the determinant, or equivalently the
eigenvalues, of the Hessian matrixHi j (cf. Sec. 4.1.2). The Hessian matrix is given by

Hi j(T, ρ1, ρ2) =

[
∂2F(T, ρ1, ρ2)

∂ρi∂ρ j

]
=

[
∂µi(T, ρ1, ρ2)

∂ρ j

]
, i, j ∈ {1, 2}. (4.41)

where F(T, ρ1, ρ2) now denotes the free energy density of the system with component densities
ρ1,2. Th eigenvalues of the Hessian matrix are given by

ζ±(T, ρ1, ρ2) =
1
2

[
H11 +H22 ± (

(H11 −H22)2 + 4H2
12
)1/2

]
. (4.42)

Since ζ+ > 0 is not a sufficient stability criterion (cf. Sec. 4.1.2), the relevant eigenvalue is
ζ−. The signs of the eigenvalues are invariant under (linear) basis transformations. From
the data F̄(T, ρ, δ) the sign of ζ− is readily evaluated using as independent density parameters
ρ1 = ρn+ρp = ρ (nucleon density) and ρ2 = ρn−ρp = ρ δ (“isospin-asymmetry density”). In this
basis the Hessian matrix becomes diagonal at δ = 0 with eigenvalues ζ+ = (∂2F/∂ρ2

2)T,ρ1 |ρ2=0 > 0
and ζ− = (∂2F/∂ρ2

1)T,ρ2 |ρ2=0 = ρ−1(∂P/∂ρ)T,δ|δ=0 (this result depends on the neglect of charge-
symmetry breaking effects). Hence, as required, in the case of SNM the region inside the spin-
odal corresponds to a negative isothermal compressibility κT = ρ−1(∂ρ/∂P)T,δ, where κ−1

T > 0
is a stability criterion for a pure substance.

δ → 1 Limit. The Hessian matrix can be written as Hi j = Hi j;nonrel +Hi j;corr +Hi j;int, where
Hi j;nonrel denotes the contribution from the nonrelativistic free Fermi gas contributon to the free
energy density, Fnonrel, andHi j;int andHi j;corr correspond to the interaction contribution Fint and
to the relativistic correction term Fcorr, respectively. The nonrelativistic free Fermi gas con-
tribution to the Hessian matrix components can be determined as follows. The neutron and
proton contributions to Fnonrel are functions of T and µ̃n/p. Their total differentials at fixed T are
therefore given by

dFn/p
nonrel =


∂Fn/p

nonrel

∂µ̃n/p


T

dµ̃n/p. (4.43)

For notational convenience we defineA := ρ δ. The relations ρn = (ρ +A)/2 and ρp = (ρ
− A)/2 lead to the following expressions for the nucleon density as a function of A and either
one of the auxiliary chemical potentials µ̃n/p:

ρ(A, µ̃n/p) =


2ρn(µ̃n) −A
2ρp(µ̃p) +A =


−2αT 3/2Li3/2(x̃n) −A
−2αT 3/2Li3/2(x̃p) +A . (4.44)

where x̃n/p = − exp(µ̃n/p/T ) and α = 2−1/2(M/π)3/2. The total differential of ρ(A, µ̃n/p) is given
by

dρ =

(
∂ρ

∂A
)

µ̃n/p

dA +

(
∂ρ

∂µ̃n/p

)

A
dµ̃n/p. (4.45)

This leads to the following expression for the total differentials of µ̃n/p at fixed nucleon density:

[
dµ̃n/p

]
dρ=0 = −

(∂ρ/∂A)µ̃n/p(
∂ρ/∂µ̃n/p

)
A

dA =



− 1
2αT 1/2Li3/2(x̃n)

dA
1

2αT 1/2Li3/2(x̃p)
dA

. (4.46)
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The derivative of Fn/p
nonrel = −αT 5/2[ ln(−x̃n/p)Li3/2(x̃n/p − Li5/2(x̃n/p)

]
with respect to A at fixed ρ

is then given by

∂Fn/p

nonrel

∂A


ρ

=


∂Fn/p

nonrel

∂µ̃n/p


(
∂µ̃n/p

∂A
)

ρ

= ±T ln(−x̃n/p)
2

. (4.47)

The derivative of Fn/p
nonrel with respect to ρ at fixed A can be determined similarly, and similar

for higher derivatives. One then arrives at the following expressions for the contribution from
Fnonrel to the Hessian matrix components:3

H11;nonrel(T, ρ, δ) = −T−1/2

4α

(
1

Li1/2(x̃n)
+

1
Li1/2(x̃p)

)
= H22;nonrel(T, ρ, δ), (4.48)

H12;nonrel(T, ρ, δ) = −T−1/2

4α

(
1

Li1/2(x̃n)
− 1

Li1/2(x̃p)

)
. (4.49)

In the limit δ → 1 the proton density vanishes, ρp → 0, and the proton (auxiliary) chemical
potential diverges (at finite T ), µ̃p → −∞, thus Li1/2(x̃p) → 0. Hence, the exact calculation of
the nonrelativistic free Fermi gas contribution Fnonrel(T, ρ, δ) leads to divergent behavior of the
Hessian components in the limit of vanishing proton concentration. The unstable region then
vanishes at a value δ < 1 for all values of T . This constraint is lost if the free Fermi gas con-
tribution is approximated in terms of an expansion in powers of δ. In fact, using the parabolic
isospin-asymmetry approximation also for Fnonrel, the spinodal would start to cross the δ = 1
line at around T ' 5 MeV (plot not shown), which is an unphysical feature.

Y 5/3 Terms. At zero temperature, the divergent behavior of the Hessian matrix elements in
the limit δ → 1 arises due to the term ∼ (1 − δ)5/3 ∼ (Y)5/3 in the proton part of E0;nonrel, see
Eq. (5.4). We mention here that a dependence on Y of the form ∼ (Y)5/3 arises not only from
the noninteracting contribution but also from the perturbative interaction contributions to the
ground-state energy density [376] (cf. also Secs. 5.1.3 and 5.2.4). For instance, the np-channel
Hartree-Fock contribution to the ground-state energy density from (central) NN interactions has
the form

ENN
0;1 ∼

∫
d3k1d3k2

(2π)6 v(|~k1 − ~k2|)Θ(kn
F − k1)Θ(kp

F − k2), (4.50)

where kn/p
F is the neutron/proton Fermi momentum, and v(|~k1 − ~k2|) a function incorporating the

details of the interactions. The expansion of this expression with respect to the proton fraction
Y can be performed by setting kn

F = kF(1 − Y)1/3 and kp
F = kFY1/3 and reparametrizing the

integrals, leading to

ENN
0;1 ∼

k6
F

12π2

∫ 1

0
dx

{
Y x2v(xkF) + Y5/3 kF

10
∂v(kF)
∂kF

− Y2

3
v(kF) + O(Y7/3)

}
, (4.51)

i.e., the interaction contribution to the zero-temperature EoS involve also higher-order fractional
powers of Y [see also Eq. (5.69]. In addition, at second order in MBPT also a logarithmic term
∼ Y7/3 ln(Y) appears [cf. Eq. (5.69].
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Tc(δ) Trajectory. From the parabolic approximation of the interaction contribution [cf. Eq.
(4.40)], the matrix componentsHi j;int are given by

H11;int(T, ρ, δ) =
∂2Fint(T, ρ, 0)

∂ρ2 +

(
∂2Fsym,int(T, ρ)

∂ρ2 − 4
ρ

∂Fsym,int(T, ρ)
∂ρ

+ 3
Fsym,int(T, ρ)

ρ2

)
δ2,

(4.52)

H12;int(T, ρ, δ) = 2
(

1
ρ

∂Fsym,int(T, ρ)
∂ρ

− 2
Fsym,int(T, ρ)

ρ2

)
δ, (4.53)

H22;int(T, ρ, δ) = 2
Fsym,int(T, ρ)

ρ2 , (4.54)

and similar forHi j;corr. The derivatives with respect to ρ have been calculated numerically using
finite differences. The results obtained for the trajectory of the critical temperature Tc(δ) where
ζ− becomes positive definite for fixed δ are depicted in Fig. 4.1. The Tc(δ) trajectories are very
similar for n3lo414 and n3lo450, and in both cases the critical lines end approximately at an
isospin asymmetry δend

c ' 0.9994, corresponding to a proton concentration Yend
c ' 3 · 10−4. The

value δend
c ' 0.9994 exceeds the critical line endpoints obtained in Refs. [110, 141, 425] using

different phenomenological mean-field models.
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Figure 4.1.: Trajectories of the critical temperature Tc(δ) determined from the n3lo450 and
n3lo414 results. The trajectories end at δ ' 0.9994. Also shown are the tra-
jectories of the temperature TκT (δ) where the region with negative isothermal
compressibility κT vanishes at fixed δ. The calculated data points are shown
explicitly.

3 The matrix elementsH11 andH22 are identical only in the absence of interactions (and if the isospin-asymmetry
dependence of the free Fermi gas term is treated exactly, i.e., without employing an expansion in terms of δ).
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We note that in nuclear matter with δ , 0 the coexistence region does not vanish at the critical
temperature Tc(δ) (but the critical point is still a point on the binodal) but at a higher temperature
Tmax(δ), the so-called maximum temperature [198, 110]. The existence of a neutron drip point
(see Sec. 4.2.2) entails that at zero temperature the binodal extends to the pure substance over
a finite region of densities or pressures. The trajectory of the maximum temperatures Tmax(δ)
therefore reaches its zero-temperature endpoint at vanishing proton fraction, i.e., δend

max = 1 or
Yend

max = 0.
For comparison, in Fig. 4.1 we show also the trajectories of the temperature TκT (δ) where the

region with negative κ−1
T vanishes at fixed δ. The exact expression for the nonrelativistic free

Fermi gas contribution to κ−1
T is given by

κ−1
T = −αT 5/2

4

[
Li3/2(x̃n) + Li3/2(x̃p)

]2
(

(1 + δ)2

Li1/2(x̃n)
+

(1 − δ)2

Li1/2(x̃p)

)
. (4.55)

The contributions to κ−1
T from nuclear interactions as well as the from the relativistic correction

term have been evaluated numerically using finite differences. For both n3lo414 and n3lo450
the TκT (δ) trajectories end at approximately δend

κT
' 0.82 or Yend

κT
' 0.09, which exceeds the value

Yend
κT
' 0.053 extracted in Ref. [144] from calculations within the in-medium chiral-perturbation

theory approach developed in Refs. [150, 237, 151] and the value Yend
κT
' 0.045 obtained in Ref.

[105] by evaluating a nucleon-meson model with the functional renormalization group (see
Refs. [104, 105] for further details).

4.2.2. Stable Self-Bound Liquid

From the data F̄(T, ρ, δ) the neutron and proton chemical potentials are obtained via

µn/p(T, ρ, δ) =
∂F(T, ρ, δ)

∂ρ
± 1 ∓ δ

ρ

∂F(T, ρ, δ)
∂δ

. (4.56)

The results for µn(T, ρ, δ) and µp(T, ρ, δ) are displayed in Fig. 4.2 for temperatures T = (0, 15)
MeV. One sees that µn(T, ρ, δ) increases and µp(T, ρ, δ) decreases with δ. At finite T the chemi-
cal potentials diverge as ρ → 0, but at zero temperature µn/p → 0 for ρ → 0. The origin of this
feature is again the asymptotically (for ρ→ 0) logarithmic density dependence of the auxiliary
chemical potentials and the noninteracting contribution to the free energy per particle.

The binodal (coexistence boundary) is determined by the Gibbs conditions for the coexistence
of two bulk phases α (liquid) and β (gas) in mutual thermodynamic equilibrium (cf. Sec. 4.1):4

T (α) = T (β), P(α) = P(β), µ(α)
n = µ(β)

n , µ(α)
p = µ(β)

p . (4.57)

The free energy density corresponding to stable two-phase equilibrium is then given by

F(α)+(β)(T, ρ(α), ρ(β)) = λ(α) F(T, ρ(α)
n , ρ(α)

p ) + λ(β) F(T, ρ(β)
n , ρ(β)

p ), (4.58)

where λ(α) = 1 − λ(β) is the volume fraction occupied by phase α, and ρi = λ(α)ρ(α)
i + λ(β)ρ(β)

i ,
i ∈ {n, p}. The particle densities ρ(α)

i in the two phases are such that F(α)+(β) is minimized

4 The properties of the binodal of ANM have been examined in detail in Refs. [198, 110, 301, 141, 255, 24]; in
particular, in Ref. [110] (cf. also [399] a method has been introduced that allows to reduce the two-dimensional
“Gibbs construction” of the binodal to a one-dimensional Maxwell construction.
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for given values of the “global” particle densities ρi (corresponding to the single-phase con-
strained system). Whereas at finite T liquid-gas equilibrium corresponds to finite values of ρ
and Y = (1 − δ)/2 in both phases, the vanishing of µn/p(T = 0, ρ, δ) at vanishing density entails
that at T = 0 the Gibbs conditions for the neutron and proton chemical potentials can in most
cases not be satisfied, leading to a gas phase that is either empty (vacuum) or contains only
neutrons (see Refs. [110, 262, 255] for more details on the binodal).

The neutron drip point δND for bulk nuclear matter is given by the value of δ where the
neutron chemical potential at vanishing temperature and pressure becomes positive. For isospin
asymmetries δ ≤ δND an isolated (large) drop5 of “cold” (T = 0) liquid nuclear matter is stable
(in equilibrium with the vacuum), defining a stable self-bound state. As seen from Fig. 4.2,
neutron drip occurs at an isospin asymmetry δND ' 0.30 or a proton concentration Yp,ND =

(1 − δND)/2 ' 0.35, which is similar to results obtained with Skyrme models [262, 255].
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Figure 4.2.: Results for the (single-phase constrained) neutron and proton chemical poten-
tials from n3lo414 (solid lines) and n3lo450 (dash-dot lines). Stable self-bound
states are shown as thick dark red lines with circles (full circles for n3lo414,
open circles for n3lo450); the lines end at the neutron drip point δND ' 0.30.

5 The drop is considered to be sufficiently large such that the surface tension can be neglected, cf. Eq. (4.14).
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4.2.3. Metastable Self-Bound Liquid

The zero-temperature results obtained from Eq. (4.40) for the energy per particle F̄(T =0, ρ, δ) =

Ē(T =0, ρ, δ) = Ē0(ρ, δ) and the pressure P(T = 0, ρ, δ) = ρ2∂Ē0(ρ, δ)/∂ρ are displayed in Fig.
4.3 as functions of the nucleon density ρ = ρn + ρp for different values of δ. The trajectory
of the points where Ē0(ρ, δ)|δ has a local minimum (and thus, the pressure is zero) is shown
explicitly. These points correspond to the properties of a (large) drop of “cold” liquid nuclear
matter surrounded by vacuum. For δ ≤ δND ' 0.30 the “cold” drop is stable [the local energy
minimum lies on the binodal], and for δND < δ < δFP ' 0.66 it is metastable [the local energy
minimum lies between the binodal and the spinodal]. We refer to the point δFP ' 0.66 where the
trajectory of the local energy minima encounters the spinodal as the fragmentation point (FP).
The energy per particle at neutron drip and at the fragmentation point is Ē0,ND ' −13.0 MeV and
Ē0,FP ' −3.1 MeV, respectively. For comparison, we follow the local energy minima also into
the unstable spinodal region, i.e., we show the point where both derivatives of the single-phase
constrained ground-state energy per particle vanish (saddle point, SP) at δSP ' 0.81 as well as
the local energy minimum with Ē0 = 0 at δ ' 0.76.6

In Fig. 4.4, the results for F̄(T, ρ, δ) and the P(T, ρ, δ) are shown for T = (5, 15) MeV. At
finite T , the trajectories of the local free energy minima lie entirely in the metastable region: an
isolated drop of “hot” liquid nuclear matter has to be stabilized by a surrounding nucleon gas.7

At T = 5 MeV the trajectory ends at δFP ' 0.61, defining the fragmentation temperature for
nuclear matter with proton concentration Yp ' 0.195. The T = 5 MeV saddle point is located
at δSP ' 0.68 for n3lo414 and δSP ' 0.69 for n3lo450. For T = 15 MeV no local free energy
minimum exists: for T & 13.5 MeV the single-phase constrained free energy per particle is a
monotonic increasing function of density for all values of δ (cf. Fig. 4.6).

The relation between the spinodal, the binodal, and the trajectories of the local free energy
minima is illustrated in Fig. 4.5.8 The two plots in Fig. 4.5 represent isoplethal (δ = const)
and isothermal cross sections of the respective surfaces (spinodal, binodal, surface of local free
energy minima) in (T, ρ, δ) space (cf. also Refs. [301, 110]). In the isothermal plot we show also
the surface with divergent isothermal compressibility κT = ρ−1(∂ρ/∂P)T,δ, which corresponds
to the violation of the stability criterion κ−1

T > 0 for a pure substance. The saddle point (SP)
where both derivatives of the F̄(T, ρ, δ) with respect to ρ vanish coincides with the fragmen-
tation point (FP) where a liquid drop becomes unstable only for δ = 0 where nuclear matter
behaves like a pure substance. For δ , 0 the more restrictive two-component stability criteria
are needed (κ−1

T > 0 is not a relevant stability criterion in that case), and the SP is located in the
interior of the spinodal.

Finally, in Fig. 4.6 the trajectory of the fragmentation temperature TFP(δ) is shown; for com-
parison we also show the trajectore of the saddle-point temperature TSP(δ). The TFP(δ) trajectory
determines the range of temperatures and isospin asymmetries for which a self-bound liquid
state exists for bulk nuclear matter.

6 In other words, for δ & 0.76 the energy per particle is positive at all (finite) densities, and for δ ≥ δSP the
pressure is a semipositive definite function of density.

8 The sharp transition from stability to metastability (in terms of zero and nonzero T ) is clearly an artifact
associated with the thermodynamic limit and the neglect of surface effects. At this opportunity, we note also that
the spinodal should be seen as a somewhat idealized concept (cf. Refs. [44, 99] for more detailed discussions).
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Figure 4.3.: Ground-state energy per particle Ē0 and pressure P for (single-phase con-
strained) isospin-asymmetric nuclear matter, from n3lo414 (solid lines) and
n3lo450 (dash-dot lines). The trajectories of self-bound states are shown as
thick dark gray (dark red below neutron drip) lines with circles (n3lo414: full
circles, n3lo450: open circles). The trajectories end at the fragmentation point
δFP ' 0.66. The inset magnifies the behavior of the pressure at low densities.

-20

-10

 0

 10

 20

 30

 0  0.05  0.1  0.15  0.2  0.25

F_
 [
M

e
V

]

ρ [fm
-3

]

T=5 MeV
δ=1

δ=0.9

δ=0.8

δ=0.68(9)

δ=0.61(1)

δ=0.4

δ=0

-1

 0

 1

 2

 3

 0  0.05  0.1  0.15  0.2

P
 [
M

e
V

 f
m

-3
]

ρ [fm
-3

]

T=5 MeV

δ=1

δ=0.9

δ=0.8

δ=0.68(9)

δ=0.61(1)

δ=0.4

 

δ=0

-0.05

 0

 0.05

 0  0.025  0.05  0.075

-40

-30

-20

-10

 0

 10

 20

 0  0.05  0.1  0.15  0.2  0.25

F_
 [
M

e
V

]

ρ [fm
-3

]

T=15 MeVδ=1

δ=0.9

δ=0.8

δ=0.6

δ=0.4

δ=0

 0

 1

 2

 3

 0  0.05  0.1  0.15  0.2

P
 [
M

e
V

 f
m

-3
]

ρ [fm
-3

]

T=15 MeV

δ=1

δ=0.9

δ=0.8

δ=0.6

δ=0.4

δ=0

 0

 0.25

 0.5

 0  0.025  0.05  0.075

Figure 4.4.: (Single-phase constrained) free energy per particle F̄(T, ρ, δ) and pressure
P(T, ρ, δ) at temperatures T = 5, 15 MeV; solid lines for n3lo414, dash-dot
lines for n3lo450. The thick dark lines with circles depict the trajectories of the
local free energy minima, up to the point where they encounter the spinodal.
The insets magnify the behavior of the pressure at low densities.
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Figure 4.6.: Trajectory of the fragmentation temperature TFP(δ) above which no
(metastable) self-bound state of bulk nuclear matter can exist (lower red line).
For comparison we also show the trajectory of the points where the (single-
phase constrained) free energy per particle has a saddle point, TSP(δ) (upper
blue line). The calculated data points are shown explicitly.

8 We note that the presence of a region with negative pressure (“tension” or “cavitation pressure”, a form of
superheat [99, 395]) in the metastable region (the region between the spinodal and the “self-bound liquid” line)
is not unphysical. This feature is a generic property of liquids that are self-bound at low temperatures and a
well-known feature of various molecular liquids [99, 364, 200, 432, 120, 365, 416]. It is consistent with general
thermodynamic principles [276, 99]. States (“drops”) in the negative-pressure region can (of course) not be in
(mechanical) equilibrium with the vacuum, but this clearly does not imply a prompt collapse (or implosion);
instead, the system (the “drop”) is subject to (additional) cavitation and/or self-contraction effects that affect
the nucleation dynamics (cf. e.g., [244, 120, 76, 77, 395]).
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5. Isospin-Asymmetry Dependence of
the Nuclear Equation of State

In this chapter, we examine in more detail the dependence of the (single-phase constrained)
nuclear EoS on the isospin asymmetry δ = (ρn − ρp)/(ρn + ρp). Neglecting charge-symmetry
breaking effects of the nuclear interactions [295, 131] as well as the neutron-proton mass differ-
ence ∆M/M ' 10−4, the nuclear EoS is invariant under the exchange of neutrons and protons,
and therefore the Maclaurin expansion of the free energy per particle of (infinite homogeneous)
nuclear matter with respect to the isospin asymmetry involves only even powers of δ:

F̄(T, ρ, δ) '
N∑

n=0

Ā2n(T, ρ) δ2n =: F̄[2N](T, ρ, δ), (5.1)

where the different expansion (Maclaurin) coefficients Ā2n(T, ρ) are given by

Ā2n(T, ρ) =
1

(2n)!
∂2nF(T, ρ, δ)

∂δ2n

∣∣∣∣∣
δ=0
. (5.2)

This expansion is quoted in nearly every paper on nuclear physics or astrophysics where the
EoS of neutron-rich nuclear matter is considered (e.g., [66, 320, 263, 107, 275, 368, 371, 261,
259, 109, 274, 275, 144, 190, 434]). The reason for the prevalence of Eq. (5.1) in the litera-
ture is obvious: it provides an explicit parametrization of the (otherwise not directly accessible)
dependence of the EoS on the neutron-to-proton ratio, and hence allows for a straightforward
extrapolation of a given EoS of isospin-symmetric nuclear matter to neutron-rich conditions.

In most cases, the expansion in δ was implemented in terms of the leading quadratic order
only. Neglecting coefficients beyond Ā2 in Eq. (5.1), one obtains the relation

F̄(T, ρ, δ) ' F̄(T, ρ, 0) + Ā2(T, ρ) δ2, (5.3)

which, if globally enforced, yields Ā2(T, ρ) � F̄sym(T, ρ), where F̄sym := F̄(δ = 1) − F̄(δ = 1) is
the symmetry free energy studied in Sec. 3.5. Eq. (5.3) is sometimes denoted as the “empirical
parabolic law” [268]. The approximately quadratic isospin-asymmetry dependence of the EoS
has (for the case of zero temperature) been validated in numerous many-body calculations with
microscopic nuclear potentials (e.g., SCGF [148], MBPT [109], BHF [434, 435, 58, 405]).
Nevertheless, it has been shown that higher-order terms in the isospin-asymmetry dependence
can still have a significant influence on various properties of neutron stars such as the crust-
core transition density or the threshold density for the direct URCA cooling process,1 see Refs.
[359, 368, 68]. This motivates a detailed investigation of the isospin-asymmetry dependence of
the nuclear EoS at different temperatures and densities.

1 The direct URCA process (i.e., the processes n→ p + e− + νe and p + e− → n + νe) can only proceed when the
proton fraction is large enough (rougly, Y = (1 − δ)/2 & 0.1, cf. Ref. [368]). Because neutron stars cool much
faster when the direct URCA process is allowed [427, 258], theoretical constraints on its threshold density are
essential in describing the cooling of neutron stars.
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5. Isospin-Asymmetry Dependence of the Nuclear Equation of State

Based on the “empirical parabolic law”, the first expectation would be that the subleading
terms in Eq. (5.1) are small. This expectation has been supported by mean-field calculations
[359, 368, 68]: the quartic Maclaurin coefficient Ā4 was found to be of small size (. 1 MeV) at
saturation density and T = 0.2

A recent work by N. Kaiser [234], however, has demonstrated that if perturbative contri-
butions beyond the mean-field level (Hartree-Fock) are included, the higher-order coefficients
Ā2n≥4 are, in fact, singular at zero temperature. In other terms, at higher orders in many-body
perturbation theory F̄(T = 0, ρ, δ) is not a smooth function of δ, but of differentiability class C3

only.3 The origin of this feature lies in the energy denominators of the higher-order many-body
contributions; i.e., at zero temperature, the integrands in the expressions for the higher-order
terms diverge at the integration boundary where the energy denominators vanish.

Regarding finite temperatures, the result of Ref. [234] has an immediate consequence: be-
cause at finite T there are no energy-denominator poles (“cyclic formula”, cf. Sec. 2.2.2), the
higher-order perturbative contributions to F̄(T , 0, ρ, δ) are smooth (C∞) functions of δ (at
δ = 0), but at very low temperatures they cannot be analytic (Cω) since for T → 0 their higher-
order Maclaurin coefficients diverge.

For very low temperatures the Maclaurin expansion in terms of δ therefore represents an
asymptotic expansion with zero radius of convergence.4 This contrast the “natural” assumption
that the Maclaurin expansion behaves convergent in the physical regime δ ∈ [−1, 1], and (as a
consequence) that the inclusion of higher-order coefficients leads to systematic improvements
also for very neutron-rich conditions.

The questions remain as to whether the radius of convergence becomes finite for higher tem-
peratures and, in which region of the parameter space are isospin-asymmetry parametrizations
F̄[2N](T, ρ, δ) beyond the leading quadratic order useful. Furthermore, using a simple S -wave
contact interaction in [234] a different expansion of the zero-temperature EoS that includes non-
analytic terms δ2n≥4 ln |δ| has been identified; however, the applicability of this expansion in the
case of realistic (chiral) nuclear interactions has not been studied in [234].

Motivated by the situation described above, in this chapter we investigate in detail the isospin-
asymmetry dependence of the EoS obtained from the sets of chiral nuclear potentials n3lo414
and n3lo450 in second-order MBPT. In particular, we examine the convergence behavior of the
Maclaurin expansion [Eq. (5.1)] at finite temperature, as well as the applicability of a “logarith-
mic” expansion at zero temperature.

More specifically, in Section 5.1 we study the isospin-asymmetry dependence of the noninter-
acting contribution to the EoS. The δ dependence of the interaction contributions is then inves-
tigated in Sec. 5.2. The quadratic, quartic and sextic Maclaurin coefficients Ā2,4,6(T, ρ) for the

2 A small quartic coefficient was also reported in studies based on BHF(-type) calculations [72, 264]. Since in
BHF calculations the effects of higher-order perturbative contributions are included (ladder resummation, cf.
Sec. 5.2.4), the nonanalytic features present in higher-order MBPT should be visible there (in principle). The
small quartic coefficients (based on BHF calculations) reported in Refs. [72, 264] may be due to the methods
used to extract the quartic term (not stated in [72, 264]), i.e., polynomial fitting (cf. Sec. 5.4). See also Ref.
[66], where a quartic polynomial has been fit to BHF results.

3 As discussed in Sec. 5.1, additional features appear at the boundary of the physical region δ ∈ [−1, 1]; i.e.,
at zero temperature the second derivative with respect to δ diverges at δ = 1 [in terms of the proton fraction
Y = (1−δ)/2, this feature is associated with terms∼ Y5/3], and at finite temperature the EoS is not differentiable
at δ = 1.

4 A simple example [159] of a C∞ function f (x) whose Maclaurin series has zero radius of convergence is
f (x) =

∑∞
n=1 exp(−n) cos(n2x).
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5. Isospin-Asymmetry Dependence of the Nuclear Equation of State

interaction contributions are extracted numerically using higher-order finite-difference approx-
imations. Since the various many-body contributions behave differently with respect to their
δ dependence, we examine the Maclaurin coefficients for each contribution individually. Fur-
thermore, we show that the singularity of the quartic coefficient at zero-temperature is approxi-
mately logarithmic also for the chiral nuclear potentials, and we extract the leading nonanalytic
term Ā4,log(ρ) in the “logarithmic” expansion of the zero-temperature EoS. The convergence be-
havior of the Maclaurin expansion is summarized in Sec. 5.3. Finally, the various parametriza-
tions obtained from the results for the Maclaurin coefficients and the leading coefficients in the
“logarithmic” expansion, respectively, are compared to the full isospin-asymmetry dependence
of the EoS in Sec. 5.4, where we also look at global isospin-asymmetry parametrizations con-
structed by fitting different polynomials as well as polynomials that include logarithmic terms
to the exact results for the EoS.

5.1. Isospin-Asymmetry Dependence of Free Nucleon Gas

Here, we examine the isospin-asymmetry dependence of the free Fermi gas term in the many-
body perturbation series. The noninteracting contribution to the free energy per particle is
given by F̄nonint(T, ρ, δ) = F̄nonrel(T, ρ, δ) + F̄corr(T, ρ, δ), where F̄nonrel(T, ρ, δ) corresponds to a
nonrelativistic free nucleon gas, and F̄corr(T, ρ, δ) is the leading relativistic correction term [cf.
the appendix A.1 for details]. We compute the quadratic, quartic, sextic and octic Maclaurin
coefficients in the expansions of F̄nonrel(T, ρ, δ) and of F̄corr(T, ρ, δ) in powers of δ. Furthermore,
we examine the special features of the isospin-asymmetry dependence in the very neutron-rich
region, in particular for δ→ 1. The results show that an expansion in the third root of the proton
fraction is applicable only at zero temperature.

5.1.1. Isospin-Asymmetry Derivatives

Zero Temperature. The expressions for the noninteracting contributions to the ground-state
energy density E0;nonint can be written explicitly as functions of ρ and δ, allowing the straight-
forward expansion in terms of δ. The expressions for E0;nonrel and E0;corr are given by

E0;nonrel(ρ, δ) =

(
3π2

2

)5/3
ρ5/3

10π2M

(
(1 + δ)5/3 + (1 − δ)5/3

)
︸                        ︷︷                        ︸

Γnonrel

, (5.4)

E0;corr(ρ, δ) = −
(
3π2

2

)7/3
ρ7/3

56π2M3

(
(1 + δ)7/3 + (1 − δ)7/3

)
︸                        ︷︷                        ︸

Γcorr

. (5.5)

The general Taylor expansion of Γnonrel(δ) around a given point δ0 is given by Γnonrel(δ) =∑∞
n=0 Γ

[δ0]
nonrel,n (δ − δ0)n, and similar for Γcorr(δ). The Maclaurin expansions (δ0 = 0) involve only

even terms, with monotonously decreasing expansion coefficients

Γnonrel(δ) =

∞∑

n=0

Γ [δ0=0]
nonrel,2n δ

2n = 2
∞∑

n=0

(
5/3
2n

)
δ2n = 2 +

10
9
δ2 +

10
9

∞∑

n=1

δ2n
2n−3∏

k=0

1 + 3k
9 + 3k

, (5.6)

Γcorr(δ) =

∞∑

n=0

Γ [δ0=0]
corr,2n δ

2n = 2
∞∑

n=0

(
7/3
2n

)
δ2n = 2 +

28
9
δ2 +

28
9

∞∑

n=2

δ2n
2n−3∏

k=0

3k − 1
9 + 3k

. (5.7)
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The radius of convergence of the Maclaurin expansions is R[δ0=0]
δ = 1,5 which can be deduced

form the ratios of sucessive Maclaurin coefficients. For Γnonrel one has

Γ [δ0=0]
nonrel,2n

Γ [δ0=0]
nonrel,2(n+1)

=
18n2 + 27n + 9
18n2 − 21n + 5

n→∞−−−→ 1, (5.8)

and similar for Γcorr. The general Taylor expansions around δ0 , 0 however have a smaller radius
of convergence, and in general do not feature decreasing expansion coefficients, in particular for
δ0 in the strongly neutron-rich region. For instance, for δ0 = 0.9 the leading coefficients in the
expansion of Γnonrel are given by Γ [δ0=0.9]

nonrel,(1,2,3,4,5,6) ' (2.2, 1.6, 1.3, 4.4, 20.7, 114.9). This behavior
is due to the proton contributions, i.e., the terms ∼ (1 − δ)5/3 = Y5/3 and ∼ (1 − δ)7/3 = Y7/3,
which restrict the radius of convergence to R[δ0=0.9]

δ = 0.1.

Finite Temperature. At finite temperature, the functional dependence on δ is given in terms
of the neutron/proton (auxiliary) chemical potentials, so no straightforward expansion is possi-
ble in that case. Nevertheless, concise expressions for the δ derivatives (at fixed T and ρ) can
be derived from the expressions for Fn/p

nonrel and Fn/p
corr in terms of polylogarithms:

Fn/p
nonrel(T, µ̃n/p) = −αT 5/2

(
ln(−x̃n/p) Li3/2(x̃n/p) − Li5/2(x̃n/p)

)
, (5.9)

Fn/p
corr(T, µ̃n/p) =

15αT 7/2

8M
Li7/2(x̃n/p), (5.10)

where x̃n/p = − exp(µ̃n/p/T ) and α = 2−1/2(M/π)3/2. We recall that for given values of T , ρ and
δ the (auxiliary) chemical potentials µ̃n/p are uniquely determined by ρn/p = −αT 3/2Li3/2(x̃n/p).
Using ρn/p = ρ(1 ∓ δ)/2, the total differential of ρ(δ, µ̃n) and ρ(δ, µ̃p), respectively, is given by

dρ =

(
∂ρ

∂δ

)

µ̃n/p

dδ +

(
∂ρ

∂µ̃n/p

)

δ

dµ̃n/p. (5.11)

This leads to the following expressions for the total differentials of µ̃n and µ̃p at fixed nucleon
density:

[
dµ̃n/p

]
ρ=const. = −

(∂ρ/∂δ)µ̃n/p(
∂ρ/∂µ̃n/p

)
δ

dδ =



T
1 + δ

Li3/2(x̃n)
Li1/2(x̃n)

dδ

− T
1 + δ

Li3/2(x̃p)
Li1/2(x̃p)

dδ
. (5.12)

The first derivative of Fn/p
nonrel with respect to δ at fixed ρ (and T ) is then given by


∂Fn/p

nonrel

∂δ


ρ

=


∂Fn/p

nonrel

∂µ̃n/p


(
∂µ̃n/p

∂δ

)

ρ

=



−αT 5/2

1 + δ
ln(−x̃n)Li3/2(x̃n)

αT 5/2

1 − δ ln(−x̃p)Li3/2(x̃p)
. (5.13)

Since the first derivative Fn/p
nonrel(1) = (∂Fn/p

nonrel/∂δ)ρ has also an explicit δ dependence, the second
derivative is given by


∂2Fn/p

nonrel

∂δ2


ρ

=


∂Fn/p

nonrel(1)

∂δ


µ̃n/p

+


∂F̄n/p

nonrel(1)

∂µ̃n/p


δ

(
∂µ̃n/p

∂δ

)

ρ

, (5.14)

5 This feature is also evident from the branch points at δ = ±1 of the explicit expressions given by Eqs. (5.4) and
(5.5).
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and similar for higher derivatives. One can write down the following general expression for the
n-th derivative with respect to δ of Fn/p

i , i ∈ {nonrel, corr}, at fixed density (and temperature):

∂nFn/p

i

∂δn


ρ

= − (±1)n αT 5/2(n − 1)!
(1 ± δ)n Y (n)

i (x̃n/p), (5.15)

where the functions Y (n)
i are defined recursively as

Y (n≥1)
i (x̃n/p) =

x̃n/p

max(n − 1, 1)
Li3/2(x̃n/p)
Li1/2(x̃n/p)

∂

∂x̃n/p
Y (n−1)

i (x̃n/p) − (1 − δn,1) Y (n−1)
i (x̃n/p), (5.16)

with δk,l the Kronecker delta. The expressions to start the recursion are

Y (0)
nonrel(x̃n/p) = ln(−x̃n/p) Li3/2(x̃n/p) − Li5/2(x̃n/p), Y (0)

corr(x̃n/p) = −15T
8M

Li7/2(x̃n/p). (5.17)

One then obtains for Ānonint,2n the expression

Ānonint,2n(T, x̃) =
T

2n Li3/2(x̃)

(
Y (2n)

nonrel(x̃) + Y (2n)
corr (x̃)

)
, (5.18)

where x̃ = − exp(µ̃/T ), with µ̃ determined by ρ = −2αT 3/2Li3/2(x).

Asymptotics. The nonrelativistic contribution to the free energy per particle is given by

F̄nonrel =
Fn

nonrel + Fp
nonrel

ρn + ρp
= T

ln(−x̃n)Li3/2(x̃n) − Li5/2(x̃n) + ln(−x̃p)Li3/2(x̃p) − Li5/2(x̃p)
Li3/2(x̃n) + Li3/2(x̃p)

.

(5.19)

This expression diverges in the limit of infinite temperature (T → ∞) and in the limit of zero
density (ρ→ 0). However, one can still extract the asymptotic behavior of the isospin asymme-
try dependence. From ρn/p = −αT 3/2Li3/2(x̃n/p) it follows that the two limits T → ∞ (at fixed
density) and ρ→ 0 (at fixed nonzero temperature) both correspond to µ̃n/p → −∞ and x̃n/p → 0.

Using Liν(x)
x→0−−−→ x, the expression for F̄nonrel in these limits is formally given by

[
F̄nonrel

]
ρ→0 =

[
F̄nonrel

]
T→∞ =

µ̃n x̃n + µ̃p x̃p

x̃n + x̃p
− T. (5.20)

The asymptotic behavior of the (auxiliary) chemical potentials is given by [cf. Eq. (A.12)]

[
µ̃n/p

]
ρ→0 =

[
µ̃n/p

]
T→∞ = T ln

(
ρn/p

αT 3/2

)
. (5.21)

From this and using ρn/p = ρ(1 ± δ)/2 one arrives at the following expression for
[
F̄nonrel

]
ρ→0

and
[
F̄nonrel

]
T→∞ as functions of T , ρ and δ:

[
F̄nonrel

]
ρ→0 =

[
F̄nonrel

]
T→∞ = T ln

(
ρ

2αT 3/2

)
+

T
2

(
(1 + δ) ln(1 + δ) + (1 − δ) ln(1 − δ)

)
− T.

(5.22)

The isospin-asymmetry dependent part of Eq. (5.22) contains the term (1 − δ) ln(1 − δ), whose
first derivative diverges at δ = 1. (Note that this term is associated with Fp

nonrel). Written in terms
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of the proton fraction Y = (1− δ)/2 it has the familiar form Y ln(Y), i.e., the isospin-asymmetry
dependent part of Eq. (5.22) corresponds to the (usual) entropy of mixing. From Eq. (5.22), the
asymptotic behavior of the Maclaurin coefficients at finite temperature is given by

[
Ānonint,2n

]
ρ→0 =

[
Ānonint,2n

]
T→∞ =

T
2(2n!)

∂2n

∂δ2n

(
(1 + δ) ln(1 + δ) + (1 − δ) ln(1 − δ)

) ∣∣∣∣
δ=0

=
T

2n(2n − 1)
, (5.23)

which comes entirely from the logarithmic terms,∼ ln(−x̃n/p) = µ̃n/p/T , in the original expres-
sion for F̄nonrel. Note that

[
Ānonint,2n

]
ρ→0 is finite although

[
F̄nonrel

]
ρ→0 diverges logarithmically,

∼ ln(ρ). In the T → ∞ limit the Maclaurin coefficients diverge linearly with T , so their ratios
are finite and have the same limiting values as obtained in the ρ→ 0 limit, i.e.,

Ānonrel,2n

Ānonrel,2(n+1)

∣∣∣∣∣
T,0,ρ→0

=
Ānonrel,2n

Ānonrel,2(n+1)

∣∣∣∣∣
T→∞

=
2n2 + 3n + 1

2n2 − n
n→∞−−−→ 1. (5.24)

This shows that for T → ∞ and ρ → 0 the radius of convergence of the Maclaurin expansion
of the noninteracting EoS is the same as the one for T → 0, i.e., Rδ = 1.

5.1.2. Behavior at Vanishing Proton Fraction

In Sec. 5.1.1 we have seen that at zero temperature the second derivative with respect to δ of
the (nonrelativistic) free Fermi gas contribution to the free energy per particle diverges at δ = 1.
The divergent behavior is entirely caused by the proton contribution∼ (1 − δ)5/3, i.e.,

∂2

∂δ2

[
(1 + δ)5/3 + (1 − δ)5/3

]
=

10
9(1 + δ)1/3 +

10
9(1 − δ)1/3

δ→1−−−→ ∞. (5.25)

In the ρ → 0 limit, however, already the first derivative of the (proton contribution to the) free
energy per particle diverges at δ = 1 for T , 0 (but is finite for δ , 1):
(
∂F̄nonrel

∂δ

)

T,0,ρ→0

=
∂

∂δ

T
2

[
(1 + δ) ln(1 + δ) + (1 − δ) ln(1 − δ)

]
=

T
2

[
ln(1 + δ) − ln(1 − δ)

] δ→1−−−→ ∞.
(5.26)

The question concerning the behavior for nonzero temperatures and densities arises. By Eq.
(5.15), the first two δ derivatives of Fnonrel are given by

Fnonrel(1) :=
(
∂Fnonrel

∂δ

)

T,ρ

= − αT 5/2

1 + δ
ln(−x̃n)Li3/2(x̃n) +

αT 5/2

1 − δ ln(−x̃p)Li3/2(x̃p), (5.27)

Fnonrel(2) :=
(
∂Fnonrel(1)

∂δ

)

T,ρ

= − αT 5/2

(1 + δ)2

(
Li3/2(x̃n)

)2

Li1/2(x̃n)
− αT 5/2

(1 − δ)2

(
Li3/2(x̃p)

)2

Li1/2(x̃p)
, (5.28)

where in each case the first term corresponds to the neutron part Fn
nonrel, and the second term to

the contribution from protons Fp
nonrel. The derivatives of the neutron part are finite for δ ∈ [0, 1],

but the derivatives of the proton part give an undefined expression “0/0” for δ → 1, which
cannot be resolved by l’Hôpital’s rule. One can however still evaluate Eq. (5.27) and (5.28)
numerically for large proton fractions. The numerical results obtained for F̄nonrel(1) = Fnonrel(1)/ρ
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at fixed temperatures T = (0, 1, 10) MeV are plotted as functions of [ln(1 + δ) − ln(1 − δ)]
for different densities in Fig. (5.1). One sees that at finite temperatures, for very small proton
fractions Fnonrel(1) is to very high accuracy a linear function of [ln(1 + δ) − ln(1 − δ)] for all
values of ρ, indicating that the nondifferentiability of the free energy at Y is maintained also
for finite densities. For the second derivative one finds that Fnonrel(2) diverges for Y → 0, but
(1 − δ) Fnonrel(2) approaches the value T/2 [cf. Eq. (5.26)] also for finite densities, cf. Fig. 5.3.
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Figure 5.1.: F̄nonrel(1) as a function of the derivative of the “entropy of mixing form”.

In sum, one finds that F̄nonrel(1)(T, ρ, δ) is logarithmically divergent for δ → 1 at finite T (but
is finite at T = 0, which must be seen as a consequence of the entropy being zero at T = 0). The
origin of this behavior is the same as for the logarithmic divergence of F̄nonrel(T, ρ, δ) as ρ → 0
(at finite T ), i.e., the divergence of the (auxiliary) chemical potentials for vanishing particle
densities, µn/p → −∞ for ρn/p → 0.

As discussed above, the singularity of the isospin-asymmetry derivatives of the free energy
per particle in the δ→ 1 limit can be associated with the entropy of mixing. It is thus interesting
to consider the isospin-asymmetry derivatives of the nonrelativistic Fermi gas contribution to
the internal energy per particle Ē = F̄ + TS̄ , with S̄ = −∂F̄/∂T . From E = −3αT 5/2

2 (Li5/2(x̃n) +

Li5/2(x̃n)
)

one obtains for the first two derivatives of the internal energy density the expressions

Enonrel(1) :=
(
∂Enonrel

∂δ

)

T,ρ

= − 3αT 5/2

2(1 + δ)

(
Li3/2(x̃n)

)2

Li1/2(x̃n)
+

3αT 5/2

2(1 − δ)
(
Li3/2(x̃p))2

Li1/2(x̃p)
, (5.29)

Enonrel(2) :=
(
∂Enonrel(1)

∂δ

)

T,ρ

= − 3αT 5/2

2

∑

n,p

1
(1 ± δ)2

[(
Li3/2(x̃n/p)

)2

Li1/2(x̃n/p)
−

(
Li3/2(x̃n/p)

)3Li−1/2(x̃n/p)
(
Li1/2(x̃n/p)

)2

]
.

(5.30)

For both of these expressions the proton part is undefined at δ = 1. Evaluating Eq. (5.29)
numerically, one finds that Ēnonrel(1) remains finite at δ = 1, cf. Fig. 5.2. The second derivative
Ēnonrel(2) however diverges at δ = 1, as for T = 0. However, as seen in Fig. 5.3, the divergence
is of the same form as the one for F̄nonrel(2), i.e., the expression (1 − δ)Ēnonrel(2) is finite at δ = 1
and approaches the value 3T/2.

142



5. Isospin-Asymmetry Dependence of the Nuclear Equation of State

 0

 5

 10

 15

 20

 0  0.25  0.5  0.75  1

E_

n
o

n
re

l,
(1

) 
(M

e
V

)

δ

T=1 MeV

T=10 MeV

T=0

ρ=0.1 fm
-3

ρ=0.01 fm
-3

 0
 50

 100
 150
 200
 250
 300

 5  10  15  20  25

E_

n
o
n
re

l,
(2

) 
(M

e
V

)

ln(1+δ)-ln(1-δ)

   

Figure 5.2.: Results for Ēnonrel(1) (main plot) and Ēnonrel(2) (inset). Note that Ēnonrel(1) is a
nonmonotonic function of T .

-5

 0

 5

 10

 15

 20

 0  0.25  0.5  0.75  1

{F_
,E_

} n
o

n
re

l,
(2

) 
(M

e
V

)

δ

(1-δ) F
_

nonrel,(2)(T=10)

(1-δ) E
_

nonrel,(2)(T=10)

(1-δ)
1/3

 F
_

nonrel,(2)(T=0) ρ=0.1 fm
-3

ρ=0.01 fm
-3

Figure 5.3.: Second isospin-asymmetry derivatives of the noninteracting contribution to the
free energy per particle and the internal energy per particle, multiplied with a
factor (1 − δ) at finite T and a factor (1 − δ)1/3 at zero T , respectively.

In Sec. 4.2.1 we have found that these special features of the δ dependence in the very
neutron-rich region are related to physical constraints on the boundary of the spinodal. Oth-
erwise, the influence of these features, for example regarding properties of neutron stars,6 is not
clear at this stage and would have to be investigated in future studies. It is however obvious that
these features cannot be captured by the usual Maclaurin expansion in terms of δ. Moreover,
while the results at zero temperature would suggest the applicability of a Maclaurin expansion
in the third root of the proton fraction y = Y1/3 = [(1 − δ)/2]1/3, the results discussed in this
section show that such an expansion is not applicable for nonzero temperatures.

6 Note also that in the expression for the proton chemical potential, the δ derivative of the free energy is multiplied
with a factor (1 − δ), cf. Eq. (4.56).
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5.1.3. Evaluation of Expansion Coefficients

In the first part of this section we study the density and temperature dependence of the four
leading coefficients in the Maclaurin expansion in δ2 of the noninteracting EoS. In the second
part we introduce the expansion of the zero-temperature EoS in terms of the proton fraction
Y = (1 − δ)/2, and compare this expansion to the usual one in terms of the isospin asymmetry.

Isospin-Asymmetry Expansion. To identify the qualitative behavior of the δ2 expansion, it
is useful to introduce the quantities ξ = 1 − Ā2(T,ρ)

F̄sym(T,ρ) and ζ2N =
∑N

n=2 Ā2n(T,ρ)
F̄sym(T,ρ) . If the isospin-

asymmetry expansion converges for δ ∈ [−1, 1] in a given region in the temperature-density

plane, then ζ2N
N→∞−−−−→ ξ in that region. From Eqs. (5.4) and (5.23), one finds that the non-

relativistic contribution F̄nonrel(T, ρ, δ) the quantities have the parameter-independent limiting
values

ξ(T → 0, ρ , 0) =1 − 10
9(25/3 − 2)

' 0.054, (5.31)

ξ(T → ∞, ρ) = ξ(T , 0, ρ→ 0) =1 − 1
ln(4)

' 0.279, (5.32)

ζ2N(T → 0, ρ , 0) =
10

9(25/3 − 2)

N∑

n=2

2n−3∏

k=0

1 + 3k
9 + 3k

, (5.33)

ζ2N(T → ∞, ρ) = ζ2N(T , 0, ρ→ 0)) =
1

ln(2)

2N∑

n=3

(−1)n+1

n
. (5.34)

Note that in the T → ∞ and ρ→ 0 cases, one finds explicitly that the expansion converges at the
radius of convergence (alternating harmonic series). Comparing ζ2N/ξ |ρ,0,T→0 ∈ {0.646, 0.814,
0.883, 0.918, 0.999} and ζ2N/ξ |T→∞ = ζ2N/ξ |T,0,ρ→0 ∈ { 0.431, 0.604, 0.696, 0.754, 0.987 }
for N ∈ {2, 3, 4, 5, 100}, one can deduce that the relative accuracy of the isospin-asymmetry
expansion (truncated at a given order N) of F̄nonrel decreases for increasing values of T and
decreasing values of ρ. To examine this behavior in more detail, we introduce the weight factors
βnonint,2n = Ānonint,2n/F̄nonint,sym as a means to specify the relative size of the different Maclaurin
coefficients. The weight factors are related to the symmetry free energy via

F̄nonint,sym(T, ρ) =

∞∑

n=1

Ānonint,2n(T, ρ) = F̄nonint,sym(T, ρ)
∞∑

n=1

βnonint,2n(T, ρ). (5.35)

The results for the first weight factor βnonint,2 as well as ones for the ratios βnonint,2n/βnonint,2(n+1)

[with n = 1, 2, 3] are displayed in Fig. 5.4. One sees that the ratios βnonint,2n/βnonint,2(n+1) [or,
equivalently, the ratios Ānonint,2n/Ānonint,2(n+1)] are at finite density monotonic decreasing func-
tions of temperature and at finite temperature monotonic increasing functions of density, and
the T → ∞ limiting values are approached relatively quickly as the temperature is increased.
The decrease of the convergence rate of the expansion of F̄nonint = F̄nonrel + F̄corr with increas-
ing temperature or decreasing density is entirely caused by the presence of the logarithmic
terms in the nonrelativistic contribution F̄nonrel, i.e., by the entropy of mixing. The conver-
gence rate of the expansion of the relativistic correction term alone increases with temperature,
similar to the expansion of the noninteracting contribution to the internal energy per particle,
Ēnonint = Ēnonrel+Ēcorr. The weight factors associated with the expansion of Ēnonint are denoted as
αnonint,2n; the results for αnonint,2 and αnonint,2/αnonint,4 are shown in Fig. 5.5. One sees that indeed
the convergence rate of the expansion of Ēnonint increases strongly with increasing temperature.
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Figure 5.4.: Temperature dependence of the first weight factor βnonint,2 and the ratios
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Proton-Fraction Expansion. The matter in the interior of neutron stars has only a very small
fraction of protons, roughly YNS ' (0.05− 0.1). For a given EoS, the value of YNS is determined
by the condition of beta equilibrium, and depends sensitively on the isospin-asymmetry depen-
dence of the nuclear EoS in the very neutron-rich region. This suggests to consider instead of
the “usual” isospin-asymmetry expansion [Eq. (5.1)] an expansion in terms of the proton frac-
tion Y = ρp/ρ = (1 − δ)/2 about Y = 0. This “proton-fraction expansion” has been investigated
at zero temperature in Ref. [376] using the in-medium χPT framework of Refs. [237, 151]. It
was found that

• fractional powers of Y emerge also from the interaction contributions [cf. also Sec. 4.2.1].7

• expect for the extremely neutron-rich region the EoS constructed from this expansion
(including terms up to∼ Y2) deviates considerably from the exact results.

In the following we show that the second feature is entirely due to the interaction contribu-
tions to the EoS, i.e., the proton-fraction expansion of the noninteracting contribution (at zero
temperature) is well-converged at low orders in the entire physical region Y ∈ [0, 1].

We start by introducing for a given contribution α to the EoS the general form of the expan-
sions in terms of the isospin-asymmetry and in terms of the proton fraction about δ = 0 and
Y = 0, respectively, i.e.,

F̄[α](T, ρ, δ) ∼
Nδ∑

n=0

Ā[α]
n (T, ρ) δn, F̄[α](T, ρ, y) ∼

Ny∑

n=0

B̄[α]
n (T, ρ) yn, (5.36)

where we have formulated the second expansion in terms of in the third root of the proton
fraction y = Y1/3 to be able to deal with fractional powers of Y . To illustrate the differences re-
garding convergence of these expansions in the case of the interaction contribution, we examine
in Fig. 5.6 the results obtained for the first-order contribution from 3N interactions F̄3N

1 (T, ρ, δ)
at zero temperature and ρ = 0.15 fm−3 (using n3lo414).8 The quantities shown are the devi-
ations ∆F̄[α] := F̄[α]

approx − F̄[α], where F̄[α] corresponds to the exact results, and F̄[α]
approx to the

results from the expansions (truncated at the order indicated in the leged). In the case of the y
expansion, the leading orders are given by∼ (y3, y5, y6), corresponding to∼ (Y,Y5/3,Y2). One
sees that the deviations become are very sizeable in the case of the y expansion; including higher
powers in the expansion leads to systematic improvements in the very neutron-rich region, but
for δ . 0.9 the δ expansion leads to better results. The convergence behavior of the respective
expansions can be described in terms the functionsA[α]

Nδ
(T, ρ, δ) and B[α]

Ny
(T, ρ, y) defined as

A[α]
Nδ

(T, ρ, δ) := 1 −
∑Nδ

n=1 Ā[α]
n (T, ρ) δn

F̄[α](T, ρ, δ) − F̄[α](T, ρ, δ = 0)
, (5.37)

B[α]
Ny

(T, ρ, y) := 1 −
∑Ny

n=1 B̄[α]
n (T, ρ) yn

F̄[α](T, ρ, y) − F̄[α](T, ρ, y = 0)
. (5.38)

If the expansions converge, then A[α]
Nδ

Nδ→∞−−−−→ 0 and B[α]
Ny

Ny→∞−−−−→ 0, respectively. For F̄3N
1 (T, ρ, δ)

at T = 0 and ρ = 0.15 fm−3, the values of these functions at δ = 1 and Y = 0.5, respectively, are
7 Note that this feature cannot be captured by the “usual” isospin-asymmetry expansion.
8 In the case of the first-order 3N contribution at zero temperature, a semi-analytical computation of the expansion

coefficients is feasible [calculations by N. Kaiser]. For ρ = 0.15 fm−3, the values of the leading expansion
coefficients are Ā[3N]

2,4,6 = (−0.26,−0.56,−0.08) MeV and B̄[3N]
3,5,6 = (6.88,−2.84,−16.19) MeV, respectively.
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given by

A[3N]
Nδ=2,4,6(T = 0, ρ, δ = 1) =

(
0.71, −0.10, 0.01

)
, (5.39)

B[3N]
Ny=3,5,6(T = 0, ρ, y = 0.51/3) =

( − 2.79,−1.80, 2.66
)
. (5.40)

-2

-1

 0

 1

 2

 0  0.25  0.5  0.75  1

∆
F_

3
N

 (
M

e
V

)

δ

Y
1

Y
5/3

Y
2

δ
2

δ
4

δ
6

-0.01

 0

 0.01

 0.02

 0.85  0.9  0.95  1

Figure 5.6.: Deviations ∆F̄ := F̄approx− F̄ of the approximations F̄approx constructed from the
truncated expansions9 in Y (red lines) and δ (black lines) from the exact results
F̄ for the case of the first-order contribution from 3N interactions F̄3N

1 (T, ρ, δ) at
zero temperature and ρ = 0.15 fm−3. The inset magnifies the behavior in the
extremely neutron-rich region.

Using the functions A[α]
Nδ

and B[α]
Ny

, we now examine the two expansions given by Eq. (5.36)
for the nonrelativistic free nucleon gas EoS F̄n+p

nonrel = F̄n
nonrel + F̄p

nonrel at zero temperature. It
is instructive to first study the neutron and proton contributions separately. Furthermore, we
consider also the ρ → 0 limit (at fixed T , 0), or equivalently, the T → ∞ limit of F̄n/p

nonrel,
which is formally given by [cf. Eq. (5.22)]

F̄n/p
nonrel

T→∞−−−−→ µ̃n/p x̃n/p

x̃n + x̃p

∣∣∣∣∣∣
T→∞

=
T
2

(1 ± δ) ln(1 ± δ)
︸                 ︷︷                 ︸

X
n/p

1

+
T
2

(1 ± δ) ln
(

ρ

2 eαT 3/2

)

︸                        ︷︷                        ︸
X

n/p
2

. (5.41)

The second term X n/p
2 completely dominates the behavior of F̄n

nonrel and F̄p
nonrel as ρ → 0 and

T → ∞, respectively. It gives only a contribution to the leading coefficient in the respective
expansions, which leads to An/p

Nδ
(T → ∞, ρ, δ) = 0 for Nδ ≥ 1 and Bn/p

Ny
(T → ∞, ρ, y) = 0 for

Ny ≥ 3. The isospin-asymmetry dependent parts of X n/p
2 cancel each other, so the expansions

of F̄n+p
nonrel are completely determined by X n/p

1 . For these reasons, in the following we examine
for the separate neutron and proton contributions the expansions of the isolated first term X n/p

1 .

9 For example, the red dashed lines labeled “Y2” correspond to the approximation F̄approx = B̄0 + B̄3y + B̄5y5 +

B̄6y6 = B̄0 + B̄3Y + B̄5Y5/3 + B̄6Y2.
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Neutron Contribution. For the neutron contribution F̄n
nonrel, the asymptotic behavior of the non-

vanishing coefficients (apart the one with n = 0) is given by

Ān
n

T→0−−−→
(
3π2

2

)5/3
ρ2/3

10π2M

n∏

k=1

8 − 3k
3k

, Ān
n

T→∞−−−−→



T
2
, for n = 1

(−1)nT
2n(n − 1)

, for n ≥ 2
, (5.42)

B̄n
3n

T→0−−−→
(
3π2

)2/3 ρ2/3

10π2M

n∏

k=1

3k − 8
3k

, B̄n
3n

T→∞−−−−→


−T − T ln(2), for n = 1
T

n(n − 1)
, for n ≥ 2

, (5.43)

where in the case of the T → ∞ results the term X n
2 is neglected. Note that radius of con-

vergence of the proton-fraction expansion is Ry = 1, which is twice as large as the one of the
isospin-asymmetry expansion Rδ = 1. The asymptotic values ofAn

Nδ
(T, ρ, δ = 1) are given by

An
Nδ=1,2,3,4,5,10(T = 0, ρ, 1) =

(
0.233, −0.011, 0.007, −0.003, 0.002, −2 × 10−4 )

, (5.44)

An
Nδ=1,2,3,4,5,10(T → ∞, ρ, 1) =

(
0.279, −0.082, 0.038, −0.022, 0.014, −0.004

)
, (5.45)

and the ones of Bn
Ny

(T, ρ, y = 0.51/3) are given by10

Bn
Ny=3,6,9,12,15,30(T = 0, ρ, 0.51/3) =

( − 0.217,−0.014,−0.002,−6 × 10−4,−2 × 10−4,−10−6),
(5.46)

Bn
Ny=3,6,9,12,15,30(T → ∞, ρ, 0.51/3) =

( − 0.221,−0.041,−0.011,−0.003,−0.001,−10−5).
(5.47)

One sees that in the case of the neutron contribution Fn
nonrel, the proton-fraction expansion con-

verges faster as the one in the isospin-asymmetry. For both expansions the results indicate that
the convergence rate decreases with temperature. Note also that while Bn

Ny
< 0, the sign of the

functionsAn
Nδ

alternates with Nδ.

Proton Contribution. In the case of the proton contribution F̄p
nonrel, the proton-fraction expansion

is not applicable at finite temperature where the first derivative of F̄p
nonrel with respect to Y is

singular, cf. Sec. 5.1.2. At zero temperature the “expansion” of F̄p
nonrel in terms of y has only

one nonvanishing coefficient:

B̄p
5

T→0−−−→
(
3π2

2

)5/3
ρ2/3

10π2M
, (5.48)

The isospin-asymmetry expansion of F̄p
nonrel on the other hand is well-defined. The asymp-

totic values of the nonvanishing isospin-asymmetry coefficients are given by (the term X p
2 is

neglected)

Āp
n

T→0−−−→
(
3π2

2

)5/3
ρ2/3

10π2M

n∏

k=1

3k − 8
3k

, Āp
n

T→∞−−−−→



−T
2
, for n = 1

T
2n(n − 1)

, for n ≥ 2,
(5.49)

10 Note that to examine the two expansions on an equal footing we always compare the values of A[α]
Nδ

and B[α]
Ny

for the same number of nonvanishing coefficients.
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The radii of convergence are the same as for the neutron contribution. The zero-temperature
values of theAp

Nδ
function at δ = 1 are11

Ap
Nδ=1,2,3,4,5,10(T = 0, ρ, 1) =

( − 0.667, −0.111, 0.049, −0.029, 0.019, 0.006
)
. (5.50)

One sees that compared to the neutron contribution, the convergence rate of the δ expansion of
the proton contribution at zero temperature is considerably decreased.

Free Nucleon Gas. Finally, we turn to the expansions of the complete nonrelativistic free nu-
cleon gas EoS given by F̄n+p

nonrel = F̄n
nonrel + F̄p

nonrel. The zero-temperature values ofAn+p
Nδ

and Bn+p
Ny

are given by12

An+p
Nδ=2,4,6,8,10,20(T = 0, ρ, 1) =

(
0.054, 0.019, 0.010, 0.006, 0.004, 0.001

)
,

(5.51)

Bn+p
Ny=3,5,6,9,12,27(T = 0, ρ, 0.51/3) =

( − 0.401, −0.025, −0.005, −0.001, −3 × 10−4, −2 × 10−6),
(5.52)

One sees that while at first and second order (Nδ = 2, 4 and Ny = 3, 5, respectively) the quadratic
isospin-asymmetry expansion is more precise, the increase in precision for higher orders is
much more pronounced in the case of the proton-fraction expansion.

Summary. To summarize, we have found for the noninteracting contribution to the free en-
ergy per particle of infinite homogeneous nuclear matter that

• the relative accuracy of the isospin-asymmetry expansion about δ = 0 decreases substan-
tially with increasing temperature.

• in the case of the neutron contribution, the expansion in terms of the proton fraction about
Y = 0 has better converge properties as the one in the isospin asymmetry about δ = 0.
This expansion is however not applicable for the proton contribution at finite temperature
due to the nonanalytic form of the Y dependence [asymptotically given by ∼ Y ln(Y)]
associated with the entropy of mixing.

• the nonanalytic form of the Y dependence has a crucial influence on the isospin-asymmetry
dependence of the nuclear liquid-gas instability [cf. Sec. 4.2.1].

These points make clear that the isospin-asymmetry dependence of the noninteracting term in
the many-body perturbation series cannot be parametrized explicitly in a satisfactory way. Re-
garding the construction of a global nuclear EoS for astrophysical applications, this however
does not constitute a serious obstacle since noninteracting contribution can easily be computed
exactly. In the case of the interaction contributions, however, an exact treatment is computa-
tionally much more expensive. This motivates a detailed investigation of the isospin-asymmetry
expansion about δ = 0 of the interaction contributions (we have already seen in Fig. 5.6 that for
the first-order 3N contribution at T = 0, this expansion is very well-converged at order δ6).

11 Since the X p
1 part of Eq. (5.41) vanishes for δ ∈ {0, 1} the T → ∞ limit of the Ap

Nδ
functions (without X p

2 ) is
singular at δ = 1.

12 For completeness, the values of An+p
Nδ

in the T → ∞ limit are An+p
Nδ=2,4,6,8,10,20(T → ∞, ρ, 1) =

( 0.279, 0.158, 0.110, 0.085, 0.069, 0.035 ).
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5.2. Isospin-Asymmetry Dependence of Interaction
Contributions

Here, we examine the δ dependence of the interaction contributions to the free energy per par-
ticle F̄(T, ρ, δ), computed in second-order MBPT. We use the sets of chiral low-momentum
potentials n3lo414 and n3lo450, for which “realistic” results where obtained in Chap. 3 for the
limiting cases of SNM and PNM. The interaction contributions to the quadratic, quartic and
sextic Maclaurin coefficients Ā2,4,6(T, ρ) are extracted using finite differences. We discuss the
accuracy of the finite-difference method, and examine the results for each contribution indi-
vidually. We will find that many-body contributions beyond the mean-field level give rise to
coefficients Ā2n≥4 that diverge in the T → 0 limit, and that this behavior is associated (for the
most part) with the presence of a logarithmic term ∼ δ4 ln |δ| at zero temperature. Finally, a
method that allows to extract (to good accuracy) the coefficient of the (leading) logarithmic
term ∼ δ4 ln |δ| is introduced, benchmarked against the exact results for an S -wave contact
interaction, and then applied to the results for the second-order EoS from n3lo414 and n3lo450.

5.2.1. Finite-Difference Methods

The interaction contributions to the Maclaurin coefficients Ā2n(T, ρ) can in principle be com-
puted from the explicit expressions obtained for the isospin-asymmetry derivatives (at fixed
density and temperature) of the different many-body contributions. The length of these ex-
pressions however increases rapidly with the order of the derivative. To avoid the numerical
evaluation of these lengthy expressions, we instead extract the isospin-asymmetry derivatives
numerically using finite differences.

The general form of the N -point central finite-difference approximation for Ā2n(T, ρ) is (us-
ing a uniform grid with stepsize ∆δ and grid length N):

Ā2n(T, ρ) ' 1
(2n)!(∆δ)2n

N∑

k=0

(2 − δk,0)ωN,k
2n F̄(T, ρ, k∆δ) =: ĀN,∆δ

2n (T, ρ), (5.53)

where N = 2N + 1 ≥ 2n + 1. The finite-difference coefficients ωN,k
2n are determined by the

matching of Lagrange polynomials to the data and can be computed using the algorithm given
in Ref. [147]. The formal order of accuracy of the finite-difference approximation ĀN,∆δ

2n (T, ρ) for
Ā2n(T, ρ) is ∆δ2N−2n+2. Because F̄(T, ρ, δ) can be computed only to a finite accuracy, ∆δ cannot
be chosen arbitrarily small without the results being affected by numerical noise. Varying N
and ∆δ provides a means to test the validity of the results for Ā2n(T, ρ). If the finite-difference
approximation is valid, the result should not change under (moderate) variations of N and ∆δ.
Because the size of the higher-order derivatives as well as the numerical precision varies with
the respective many-body contribution as well as the values of the external parameters T and ρ,
to avoid artifacts this variation needs to be carried out for every individual contribution and for
every single EoS point. Carrying out this procedure and systematically increasing the precision
of the numerical integration routine in the process, we were able to obtain accurate results (with
respect to the second-order EoS, and with a further qualification concerning the second-order
contribution, see footnote14) for the quadratic, quartic, and sextic (and to a lesser degree of
precision also the octic) Maclaurin coefficients.13

Representative results obtained for the different many-body contributions to ĀN,∆δ
6 (T, ρ) and

ĀN,∆δ
8 (T, ρ) are plotted in Fig. 5.7 for T = (4, 5, 15) MeV and ρ = (0.15, 0.30) fm−3. One sees
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5. Isospin-Asymmetry Dependence of the Nuclear Equation of State

that for the first-order contributions the finite-difference values are well converged for a large
range of ∆δ values. The numerical noise becomes visible only for very small values of ∆δ, and
is more pronounced at larger temperatures. In the case of the first-order contributions the finite-
difference values are well converged for a large region of ∆δ values. At low temperatures the δ
dependence of the first-order DDNN contribution approximately matches that of the first-order
contribution with genuine 3N interactions, but this behavior deteriorates as the temperature is
increased.

In the case of the second-order (normal) contributions, the results for ĀN,∆δ
2n≥4 are similar the

ones corresponding to the first-order contributions for high temperatures (i.e., T = 15 MeV in
Fig. 5.7), but for lower temperatures (i.e., T = 5 MeV) a slight bending is observed as ∆δ is
increased. This bending gradually increases as the temperature is decreased and the density
increased, cf. the results for ĀN,∆δ

6 and ĀN,∆δ
8 at T = 4 MeV and ρ = 0.30 fm−3. The underlying

reason for this behavior is the divergence of the Maclaurin expansion in the low-temperature and
high-density regime (the divergent behavior of the expansion at low temperatures is examined
in Secs. 5.2.3, 5.2.4 and 5.2.5). In that regime, the higher-order isospin-asymmetry derivatives
∂2nF̄/∂δn become very large for small values of δ. As a consequence, if the stepsize of the finite-
difference approximation is chosen too large, the behavior near δ = 0 is not resolved, which
leads to the observed bending. However, as seen in Fig. 5.7, even in that case a plateau, i.e.,
region where the stepsize dependence of the finite-difference results approximately vanishes,
can be found for small values of ∆δ. Note that in the region where the stepsize dependence
nearly vanishes also the grid-length dependence is decreased.14 Note also that we have restricted
the “plateau analysis” to the np-channel contribution; in Secs. 5.2.3, 5.2.4 and 5.2.5 we will
show that only this contribution is responsible for the nonanalytic behavior at low temperatures.
Most of the subsequent discussion will therefore focus on the np-channel, and omit the small
contribution to Ā2n≥4 from the nn- and pp-channels.

To check the values obtained for the second-order contribution to the higher-order Maclaurin
coefficients in the low-temperature region, we have calculated ĀN,∆δ

4,6,8 also by applying the finite-
difference method iteratively, i.e., by evaluating finite differences of

∂nF̄(T, ρ, δ)
∂δn ' 1

(∆δ)n

N∑

k=−N

ωN,k
n F̄(T, ρ, δ + k∆δ). (5.54)

The iterative method involves variable stepsizes and grid lengths at every iteration step and thus
behaves differently concerning error systematics; for adequate values of ∆δ and N the iterative
method gives matching results, cf. Fig. 5.7. Furthermore, we have extracted the Maclaurin
coefficients for the (total) free energy per particle F̄(T, ρ, δ) both by applying finite differences
to the data F̄(T, ρ, δ) and by summing the Maclaurin coefficients obtained for the individual
many-body contributions: the results where found to agree very well (up to several digits for
most cases), but overall the method of extracting Maclaurin coefficients individually was found
to more precise (propagation of errors).
13 We note that in the case of the first-order 3N contributions at zero temperature, F̄1,3N(T = 0, ρ, δ), semi-

analytical expressions for the Maclaurin coefficients can be derived [calculations by N. Kaiser]. The results for
Ā6(T = 0) obtained in this way were found to match the results predicted by the finite-difference method up to
four relevant digits.

14 For the “highly divergent” regime [i.e., for low temperatures and high densities, cf. Fig. 5.16] we have deter-
mined the values of Ā2n≥4 by averaging the plateau values. The size of the plateau decreases with decreasing
temperature, which is why we have restricted the analysis to T ≥ 2 MeV (but for T ≥ 2 we have always found a
significant plateau). The validity of the extracted values for Ā2n≥4 is also evident from the improved description
of the asymptotic behavior for δ→ 0 with F̄4,6(T, ρ, δ), cf. Figs. 5.17 and 5.19 in Sec. 5.4.
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5. Isospin-Asymmetry Dependence of the Nuclear Equation of State

Finally, we note that regarding the numerical extraction of isospin-asymmetry derivatives at
δ , 0, we have found that the finite differences become considerably less accurate (for fixed
values of ∆δ and N) for larger values of δ. This feature can be expected to be related to the
weaker convergence properties of the expansion in δ for increasing values of the expansion
point δ0 [cf. Sec. 5.1.1], and the nonanalytic behavior of the isospin-asymmetry dependence in
the neutron-rich region [cf. Secs. 4.2.1 and 5.1]. Moreover, concerning the extraction of the
coefficients in the proton-fraction expansion [cf. Secs. 4.2.1 and 5.1] we have also found that
the quality of the finite-difference method is further reduced. This issue has several aspects.
One factor is the need to use forward differences15 (which are less precise). In addition, when
applied to derivatives with respect to the third root of the proton fraction the finite differences
probe a narrower region of isospin asymmetries, with unevenly distributed data points. Another
issue is of course the fact that the inferior convergence behavior (in the case of the interaction
contributions) of the proton-fraction expansion and the large size of the higher-order coefficients
in that expansion (see Ref. [376] and footnote8).
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Figure 5.7.: Left column: finite-difference results for the first- and second-order normal
contributions to Ā6 for T = (5, 15) MeV and ρ = 0.15 fm−3 (calculated using
n3lo414). The lines correspond to N = 2 + n, the points to N = 3 + n; in each
the stepsize variation extends from ∆δ = 0.01 to ∆δ = 1/N. At T = 15 MeV the
first-order NN and 3N contributions are given in units 10 keV. The approximate
equality of the first-order DDNN and the second-order NN+DDNN results at
T = 15 MeV is coincidental. Right column: ĀN,∆δ

6 and ĀN,∆δ
8 for the second-order

NN contribution (np-channel only) at T = 4 MeV and ρ = 0.30 fm−3. Also shown
are the results obtained from the iterative method (based on Eq. (5.54), with
n = 1; see text for details). Note that ĀN,∆δ

8 is given in units GeV.

15 This applies to the case where the data is restricted to the physical regime δ ∈ [−1, 1]. However, note
that the EoS can formally be extended beyond the physical range by introducing complex proton auxil-
iary chemical potentials, which leads to a limiting condition of δ ≤ 1 + δ“BEC”(T, ρ), with δ“BEC”(T, ρ) =√

2(M/π)3/2T 3/2ρ−1Li3/2(1) ' 0.00248 (T/MeV)3/2(ρ/fm−3)−1.
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5.2.2. Hartree-Fock Results

In the following we examine the numerical results for Ā2,4,6(T, ρ) associated with the first-order
contributions from two- and three-nucleon interactions. We will find that at the Hartree-Fock
level the Maclaurin coefficients are hierarchically ordered, Ā2 > Ā4 > Ā6 ( > Ā8), which indi-
cates that the isospin-asymmetry expansion converges at this level.

NN Contribution. The partial-wave representation of the first-order NN contribution to the
free energy density of isospin-asymmetric nuclear matter (ANM) is given by

FNN
1 (T, µ̃n, µ̃p) =

2
π3

∞∫

0

dp p2

∞∫

0

dK K2

1∫

−1

d cos θ
∑

J,L,S ,mT

(2J + 1)
∑

τ1≥τ2,τ2

δmT ,τ1+τ2n
τ1

|~K+~p |n
τ2

|~K−~p | 〈p|V̄
J,L,L,S ,T
NN |p〉 ,

(5.55)

The contributions from the neutron-neutron (nn), proton-proton (pp) and neutron-proton (np)
channels are given by the sum over isospin indices.

The results for the quadratic, quartic and sextic Maclaurin coefficients of F1,NN(T, ρ, δ) are
displayed in the left column of Fig. 5.8. Also shown are the results for Fsym − Ā2. One sees
that the quadratic coefficient Ā2 greatly outweighs the higher-order coefficients and matches
the symmetry free energy Fsym with high accuracy. Except for the quartic coefficient Ā4 the
Maclaurin coefficients are monotonic increasing functions of density and decreasing functions
of temperature. In the high-temperature regime the Maclaurin coefficients are hierarchically or-
dered, Ā2 � Ā4 � Ā6(� Ā8), but this behavior breaks down to some extent at low temperatures
where Ā4 and Ā6 are of similar size. Note that the deviations between the n3lo414 and n3lo450
results are significantly reduced in the case of Ā4 and Ā6 as compared to Ā2.

3N Contribution. The first-order contribution arising from chiral N2LO three-nucleon interac-
tions is given by (as discussed in Sec. 3.2, we can omit the usual Jacobi-momentum regulator):

F3N
1 (T, µ̃n, µ̃p) =ρ−1

∞∫

0

dk1
k1

2π2

∞∫

0

dk2
k2

2π2

∞∫

0

dk3
k3

2π2X(k1, k2, k3) , (5.56)

where X(k1, k2, k3) = X(cE) + X(cD) + X(Hartree) + X(Fock) and the different contributions X(cE),
X(cD), X(Hartree) and X(Fock) correspond to the different components of the N2LO three-nucleon
interaction, see Fig. 3.1 for the corresponding many-body diagrams. The explicit expressions
for X(cE), X(cD), X(Hartree) and X(Fock) are given by

X(cE) =
1
2
K (cE)np

k1
nn

k2

(
np

k3
+ nn

k3

)
, (5.57)

X(cD) =
1
6
K (cE)

[ (
np

k1
+ 2nn

k1

)
np

k2
nn

k3
+

(
nn

k1
+ 2np

k1

)
nn

k2
np

k3

]
, (5.58)

X(Hartree) =
1

12
K (Hartree)

(
np

k1
np

k2
+ 4np

k1
nn

k2
+ nn

k1
nn

p2

) (
np

k3
+ nn

k3

)
, (5.59)

X(Fock) =
1
6

(
K (Fock, c1) +K (Fock, c3)

) [ (
np

k1
np

k2
+ 2nn

p1
nn

k2

)
np

p3 +
(
2np

k1
np

k2
+ nn

k1
nn

k2

)
nn

k3

]

+
1
6
K (Fock, c4)

[ (
np

k1
+ 2nn

k1

)
np

k2
nn

k3

(
2np

k1
+ nn

k1

)
nn

k2
np

k3

]
, (5.60)
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where the kernelsK (cE),K (cD) andK (Hartree) are given bin Eqs. (3.36)-(3.38), andK (Fock, ci) is the
part of the kernel K (Fock) given in Eq. (3.39) proportional to the low-energy constant ci.

In the right column of Fig. 5.8 the results for the Maclaurin coefficients for F1,3N(T, ρ, δ) are
shown, as well as the corresponding results for Fsym − Ā2. Overall, the temperature and density
dependence of the first-order 3N Maclaurin coefficients is similar to the behavior of the first-
order NN results (the T and ρ dependence of the “convergence rate” is opposite to the behavior
of the noninteracting term). The results for the higher-order coefficients Ā2n≥4 are again of
similar for n3lo414 and n3lo450, but (as in the NN case) larger deviations occur in the case
of Ā2. Compared to the NN contributions, the 3N contribution to Ā2 is relatively small.16 The
quartic coefficient Ā4 is significantly larger in the 3N case, and gives the dominant contribution
to F̄sym − Ā2, in particular at high temperatures where the sextic (and octic) coefficients are
strongly suppressed (as in the NN case).
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Figure 5.8.: Results for Ā2,4,6 for the first-order NN and 3N contributions (solid lines:
n3lo414, dash-dot lines: n3lo450). Also shown are the results for F̄sym(T, ρ) −
Ā2(T, ρ).

16 The relatively small size of the 3N contribution to Ā2 from the cancellation of contributions proportional to
different low-energy constants (LECs). For different choices of the LECs (e.g., for VLK21 and VLK23) the
overall size of the 3N contribution to Ā2 can be increased. We note that we have studied the first-order NN and
3N coefficients (Ā2,4,6) also for n3lo500, VLK21, and VLK23. For this larger set of potentials, a larger model
dependence is visible, but the hierarchy as well as the overall density and temperature dependence of the 3N
coefficients is maintained.
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5.2.3. Second-Order Contribution17

The partial-wave representation of the second-order (normal) NN contribution to the free energy
density of ANM is given by:

FNN
2,normal(T, µ̃n, µ̃p) = − 4

π2

∞∫

0

dK K2

∞∫

0

dp1 p2
1

∞∫

0

dp2 p2
2

1∫

−1

d cos θ1

1∫

−1

d cos θ2

∑

J,L1,L2

∑

J′,L′1,L
′
2

∑

S ,mT

× iL2−L1iL′1−L′2
∑

τ1≤τ2

δmT ,τ1+τ2

∑

τ3≤τ4

δmT ,τ3+τ4

∑

mJ ,mS ,mS ′

C(θ1, θ2)

× 〈p1|V̄ J,L1,L2,S ,T
NN |p2〉 〈p2|V̄ J′,L′1,L

′
2,S ,T

NN |p1〉 G (p1, p2,K, θ1, θ2), (5.61)

where G (p1, p2,K, θ1, θ2) is given by

G =
nτ1

|~K+~p1 |
nτ2

|~K−~p1 |
(
1 − nτ3

|~K+~p2 |
)(

1 − nτ4

|~K−~p2 |
) − (

1 − nτ1

|~K+~p1 |
)(

1 − nτ2

|~K−~p1 |
)
nτ3

|~K+~p2 |
nτ4

|~K−~p2 |

ε(|~K + ~p2|, τ3) + ε(|~K − ~p2|, τ4) − ε(|~K + ~p1|, τ1) − ε(|~K − ~p1|, τ2)
. (5.62)

The function C(θ1, θ2) collects Clebsch-Gordan coefficients and spherical harmonics, and is
given by Eq. (3.22).

Zero-Temperature Limit. At zero temperature the Fermi-Dirac distribution functions in Eq.
(5.62) become step functions, which can be absorbed into the boundaries of the integrals. The
first part of the numerator of G is associated with the following conditions on the angular inte-
grals:

(1.i) −min(ατ2
1 , 1) ≤ cos θ1 ≤ min(ατ1

1 , 1),
(2.i) −min(−ατ3

2 , 1) ≤ cos θ2 ≤ min(−ατ4
2 , 1),

where ατ
i = [(kτF)2 − K2 − p2

i ]/(2K pi), with kn/p
F the neutron/proton Fermi momentum. The

integration region for θ1 vanishes unless the following two conditions are satisfied:

(1.ii) − ατ2
1 ≤ ατ1

1 ⇔ K2 + p2
1 ≤ [(kτ1

F )2 + (kτ2
F )2]/2,

(1.iii) min(ατ1
1 , α

τ2
1 ) ≥ −1 ⇔ min(kτ1

F , k
τ2
F ) ≥ |K − p1|.

Similarly, the integration region for θ2 vanishes unless the following conditions are satisfied:

(2.ii) ατ3
2 ≤ −ατ4

2 ⇔ K2 + p2
2 ≥ [(kτ3

F )2 + (kτ4
F )2]/2,

(2.iii) max(ατ3
2 , α

τ4
2 ) ≤ 1 ⇔ max(kτ3

F , k
τ4
F ) ≤ K + p2.

In addition, the following condition arises from the requirement that the intersection of the first
two Fermi spheres is nonvanishing:

(1.iv) K, p1 ≤ (kτ1
F + kτ2

F )/2.

17 Since the sum of the second-order anomalous terms is small (see Fig. 3.6), in the following we consider only
the “normal” contribution at second order.

155



5. Isospin-Asymmetry Dependence of the Nuclear Equation of State

Fixing the order of the momentum integrals as in Eq. (5.61), the conditions 1.ii,iii,iv and 2.ii,iii
become

(1.iv) 0 ≤ K ≤ (kτ1
F + kτ2

F )/2,
(1.ii + iii) max[0,K −min(kτ1

F , k
τ2
F )] ≤ p1 ≤ min[K + min(kτ1

F , k
τ2
F ), κ(τ1, τ2)],

(2.ii + iii) max[0, κ(τ3, τ4),max(kτ3
F , k

τ4
F ) − K] ≤ p2 ≤ ∞,

where κ(τ1, τ2) = κ(τ3, τ4) =

√
[(kτ1

F )2 + (kτ2
F )2]/2 − K2. The second part of the numerator of

G leads to the same condition on the integral boundaries, but with (p1, θ1) and (p2, θ2) inter-
changed. The energy denominator is antisymmetric under (p1, θ1) ↔ (p2, θ2), therefore both
parts of G yield identical contributions.

At finite temperature the integrand in Eq. (5.61) is smooth (cf. Sec. 2.2.2), but at zero temper-
ature it diverges at the boundary of the integration region: the conditions (1.ii+ iii) and (2.ii+ iii)
imly p1 ≤ p2, and for p1 = p2 the energy denominator produces a pole. This is the origin of
the divergence of Ā2n≥4(T,ρ) in the zero-temperature limit.18

Maclaurin Coefficients. The np-channel results (using the NN potential only) for Ā2,4,6(T, ρ)
and Fsym(T, ρ) − Ā2(T, ρ) are displayed in Fig. 5.9. Similar to the results for the first-order NN
contribution, Fsym− Ā2 is small. Again the differences between the n3lo414 and n3lo450 results
are significantly decreased for Ā4 and Ā6 as compared to Ā2. In the high-temperature and low-
density region it is Ā2 � Ā4 > Ā6 ( > Ā8), which indicates that the second-order contribution is
an analytic function of the isospin asymmetry in this region. At high density and low temper-
ature, however, this behavior breaks down, and terms beyond Ā2 diverge with alternating sign
(as required by charge symmetry) in the zero-temperature limit.
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Figure 5.9.: Quadratic, quartic and sextic Maclaurin coefficients for the np-channel second-
order contribution (with the NN potential only). Also shown are the results for
F̄sym(T, ρ) − Ā2(T, ρ).

18 This feature is (somewhat) analogous to the singularity of the first derivative at x = 0 of the function f (x) =∫ x
x0

dy
∫ y

y0
dz 1

z ∼ x ln |x|.
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5. Isospin-Asymmetry Dependence of the Nuclear Equation of State

In Table 5.1 we compare the results for the different second-order (normal) contributions to
Ā2n(T, ρ), i.e., the np-channel NN contribution, the total NN contribution, and the total contribu-
tion with the combined NN and DDNN potential. One sees that for the higher-order Maclaurin
coefficients the difference between the total NN and the np-channel NN contribution almost
vanishes, which indicates that the nn- and pp-channels are regular also for realistic nuclear
interactions.19 The deviations between the NN and the NN+DDNN results are more sizable,
but the Maclaurin coefficients are still of similar order of magnitude. Because the numerical
evaluation of the second-order contribution becomes more involved with the DDNN potential
included we have restricted the detailed examination of the isospin-asymmetry expansion at
second order to the (np-channel) NN contribution.

Ā0 Ā2 Ā4 Ā6 Ā8 F̄sym

NN (np-channel) -8.13 8.32 -0.78 1.01 -0.9 8.13
NN (total) -9.60 8.64 -0.80 1.02 -0.9 8.36

NN+DDNN (total) -10.80 10.48 -1.24 0.82 -0.8 9.63

Table 5.1.: Different second-order (normal) contributions to the Maclaurin coefficients and
the symmetry free energy at T = 5 MeV and ρ = 0.15 fm−3 (results for n3lo414),
see text for details. The values of Ā2n are given in units MeV.

For ANM, the partial-wave representation of the first-order perturbative self-energy is given
by (cf. Sec. 3.1)

S1;k,τ(T, µ̃n, µ̃p) =
1

2π

∞∫

0

dk′ k′2nk′

1∫

−1

d cos θk′
∑

J,L,S ,mT

(2J + 1) C†TmT
τ,(mT−τ)CTmT

τ,(mT−τ) (5.63)

×
〈 |~k − ~k′ |

2

∣∣∣∣∣∣∣
V̄ J,L,L,S ,T

NN +
1
2

V̄ J,L,L,S ,T
DDNN

∣∣∣∣∣∣∣
|~k − ~k′ |

2

〉
.

In the calculations performed in the previous two chapters, we have included the first-order
self-energy in the energy denominator of the second-order term using the effective-mass ap-
proximation; for ANM this reads

k2

2M
+ S1;k,τ(T, µ̃n, µ̃p) ' k2

2M∗
τ(T, µ̃n, µ̃p)

+ Uτ(T, µ̃n, µ̃p). (5.64)

The effective-mass corrections factor out of the energy denominator for the nn- and pp-channels,
but not for the np-channel, leading to a more complicated integral structure in that case. It is
clear that the overall temperature and density dependence of the Maclaurin coefficients is not
affected (strongly) by including the first-order self-energy corrections. In the case of the nn- and
pp-channels we have found explicitly that the magnitude of the finite differences are affected
only little by including M∗/M corrections. However, the accuracy of the results is significantly
decreased when M∗ corrections are included, i.e., the effective-mass approximation does not
provide sufficient accuracy when implemented in the numerical extraction of the Maclaurin
coefficients. For this reason we have not included self-energy corrections in the detailed analysis
of the δ dependence of the second-order contribution.
19 Although at very low temperatures we were not able to obtain accurate results for the nn- and pp-channel Ā4,6,8

(this is due to the structure of G (p1, p2,K, θ1, θ2) and the associated impediment of the numerical precision
at low temperatures), we have observed that the finite-difference results are small and do not show at all an
approximately logarithmic stepsize dependence at zero temperature.
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5. Isospin-Asymmetry Dependence of the Nuclear Equation of State

Pairing & Thermodynamic Limit. Since its origin lies in the presence of an energy-denominator

pole at the integration boundary, the property |Ā2n≥4| T→0−−−→ ∞ arises only in the thermodynamic
limit {N, Ω} → ∞ where the reference spectrum becomes continuous. Furthermore, the coeffi-
cients Ā2n≥4 would remain finite also at T = 0 if pairing correlations were taken into account:
in the perturbation series about the BCS ground-state—obtained from the (usual) Bogoliubov-
Valatin transformation of the single-particle basis [401, 57]— the sharp distribution functions
(step functions) at T = 0 are smeared througout a thickness ∆k (the pairing gap) in energy (cf.
Ref. [143] pp.326-336)).

In other terms, the higher-order “Maclaurin coefficients” (i.e., the finite differences, in the
case where the system-size is not yet infinite) “diverge” in the combined limits T → 0,
{N, Ω} → ∞, and ∆k → 0. This means that the Maclaurin expansion exists when T = εT ,
N = 1/εN , and ∆k = ε∆, where at least one εi is nonzero, but it constitutes a divergent asymptotic
expansion if the εi are “sufficiently” small. For neutron-star matter, both εT and εN are certainly
small, i.e., the thermodynamic and the zero-temperature limits are reasonable approximations.
To get an idea regarding the “sufficient smallness” of ε∆, we consider the distribution function
in the perturbation series about the BCS ground-state, i.e.,

nBCS
k =

1
2

[
1 + ξk

(
∆2

k + ξ2
k
)−1/2

]
, n̄BCS

k =
1
2

[
1 − ξk

(
∆2

k + ξ2
k
)−1/2

]
. (5.65)

where ξk = k2/(2M) − k2
F/(2M). The BCS distribution functions nBCS

k (∆k, kF) are compared for
different pairing gaps ∆k to the Fermi-Dirac distributions nk(T, µ̃) for different temperatures T in
Fig. 5.10, for kF = 1.0 fm−3 and µ̃ = k2

F/(2M)|kF=1.0 fm−3 , respectively. One sees that for typical
values ∆k ' (1 − 5) MeV (cf. e.g., Refs. [291, 108, 103, 61, 98, 250]) the deviation of the
BCS distribution functions from the step function Θ(kF − k) is comparable to or less than that
of the Fermi-Dirac distributions for T . 3−5 MeV where the dependence on δ is still distinctly
nonanalytic.
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Figure 5.10.: BCS distribution functions (blue lines) for different pairing gaps ∆k vs. Fermi-
Dirac distributions (black and red lines) for different temperatures T .
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5.2.4. Exact Results for S-Wave Contact Interaction20

To better understand the divergent behavior in the higher-order Maclaurin coefficients we have
encountered in the previous section for the chiral nuclear potentials, we consider now the sim-
pler case of an S -wave contact interaction Vcontact = πM−1(as + 3at + (at − as)~σ1 · ~σ2).

Second-Order Contribution. For the S -wave contact interaction the (dimensionally regular-
ized [235]) second-order (normal) contribution can be written as

F2,normal(T, µ̃n, µ̃p) =
1

2π4M

(
a2

s Γ
nn(T, µ̃n) + a2

s Γ
pp(T, µ̃p) + (3a2

t + a2
s) Γ

np(T, µ̃n, µ̃p)
)
, (5.66)

where the functions Γ nn/pp/np are defined as

Γ nn/pp/np =

∫ ∞

0
dk3

∫ 1

−1
dy

∫ ∞

0
dq −

∫ ∞

0
dk1 −

∫ 1

−1
dx

k2
3k2

1q
k3y − k1x

×



2nn
k1

nn
k2

nn
k3

2np
k1

np
k2

np
k3

nn
k1

np
k2

nn
k3

+ np
k1

nn
k2

np
k3

, (5.67)

with k2 = (k2
3 − 2k3qy + q2)1/2. The dashed integral denotes the principal value. At zero temper-

ature the integrals in Eq. (5.67) can be resolved in closed form, leading to21

Γ nn/pp(T = 0, ρ, δ) =
4k7

F

105
(
11 − 2 ln(2)

)
(1 ± δ)7/3, (5.68)

Γ np(T = 0, ρ, δ) =
k7

F

420

∑

±
(1 ± δ)7/3

[
− 8(1 ∓ δ)5/3

(1 ± δ)5/3 +
66(1 ∓ δ)
(1 ± δ) +

30(1 ∓ δ)1/3

(1 ± δ)1/3

+

(
− 35(1 ∓ δ)4/3

(1 ± δ)4/3 +
42(1 ∓ δ)2/3

(1 ± δ)2/3 − 15
)

ln |K1| + 8(1 ∓ δ)7/3

(1 ± δ)7/3 ln |K∓2 |
]
,

(5.69)

with kF = (3π2ρ/2)1/3 the nucleon Fermi momentum. The np-channel contribution involves
terms proportional to ln |K1| and ln |K∓2 |, with K1 = [(1 +δ)1/3 + (1−δ)1/3]/[(1 +δ)1/3− (1−δ)1/3]
and K∓2 = (1 ∓ δ)2/3/[(1 + δ)2/3 − (1 − δ)2/3]. Both K1 and K∓2 exhibit a Laurent series with
principal part∼ δ−1. Expanding the logarithms ln |K1| and ln |K∓2 | around the principal part and
the remaining δ dependent terms in Eq. (5.69) around δ = 0 one obtains a series of the form22

F̄(T = 0, ρ, δ) = Ā0(T = 0, ρ) + Ā2(T = 0, ρ) δ2 +

∞∑

n=2

Ā2n,reg(ρ) δ2n +

∞∑

n=2

Ā2n,log(ρ) δ2n ln |δ|.
(5.70)

From Eq. (5.70) it follows for the isospin-asymmetry derivatives of F̄(T = 0, ρ, δ):

1
(2n)!

∂2nF̄(T, ρ, δ)
∂δ2n

∣∣∣∣∣
n≥2,T=0,δ→0

= const. +

[
A2n,log ln |δ| −

n−1∑

k=2

(2k)!(2n − 2k − 1)!
(2n)!

A2k,log

δ2(n−k)

]

δ→0

= −∞ × sgn(A4,log), (5.71)

20 Note that here we use the sign convention for scattering lengths as in Refs. [233, 234].
21 The calculations leading to Eqs. (5.68) and (5.69) were first performed by N. Kaiser [234].
22 Note that the expansion of the np-channel contribution in terms of the third root of the proton fraction involves,

in addition to terms proportional to Yν/3 with ν ∈ N /{1, 2, 4}, a logarithmic term Y7/3 ln(Y), but (in contrast to
the δ expansion) no higher-order logarithmic terms.
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i.e., the degree of divergence increases with n, and all higher-order derivatives diverge with
equal sign. This behavior is impossible for the T → 0 limit of the higher-order Maclau-
rin coefficients, i.e., the T → 0 and the δ → 0 limits of the isospin-asymmetry derivatives
∂2(2n+1)F̄2/∂δ

2(2n+1) cannot commute for n ≥ 1:

∂2(2n+1)F̄2,normal

∂δ2(2n+1)

∣∣∣∣∣
n≥1,T=0,δ→0

,
∂2(2n+1)F̄2,normal

∂δ2(2n+1)

∣∣∣∣∣
n≥1,δ=0,T→0

. (5.72)

This is explained as follows. As can be inferred from Eq. (5.71), at zero temperature the
higher-order isospin-asymmetry derivatives ∂2nF̄2/∂δ

2n, with n ≥ 2, all have positive (isospin-
asymmetry) slope and negative (isospin-asymmetry) curvature for δ = 0 + ε. This behavior is
impossible at finite temperature where F̄2 ∈ C∞, and hence ∂2n+1F̄2/∂δ

2n+1 = 0 at δ = 0 (by
charge symmetry). If ∂4F̄2/∂δ

4 has positive slope for T , 0 and δ→ 0 then it must be convex at
δ = 0, thus ∂6F̄2/∂δ

6 can only diverge with positive sign and curvature for δ = 0 and T → 0, etc.

Ladder Resummation. As mentioned earlier, the origin of the logarithmic terms in the isospin-
asymmetry dependence of the second-order (normal) contribution at zero temperature lies in
the energy denominators. This suggests that logarithmic terms should arise from all higher-
order diagrams that feature energy denominators (i.e., higher-order skeletons and insertions
with higher-order skeleton subdiagrams). In fact, in Ref. [203] it was found, using again an
S -wave contact interaction, that also the third-order skeletons give a contribution to the quartic
Maclaurin coefficient that is singular at T = 0. One may now ask whether logarithmic terms
arise also in self-consistent schemes (i.e., BHF and SCGF, cf. Sec. 2.5) that effectively resum to
all orders various classes of perturbative many-body contributions. To investigate this question,
we consider the result of Ref. [233] (cf. also Ref. [230]) where the following expression for the
all-order-sum of the ladder diagrams (including the second-order normal diagram) was derived:

Ē0,resum(kn
F , k

p
F) = − 24

πM
[
(kn

F)3 + (kp
F)3]

(
Γ nn

resum(as) + Γ
pp
resum(as) + Γ

np
resum(as) + 3Γ np

resum(at)
)
, (5.73)

where

Γ
nn/pp
resum(as) = (kn/p

F )5

1∫

0

ds s2

√
1−s2∫

0

dκ κ arctan
I(s, κ)

(ask
n/p
F )−1 + π−1R(s, κ)

, (5.74)

Γ
np
resum(as/t) =

(kn
F+kp

F )/2∫

0

dP P2

qmax∫

qmin

dq q arctan
Φ(P, q, kn

F , k
p
F)

(as/t)−1 + (2π)−1[kn
FR(P/kn

F , q/k
n
F) + kp

FR(P/kp
F , q/k

p
F)

] .

(5.75)

The functions I(s, κ), R(s, κ) and Φ(P, q, kn
F , k

p
F) are given by

I(s, κ) =κ Θ(1 − s − κ) +
1 − s2 − κ2

2s
Θ(s + κ − 1), (5.76)

R(s, κ) =2 +
1 − (s − κ)2

2s
ln

1 + s + κ

|1 − s − κ| +
1 − s2 − κ2

2s
ln

1 + s − κ
1 − s + κ

, (5.77)
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Φ(P, q, kn
F , k

p
F) =



q, for P + q < kp
F

(kp
F)2 − (P − q)2

4P
, for kp

F < P + q < kn
F ∧ |P − q| < kp

F

(kn
F)2 + (kp

F)2 − 2(P2 − q2)
4P

, for kn
F < P + q ∧ P2 + q2 <

(kn
F)2 + (kp

F)2

2

.

(5.78)

The integration boundaries in the expression for Γ np
resum(a) are given by

qmin = max
(
0, P − kp

F

)
, qmax = min

(
kp

F + P,
√[

(kn
F)2 + (kp

F)2]/2 − P2
)
. (5.79)

Setting ρ = 0.20 fm−3, as = 19.0 fm, at = −5.4 fm and M = 938 MeV, we examine the isospin-
asymmetry dependence of Ē0,resum in the same way as for the second-order results based on chi-
ral interactions, see Sec. 5.2.5 for details. The quartic finite-difference results for the spin-triplet
(∼ at) np-channel as well as for the sum of the nn- and pp-channel contributions are displayed in
Fig. 5.11. Also shown are the spin-triplet np-channel results for the quadratic Maclaurin coeffi-
cient (which is regular). The numerical noise is caused by the fact that the numerical integration
converges rather slowly due to the poles in the argument of the arctan functions. However, one
still sees clearly that the np-channel results for ĀN,∆δ

4 have an approximately logarithmic depen-
dence on ∆δ, whereas no logarithmic dependence appears in the nn- and pp-channel results. The
extracted values for the quartic coefficients in the “logarithmic” series are Ā4,log ' −7 MeV and
Ā4,reg ' 1 MeV. Substracting the extracted logarithmic term from the np-channel results leads to
quartic finite differences that are approximately stepsize and grid-length indepdendent for step-
sizes ∆δ & 0.15. Note that the ratio Ā4,reg/Ā4,log ' −0.14 is considerably reduced as compared to
the second-order results where Ā4,reg/Ā4,log = [3− 60 ln(3) + 4 ln(2)]/60 ' −1.002. We note that
qualitatively, the finite-difference results for the spin-singlet np-channel (with as ' 19.0 fm) are
very similar to the ones for the spin-triplet channel (with at ' −5.4 fm).
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Figure 5.11.: Main plot: quadratic and quartic finite-difference results for the spin-triplet
np-channel of Ēresum. Top inset: quartic finite-difference results (np-channel)
with the logarithmic term subtracted. Bottom inset: quartic finite-difference
results for the combined nn- and pp-channel contributions. The results were
obtained setting ρ = 0.20 fm−3, as = 19.0 fm, at = −5.4 fm and M = 938 MeV.
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The dependence on δ of the spin-triplet np-channel contribution to Ē0,resum is then studied
in Fig. 5.12. In the extremely neutron-rich region, Ē0,resum(δ) has a maximum,23 a feature that
is absent in the first- and second-order results (and in the nn- and pp-channels of Ē0,resum). In
addition, there may even be a kink at δ ' 0.992. Also shown in Fig. 5.12 are the results
obtained from the parabolic approximation Ē0,parabolic(δ) = Ē0(δ = 0) + Ē0,sym δ

2 as well as the
approximations Ē0,quadratic(δ) = Ē0(δ = 0) + Ā2 δ

2 and Ē0,quartic+log(δ) = Ē0(δ = 0) + Ā2 δ
2 +

Ā4,reg δ
4 + Ā4,log δ

4 ln |δ|. The Ē0,quartic+log(δ) curve is very close to the exact results for δ . 0.5,
but in the very neutron-rich region large deviations occur. The deviations of the parabolic
(∼ Ē0,parabolic) and quadratic (∼ Ē0,quadratic) approximations from the exact results (∼ Ē0,resum)
are considerably larger as compared to the first- and second-order results, which is reflected
in the relatively large size of ξ = 1 − Ā2/Ē0,sym, i.e., ξresum,np ' 1 − 8.3/15.6 ' 0.47; for
comparison, for the second-order contribution (∼ Γ np) it is ξ ' 0.13, and for the sum of the
nn- and pp-channels of Ē0,resum it is ξresum,nn+pp ' 1 − 5.8/6.1 ' 0.05 (for as ' 19.0 fm). If one
assumes that Eq. (5.70) is valid also for Ē0,resum, then

∑∞
n≥3 Ā2n,reg = Ē0,sym− Ā2− Ā4,reg ' 6 MeV,

i.e., there is a considerable contribution to to Ē0,sym from Ā2n≥6,reg terms.
To summarize, the results discussed in this section suggest that nonanalytic terms of the form

δ2n≥4 ln |δ| are a generic feature of MBPT (in the thermodynamic limit, and if pairing effects
are neglected, cf. the discussion at the end of Sec. 5.2.3), and nonanalyticities in the isospin-
asymmetry dependence should arise also in self-consistent schemes such as BHF or SCGF.
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Figure 5.12.: Interaction contribution to the ground-state energy per particle from the re-
summation of ladder diagrams with a spin-triplet S -wave contact interaction,
see text for details. The left inset shows the absolute value of the deviation
|∆Ē0,resum| := |Ē0,resum − Ē0,approx| of the various approximations from the ex-
act results for small neutron excesses (δ ∈ [0, 0.3]). The small right inset
magnifies the behavior in the extremely neutron-rich region. The results were
obtained setting ρ = 0.20 fm−3, at = −5.4 fm and M = 938 MeV.

23 This feature depends on the scattering lengths, e.g., it is absent in the unitary limit a→ ∞.
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5.2.5. Extraction of Leading Logarithmic Term

In the last section, we have found that for an S -wave contact interaction the singularity of the
higher-order Maclaurin coefficients at zero temperature may in general be associated with loga-
rithmic terms∼ δ2n ln(δ). It remains to show that the singularity of Ā2n≥4(T = 0) is logarithmic
also in the case of realistic chiral nuclear interactions.

Eq. (5.70) results in a stepsize dependence of the following form in the quartic and sextic
finite-difference formulas:

ĀN,∆δ
4 =Ā4,reg + C4

1(N)Ā4,log + Ā4,log ln(∆δ) + C4
2(N)Ā6,log∆δ

2 + O(∆δ4), (5.80)

ĀN,∆δ
6 =Ā6,reg + C6

1(N)Ā4,log∆δ
−2 + Ā6,log ln(∆δ) + C6

2(N)Ā6,log + O(∆δ2), (5.81)

where the numbers C2n
i (N) are determined by the respective finite-difference coefficients ωN,k

2n .
From Eqs. (5.80) and (5.81) the leading logarithmic term is given by

Ξ4(N1,N2, ∆δ) :=
ĀN1,∆δ

4 − ĀN2,∆δ
4

C4
1(N1) −C4

1(N2)
' Ā4,log, (5.82)

Ξ6(N1,N2, ∆δ) :=
ĀN1,∆δ

6 − ĀN2,∆δ
6

C6
1(N1) −C6

1(N2)
∆δ2 ' Ā4,log, (5.83)

where the leading correction is proportional to Ā6,log∆δ
2. For the S -wave contact interaction,

where Ā4,log/Ā6,log ' 2.60, Eqs. (5.82) and (5.83) reproduce the exact value of A4,log to high
accuracy. The n3lo414 results for ĀN,∆δ

4,6 are shown for grid lengths N = 3, 4, 5 in Figs. 5.13
and 5.14. For sufficiently large stepsizes24 the results for ĀN,∆δ

4 and ĀN,∆δ
6 approximately exhibit

the logarithmic and inverse quadratic stepsize dependence, respectively, expected from Eqs.
(5.80) and (5.81). As expected from the analytic results for the S -wave contact interaction,
this feature is absent for the nn- and pp-channel contributions. The results for Ξ4(N1,N2, ∆δ)
and Ξ6(N1,N2, ∆δ) are approximately constant (for sufficiently large stepsizes) and give similar
values of Ā4,log. The extracted values of Ā4,log(ρ) (averages of the values obtained from Ξ4 and
Ξ6 as well as different stepsizes ∆δ and grid lengths N1 and N2) are given in Tables 5.2 and
5.3. One sees that the magnitude of both Ā4,log(ρ) and Ā4,nonlog(ρ) increases monotonically with
density (we have checked this behavior for numerous additional values of ρ).

Using the approximate results obtained for Ā4,log(ρ), we compute for both the chiral interac-
tions and the spin-triplet (∼ at) S -wave contact interaction the quartic and sextic finite differ-
ences corresponding to

F̄NN,regularized
2,normal (T = 0, ρ, δ) :=F̄NN

2,normal(T = 0, ρ, δ) − Ā4,log(ρ) δ4 ln |δ|. (5.84)

The results are plotted in the upper insets of Figs. 5.13 and 5.14. One sees that for the “regu-
larized” second-order term the (approximately logarithmic and inverse quadratic, respectively)
stepsize dependence is removed, and for sufficiently large stepsizes ĀN,∆δ

4 ' A4,reg is approxi-
mately constant. Adding the Hartree-Fock results for Ā4(T = 0, ρ), the extracted values for
A4,reg(ρ) are given in Table 5.2 (for comparison, the Hartree-Fock results are also given sepa-
rately).

24 Due to the divergence of the integrand at the integration boundary, in the case of the second-order (normal)
contribution the numerical noise is significantly amplified as compared to the case of higher temperatures (note
that we have restricted the extraction of the finite-temperature Maclaurin coefficients to T ≥ 2 MeV).
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Figure 5.13.: Main plot: quartic finite-difference results for the np-channel second-order NN
contribution at zero temperature (n3lo414, ρ = 0.20 fm−3) and for the (suitably
scaled) expression given by Eq. (5.69). Top inset: analogous results for the
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Figure 5.14.: Same as Fig. 5.14 but for the sextic finite differences.
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As an additional check, we have extracted Ā4,reg and Ā4,log also by fitting the coefficients areg

and alog of a function fN(∆δ) = areg + alog[C4
1(N) + ln(∆δ)] to the unregularized results for ĀN,∆δ

4 ,
cf. Eq. (5.80); the results for Ā4,reg(ρ) and Ā4,log(ρ) obtained in that way were found to match
those given in Table 5.2. Note that the relative size of the second-order contribution to Ā4,reg

is smaller for the chiral interactions as compared to the spin-triplet S -wave contact interaction,
where Ā4,reg/Ā4,log = [3 − 60 ln(3) + 4 ln(2)]/60 ' −1.002.

ρ (fm−3) 0.05 0.10 0.15 0.20 0.25 0.30
Ā2 (MeV) 16.48 24.41 32.03 36.94 41.38 44.83

ĀHF
4,reg (MeV) 0.19 0.15 -0.09 -0.56 -1.27 -2.18

Ā4,reg (MeV) -0.0 -0.2 -0.3 -0.7 -1.0 -1.4
Ā4,log (MeV) 0.4 0.8 1.3 1.5 2.0 2.4

Table 5.2.: Extracted values of Ā4,log(ρ) and Ā4,reg(ρ) for n3lo414. The numbers in front
(brackets) correspond to n3lo414 (n3lo450). The statistical errors (with respect
to stepsize and grid length variations) of the results are of order ±0.1 MeV. For
comparison we also show the results for Ā2(T = 0, ρ). Note that Ā4,reg(ρ) in-
cludes the Hartree-Fock level results for the quartic coefficient ĀHF

4,reg(ρ) , which
are shown separately in the second column.

ρ (fm−3) 0.05 0.10 0.15 0.20 0.25 0.30
Ā2 (MeV) 16.03 24.92 31.41 36.08 39.30 41.28

ĀHF
4,reg (MeV) 0.17 0.09 -0.20 -0.72 -1.42 -2.28

Ā4,reg (MeV) -0.0 -0.2 -0.6 -1.1 -1.4 -1.8
Ā4,log (MeV) 0.4 0.8 1.1 1.3 1.8 1.9

Table 5.3.: Same as Table 5.2 but for n3lo450.

We have examined the isospin-asymmetry dependence of the second-order term also for
model interactions of the one-boson exchange kind (results not shown) where a semi-analytical
treatment is possible (and therefore the numerical precision can be further increased), cf. [208]
for details on the model interactions. It was found that the expansion in δ is again well-behaved
for the nn- and pp-channels, but in the case of the np-channel the quartic and sextic finite dif-
ferences exhibit (to good accuracy) a logarithmic and inverse quadratic stepsize dependence
at T = 0, respectively). Overall, we can conclude that Eq. (5.70) should be valid for generic
interactions.25

25 See also Ref. [234], where it was found that the second-order contribution to the quartic Maclaurin coefficient
from one-pion exchange is singular.
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5.3. Threshold for Convergence of the Maclaurin
Expansion

Having studied the isospin-asymmetry dependence of the various many-body contribution in-
dividually, we now discuss the results for the Maclaurin coefficients Ā2,4,6(T, ρ) associated
with the full second-order results (only the dominant contributions at second-order are in-
cluded, cf. Sec. 5.2.3). The results for Ā2,4,6(T, ρ) obtained from the two sets of chiral two-
and three-nucleon potentials n3lo414 and n3lo450 are displayed in Fig. 5.15. Also shown
is the difference between the quadratic coefficients Ā2(T, ρ) and the symmetry free energy
F̄sym(T, ρ) = F̄(T, ρ, 1) − F̄(T, ρ, 0). Overall, the results from n3lo414 and n3lo450 are very
similar; the largest differences occur for the quadratic coefficient Ā2 at high densities. Com-
pared to the results for F̄sym(T, ρ) shown in Sec. 3.5, the temperature dependence of Ā2(T, ρ) is
decreased in the case of n3lo414 and inverted for n3lo450 (at densities above saturation density).
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Figure 5.15.: Quadratic, quartic and sextic Maclaurin coefficients for the free energy
per particle F̄(T, ρ, δ) of infinite homogeneous nuclear matter; (solid lines:
n3lo414, dash-dot lines: n3lo450). Also shown is the difference between
quadratic coefficient and the symmetry free energy (the dotted lines corre-
spond to the results for a noninteracting nucleon gas).

The deviations between F̄sym and Ā2 increase with temperature, but whereas for a nonin-
teracting nucleon gas F̄sym − Ā2 (slightly) increases with density, for the interacting system
F̄sym − Ā2 decreases with density. The quantity Fsym − Ā2 is significantly increased for the high
temperatures relevant for astrophysical simulations of core-collapse supernovæ, and receives
its main contributions from the noninteracting term and the first-order 3N contribution, with
the respective contributions carrying opposite signs (at high temperatures or low densities the
noninteracting contribution dominates). The increase of Fsym − Ā2 with increasing temperature
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is in line with the previous results that the convergence rate of the expansion of the noninter-
acting contribution decreases significantly with temperature, cf. Sec. 5.1.3. The accuracy of the
quadratic/parabolic approximation of the various interaction contributions however is increased
at higher temperatures, see also Figs. 5.8 and 5.9.

In the high-temperature and low-density region the Maclaurin coefficients obey Ā2 > Ā4 >

Ā6(> Ā8), and accordingly |ξ−ζ6| < |ξ−ζ4|, where (again) ξ := 1− Ā2(T,ρ)
F̄sym(T,ρ) and ζ2N :=

∑N
n=2 Ā2n(T,ρ)
F̄sym(T,ρ) .

This behavior breaks down when the temperature is decreased and the density is increased,
leading to Ā2 � Ā4 � Ā6(� Ā8) at high densities and low temperatures. In the sense that
the expansion coefficients are hierarchically ordered at high temperatures and low densities the
Maclaurin expansion with respect to the isospin-asymmetry can be rated as a convergent series
in that regime, and as a divergent asymptotic series in the low-temperature and high-density
region. To that effect, one can loosely identify a threshold line that separates the two regions.
This line (roughly corresponding to |ξ−ζ4| = |ξ−ζ6|) is sketched in Fig. 5.16. Note that since the
divergent behavior is more pronounced for Ā2(n+1) than for Ā2n (cf. also Fig. 5.7), one can expect
that this threshold line rises when the isospin-asymmetry expansion is probed at increasing
orders.26

The strongly divergent behavior of the higher-order Maclaurin coefficients below the thresh-
old line arises solely (in second-order MBPT) from the second-order contribution (cf. Sec.
5.2.3), whose Maclaurin coefficients diverge with alternating sign (for even and odd values of
n) and increasing order of divergence for increasing values of n in the zero-temperature limit.
In contrast, at the Hartree-Fock level the coefficients are hierarchically ordered Ā2 > Ā4 > Ā6(>
Ā8) also at high densities and low temperatures, and the Mauclaurin expansion is overall well-
converged at that level.27 With the second-order term included the free energy per particle is
a nonanalytic (smooth for T , 0) function of the isospin asymmetry δ in the low-temperature
regime, and the Maclaurin expansion in terms of δ constitutes a divergent asymptotic expansion
in that regime. The divergent behavior in the low-temperature regime and the convergent be-
havior for high temperatures is evident in Figs. 5.17, 5.18, 5.19 amd 5.20, which are discussed
in Sec. 5.4.
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Figure 5.16.: Threshold line for the convergence of the Maclaurin expansion of the free
energy per particle in terms of δ, see text for details.

26 For instance, the line that (roughly) corresponds to |ξ − ζ4| = |ξ − ζ6| approximately crosses the point
(T/MeV, ρ/fm−3) ' (5, 0.25), whereas the one for |ξ − ζ6| = |ξ − ζ8| crosses the point (T/MeV, ρ/fm−3) '
(5, 0.20).

27 This behavior is in agreement with the results for the quartic Maclaurin coefficient obtained in mean-field theory
calculations with phenomenological NN interactions [68, 359, 81], i.e., [Ā4(T = 0, ρsat)]mean-field,NN . 1 MeV.
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Figure 5.17.: Full isospin-asymmetry dependent free energy per particle F(T, ρ, δ) versus
the quadratic, quartic and sextic polynomial isospin-asymmetry approxima-
tions at T = 4 MeV and ρ = 0.20 fm−3; results for n3lo414. The inset shows
the absolute value of the deviation |∆F̄| := |F̄−F̄[2N]| of the various approxima-
tions from the exact results for small neutron excesses (δ ∈ [0, 0.2]). The val-
ues of the Maclaurin coefficients are Ā2,4,6/MeV ' (37.21,−1.87,4.98).
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Figure 5.18.: Same as Fig. 5.21 but for T = 15 MeV and ρ = 0.15 fm−3 (results for n3lo414),
with an additional inset for the very neutron-rich region (note the behavior of
F(T, ρ, δ) compared to the approximations). Note that the error plot (upper
inset, |∆F̄|) involves units keV (as in the other Figures). The values of the
Maclaurin coefficients are Ā2,4,6/MeV ' (35.28,0.81,0.55).

168



5. Isospin-Asymmetry Dependence of the Nuclear Equation of State

-10

 0

 10

 20

 0.25  0.5  0.75  1

F_
 (

M
e
V

)

δ

T=3 MeV

ρ=0.20 fm
-3

F
_

(T,ρ,δ)

F
_

[2](T,ρ,δ)

F
_

[4](T,ρ,δ)

F
_

[6](T,ρ,δ)

 0

 0.02

 0.04

 0.06

 0.08

 0  0.05  0.1  0.15  0.2

|∆
F_

| 
(k

e
V

)

δ

Figure 5.19.: Same as Fig. 5.17 but for T = 3 MeV and ρ = 0.20 fm−3; results for
n3lo414. The values of the Maclaurin coefficients are Ā2,4,6/MeV '
(37.18,−3.56,71.6).
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Figure 5.20.: Same as Fig. 5.18 but for T = 25 MeV and ρ = 0.15 fm−3; results for
n3lo414. The values of the Maclaurin coefficients are Ā2,4,6/MeV '
(33.10,−0.36,0.68).
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5.4. Isospin-Asymmetry Parametrizations

Here, we examine the various higher-order isospin-asymmetry parametrizations constructed
from the Maclaurin exansion (for T , 0) and the “logarithmic” expansion (for T = 0), re-
spectively. In addition, we examine how the nonanalytic features of the isospin-asymmetry
dependence influence the results obtained from global fits to the computed EoS.

Maclaurin Expansion. The behavior of the higher-order isospin-asymmetry approximations
F̄[4],[6](T, ρ, δ) depends on the convergence behavior of the Maclaurin expansion of the higher-
order interaction contribution, as depicted by the threshold line of Fig. 5.16 separating the “di-
vergent” and “convergent” regime. In contrast, the overall accuracy of the quadratic approxi-
mation F̄[2](T, ρ, δ) depends only on the size of F̄sym− Ā2, which has no connection to threshold
line of Fig. 5.16. In Figs. 5.17 to 5.20, we compare the quadratic, quartic and sextic approxi-
mations F̄[2],[4],[6](T, ρ, δ) to the exact results F̄(T, ρ, δ) for different temperatures and densities;
i.e.,

• Fig. 5.17: T = 4 MeV and ρ = 0.20 fm−3, (“divergent regime”),

• Fig. 5.18: T = 15 MeV and ρ = 0.15 fm−3, (“convergent regime”),

• Fig. 5.19: T = 3 MeV and ρ = 0.20 fm−3 (“divergent regime”),

• Fig. 5.20: T = 25 MeV and ρ = 0.15 fm−3, (“convergent regime”),

where the first two cases correspond to the “divergent regime”, and the second two cases to
the “convergent regime” of Fig. 5.16. The different behavior in the “divergent regime” and the
“convergent regime” are clearly visible. In the convergent regime, the Maclaurin coefficients
are (overall) hierarchically ordered,28 and the quartic and sextic coefficients lead to systematic
improvements also in the very neutron-rich region. In the divergent regime, the inclusion of
the quartic and sextic coefficients leads to an improved approximation for very small isospin
asymmetries, but this behavior breaks down for larger values of δwhere the sextic and to a lesser
extent also the quartic approximations deviate significantly from the exact result. In other terms,
the “critical” value δthreshold of δ for which the accuracy of the higher-order approximations
becomes inferior to the leading quadratic one decreases below the threshold line of Fig. 5.16,

with δthreshold
T→0−−−→ 0, and “exceeds” δ = 1 for sufficiently large temperatures or low densities.

“Logarithmic” Expansion. In the zero-temperature case the following approximation can be
constructed from the values for Ā4,log and Ā4,reg extracted in Sec. 5.2.5:

F̄[4,log](T = 0, ρ, δ) :=Ā0(0, ρ) + Ā2(0, ρ) δ2 + Ā4,reg(ρ) δ4 + Ā4,log(ρ) δ4 ln |δ|. (5.85)

To identify the effect of the logarithmic term we consider also the quartic approximation of the
zero-temperature EoS without the logarithmic term, i.e.,

F̄[4,nonlog](T = 0, ρ, δ) :=Ā0(0, ρ) + Ā2(0, ρ) δ2 + Ā4,reg(ρ) δ4. (5.86)

28 In the convergent regime, the small deviations concerning the hierarchy are due to balancing effects from the
contributions associated with the different many-body contributions.
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The deviations ∆F̄ := F̄ − F̄approx corresponding to the approximations given by F̄[2], F̄[4,log]

and F̄[4,nonlog](T = 0, ρ, δ) are plotted in Figs. 5.22 and 5.23 for different densities.29 Additional
details are shown in Fig. 5.21 for ρ = 0.25 fm−3. One sees that including both the quartic and the
logarithmic term considerably improves the description of the isospin-asymmetry dependence
at zero temperature, as compared to the quadratic approximation. Both the F̄[4,log](T = 0, ρ, δ)
and the F̄[4,nonlog](T = 0, ρ, δ) approximation improve upon F̄[2](T = 0, ρ, δ) in all cases. Except
for the n4lo414 results at densities around ρ ' 0.2 fm−3, the F̄[4,log](T = 0, ρ, δ) approximation
further improves upon F̄[4,log](T =0, ρ, δ), and the error ∆F̄ := F̄−F̄[4,log] does not exceed 10 keV
except for isospin-asymmetries δ & 0.8 and densities above saturation density ρsat ' 0.17 fm−3.
The offbeat behavior of the n3lo414 results behavior for ρ ' 0.2 fm−3 can be attributed to
balancing effects between different many-body contributions (since it is not present in Fig. 5.24).
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Figure 5.21.: Similar to Fig. 5.18 but for T = 0 and ρ = 0.25 fm−3, and with Eqs. (5.85)
and (5.86) as the higher-order isospin-asymmetry approximations (results for
n3lo450). The lower inset shows the absolute value of the deviation |∆F̄| :=
|F̄−F̄approx| of the various approximations from the exact results (for δ ∈ [0, 1]).
The lower inset depicts the behavior in the very neutron-rich region.

For the higher-order approximations, the errors shown in Figs. 5.22 amd 5.23 may however
include balancing effects between contributions from different many-body terms. To identify
such effects we show in Figs. 5.24 and 5.25 the deviations of the various approximations for the
second-order term alone, i.e., the quantities shown are ∆F̄2 := F̄2 − F̄2;approx. The deviations for
results are very similar for n3lo414 and n3lo450. For not too large values of δ, the logarithmic
approximation F̄[4,log](T = 0, ρ, δ) always gives the best approximation, and the errors are below
10 keV for δ & 0.8, which can be seen as an additional validation of our approximate results for
Ā4,reg and Ā4,log (and confirms that the subleading logarithmic terms can be expected to be small).
At very high densities, however, the deviations in the very neutron-rich region are considerably
larger for F̄[4,log](T =0, ρ, δ) and F̄[4,nonlog](T =0, ρ, δ) as compared to F̄[2](T =0, ρ, δ). Note that
this feature is not present in Figs. 5.22 and 5.23, so there is indeed a balancing of errors. In
particular, the errors associated with F̄[4,log] and F̄[4,nonlog] are smaller for the total free energy as
compared to the second-order term alone, i.e., |∆F̄| < |∆F̄2| for the higher-order approximations.
29 It should be emphasized that the higher-order approximations at zero temperature based on Eq. (5.70) must be

strictly distinguished from those for the finite-temperature EoS based on the Maclaurin expansion Eq. (5.1).
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Figure 5.22.: Deviation ∆F̄ := F̄ − F̄approx of the various approximations (quadratic, quartic
with/without logarithmic term) from the exact results at T = 0 for different
densities (results for n3lo414). Color coding as in Fig. 5.21.
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Figure 5.23.: Same as Fig. 5.22 but for n3lo450.
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Figure 5.24.: Same as Fig. 5.22 but for the (isolated) second-order contribution F̄2(T =

0, ρ, δ) (results for n3lo414). For better distinction against Fig. 5.22 the color-
ing has been slightly changed, but the line shapes for the different approxi-
mations are the same as in Fig. 5.22.
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Figure 5.25.: Same as Fig. 5.24 but for n3lo450.
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5. Isospin-Asymmetry Dependence of the Nuclear Equation of State

Polynomial Fits. Regarding the construction of approximative parametrizations of the isospin-
asymmetry dependence of the EoS via fits, the following points are obvious:

• A global fit leads to a better global approximation of the results (compared to a truncated
expansion about δ = 0), but the asymptotic behavior at δ = 0 is described less accurately.

• The results obtained by fitting a polynomial to a nonanalytic function depend strongly on
the fitting procedure.

• The fine-tuning of fit parameters (associated with the fit) increases with the number of fit
parameters unless the fit function approaches the functional form of the data.

To elaborate these points in more detail we consider a polynomial

F̄[M]
fit (T, ρ, δ) :=

M∑

n=0

B̄2n(T, ρ) δ2n, (5.87)

and determine for different polynomials lengths M the coefficients B̄2n by means of a global
unweighted (i.e., the data is distributed uniformly in the regime δ ∈ [0, 1], and all data points
carry equal weights) least-squares fit to the results for the (np-channel) second-order term, i.e.,
to the data {F̄2,normal(T, ρ, k∆δ), k ∈ [0,Ndata]}, where the stepsize is ∆δ = 0.01 and the grid
length is Ndata = 100.30 The results for the fit coefficients B̄2n are shown in Tables 5.4 and 5.5
for representative points in the convergent and the divergent regime of the EoS, respectively. In
the convergent regime the fit coefficients are hierarchic, and satisfy B̄2n ' Ā2n to good accuracy.
In the divergent regime, however, only the leading two coefficients satisfy B̄0,2 ' Ā0,2. The
values of B̄2n≥6 on the other hand depend strongly on M, and their values become very large for
large M. Notably, the quartic fit coefficient B̄4 is relatively small also for the divergent regime.
To identify the origin of this behavior, we have fitted the coefficients B̄2n also to functions of the
form

f (δ) := a1δ
2 + a2δ

4 ln |δ|, (5.88)

which correspond to the truncated “logarithmic” expansion, cf. Eq. (5.70). For a1 > a2, f (δ)
is an approximately quadratic function. Crucially, however, the fit results obtained for B̄4 are
almost independent of a1 if a2 is fixed, and B̄4 is always consideraly smaller as compared to
the higher-order fit coefficients B̄2n≥6 (for sufficiently large values of M where they appear), and
the results are similar to the results obtained from fits to the second-order term (in the divergent
regime). Including additional logarithmic terms in f (δ) does not change this behavior. This
makes evident that the nonanalytic behavior is for the most part resolved in the fit coefficients
B̄2n≥6.

The parametrizations corresponding to the global polynomial fits are compared to the exact
results for F̄2,normal in Figs. 5.26 and 5.27. In the convergent regime [Fig. 5.26] the polynomial
fits describe the data very well already for low values of M, and increasing M leads to systematic
improvements. The errors of the fits are overall considerably larger in the divergent regime [Fig.
5.27]. For very large values of M the fits appear to converge to a curve that is very close to the
exact results, expect for the very-neutron rich region. This feature can be expected to be related
to the nonanalytic behavior of the isospin-asymmetry dependence at δ = 1. In a global fit, the
higher-order fit coefficients resolve predominantly the “stronger” nonanalyticity at δ = 0 which
affects the EoS for a wider range of isospin asymmetries.
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M = 2 M = 3 M = 4 M = 5 M = 12 M = 13 M = 14
B̄0/MeV -8.818 -8.818 -8.818 -8.818 -8.818 -8.818 -8.818
B̄2/MeV 8.780 8.782 8.782 8.782 8.782 8.782 8.782
B̄4/MeV 0.038 0.032 0.032 0.032 0.032 0.032 0.032
B̄6/keV — 4.45 4.40 4.40 4.53 4.27 4.55
B̄8/keV — — 3 × 10−2 2 × 10−2 1.2 1.8 2.1
B̄10/eV — — — −3 × 10−3 7.9 13.0 18.3

B̄0/MeV -9.602 -9.603 -9.603 -9.603 -9.603 -9.603 -9.603
B̄2/MeV 9.554 9.571 9.571 9.571 9.571 9.571 9.571
B̄4/MeV 0.046 -0.006 -0.007 -0.007 -0.007 -0.007 -0.007
B̄6/MeV — 0.038 0.038 0.040 0.040 0.040 0.040
B̄8/keV — — -0.4 -2.0 -3.1 0.4 -3.8
B̄10/keV — — — 0.7 7.3 -16.6 -17.4

Table 5.4.: Polynomial fit coefficients B̄2,4,6,8,10 for the second-order contribution for tem-
peratures T = 25 MeV (upper rows) and T = 15 MeV (lower rows), each
for ρ = 0.15 fm−3. For the higher-order fits (M ≥ 12), the coefficients B̄2n≥12

are all small in magnitude, . 0.1 MeV (. 0.1 − 0.5 MeV for M = 14) in
both cases. For comparison, the values of the Maclaurin coefficients (ob-
tained from the finite-difference analysis) are Ā0,2,4,6,8/MeV|T=25 MeV,ρ=0.15 fm−3 '
(−8.818,8.782,0.0319,0.004,0.0000) and Ā0,2,4,6,8/MeV|T=15 MeV,ρ=0.15 fm−3

' (−9.603,9.571,0.007,0.04,−0.002).
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Figure 5.26.: Polynomial fits to the second-order term for T = 15 and ρ = 0.15 fm−3 (results
for n4lo414). The inset shows the absolute value of the deviation |∆F̄| :=
|F̄ − F̄[M]

fit | of the fits from the exact results (for δ ∈ [0, 1]). The behavior for
T = 25 MeV and ρ = 0.15 fm−3 (plot not shown) is very similar.

30 Note that we consider very large polynomial lengths M only for illustrative purposes. By construction, increas-
ing the number of fit parameters increases the overall precision of the fit (in the sum-of-squares sense), but for
the divergent regime the high degree of fine-tuning involved inhibits the use of high-precision fits for global
EoS parametrizations where the T and ρ dependent fit coefficients would have to be interpolated.
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M = 2 M = 3 M = 4 M = 5 M = 12 M = 13 M = 14
B̄0/MeV -6.339 -6.352 -6.354 -6.355 -6.355 -6.355 -6.355
B̄2/MeV 5.853 6.111 6.176 6.247 6.265 6.266 6.266
B̄4/MeV 0.45 -0.31 -0.67 -1.28 -1.56 -1.61 -1.60
B̄6/MeV — 0.55 1.16 2.97 5.75 6.90 6.79
B̄8/MeV — — -0.32 -2.50 -23.7 -37.1 -35.5
B̄10/MeV — — — 0.91 109.0 202.9 189.7
B̄0/MeV 7.323 7.332 7.333 7.334 7.334 7.334 7.334
B̄2/MeV 7.510 7.694 7.738 7.776 7.830 7.831 7.833
B̄4/MeV -0.21 -0.76 -0.99 -1.32 -2.43 -2.56 -2.65
B̄6/MeV — 0.40 0.80 1.77 13.21 16.07 18.49
B̄8/MeV — — -0.3 -1.5 -90.4 -131.0 -176.1
B̄10/MeV — — — 0.5 335.9 568.7 838.9

Table 5.5.: Polynomial fit coefficients B2,4,6,8,10 for the second-order contribution for T = 4
MeV and ρ = 0.30 fm−3 (upper rows) as well as T = 0 MeV and ρ =

0.15 fm−3 (lower rows). For the higher-order fits (M ≥ 12), the coeffi-
cients B̄2n≥12 are all in the GeV scale (but not hierarchical) for both cases.
The values of the corresponding Maclaurin coefficients and coefficients in
the “logarithmic expansion”, respectively, are Ā0,2,4,6/MeV|T=4 MeV,ρ=0.30 fm−3 '
(−6.355,6.278,3.00,69.2), Ā8/GeV|T=4 MeV,ρ=0.30 fm−3 ' 1.5 as well as
Ā0,2/MeV|T=0 MeV,ρ=0.15 fm−3 ' (−7,334,7.83), Ā4,reg/MeV|T=0 MeV,ρ=0.15 fm−3 '
−0.2, and Ā4,log/MeV|T=0 MeV,ρ=0.15 fm−3 ' 1.3.
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Figure 5.27.: Same as Fig. 5.26 but for T = 0 and ρ = 0.15 fm−3. The two insets show the
deviations |∆F̄| := |F̄ − F̄[M]

fit | at two different zoom levels. For clarity, in the
upper inset only the results for M ∈ {4, 5, 13, 14} are shown. The behavior for
T = 4 MeV and ρ = 0.30 fm−3 (plot not shown) is very similar.
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“Logarithmic” Fits. It is now interesting to consider the case where logarithmic terms are
included in the fit function, i.e.,

F̄[Mlog]
fitlog (T, ρ, δ) := B̄0 + B̄2δ

2 +

Mlog∑

n=2

B̄2n,nonlogδ
2n +

Mlog∑

n=2

B̄2n,logδ
2n. (5.89)

In particular, we want to perform an intial study concerning the question as to whether the inclu-
sion logarithmic terms can be useful regarding the construction of an approximative parametriza-
tion of the isospin-asymmetry dependence at low but nonzero temperatures. For this purpose,
we compare the previous results based on a polynomial fit function to the ones obtained by
fitting of the above “logarithmic” polynomial [Eq. (5.89)] to the low-temperature results for the
second-order term.

The values obtained for the “logarithmic” fit coefficients (from a global least-squares fit) for
different values of Mlog are shown in Tables 5.6 and 5.7 for T = 0 and ρ = 0.15 fm−3 as well
as T = 4 and ρ = 0.30 fm−3. One sees that the higher-order fit coefficients B̄2n,nonlog and B̄2n,log

are substantially smaller as compared to the higher-order ones B̄2n≥4 in the polynomial fit [cf.
Table 5.5]. They are larger at nonzero temperature, which points to the higher degree of fine-
tuning involved in that case; however, they are still significantly smaller as compared to the
corresponding ones for the polynomial fit without logarithmic terms.

In Figs. 5.28 and 5.29 we then compare the exact results for the second-order term to the
ones corresponding to the “logarithmic” fits. One sees that compared to the polynomial fits, the
“logarithmic” fits lead to a overall better description of the data for zero temperature and (to a
lesser extent) also for low but nonzero temperatures.

Altogether, while strictly speaking a logarithmic dependence on δ is present only at T = 0, the
above findings indicate that including logarithmic terms may be useful to improve the descrip-
tion of the isospin-asymmetry dependence of the EoS also for low but nonzero temperatures. In
particular, this may be useful for the construction of approximative global EoS parametrizations
since (except for the case of zero temperature) in that regime no well-behaved expansion exists.

B̄0 B̄2 B̄4,nonlog B̄4,log B̄6,nonlog B̄6,log B̄8,nonlog B̄8,log

Mlog = 2 -7.334 7.820 -0.488 0.918 — — — —
Mlog = 3 -7.335 7.858 0.383 1.802 -0.907 1.059 — —
Mlog = 4 -7.334 7.837 -0.699 0.987 -0.705 -1.661 0.902 -0.509

Table 5.6.: “Logarithmic” fit coefficients for the second-order contribution for T = 0 MeV
and ρ = 0.15 fm−3 (results for n4lo414), see text for details. The fit coefficients
are all given in units MeV. For comparison, the values extracted from the finite-
difference analysis for corresponding coefficients in the “logarithmic expansion”
are Ā0,2/MeV ' −7,334,7.83, Ā4,reg/MeV ' −0.2, and Ā4,log/MeV ' 1.3.

B̄0 B̄2 B̄4,nonlog B̄4,log B̄6,nonlog B̄6,log B̄8,nonlog B̄8,log

Mlog = 2 -6.355 6.289 0.063 1.291 — — — —
Mlog = 3 -6.356 6.372 1.635 2.979 -1.654 1.863 — —
Mlog = 4 -6.355 6.283 -0.084 0.965 5.138 4.578 -4.982 5.561

Table 5.7.: “Logarithmic” fit coefficients (in units MeV) for the second-order contribution for
T = 4 MeV and ρ = 0.30 fm−3 (results for n4lo414), see text for details.
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Figure 5.28.: “Logarithmic” fits to the second-order term for T = 0 and ρ = 0.15 fm−3 (results
for n4lo414). The inset shows the absolute value of the deviation |∆F̄| :=
|F̄ − F̄[Mlog]

fitlog | of the fits from the exact results (for δ ∈ [0, 1]).
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Figure 5.29.: Same as Fig. 5.28 but for T = 4 and ρ = 0.30 fm−3.
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Conclusion

In this thesis, we have investigated the thermodynamics of nuclear matter using many-body
perturbation theory (MBPT). The consistent generalization of zero-temperature MBPT to fi-
nite temperatures has been investigated, and we have found that the (usual) grand-canonical
approach is invalid on general accounts [cf. Secs. 2.5.4 and 2.5.5]. Building on existing work
[49, 65, 215, 18, 278, 246, 277, 150, 394], we have shown that a consistent thermodynamic
MBPT can be constructed, starting from the canonical ensemble, by evaluating truncated cor-
relation functions in terms of a Legendre transformation (correlation-bond formalism). The
structure of MBPT at higher orders and the relations between the canonical approach and the
“standard” grand-canonical formalism were investigated, in particular, we have studied the can-
cellation of the additional anomalous contributions present in finite-temperature MBPT (but not
in the zero-temperature formalism) in terms of the self-consistent renormalization of the single-
particle basis.

Using this formalism (canonical finite-temperature MBPT), we have then computed the free
energy per particle F̄(T, ρ, δ) of infinite homogeneous nuclear matter using several sets of low-
momentum (N3LO) two- and (N2LO) three-nucleon potentials constructed within the frame-
work of chiral effective field theory (χEFT). The pertinent low-energy constants (LECs) that
parametrize the potentials were fit—in Refs. [90, 91, 125, 312, 343, 342]—to nucleon-nucleon
phase shifts and properties of light nuclei. The results for isospin-symmetric nuclear matter
have been benchmarked against available empirical constrains, and we have found that the po-
tentials sets (“n3lo414” and “n3lo450”) which match constraints from zero-temperature bulk
properties best give also consistent results at finite temperature. However, for some potential
sets (“VLK21” and “VLK23”) we have found that even if a reasonable zero-temperature EoS
is obtained in second-order MBPT, thermodynamic inconsistencies can arise. The origin of this
feature has been traced back to the different values of the LECs which parametrize the three-
nucleon potential. In the case of the “VLK” potentials, however, the requirement of a consis-
tent evolution to low-momentum scales of multi-nucleon interactions was not fully (properly)
accounted for. These results highlight the importance of a consistent treatment of two- and
multi-nucleon interactions, and suggest that one should try to better constrain the values of the
LECs in the future.

Using the “n3lo414” and “n3lo450” potentials, we have then computed the EoS of pure neu-
tron matter, and we have found that the results at low fugacities are in good agreement with the
model-independent virial EoS determined from neutron-neutron phase shifts. In addition, we
have examined the symmetry free energy F̄sym(T, ρ) = F̄(T, ρ, δ = 1) − F̄(T, ρ, δ = 0), a quan-
tity that gives an approximate measure for the dependence of the nuclear EoS on the isospin
asymmetry δ = (ρn − ρp)/(ρn + ρp). The results for F̄sym(T = 0, ρ) have been found to be
consistent with empirical constraints from neutron skin thicknesses and isobaric analog states.
Moreover, we have studied the liquid-gas phase transition of isospin-asymmetric nuclear mat-
ter, focussing on the new aspects of the phase transition that arise in the case of nonvanishing
isospin asymmetry (“isospin distillation”). In particular, we have found that the exact isospin-
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asymmetry dependence of the noninteracting contribution to the EoS sets essential constraints
on the properties of the liquid-gas instability in the very neutron-rich region. In the case of
finite temperature, this is related to the entropy of mixing, i.e., a dependence on δ of the form
∼ [(1 + δ) ln(1 + δ) + (1 − δ) ln(1 − δ)], and at zero temperature to terms∼ (1 − δ)(2ν+1)/3|ν≥2.

Finally, we have investigated the Maclaurin expansion of the free energy per particle in terms
of δ. We have extracted the quadratic, quartic, and sextic expansion (Maclaurin) coefficients
Ā2,4,6(T, ρ) from using higher-order finite-difference approximations, and we have shown that
the accuracy of the leading-order quadratic approximation is decreased both at high tempera-
tures and at high densities, which is mainly due to the noninteracting term (free nucleon gas)
and the (first-order) contribution from three-nucleon interactions. Regarding the higher-order
terms in the expansion, we have found that the coefficients beyond the quadratic one diverge
in the zero-temperature limit. This feature has its origin in the energy denominators of the
higher-order many-body contributions (and is therefore absent at the Hartree-Fock level). At
T = 0, the energy denominators cause a divergence of integral kernels at the boundary of the
respective integration regions, which leads to a singular quartic isospin-asymmetry derivative
at δ = 0. In other terms, in MBPT the zero-temperature EoS is not a smooth function of δ but
only of differentiability class C3.31

At finite temperature the integral kernels have no singularities (if treated properly), so the EoS

is a smooth (C∞) function of the isospin asymmetry for T , 0, but since |Ā2n≥4| T→0−−−→ ∞, the
dependence on δ is nonanalytic at low temperatures and the Maclaurin expansion in δ constitutes
a divergent asymptotic expansion (in that regime). However, we have found that the Maclaurin
coefficients become hierarchically ordered for higher temperatures, which indicates that the
expansion converges in the high-temperature region. In sum, we have found

F̄(T, ρ, δ) ∼
∞∑

n=0

Ā2n(T, ρ) δ2n =


singular, if (T, ρ) ∈ {

(T, ρ)divergent
}

F̄(T, ρ, δ), if (T, ρ) ∈ {
(T, ρ)convergent

} ,

where the divergent regime {(T, ρ)divergent} corresponds to low temperatures and high densities,
as specified by the threshold line of Fig. 5.16. At zero temperature, the nonanalytic behavior
of the isospin-asymmetry dependence is associated with terms of the form ∼ δ2n≥4 ln |δ|. We
have extracted the coefficients of the leading logarithmic term∼ δ4 ln |δ| and the “regular” quar-
tic term ∼ δ4 from the analysis of linear combinations of higher-order finite differences, and
we have found that including these terms leads to an overall improved parametrization of the
isospin-asymmetry dependence of the zero-temperature EoS.

The question arises of course as to whether the nonanalytic behavior (at low temperatures) of
the isospin-asymmetry dependence is a “genuine” feature of the nuclear EoS, or only a feature
of MBPT, i.e., one that arises from probing higher-order derivatives of a perturbation series. It
is, however, not clear whether this question can be resolved since exact solutions are available
in many-body theory only for very special models [29, 290, 431] and genuinely nonperturbative

31 The property |Ā2n≥4| T→0−−−→ ∞ relies on the thermodynamic limit as well as the neglect of pairing correlations.
For a finite system the higher-order “Maclaurin coefficients” (i.e., the finite differences, since the spectrum is
discrete) are finite at zero temperature, but diverge in the thermodynamic limit. Hence, for sufficiently large
particle numbers the dependence of the finite-system EoS on δ = (Nn − Np)/(Nn + Np) is still “nonanalytic”,
analogous to the behavior of the infinite system at low temperatures. Similar considerations apply for the case
where pairing correlations are included in MBPT by expanding about the BCS ground state [cf. Sec. 5.2.3].
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approaches such as QMC (presumably) at present lack the numerical precision for the extrac-
tion of higher-order isospin-asymmetry derivatives. Nevertheless, our results suggest that the
relevance of nonanalyticities (and in particular, logarithmic terms) in the isospin-asymmetry for
(e.g.,) propertes of neutron stars should be investigated further in future research.32

Altogether, the work presented in this thesis provides the basis for future research headed
towards the construction of a χEFT-based EoS for applications in nuclear astrophysics. For
applications in simulations of core-collapse supernovæ and binary neutron-star mergers, a fine-
meshed numerical EoS table that covers a wide range of densities, temperatures, and isospin-
asymmetries would be required. This presents a challenge to the framework used in this thesis.
In particular, the implementation of the DDNN potential and the effective nucleon mass (M∗)
in such extensive computations requires special attention. In the case of the DDNN potential,
an expansion of its matrix elements in terms of δ may be useful. For isospin-asymmetric mat-
ter, the (isospin-asymmetry dependent) M∗ terms do not factor out of the energy denominators,
leading to changes in the integral structure which significantly increase the CPU time needed
to numerically evaluate the higher-order contributions. Testing different approximations that
amend this feature may be useful in this respect. In addition, as a complementary approach
to a brute-force computation of a fine-meshed numerical EoS table, one could try to construct
explicit approximative parametrizations of the (interaction contributions to the) EoS via fits to
the computed data.

The applicability of the perturbative framework employed in this thesis is restricted to den-
sities below about ρ ∼ 2 ρsat. A major issue regarding astrophysical applications is therefore
also the extrapolation of the chiral EoS to the high densities probed in core-collapse supernovæ
and binary neutron-star mergers. Different approaches should be considered for that purpose.
One possibile approach would be to use phenomenological mean-field models (that can reach
to higher densities and temperatures) and constrain their parameters by matching to the χEFT-
based results [352]. In view of the results presented in this thesis, isospin-asymmetry dependent
terms beyond the usual quadratic ones should be taken into account in the matching.

Finally, to conclude the present thesis, we assess that, while far from being a closed chapter,
the nuclear many-body problem represents an interesting and fruitful subject in (applied) theo-
retical physics. Several decades after the discovery of the atomic nucleus, the theoretical basis
for its description has been established in terms of QCD, and nearly a century after its historical
emergence, the subject of theoretical nuclear physics has been cast into new form in terms of
χEFT. The application of these theories in the study of dense nuclear matter still represents a
challenge, but promising new developments have been made in recent times, incentive results
have been obtained, and one can look forward to further progress on behalf of present and future
research activities.

32 Note, however, that for extremely neutron-rich systems the influence of logarithmic terms is rather small [cf.
Fig. 5.21]; for instance, the proton fraction in neutron stars is more sensitive to a term ∼ δ4 as compared to a
term∼ δ4 ln |δ|.
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A.1. Free Nucleon Gas

The free nucleon gas can of course be treated fully relativistically, but since the nuclear inter-
actions are formulated nonrelativistically a more consistent approach is to start with the non-
relativistic Fermi gas, and include relativistic (kinematical) effects by appropriate correction
terms.1 At zero temperature the construction of relativistic corrections is straightforward, but a
consistent generalization of these corrections for finite temperatures is nontrivial. The situation
becomes much clearer when the nonrelativistic expansion is formulated as a many-body pertur-
bation theory (MBPT) problem: based on the expansion εrel(k) = εnonrel(k) +

∑∞
ν=1 εcorr(ν)(k) =

k2

2M − k4

8M3 + k6

16M5 − 5k8

128M7 + . . . we write the relativistic kinetic energy Hamiltonian as Trel =

Tnonrel + Tcorr, where the reference Hamiltonian Tnonrel =
∑

k εnonrel(k) a†kak represents the non-
relativistic system, and Tcorr is given by a sum of hierachically ordered “perturbation Hamilto-
nians” Tcorr(ν):

Tcorr =

∞∑

ν=1

λαTcorr(ν) =

∞∑

ν=1

λα
∑

k

εcorr(ν)(k) a†kak. (A.1)

For clarity, we restrict the discussion to the one-species case where (in the thermodynamic
limit) it is

∑
k =

gσ
2π2

∫ ∞
k=0

dk k2, with spin multiplicity gσ = 2. From the one-species results for
the free energy density F(T, ρn/p), the free energy density of the two-component system with
total density ρ = ρn + ρp is given by F(T, ρn, ρp) = F(T, ρn) + F(T, ρp).

A.1.1. Relativistic and Nonrelativistic Results

Here we briefly summarize the relativistic and nonrelativistic free Fermi gas results. If not other-
wise indicated the single-particle energies in nk are the nonrelativistic ones εnonrel(k) = k2/(2M).

Zero Temperature. For a given energy-momentum relation the Fermi momentum kF is re-
lated to the Fermi energy εF via ε(kF) = εF . The expression for the particle density ρ(kF) as a
function of the Fermi momentum kF is independent of the energy-momentum relation ε(k), i.e.,

ρ(kF) =
∑

k

Θ
(
εF − ε(k)

)
=

1
π2

kF∫

0

dk k2 =
k3

F

3π2 . (A.2)

For a given energy-momentum relation ε(k) the ground-state energy density is given by

E0(kF) =
∑

k

ε(k)Θ
(
εF − ε(k)

)
=

1
π2

∞∫

0

dk k2εkΘ
(
εF − ε(k)

)
=

1
π2

kF∫

0

dk k2ε(k), (A.3)

1 In addition, since it necessarily (cf. Sec. A.1.2) leads to nonrelativistic single-particle energies [εnonrel(k) =

k2/(2M)] in the expressions for the various many-body contributions, the “nonrelativistic+corrections” ap-
proach is much more convenient regarding the inclusion of self-energy effects in MBPT (effective-mass ap-
proximation, cf. Sec. 3.1).
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and the chemical potential is given by µ(kF) = ∂E0(kF)/∂ρ = ε(kF). So far everything is
general. Inserting εnonrel(k) = k2/(2M) and εrel(k) =

√
k2 + M2 − M, respectively, and resolving

the integral in Eq. (A.3), gives E0;nonrel(kF) = k5
F/(10π2M) and

E0;rel(kF) =
1

24π2


−8Mk3

F + 3kF

(
M2 + 2k2

F

)√
k2

F + M2 − 3M4 ln



kF +

√
k2

F + M2

M




. (A.4)

Thermodynamics (General). The general expression for the grand-canonical potential density
is given by

A(T, µ) = − T
π2

∞∫

0

dk k2 ln
[
1 + e−β(ε(k)−µ)

]
. (A.5)

The grand-canonical expression for the particle density is then given by

ρ(T, µ) = −∂A(T, µ)
∂µ

=
1
π2

∞∫

0

dk k2 1
1 + exp

[
β
(
ε(k) − µ)] , (A.6)

and the free energy density is given by F(T, µ) =
µ

π2

∫ ∞
0

dk k2 1
1+exp[β(εk−µ] − T

π2

∫ ∞
0

dk k2 ln
[
1 +

e−β(ε(k)−µ) ]. Using l’Hôpital’s rule to evaluate the zero-temperature limit of A(T, µ) we obtain

F(T, µ)
T→0−−−→ µ

π2

∞∫

0

dk k2Θ
(
µ − ε(k)

)
+

1
π2

∞∫

0

dk k2(ε(k) − µ)Θ
(
µ − ε(k)

)
= E0(kF), (A.7)

with ε(kF) = µ. The expression for A(T, µ) can be given in an alternative form by making use

of the identity
∞∫
0

dk k2 ln[X(k)] = −
∞∫
0

dk k3 ∂X(k)/∂k
3X(k) , which, when applied to Eq. (A.5), leads to

A(T, µ) = − 1
3π2

∞∫

0

dk k3 ∂ε(k)/∂k
1 + exp

[
β
(
ε(k) − µ)] . (A.8)

In the relativistic case no simplification of these formulas is possible.

Thermodynamics (Nonrelativistic). In the nonrelativistic case, εnonrel(k) = k2/(2M), Eq. (A.8)
is given by

A(T, µ) = − 1
3π2

∞∫

0

dk
k4

M
nk = αT 5/2Li5/2(x), (A.9)

where x = − exp(µ/T ), α = 2−1/2(M/π)3/2, and Liν(x) =
∑∞

k=1 k−νxk is the polylogarithm of
index ν, which has the integral representation [5]

Liν(x) = − 1
Γ(ν) 2ν−1 T νMν−3

∞∫

0

dk k2ν−1 nk
T→0−−−→ − 1

Γ(ν) 22ν−1 T νMν−3

(
kF

)2ν
, (A.10)
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with Γ(ν) the (Euler) gamma function, which for half-integer indices is given by Γ(1/2) =
√
π,

Γ(1/2 − n) =
√
π(2n − 1)!!/2n, and Γ(1/2 − n) =

√
π(−2)n/(2n − 1)!!, where n ∈ N. The

nonrelativistic expression for the density is given by

ρ(T, µ) =
1

3π2

∞∫

0

dk k2 ∂nk

∂µn/p
=

1
π2

∞∫

0

dk k2nk = −αT 3/2Li3/2(x), (A.11)

where we have used ∂nk/∂µ = −(M/k) ∂nk/∂k and partial integration. The polylogarithmic
expression can also be obtained directly from ∂Liν(x)/∂x = x−1Liν−1(x). For densities ρ <
−αT 3/2Li3/2(−1) ' 3.6 × 10−4 (T/MeV)3/2 fm−3 the chemical potential µ is negative, and its
asymptotic behavior in the limit of vanishing density is given by

µ(T, ρ)
ρ→0−−−→ T ln

(
α−1T−3/2ρ

)
, (A.12)

which, using Liν(x)
x→0−−−→ x, follows from inverting Eq. (A.11) in the limit µ → −∞. From Eqs.

(A.9) and (A.11) the polylogarithmic expression for the free energy density is given by

F(T, µ) = −αT 5/2
(

ln(−x) Li3/2(x) − Li5/2(x)
) T→0−−−→ k5

F

10π2M
. (A.13)

with µ
T→0−−−→ k2

F/(2M). Note that Eq. (A.12) implies that the free energy per particle F̄(T , 0, ρ)
diverges logarithmically, ∼ ln(ρ), for ρ → 0. The internal energy density is given by E =

F − T (∂F/∂T )ρ = −3αT 5/2

2 Li5/2(x)
T→0−−−→ E0(kF); the zero-density limit of the internal energy per

particle is Ē
ρ→0−−−→ 3T/2, which corresponds to the EoS of a nonrelativistic classical ideal gas.

A.1.2. Relativistic Corrections2

We now apply the different forms of many-body perturbation theory (zero-temperature, grand-
canonical, canonical) to the set of Hamiltonians Tnonrel and Tcorr. Note that only the “bare”
versions of MBPT are applicable for this particular problem. The partially renormalized ver-
sions involve the renormalized single-particle energies εnonrel(n) = εnonrel +

∑n
ν=1 εcorr(ν) in the

Fermi-Dirac distributions. This is problematic, concerning the behavior for large values of
k (the state-sums are unrestricted, and the correction terms εcorr(ν) are well-behaved only for
sufficiently small momenta) of the nonrelativistic expansion εrel(k) ' εnonrel(n)(k), which is well-

behaved (for large k) only for n = 0; in particular, εnonrel(n)(k)
k→∞−−−→ −∞ for odd n, leading to

divergent results.

Zero-Temperature Formalism. The zero-temperature formalism [applied to the perturbation
given by Eq. (A.1)] is equivalent to the expansion of Eq. (A.4) in powers of kF , i.e.,

E0;rel(kF) =
1

10π2M

(
kF

)5

︸         ︷︷         ︸
E0;nonrel

− 1
56π2M3

(
kF

)7

︸             ︷︷             ︸
E0;corr(1)

+
1

144π2M5

(
kF

)9

︸            ︷︷            ︸
E0;corr(2)

− 5
1408π2M7

(
kF

)11

︸                 ︷︷                 ︸
E0;corr(3)

+ . . . . (A.14)

2 We note here that the first-order canonical relativistic correction term Fcorr(1) was first constructed (in an ad hoc
fashion) in Ref. [150]. Note also that the description of the implementation of Fcorr(1) [cf. Eq. (A.20)] in the
Kohn-Luttinger method is somewhat messed up in [Phys. Rev. C, 89 (2014), p. 064009] (in particular, Eqs.
(4) and (5) of that reference are not consistent with each other).
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The nonrelativistic approximation of order n is then given by E0;nonrel(n)(kF) := E0;nonrel(kF) +∑n
ν=1 E0;corr(ν)(kF).

Grand-Canonical MBPT. The grand-canonical perturbation series corresponds to the nonrela-
tivistic expansion of the momentum distribution nrel

k = 1/
[
1+exp

(
β((k2 + M2)1/2−M−µ)

)]
and

the term ∂εrel(k)/∂k in Eq. (A.8). The nonrelativistic expansion of the relativistic momentum
distribution is given by

nrel
k = nk +

∂nk

∂εnonrel

∞∑

ν=1

εcorr(ν) +
1
2!

∂2nk

∂2εnonrel

(∑∞
ν=1εcorr(ν)

)2
+ . . . . (A.15)

Inserting this expansion and the expansion of ∂εrel(k)/∂k into Eq. (A.8) leads to the nonrela-
tivistic expansion of the noninteracting grand-canonical potential Anonrel(n)(T, µ) = A(T, µ) +∑n
ν=1 Acorr(ν)(T, µ). The first two correction terms are given by3

Acorr(1,2)(T, µ) ∈
{

15αT 7/2

8M
Li7/2(x),

105αT 9/2

128M2 Li9/2(x)
}

(A.16)

The corresponding corrections to the expression for the particle density are obtained either via
ρG.C.

corr(n) = −∂Acorr(n)/∂µ, or directly by expanding the Fermi-Dirac distributions in Eq. (A.6), i.e.,

ρG.C.
corr(1,2)(T, µ) ∈

{
− 15αT 5/2

8M
Li5/2(x),−105αT 7/2

128M2 Li7/2(x)
}

T→0−−−→
{

k5
F

8π2M2 ,
k7

F

128π2M4

}
, (A.17)

with µ
T→0−−−→ εnonrel(kF) = k2

F/(2M). The corrections to the free energy density are given by

FG.C.
corr(1)(T, µ) = −15αT 7/2

8M

(
ln(−x)Li5/2(x) − Li7/2(x)

) T→0−−−→ 5
112π2M3

(
kF

)7
, (A.18)

FG.C.
corr(2)(T, µ) = −105αT 9/2

128M2

(
ln(−x)Li7/2(x) − Li9/2(x,

) T→0−−−→ 7
2304π2M5

(
kF

)9
. (A.19)

Note that FG.C.
corr(n)(T = 0, µ) , E0;corr(n)(kF), but this should not be interpreted offhand as a defi-

ciency of the grand-canonical approach towards the construction of relativistic corrections (see
Table A.1 and the discussion below).

Canonical MBPT. The canonical perturbation series for the set of Hamiltonians Tnonrel and Tcorr

is given by F(T, µ̃) = F (T, µ̃)+
∑∞

n=1 λ
nFcorr(n)(T, µ̃), where the auxiliary chemical potential is in

one-to-one correspondence with the density via ρ(T, µ̃) = −αT 3/2Li3/2(x̃), with x̃ = − exp(βµ̃).
The leading two terms are given by F (T, µ̃) = Fnonrel(T, µ̃) and Fcorr(1)(T, µ̃) = Acorr(1)(T, µ̃), i.e.,

F (T, µ̃) = −αT 5/2
(

ln(−x̃) Li3/2(x̃) − Li5/2(x̃)
)
, Fcorr(1)(T, µ̃) =

15αT 7/2

8M
Li7/2(x̃), (A.20)

where F (T, µ̃)
T→0−−−→ E0;nonrel(kF) and Fcorr(1)(T, µ̃)

T→0−−−→ E0;corr(1)(kF), with µ̃
T→0−−−→ εnonrel(kF) =

k2
F/(2M). The corrections beyond first order are given by Fcorr(ν)(T, µ̃) = Acorr(ν)(T, µ̃)+Fν,h.-c.(T, µ̃),

with Fν,h.-c.(T, µ̃) the higher-cumulant contribution of order ν. The second correction is given by

Fcorr(2)(T, µ̃) =
105αT 9/2

128M2 Li9/2(x̃) − 225αT 9/2

128M2

Li5/2(x̃)Li5/2(x̃)
Li1/2(x̃)

T→0−−−→ E0;corr(2)(kF). (A.21)

3 For example, Acorr(2)(T, µ) = 1
3π2

∫ ∞
0 dk k3

(
nk

∂εcorr(2)

∂k + ∂nk
∂εnonrel

εcorr(1)
∂εcorr(1)

∂k +
( ∂nk
∂εnonrel

εcorr(2) + 1
2!

∂2nk

∂ε2
nonrel

ε2
corr(1)

) ∂εnonrel
∂k

)
=

− 1
128π2

∫ ∞
0 dk k8

M5 nk = 105αT 9/2

128M2 Li9/2(x).
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For the corresponding corrections to the internal energy density one obtains the expressions

Ecorr(1)(T, µ̃) = − 75αT 7/2

16M
Li7/2(x̃) +

45αT 7/2

16M
Li5/2(x̃) Li3/2(x̃)

Li1/2(x̃)
, (A.22)

Ecorr(2)(T, µ̃) =
525αT 9/2

256M2 Li9/2(x̃) − 315αT 9/2

256M2

Li7/2(x̃) Li3/2(x̃)
Li1/2(x̃)

− 1125αT 9/2

256M2

Li5/2(x̃) Li5/2(x̃)
Li1/2(x̃)

+
675αT 9/2

256M2

Li3/2(x̃)
Li1/2(x̃)

(
2 Li5/2(x̃) Li3/2(x̃)

Li1/2(x̃)
− Li5/2(x̃) Li5/2(x̃) Li−1/2(x̃)

Li1/2(x̃) Li1/2(x̃)

)
. (A.23)

The zero-density limits of the corrections to the internal energy per particle are given by

Ēcorr(1,2)(T, ρ)
ρ→0−−−→

{
15T 2

8M
,
−15T 3

16M2

}
. (A.24)

This should be compared with the expansion in powers of T of the internal energy per particle
of a relativistic classical ideal gas, i.e.,

Ēclassical(T ) = 3T + M
K1(M/T )
K2(M/T )

− M =
3T
2

+
15T 2

8M
− 15T 3

8M2 +
135T 4

128M3 + . . . (A.25)

where K1,2(M/T ) are modified Bessel functions of the second kind. One sees that the zero-
density limit of the first correction reproduces the first-order term in the classical expansion, but
the second-order term is off by a factor 1/2 (the origin of this feature is not clear).

Numerical Analysis. The numerical results obtained for the noninteracting contribution to the
chemical potential µ(T, ρ, δ = 0) and the free energy per particle F̄(T, ρ, δ = 0) are shown
for T = 25 MeV and ρ = (0.04, 0.16, 0.32) fm−3 in Table A.1. For comparison, we also show
the results for unreasonably large densities ρ = (2.0, 4.0) fm−3. One sees that even at very
large densities, all of the various higher-order nonrelativistic approximations systematically
improve upon the nonrelativistic approximation without additional correction terms. Some-
what surprisingly (considering the results of Sec. 2.5), compared to the canonical correction
terms the grand-canonical ones (“G.C.”) lead to results that are closer to the relativistic re-
sults (in particular, the error of the second-order grand-canonical approximation is negligible
even at the highest densities). This however is not in conflict with the analysis of Sec. 2.5,
because of the additional expansion of the “perturbation Hamiltonian” Tcorr. In fact, using
Tcorr = λ

∑
k
(
εrel(k) − εnonrel(k)

)
a†kak as the perturbation Hamiltonian one finds that the canoni-

cal perturbation series is indeed closer to the exact (relativistic) results as compared the grand-
canonical one [but in much weaker form compared to the calculations of Sec. 2.5.5 (note that
the analysis in terms of the mean-field shift does not apply here)]. For the scales of interest, the
first-order canonical correction term leads to results that are reasonably close to the relativistic
ones. Because a canonical correction term is much easier to incorporate in the correlation-bond
formalism, in this thesis we have computed the noninteracting contribution in MBPT as

(
Fnonint(T, µ̃) := Fnonrel(T, µ̃) + Fcorr(T, µ̃)

)
(A.26)

where Fnonrel := F and Fcorr := Fcorr(1) are given by Eq. (A.20). The results obtained from this
approximation as well as the relativistic and the nonrelativistic ones are plotted as functions of
density in Fig. A.1 for different temperatures. Notably, the deviations between the relativistic
results and the ones obtained from Eq. (A.26) increase only very little with temperature.
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ρ (fm−3) 0.04 0.16 0.32 2.0 4.0
µrel (MeV) -25.72 16.95 44.48 176.9 271.8
µnonrel (MeV) -24.27 19.11 47.72 195.8 313.4
µG.C.

nonrel(1) (MeV) -25.70 16.97 44.53 177.3 273.0
µG.C.

nonrel(2) (MeV) -25.72 16.95 44.48 176.9 271.8
µnonrel(1) (MeV) -25.75 16.87 44.29 173.2 258.9
µnonrel(2) (MeV) -25.72 16.95 44.50 177.9 277.1
F̄rel (MeV) -52.09 -13.38 9.18 102.1 164.5
F̄nonrel (MeV) -50.75 -11.70 11.37 111.4 184.1
F̄G.C.

nonrel(1) (MeV) -52.07 -13.36 9.22 102.3 165.1
F̄G.C.

nonrel(2) (MeV) -52.10 -13.38 9.18 102.2 164.5
F̄nonrel(1) (MeV) -52.11 -13.42 9.10 100.8 159.0
F̄nonrel(2) (MeV) -52.09 -13.38 9.19 102.4 166.0

Table A.1.: Noninteracting contribution to the chemical potential µ(T, ρ) and the free energy
per particle F̄(T, ρ), respectively, of isospin-symmetric nuclear matter at T =

25 MeV for different densities. The relativistic results are compared to the ones
obtained from the various nonrelativistic approximations, see text for details.
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Figure A.1.: Noninteracting contribution to F̄(T, ρ, δ = 0) for T = (0, 25, 48, 70) MeV. The
solid lines show the relativistic results (F̄rel), the dashed lines the nonrelativis-
tic ones (F̄nonrel), and the dots the nonrelativistic results with the first-order
canonical correction term included (F̄nonrel + F̄corr).
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A.2. Realization of Chiral Symmetry

An elementary aspect concerning the construction of the chiral effective Lagrangian LχEFT is
the transformation behavior of pions and nucleons with respect to the chiral symmetry group
Gχ = SU(2)L×SU(2)R. In the following we briefly describe these transformation properties and
construct the leading terms of LχEFT, following mostly Refs. [356, 88, 69, 163, 283], cf., e.g.,
also [413, 115] for additional details.

A.2.1. Pions

A QFT with a “spontaneously broken” symmetry group G has the property that the quantum
fields do not transform according a linear representation of G; instead, the symmetry is realized
nonlinearly. In the case of the chiral symmetry group Gχ, the fact that chiral transformations of
the three pion fields π+,π−,π0 cannot be realized by a linear representation of Gχ can be seen
as follows. The Lie algebra of Gχ = SU(2)L × SU(2)R is isomorphic to that of SO(4), whose
smallest faithful representation is four-dimensional. The triplet of pion fields however amounts
to only three coordinates. Instead of a linear representation, one must therefore consider a
general realization of Gχ of the form

π
g ∈Gχ−−−−→ φg(π), φg(0) = 0 ⇔ g ∈ SU(2)V . (A.27)

As shown in [88] the condition that only the (diagonal) subgroup SU(2)V leaves the origin 0
invariant guarantees that the group realization becomes linear when restricted to SU(2)V (called
the stability group in this context). Under the full SU(2)L × SU(2)R the pion fields transform
nonlinearly.

General Discussion. We consider a physical system described by an effective Lagrangian that
is invariant under a symmetry group G, while the vacuum of the system is invariant only un-
der the subgroup H. The Nambu-Goldstone bosons associated with this spontaneous symmetry
breaking—we call them pions—are described by a multi-component vector π whose compo-
nents are coordinates on a manifold Mπ. A transformation of the points on Mπ under the sym-
metry G is defined by a mapping φ which uniquely associates with each pair (g,π) ∈ G × Mπ

an element φg(π) ∈ Mπ with the properties

• φe(π) = π ∀ π ∈ Mπ , e ≡ identity element of G.

• φg1 ◦ φg2(π) = φg1g2(π) ∀ g1, g2 ∈ G , ∀ π ∈ Mπ.

This mapping defines an operation of the group G on Mπ, which will however, because of the
missing linearity condition φg(λπ) = λφg(π), not constitute a representation of G, but only a
realization of G on Mπ. As mentioned above, we require in addition that the origin be invariant
under transformations restricted to the subgroup H:

φh(0) = 0 ∀ h ∈ H. (A.28)

Following [356], we now show that there exists an isomorphism ξ between Mπ and the set of
all left cosets {gH

∣∣∣ g ∈ G} (also known as the quotient space G/H), i.e.,

ξ : Mπ → G/H, π 7→ gH, (A.29)
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where for one element g of G, the set gH = {gh
∣∣∣ h ∈ H} defines the left coset of g, one element

of G/H. From Eq. (A.28) it follows that

φgh(0) = φg ◦ φh(0) = φg(φh(0)) = φg(0) ∀ g ∈ G, h ∈ H. (A.30)

Moreover, the mapping φ is injective with respect to the cosets, which can be seen by consider-
ing two elements g and g′ of G, with g′ < gH. Assuming that φg(0) = φg′(0) leads to

0 = φe(0) = φg−1g(0) = φg−1(φg(0)) = φg−1(φg′(0)) = φg−1g′(0). (A.31)

By Eq. (A.28) this implies that g−1g′ ∈ H, or equivalently g′ ∈ gH, which contradicts the
assumption. This shows that the mapping

G/H → Mπ , g̃h 7→ φg̃h (0) ∀ g̃ ∈ G , h ∈ H (A.32)

is bijective, and we can for each π ∈ Mπ identify a corresponding coset g̃H by the relation
φg̃h (0) = π. The isomorphism between pion fields and left cosets is thus given by:

ξ(π) = g̃H ⇔ φg̃h(0) = π. (A.33)

The transformation behaviour of the pion fields is now uniquely determined (up to an appropri-
ate choice of parametrization) by the tranformation of its coset representation, i.e.,

Mπ

ξ

��

φg // Mπ

ξ

��
G/H

g // G/H

π_

ξ

��

� φg // π′_

ξ

��
g̃H � g // gg̃H

. (A.34)

Application to Chiral Symmetry. In the case of the chiral symmetry group Gχ we have

Gχ = SU(2)L × SU(2)R = {(L,R)
∣∣∣ L ∈ SU(2) , R ∈ SU(2)}, (A.35)

H = SU2)V = {(V,V)
∣∣∣ V ∈ SU(2)}, (A.36)

where (X,Y) specifies the transformation behaviour of the left-handed, qL → XqL, and the right-
handed quark fields, qR → YqR. The left coset of an element g̃ ∈ Gχ, g̃H = {(L̃V, R̃V)

∣∣∣V ∈ H},
can be uniquely characterized through the SU2)-matrix U = R̃L̃†:

(L̃V, R̃V) = (L̃V, R̃L̃†L̃V) = (1, R̃L̃†) (L̃V, L̃V)︸    ︷︷    ︸
∈H

⇒ g̃H = (1,U)H. (A.37)

The transformation of U under g = (L,R) is given by multiplication in the left coset

gg̃H = (L,RU)H = (1,RUL†)(L, L)H = (1,RUL†)H. (A.38)

Hence, U
g−→ U′ = RUL†, and it suffices to specify an isomorphic mapping of the pion fields to

the space of unitary matrices U with determinant one. An often used parametrization is4

U = exp
(
iτ · π

fπ

)
, (A.39)

4 The general form of the parametrization of U by pion field is given by U = 1 + i
fπ

(τ·π) − 1
2 f 2

π
π2 − iα

f 3
π

(τ·π)3 +

8α−1
8 f 4

π
π4 + . . . , with α an arbitrary coefficient [283]. The “exponential” parametrization given by Eq. (A.39)

is equivalent to α = 1/6. Another popular choice is the parametrization U = (
√

1 − π2 + iτ · π)/ fπ, which
corresponds to α = 0.
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with τ = (τ1, τ2, τ3) are Pauli matrices, fπ is pion decay constant, and

π =



1√
2
(π+ + iπ−)

i√
2
(π+ − iπ−)

π0

 (A.40)

the vector which collects the pion fields. The freedom of choice regarding the parametrization
of U by pion fields has an effect only on (unobservable) off-shell amplitudes, but physical
on-shell amplitudes are invariant under a change of parametrization [130, 283]. For a given
parametrization the group operation φ is given by

Mπ

ξ

��

φg // Mπ

ξ

��
MU

g // MU

π_

ξ

��

� φg // π′_

ξ
��

U � g // RUL†

, (A.41)

where MU is the space of U-matrices (which is not a vector space), i.e.,

MU = {U : M→ SU(2)
∣∣∣ x 7→ U(x)}, (A.42)

where M denotes Minkowski space. For transformations under the subgroup SU(2)V the pions
should transform linearly. Using the parametrization given by Eq. (1.21), this can be checked
by expanding U in a power series:

VUV† = V
∞∑

α=0

(
iτ · π

fπ

)α
V† =

∞∑

α=0

(
i Vτ · πV†

fπ

)α
. (A.43)

Hence it is τ · π → V (τ · π) V†, which is a linear representation of SU(2)V . That pions trans-
form nonlinearly under g ∈ Gχ with g < SU(2)V can for example be seen by considering the
transformation gA ∈ Gχ with gA < SU(2)V defined in terms of left- and right-handed quark fields
ψL/R = 1

2 (1 ∓ γ5)ψ as
(
ψL

ψR

)
gA−→ A

(
ψL

ψR

)
, (A.44)

where A = exp
(
−iΘ τ

2γ5

)
. Using the Weyl representation of Dirac spinors, this can be decom-

posed as

ψL
gA−→ exp

(
−iΘ

τ

2

)
ψL ≡ ALψL, ψR

gA−→ exp
(
iΘ

τ

2

)
ψR ≡ ARψR. (A.45)

Hence, it is U → ALUA†R under that particular transformation, and by expanding U as in Eq.
(A.43) we do not obtain a linear transformation of pion fields, but instead a nonlinear one. The
pionic part of the relativistic chiral Lagrangian Lππ is the organized in powers of ∂µU, with the
leading-order (chiral dimension d = 2) terms given by [157, 115]

L (d=2)
ππ =

f 4
π

4
Tr

[
∂µU∂µU† + m2

π(U + U†)
]
, (A.46)

where the first term constitutes the most general Gχ invariant Lagrangian with minimal number
of derivatives, and the second term (the mass term) breaks Gχ explicitely. Expanding U in a
power series and leaving out constant terms yields the purely pionic part of L ∆=0

χEFT [first line in
Eq. (1.21)].
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A.2.2. Nucleons

There are many possibilities to realize chiral symmetry for the nucleon field (cf. [163] pp.
93-96). They all lead to the same physics. One particularly convenient choice is given by

Ψ → K(L,R,U)Ψ =
√

LU†R†R
√

UΨ, (A.47)

where Ψ = (p, n) is the relativistic nucleon field, with isospin components given by the proton
Dirac field p and the neutron Dirac field n. Because K depends on the pion-field matrix U(π(x))
the above equation defines a local transformation law. To see more explicitly how Ψ transforms
under SU(2)L × SU(2)R we consider an infinitesimal transformation K = exp(iγτ), and use the
parametrizations L = exp(i(α−β)τ) and R = exp(i(α+β)τ), where α and β are infinitesimal.
Using the Baker-Campbell-Hausdorff formula ex ey = ez, where z is given by

z = x + y +
1
2

[x, y] − 1
12

[
[x, y], x − y

] − 1
24

[[
[x, y], x

]
, y

]
+ . . . , (A.48)

we find the following relation:

γ = α − β × π
2 fπ

+

(
(β × π) × π) × π

6 f 3
π

+ O(π4). (A.49)

This shows that for a general transformation under SU(2)L × SU(2)R the transformed nucleon
field is a nonlinear function of pion fields. In contrast, for a transformation under SU(2)V

with β = 0 we obtain K = V (up to order π3, for infinitesimal transformations). This can
be shown to be true also in the general case by observing that ζ1 :=

√
VU†V† ∈ SU(2) and

ζ2 := V
√

U†V† ∈ SU(2) both lead to the same expression, ζ2
1/2 := VU†V† ∈ SU(2), when

squared. The square root of an SU(2)-matrix is unique up to a sign, therefore it is ζ1 = ±ζ2.
Using the parametrization V = exp(iατ) one can show by explicit calculation that it is indeed
ζ1 = ζ2. We therefore have

K(V,V,U) = V
√

U†V†V
√

U = V. (A.50)

Hence,Ψ transforms linearly as an isospin doublet under SU(2)V . Flavor symmetry between up-
and down-quarks has become isospin symmetry between protons and neutrons. Since nucleons
transform locally under S U(2)L × S U(2)R, one needs a chirally covariant derivative:

Dµ = ∂µ + Γµ , Γµ =
i

4 f 2
π

τ · (π × ∂µπ) + O(π4) , (A.51)

where Γµ is the so-called chiral connection. The leading terms in the relativistic pion-nucleon
Lagrangian have chiral dimension d = 1 and are given by [158]:

L (d=1)
πN = Ψ̄

(
iγµDµ − M +

gA

2
γµγ5uµ

)
Ψ, (A.52)

where M is the nucleon mass (in the chiral limit), Ψ is the Dirac field representing the nucleon,
and gA is the axial-vector strength, which can be measured in neutron β-decay, n → p e−νe,
gA ' 1.26 [40]. In addition to the chiral derivative and the mass term, the above Lagrangian
also includes a coupling term which involves the axial vector quantity uµ, which is given by5

uµ = − 1
fπ
τ · ∂µπ +

4α − 1
2 f 3

π

(τ · π)(π · ∂µπ) +
α

f 3
π

π2(τ · ∂µπ) + O(π4). (A.53)
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The explicit form of Eq. (A.52) is then

L (d=1)
πN = Ψ̄

(
iγµ∂µ − M − 1

4 f 2
π

γµτ · (π × ∂µπ) − gA

2 fπ
γµγ5τ · ∂µπ + . . .

)
Ψ. (A.54)

The term proportional to gA/2 fπ is the pseudo-vector coupling of one pion to the nucleon, and
the quadratic term proportional to 1/4 f 2

π is known as the Weinberg-Tomozawa coupling. At
chiral dimension d = 2 the pion-nucleon Lagrangian is given by

L (d=2)
πN =

4∑

i=1

ci Ψ̄O (2)
i Ψ, (A.55)

where ci are the first low-energy constants. The various operators O (2)
i are such that they rep-

resent all terms at chiral dimension two that are consistent with chiral symmetry and Lorentz
invariance. For the explicit form of these operators we refer to Ref. [283]. The relativistic treat-
ment of nucleons leads to certain problems [356], which can be avoided by treating nucleons as
heavy static sources [222, 39]. We begin by reparametrizing the nucleon four-momentum:

p µ = Mv µ + l µ, (A.56)

where v µ is the relativistic four-velocity satisfying v µvµ = 1, and l µ a small residual momentum,
i.e. v µlµ � M. We define the projection operators

P±v =
1 ± γµv µ

2
, P+

v + P−v = 1, (A.57)

where P+ projects on the large component of the nucleon field, which can be seen by considering
its Fourier expansion

Ψ (x) =
∑

σ,τ

∫
d3 p u(x; ~p,σ, τ) a†(~p,σ, τ), l = 1, 2, 3, 4. (A.58)

Here, σ is the spin projection quantum number, τ the isospin projection quantum number, and
a†(~p,σ, τ) the operator which creates a nucleon with momentum ~p and quantum numbers σ and
τ. The coefficient u(x; ~p,σ, τ) is given by the plane-wave solution of the free Dirac equation

(iγµ∂µ − M) u(x) = 0. (A.59)

In the Dirac representation it is given by (we omit the isospin part)

u(x) =

√
p0 + M

2M

(
χs

~σ·~p
p0+Mχs

)
e−ipµxµ , (A.60)

where p0 =
√
~p 2 + M, ~σ = (σ1,σ2,σ3) are the Pauli spin matrices, and χs is the Pauli spinor for

spin-1/2. The operator P+ projects on the large upper component of u(x), and P− on the lower
component (∼ ~σ · ~p), which is small in the static limit. Defining the velocity dependent fields

N = ei M vµxµ P+
vΨ, h = ei M vµxµ P−vΨ, (A.61)

5 Here, α is an arbitrary coefficient that corresponds to different parametrizations of U by pions field, cf. footnote4.
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we can write the nucleon field as

Ψ = e−i M vµxµ(N + h). (A.62)

The Euler-Lagrange equations corresponding to L (d=1)
πN allow to express the small component

h in terms of N. These corrections enter at second order and are suppressed by a factor M−1.
Hence, the heavy-baryon projected first-order pion-nucleon Lagrangian is given by Eq. (A.54)
with the substitutions

Ψ̄ → ei M vµxµ N†, Ψ → e−i M vµxµ N. (A.63)

Assuming that vµ = (1, 0, 0, 0) this leads to

L (d=1)
πN = N†

(
i∂0 − 1

4 f 2
π

τ · (π × ∂0π) − gA

2 fπ
τ · (~σ · ~∇)π

−gA(4α − 1)
4 f 3

π

(τ · π)
[
π · (~σ · ~∇)π

]
+

gAα

2 f 3
π

π2[τ · (~σ · ~∇)π
]
+ . . .

)
N,

(A.64)

where the ellipsis stands for terms involving four or more pion fields. In addition to pion-
nucleon interactions, nucleon contact terms are needed in the chiral Lagrangian to compensate
the divergences arising from loop-diagrams, and to parametrize the unresolved short-distance
dynamics. Invariance under parity transformations restricts the nucleon contact interactions to
involve only even powers of derivatives:

LNN = L (d=0)
NN + L (d=2)

NN + L (d=4)
NN + . . . (A.65)

The lowest-order two-nucleon contact Lagrangian is given by (with low-energy constants CS

and CT )

L (d=0)
NN = −1

2
CS (N†N)(N†N) − 1

2
CT (N†~σN) · (N†~σN), (A.66)

which generates the leading-order (LO) two-nucleon contact interaction [cf. Eq. (1.33)]. At the
next order d = 2 there are also three-nucleon contact terms, and contact terms with additional
pions:

L (d=2)
NN = − D

4 fπ
(N†N)

(
N†

[
τ · (~σ · ~∇)π

]
N
)
− 1

2
E(N†N)(N†τN) · (N†τN) + . . . , (A.67)

where the ellipsis represents further two-nucleon contact interactions. The part proportional to
the low-energy constant D gives rise to a vertex involving two in- and outgoing nucleon lines
as well as one pion line, while the E part represents a pure three-nucleon contact interaction.
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A.3. Effective In-Medium Two-Body Potential

Here, we given the explicit expressions for the effective in-medium two-body (DDNN) poten-
tial constructed from the next-to-next-to-leading order (N2LO) chiral three-nucleon interactions
(for more details, we refer to Refs. [206, 355, 205, 71]). The expressions are valid for the center-
of-mass frame approximation [206, 205, 71] where the dependence on the total nucleon momen-
tum is neglected. Within the canonical finite-temperature many-body perturbation series, the ef-
fective two-body potential depends on the temperature T as well as the neutron and proton aux-
iliary chemical potentials µ̃n and µ̃p. It can be decomposed as VDDNN(T, µ̃n, µ̃p) =

∑6
i=1 V (i)

DDNN,
where the different contributions correspond to the respective diagrams shown in Fig. A.2.

(1) (2) (3)

(4)
(5) (6)

Figure A.2.: (From Ref. [355]) Diagrams for the effective DDNN potential corresponding to
i = 1, . . . , 6 in V (i)

DDNN. The double dashes (the “medium insertion”) indicate
that the momenta of the associated nucleon lines are distributed according
the Fermi-Dirac distribution.

The first three contribution to the DDNN potential come from the two-pion exchange part of
the N2LO chiral 3N interaction. The contribution from the Pauli-blocked self-energy diagram
is

V (1)
DDNN =

g2
AM

8 f 4
π

τ1 · τ2

~σ1 · ~q ~σ2 · ~q
(m2

π + q2)2 (2c1m2
π + c3q2) (ρn + ρp), (A.68)

and the one from the Pauli blocked vertex correction is

V (2)
DDNN =

g2
AM

64π2 f 4
π

τ1 · τ2

~σ1 · ~q ~σ2 · ~q
(m2

π + q2)2

{
− 4c1m2

π

[
Γ+

0 (p) + Γ+
1 (p)

]
− (c3 + c4)

×
[
q2Γ+

0 (p) + 2q2Γ+
1 (p) + q2Γ+

3 (p) + 4Γ+
2 (p)

]
+ 4c4

[
2π2(ρn + ρp) − m2

πΓ
+
0 (p)

]}

+
g2

AM
128π2 f 4

π

(
τ3

1 + τ3
2

) ~σ1 · ~q ~σ2 · ~q
(m2

π + q2)2

{
− 4c1m2

π

[
Γ−0 (p) + Γ−1 (p)

]
− (c3 − c4)

×
[
q2Γ−0 (p) + 2q2Γ−1 (p) + q2Γ−3 (p) + 4Γ−2 (p)

]
+ 4c4

[
2π2(ρn − ρp) + m2

πΓ
−
0 (p)

]}

+
g2

AM
64π2 f 4

π

(τ3
1 − τ3

2) i (~σ1 − ~σ2) · (~p × ~q )
1

m2
π + 4p2 − q2

×
{
4c1m2

π

[
Γ−0 (p) + Γ−1 (p)

]
+ c3(4p2 − q2)

[
Γ−0 (p) + 2Γ−1 (p) + Γ−3 (p)

]}
. (A.69)
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The last term ∼ (τ3
1 − τ3

2) in V (2)
DDNN leads to spin singlet-triplet mixing [355] and has been

neglected in the calculations performed in this thesis. The Pauli blocked two-pion exchange
contribution reads

V (3)
DDNN =

g2
AM

128π2 f 4
π

{
− 12c1m2

π

[
2Γ+

0 (p) − (2m2
π + q2)G+

0 (p, q)
]

− 3c3

[
8π2(ρn + ρp) − 4(2m2

π + q2)Γ+
0 (p) − 2q2Γ+

1 (p) + (2m2
π + q2)2Γ+

0 (p)
]

+ 4c4 τ1 · τ2 (~σ1 · ~σ2q2 − σ1 · ~q ~σ2 · ~q )G+
2 (p, q) − (3c3 + c4τ1 · τ2) i(~σ1 + ~σ2) · (~q × ~p )

×
[
2Γ+

0 (p) + 2Γ+
1 (p) − (2m2

π + q2)
[
G+

0 (p, q) + 2G+
1 (p, q)

]]

− 12c1 m2
π i(~σ1 + ~σ2) · (~q × ~p )

[
G+

0 (p, q) + 2G+
1 (p, q)

]

+ 4c4 τ1 · τ2 ~σ1 · (~q × ~p ) ~σ2 · (~q × ~p )
[
G+

0 (p, q) + 4G+
1 (p, q) + 4G+

3 (p, q)
]}

+
g2

AM
128π2 f 4

π

(
τ3

1 + τ3
2

) {
4c1m2

π

[
2Γ−0 (p) − (2m2

π + q2)G−0 (p, q)
]

+ c3

[
8π2(ρn − ρp) − 4(2m2

π + q2)Γ−0 (p) − 2q2Γ−1 (p) + (2m2
π + q2)2Γ−0 (p)

]

− 4c4 (~σ1 · ~σ2q2 − σ1 · ~q ~σ2 · ~q )G−2 (p, q) + (c3 + c4) i(~σ1 + ~σ2) · (~q × ~p )

×
[
2Γ−0 (p) + 2Γ−1 (p) − (2m2

π + q2)
[
G−0 (p, q) + 2G−1 (p, q)

]]

+ 4c1 m2
π i(~σ1 + ~σ2) · (~q × ~p )

[
G−0 (p, q) + 2G−1 (p, q)

]

− 4c4 ~σ1 · (~q × ~p ) ~σ2 · (~q × ~p )
[
G−0 (p, q) + 4G−1 (p, q) + 4G−3 (p, q)

]}
. (A.70)

Next, the one-pion exchange contributions proportional to the low-energy constant D are given
by

V (4)
DDNN =D

g2
AM
64

{
− 2τ1 · τ2 (ρn + ρp) +

(
τ3

1 + τ3
2

)
(ρn − ρp)

}~σ1 · ~q ~σ2 · ~q
m2

π + q2 , (A.71)

V (5)
DDNN =D

g2
AM

128π2

{
τ1 · τ2

[
2~σ1 · ~σ2Γ

+
2 (p) +

[
~σ1 · ~σ2

(
2p2 − q2/2

)
+ ~σ1 · ~q ~σ2 · ~q

(
1 − 2p2/q2

)

− 2
q2
~σ1 · (~q × ~p ) ~σ2 · (~q × ~p )

][
Γ+

0 (p) + 2Γ+
1 (p) + Γ+

2 (p)
]]

+ 12π2(ρn + ρp) − 6m2
πΓ

+
0 (p)

}

+ D
g2

AM
256π2

(
τ3

1 + τ3
2

) {
2~σ1 · ~σ2Γ

−
2 (p) +

[
~σ1 · ~σ2

(
2p2 − q2/2

)
+ ~σ1 · ~q ~σ2 · ~q

(
1 − 2p2/q2

)

− 2
q2
~σ1 · (~q × ~p ) ~σ2 · (~q × ~p )

][
Γ−0 (p) + 2Γ−1 (p) + Γ−2 (p)

]
+ 4π2(ρn − ρp) + 2m2

πΓ
−
0 (p)

}
.

(A.72)

Finally, the contribution from the contact 3N interaction proportional to the low-energy constant
E is

V (6)
DDNN =E

3M
16

{
− 2(ρn + ρp) +

(
τ3

1 + τ3
2

)
(ρn − ρp)

}
. (A.73)

In Eqs. (A.69), (A.70) and (A.72), the functions Γ±j correspond to integrals over a pion propa-
gator. They are given by

Γ±0 (p) =
1

2p

∫ ∞

0
dk k ln

(
m2

π + (p + k)2

m2
π + (p − k)2

) [
np

k ± nn
k

]
, (A.74)
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Γ±1 (p) =
1

4p3

∫ ∞

0
dk k

{
4pk − (m2

π + p2 + k2) ln
(
m2

π + (p + k)2

m2
π + (p − k)2

) } [
np

k ± nn
k

]
, (A.75)

Γ±2 (p) =
1

16p3

∫ ∞

0
dk k

{
4pk(m2

π + p2 + k2) −
[
m2

π + (p + k)2
][

m2
π + (p − k)2

]

× ln
(
m2

π + (p + k)2

m2
π + (p − k)2

) } [
np

k ± nn
k

]
, (A.76)

Γ±3 (p) =
1

16p5

∫ ∞

0
dk k

{
− 12pk(m2

π + p2 + k2) +
[
3(m2

π + p2 + k2)2 − 4p2k2
]

× ln
(
m2

π + (p + k)2

m2
π + (p − k)2

) } [
np

k ± nn
k

]
, (A.77)

The functions G±j (p) result from integrals over two pion propagators. They are given by Eqs.
(19)-(22) of Ref. [206] together with

G±0,∗,∗∗(p) =
1

2p

∫ ∞

0
dk

{k, k3, k5}√
A(p) + q2k2

ln


qk +

√
A(p) + q2k2

√
A(p)


[
np

k ± nn
k

]
, (A.78)

where A(p) =
(
m2

π + (p + k)2)(m2
π + (p − k)2).

Numerical simulations of core-collapse supernovæ and binary neutron-star mergers probe
the nuclear EoS over a wide range of densities, temperature, and isospin asymmetries. Within
the framework employed in this thesis, the computation of such a global nuclear EoS requires
the computation of the matrix elements of the antisymmetrized effective two-body potential
V̄DDNN(T, ρ, δ) for each value of T , ρ and δ. To facilitate this procedure, it may be useful
to employ the isospin-asymmetry expansion of the nn-, pp- and np-channel components of
V̄DDNN(T, ρ, δ), i.e.,

V̄nn/pp
DDNN(T, ρ, δ) '

N∑

n=0

ν
nn/pp
n (T, ρ) δn, (A.79)

V̄np
DDNN(T, ρ, δ) '

N∑

n=0

ν
np
2n(T, ρ) δ2n, (A.80)

where the different expansion coefficients are given by

ν
nn/pp/np
n (T, ρ) =

1
n!
∂nV̄nn/pp/np

DDNN (T, ρ, δ)
∂δn

∣∣∣∣∣
δ=0
. (A.81)

Note that the expansion of the nn- and pp-channel components involves also odd term in δ. In
Figs. A.3 and A.4, selected nn- and np-channel partial-wave amplitudes of the antisymmetrized
effective two-body potential are shown for δ = 0, 0.5, 0.9. Also shown are the results for the
expansion coefficients, νnn

1,2,3(T, ρ) and ν
np
2,4,6(T, ρ), respectively. For δ = 0.9, we compare the

full isospin-asymmetry dependent results with the ones obtained from Eqs. (A.79) and (A.80),
truncated at order N = 3. One sees that the expansion of the effective two-body potential
behaves similar to the one of the first-order many-body contribution from two-nucleon interac-
tions [F̄1,NN], i.e., the coefficients νnn/pp

n (T, ρ) and ν
np
2n(T, ρ) are hierarchically ordered, and the

expansion is well-converged at low orders.
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Figure A.3.: Same as Fig. A.4 but for the nn-channel, see text for details.
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Figure A.4.: Selected partial-wave matrix elements of the np-channel n3lo414 DDNN in-
teraction at T = 5 MeV and ρ = 0.15 fm−3, see text for details. In the case of
δ = 0.9, the green solid lines show the exact matrix elements, and the black
dotted lines the ones obtained from the Maclaurin expansion in δ (truncated at
order N = 3).
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[134] E. Epelbaum, A. Nogga, W. Glöckle, H. Kamada, U.-G. Meissner, et al., Three nucleon forces
from chiral effective field theory, Phys. Rev. C, 66 (2002), p. 064001. (Cited on page 19.)

[135] E. Epelbaum, A. Nogga, W. Gloeckle, H. Kamada, U.-G. Meissner, and H. Witala, Few nucleon
systems with two nucleon forces from chiral effective field theory, Eur. Phys. J. A, 15 (2002),
pp. 543–563. (Cited on page 20.)

[136] A. Erdelyi, Asymptotic Expansions, Dover Publications, New York, 1987. (Cited on pages 14
and 88.)

[137] P. Erdös and K. P. Jain, A note on the quantum-statistical Brillouin-Wigner perturbation theory,
Phys. Lett. A, 24 (1967), pp. 123 – 124. (Cited on page 37.)

[138] T. Ericson and W. Weise, Pions and Nuclei, Clarendon Press, Oxford, 1988. (Cited on page 17.)

[139] K. Erkelenz, R. Alzetta, and K. Holinde, Momentum space calculations and helicity formalism
in nuclear physics, Nucl. Phys. A, 176 (1971), pp. 413 – 432. (Cited on page 95.)

205



B. Bibliography

[140] L. D. Faddeev, Mass in quantum Yang-Mills theory (comment on a Clay Millenium Problem),
Bull. Braz. Math. Soc., 33 (2002), pp. 201–212. (Cited on page 8.)

[141] A. Fedoseew and H. Lenske, Thermal properties of asymmetric nuclear matter, Phys. Rev. C, 91
(2015), p. 034307. (Cited on pages 130 and 131.)
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[156] R. J. Furnstahl, G. Rupak, and T. Schäfer, Effective Field Theory and Finite Density Systems,
Ann. Rev. Nucl. Part. Sci., 58 (2008), pp. 1–25. (Cited on page 26.)

[157] J. Gasser and H. Leutwyler, Chiral perturbation theory to one loop, Ann. Phys., 158 (1984),
p. 142. (Cited on pages 11 and 190.)

206



B. Bibliography

[158] J. Gasser, M. Sainio, and A. Svarc, Nucleons with chiral loops, Nucl. Phys. B, 307 (1988), p. 779.
(Cited on page 191.)

[159] B. R. Gelbaum and J. M. H. Olmsted, Counterexamples in Analysis, Dover Publications, New
York, 2003. (Cited on page 137.)

[160] M. Gell-Mann, A schematic model of baryons and mesons, Phys. Lett., 8 (1964), pp. 214–215.
(Cited on page 5.)

[161] M. Gell-Mann and F. Low, Bound states in quantum field theory, Phys. Rev., 84 (1951), pp. 350–
354. (Cited on page 33.)

[162] M. Gell-Mann, R. J. Oakes, and B. Renner, Behavior of current divergences under SU(3) x SU(3),
Phys. Rev., 175 (1968), pp. 2195–2199. (Cited on page 11.)

[163] H. Georgi, Weak Interactions and Modern Particle Theory, Dover Publications, New York, 2009.
(Cited on pages 188 and 191.)

[164] A. Gezerlis and J. Carlson, Strongly paired fermions: Cold atoms and neutron matter, Phys. Rev.
C, 77 (2008), p. 032801. (Cited on page 116.)

[165] A. Gezerlis, I. Tews, E. Epelbaum, M. Freunek, S. Gandolfi, et al., Local chiral effective field
theory interactions and quantum Monte Carlo applications, Phys. Rev. C, 90 (2014), p. 054323.
(Cited on pages 26 and 115.)

[166] A. Gezerlis, I. Tews, E. Epelbaum, S. Gandolfi, K. Hebeler, A. Nogga, and A. Schwenk, Quan-
tum Monte Carlo calculations with chiral effective field theory interactions, Phys. Rev. Lett., 111
(2013), p. 032501. (Cited on page 115.)

[167] A. E. Glassgold, W. Heckrotte, and K. M. Watson, Linked-diagram expansions for quantum
statistical mechanics, Phys. Rev., 115 (1959), pp. 1374–1389. (Cited on page 37.)

[168] S. D. Głazek and K. G. Wilson, Renormalization of Hamiltonians, Phys. Rev. D, 48 (1993),
pp. 5863–5872. (Cited on page 24.)

[169] N. K. Glendenning, Compact Stars, Springer, New York, 2000. (Cited on pages 9, 26, and 28.)

[170] M. L. Goldberger and S. B. Treiman, Form factors in β decay and µ capture, Phys. Rev., 111
(1958), pp. 354–361. (Cited on page 13.)

[171] J. Goldstone, Derivation of the Brueckner many-body theory, Proc. Roy. Soc. Lond. A Math.
Phys. Eng. Sci., 239 (1957), pp. 267–279. (Cited on pages 25 and 37.)

[172] J. Goldstone, Field theories with superconductor solutions, Nuovo Cim., 19 (1961), pp. 154–164.
(Cited on page 10.)

[173] J. Goldstone, A. Salam, and S. Weinberg, Broken symmetries, Phys. Rev., 127 (1962), pp. 965–
970. (Cited on page 10.)

[174] J. Goto and S. Machida, Nuclear forces in the momentum space*, Progress of Theoretical Physics,
25 (1961), p. 64. (Cited on page 17.)

[175] D. J. Gross and F. Wilczek, Asymptotically Free Gauge Theories. I, Phys. Rev. D, 8 (1973),
pp. 3633–3652. (Cited on page 7.)

[176] D. J. Gross and F. Wilczek, Ultraviolet Behavior of Nonabelian Gauge Theories, Phys. Rev. Lett.,
30 (1973), pp. 1343–1346. (Cited on page 7.)

207



B. Bibliography

[177] D. J. Gross and F. Wilczek, Asymptotically free gauge theories. II, Phys. Rev. D, 9 (1974),
pp. 980–993. (Cited on page 7.)

[178] E. K. E. Gross and E. Runge, Many-Particle Theory, IOP Publishing, Bristol, 1986. (Cited on
pages 34, 35, and 51.)

[179] R. Haag, Local Quantum Physics: Fields, Particles, Algebras, Springer, Berlin, 1996. (Cited on
pages 3, 37, and 78.)

[180] P. Haensel, A. Y. Potekhin, and D. G. Yakovlev, Neutron Stars 1: Equation of State and Structure,
Springer, New York, 2007. (Cited on pages 9, 27, and 29.)

[181] G. Hagen, T. Papenbrock, A. Ekström, K. A. Wendt, G. Baardsen, S. Gandolfi, M. Hjorth-
Jensen, and C. J. Horowitz, Coupled-cluster calculations of nucleonic matter, Phys. Rev. C, 89
(2014), p. 014319. (Cited on pages 26 and 115.)

[182] H.-W. Hammer, A. Nogga, and A. Schwenk, Three-body forces: From cold atoms to nuclei, Rev.
Mod. Phys., 85 (2013), p. 197. (Cited on page 23.)

[183] M. Hashimoto, H. Seki, and M. Yamada, Shape of nuclei in the crust of a neutron star., Progress
of Theoretical Physics, 71 (1984), pp. 320–326. (Cited on page 122.)

[184] K. Hebeler, Momentum space evolution of chiral three-nucleon forces, Phys. Rev. C, 85 (2012),
p. 021002. (Cited on pages 24 and 109.)

[185] K. Hebeler, S. K. Bogner, R. J. Furnstahl, A. Nogga, and A. Schwenk, Improved nuclear matter
calculations from chiral low-momentum interactions, Phys. Rev. C, 83 (2011), p. 031301. (Cited
on page 2.)

[186] K. Hebeler and R. J. Furnstahl, Neutron matter based on consistently evolved chiral three-
nucleon interactions, Phys. Rev. C, 87 (2013), p. 031302. (Cited on page 109.)

[187] K. Hebeler, J. D. Holt, J. Menendez, and A. Schwenk, Nuclear forces and their impact on
neutron-rich nuclei and neutron-rich matter, Ann. Rev. Nucl. Part. Sci., 65 (2015), pp. 457–484.
(Cited on page 26.)

[188] K. Hebeler, H. Krebs, E. Epelbaum, J. Golak, and R. Skibiński, Efficient calculation of chiral
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