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BOUNCE STATISTICS FOR RATIONAL LATTICE PATHS

DANIEL BIRMAJER, JUAN B. GIL, AND MICHAEL D. WEINER

Abstract. Given two relatively prime positive integers α and β, we consider simple lattice paths
(with unit East and unit North steps) from (0, 0) to (αk, βk), and enumerate them by their left and

right bounces with respect to the line y = β

α
x. We give the corresponding multivariate generating

functions for all such paths as well as for subclasses of paths that start and end with a prescribed
step. For illustration purposes, we discuss the case β = 1 and express some of our functions in
terms of the Fuss-Catalan generating function cα(x).

1. Introduction

Motived by recent work of Pan and Remmel [5], we consider the class Lβ/α(k) of simple lattice
paths (with east ‘E’ and north ‘N’ unit steps) from (0, 0) to (αk, βk), where k, α, and β are positive
integers with gcd(α, β) = 1. An AB-path is such a lattice path that starts with an A-step and ends
with a B-step with A,B ∈ {E,N}.

EE-path NN-path EN-path

Figure 1. Examples of lattice paths in L3/2(2).

It is easy to see that there are
(
(α+β)k

αk

)
lattice paths in Lβ/α(k), so we get the generating function

g(x) =

∞∑

k=1

(
(α+ β)k

αk

)

xk,

and similarly we have

gee(x) =
∞∑

k=1

(
(α+β)k−2

αk−2

)
xk, gen(x) =

∞∑

k=1

(
(α+β)k−2

αk−1

)
xk, gnn(x) =

∞∑

k=1

(
(α+β)k−2

αk

)
xk,

where gab(x) denotes the generating function enumerating AB-paths. Note that gne(x) = gen(x), and

β
(
gee(x) + gen(x)

)
= α

(
gnn(x) + gen(x)

)
. (1)

In addition to counting the number of lattice paths in Lβ/α(k) that start with an E-step, the function
gE⊛(x) = gee(x)+gen(x) also enumerates ordered partitions (weak compositions) of βk into αk parts.
There is a similar interpretation for gN⊛(x) = gnn(x) + gen(x).
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Definition 1.1. We say that a path L has a “left bounce” (resp. “right bounce”) if a vertex of the

form EN (resp. NE) on L touches the line y = β
αx, see Figure 2. A path is said to be bounce-free

with respect to y = β
αx if it has no bounces (left or right) at that line, see Figure 3. We let f(x)

be the generating function enumerating bounce-free rational paths with respect to the line y = β
αx,

and let fab(x) denote the corresponding function for bounce-free AB-paths.

y = 3

5
x

y = 3

5
x

Figure 2. Examples of a left and a right bounce, respectively.

y = 3

5
x

Figure 3. Example of a bounce-free NE-path in L3/5(2).

The main goal of this paper is to derive generating functions Gab(x, s, t) that count AB-paths in
Lβ/α(k), where the coefficient of sℓtrxk gives the number of lattice paths from (0, 0) to (αk, βk)
having exactly ℓ left bounces and r right bounces. For this purpose, we first obtain expressions for
the bounce-free functions f(x) and fab(x) in terms of the known functions g(x) and gab(x).

Finally, in Section 4 we discuss the particular case α ≥ 1, β = 1 (which by symmetry is similar
to the case α = 1, β ≥ 1) and give expressions for the bounce-free generating functions in terms of
the Fuss-Catalan function cα(x).

2. Bounce-free rational lattice paths

Throughout this section we fix α, β ∈ N such that gcd(α, β) = 1. As before, we let gab(x) denote
the generating function for the number of AB-paths from (0, 0) to (αk, βk), and we let fab(x) be the

corresponding function for the AB-paths that are bounce-free with respect to the line y = β
αx.

Lemma 2.1. The generating function for the number of EN-paths with no right bounces is given by

nrben(x) = fen(x) +
fee(x)fnn(x)

1− fen(x)
=

gen(x)

1 + gen(x)
. (2)

This is the same function as for the number of EN-paths with no left bounces.

Proof. First, recall that the number of bounce-free EN-paths is given by fen(x) = fne(x). On the

other hand, any left bounce on the line y = β
αx breaks up the path into two path segments: an

EE-path segment and an NN-path segment:
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y =
β

α
x

If a lattice path P has exactly m ≥ 1 left bounces and no right bounces, we can represent P as a
concatenation of m+ 1 bounce-free path segments

P = P ee

1 P ne

2 · · ·P ne

m P nn

m+1,

each one starting and ending at the line y = β
αx. Here P

ab

i denotes a bounce-free path starting with
an A-step and ending with a B-step. Therefore, the total number of paths P with no right bounces
and having at least one left bounce is given by the generating function

fee(x)

( ∞∑

j=0

fen(x)
j

)

fnn(x) =
fee(x)fnn(x)

1− fen(x)
.

In conclusion, fen(x) +
fee(x)fnn(x)
1−fen(x)

gives the number of EN-paths that contain no right bounces.

Let us now examine the right-hand side of (2). Recall that gen(x) is the generating function for

the set Len

β/α of all EN-paths from (0, 0) to a point on the line y = β
αx. For i ≥ 1, consider the set

Ai = {paths in Len

β/α with a right bounce at the point (αi, βi)}.

By the inclusion-exclusion principle, the number of paths with no right bounces at the points (αi, βi)
for i = 1, . . . ,m, is given by

|Len

β/α| −
∑

|Ai|+
∑

|Ai ∩ Aj | −
∑

|Ai ∩ Aj ∩ Ak|+ · · ·+ (−1)m|A1 ∩ · · · ∩ Am|. (3)

Since the set of EN-paths with m right bounces has the generating function gen(x)
m+1, we get that

the generating function for (3) is gen(x) − gen(x)
2 + · · · + (−1)mgen(x)

m+1. Taking the limit as
m → ∞, we get that

∞∑

i=0

(−1)igen(x)
i+1 =

gen(x)

1 + gen(x)

gives the number of EN-paths that contain no right bounces. This proves (2). �

Lemma 2.2. The generating functions for the number of EE-paths with no right bounces and for
the number of NN-paths with no right bounces, respectively, are given by

nrbee(x) =
fee(x)

1− fen(x)
=

gee(x)

1 + gen(x)
and nrbnn(x) =

fnn(x)

1− fen(x)
=

gnn(x)

1 + gen(x)
. (4)

These functions also give the number of corresponding paths with no left bounces.

Proof. First of all, it is easy to argue that

fee(x)

∞∑

j=0

fne(x)
j =

fee(x)

1− fne(x)
=

fee(x)

1− fen(x)

counts the number of EE-paths with no right bounces.

To show that gee(x)
1+gen(x)

counts the same number of paths, consider the set

Ai = {paths in Lee

β/α with a right bounce at (αi, βi)}.
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As we did in the proof of the previous lemma, we apply the inclusion-exclusion principle to conclude
that the number of paths with no right bounces at the points (αi, βi) for i = 1, . . . ,m, is counted
by the generating function gee(x) − gen(x)gee(x) + gen(x)

2gee(x)− · · ·+ (−1)mgen(x)
mgee(x), thus

∞∑

i=0

(−1)igen(x)
igee(x) =

gee(x)

1 + gen(x)

also counts the number of EE-paths that contain no right bounces. This proves the first of the two
equations claimed in (4). The second equation follows by the symmetry between the pair (α, β) with
EE-paths and the pair (β, α) with NN-paths. �

As a consequence of the previous two lemmas, we arrive at the following result.

Theorem 2.3. Let fab(x) be the generating function for the number of AB-paths that are bounce-free

with respect to the line y = β
αx. Then

fee(x) =
gee(x)

(1 + gen(x))2 − gee(x)gnn(x)
, fnn(x) =

gnn(x)

(1 + gen(x))2 − gee(x)gnn(x)
,

fen(x) = 1−
1 + gen(x)

(1 + gen(x))2 − gee(x)gnn(x)
.

Corollary 2.4. If f(x) enumerates the bounce-free lattice paths in Lβ/α(k), then

f(x) =
g(x) + 2

(
gen(x)

2 − gee(x)gnn(x)
)

(1 + gen(x))2 − gee(x)gnn(x)
.

3. Left-bounce and right-bounce statistics

Let b ℓ,r(k) be the number of paths in Lβ/α(k) having exactly ℓ left bounces and r right bounces

on the line y = β
αx, see Figure 2, and let Bℓ,r(x) be the corresponding generating function.

Let fA⊛(x) denote the generating function for the number of bounce-free paths that start with
an A-step, and let f⊛B(x) enumerate the bounce-free paths that end with a B-step. Thus

f⊛E(x) = fE⊛(x) = fee(x) + fne(x) and fN⊛(x) = f⊛N(x) = fnn(x) + fne(x).

Clearly, B0,0(x) = f(x), and for ℓ, r ∈ N, we have

Bℓ,0 = f⊛E(x)fne(x)
ℓ−1fN⊛(x) and B0,r = f⊛N(x)fen(x)

r−1fE⊛(x). (5)

Lemma 3.1. The generating function for the number of paths in Lβ/α(k) with no left (or right)

bounces on the line y = β
αx is given by

∞∑

ℓ=0

Bℓ,0(x) =

∞∑

r=0

B0,r(x) =
g(x) + gen(x)

2 − gee(x)gnn(x)

1 + gen(x)
.

Proof. Using equations (5), (2) and (4), we get

∞∑

ℓ=0

Bℓ,0(x) = B0,0(x) +

∞∑

ℓ=1

f⊛E(x)fne(x)
ℓ−1fN⊛(x)

= fee(x) + fnn(x) + 2fen(x) +
[fee(x) + fen(x)][fnn(x) + fen(x)]

1− fen(x)

=
gee(x) + gnn(x) + gen(x)

1 + gen(x)
+

fen(x)

1− fen(x)
(6)
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Now, by the third equation of Theorem 2.3, we have

1

1− fen(x)
=

(1 + gen(x))
2 − gee(x)gnn(x)

1 + gen(x)
,

and therefore

fen(x)

1− fen(x)
=

1

1− fen(x)
− 1 =

gen(x) + gen(x)
2 − gee(x)gnn(x)

1 + gen(x)
.

Putting this expression into (6) and simplifying gives the claimed identity. �

Lemma 3.2. Let Bℓ,r(x) be the generating function for the number of paths in Lβ/α(k) having

exactly ℓ left bounces and r right bounces on the line y = β
αx. For ℓ, r > 0, we have

Bℓ,r(x) =

ℓ−1∑

i=1

(
ℓ− 1

i

)(
r − 1

i− 1

)

f⊛E(x)fN⊛(x)
(
fee(x)fnn(x)

)i
fen(x)

ℓ+r−2i−1

+

ℓ∑

i=1

(
ℓ− 1

i− 1

)(
r − 1

i− 1

)

f⊛E(x)
2fee(x)

i−1fnn(x)
ifen(x)

ℓ+r−2i

+

ℓ∑

i=1

(
ℓ− 1

i− 1

)(
r − 1

i− 1

)

f⊛N(x)
2fee(x)

ifnn(x)
i−1fen(x)

ℓ+r−2i

+
ℓ+1∑

i=2

(
ℓ− 1

i− 2

)(
r − 1

i− 1

)

f⊛N(x)fE⊛(x)
(
fee(x)fnn(x)

)i−1
fen(x)

ℓ+r−2i+1.

Proof. We adopt the standard convention
(
m
n

)
= 0 when n > m ≥ 0. We are interested in counting all

paths P having exactly r right bounces and ℓ left bounces. The vertices of such bounces correspond
to lattice points on the line y = β

αx. We group the right bounces into segments with no left bounces,
and such that there must be at least one left bounce between two groups. If there are i such segments,
this grouping induces a composition of r into i parts r = r1 + · · · + ri, where rj is the number of

right bounces in the jth group. There are
(
r−1
i−1

)
such compositions.

Assume that P is a path with i such groups of right bounces. The ℓ left bounces must then be
distributed between the origin and the first right bounce, the gaps between the i segments defined
above, and between the last right bounce and the end of the path. There are four disjoint cases.

Case 1: The first and last bounces are left bounces. In this case there are i+1 segments to place the
left bounces, which can be done in

(
ℓ−1
i

)
different ways (compositions of ℓ into i+1 parts). Assume

the bounces are distributed according to the compositions r = r1 + · · ·+ ri and ℓ = ℓ1 + · · ·+ ℓi+1.
Thus between the origin and the last right bounce of the first group, the path is of the form

u1,0 E|Nu1,1 E|N · · ·E|Nu1,ℓ1−1 E|N
︸ ︷︷ ︸

ℓ1 left bounces

w1 N|E v1,1 N|E · · ·N|E v1,r1−1 N|E
︸ ︷︷ ︸

r1 right bounces

,

where the symbol | indicates a bounce and the ui,j, vi,j , wj represent bounce-free path segments.
Since there are ℓ1 left bounces and r1 right bounces in this group, the enumeration of such path
segments can be achieved by the generating function f⊛E(x)fne(x)

ℓ1−1fnn(x)fen(x)
r1−1.

The first path segment is then followed by i− 1 segments of the form

E uj,0 E|Nuj,1 E|N · · ·E|Nuj,ℓj−1 E|N
︸ ︷︷ ︸

ℓj left bounces

wj N|E vj,1N|E · · ·N|E vj,rj−1 N|E
︸ ︷︷ ︸

rj right bounces

, 2 ≤ j ≤ i, (7)
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where the first E-step is the last step of the previous group. The number of all possible such segments
can be counted using the generating function

fee(x)fne(x)
ℓj−1fnn(x)fen(x)

rj−1, 2 ≤ j ≤ i. (8)

Finally, the last group (containing only left bounces) must be of the form

Eui+1,0 E|Nui+1,1 E|N · · ·E|Nui+1,ℓj+1−1 E|N
︸ ︷︷ ︸

ℓi+1 left bounces

wi+1,

and the corresponding generating function takes the form fee(x)fne(x)
ℓi+1−1fN⊛(x). Multiplying all

the pieces together we arrive at the generating function

ℓ−1∑

i=1

(
ℓ− 1

i

)(
r − 1

i− 1

)

f⊛E(x)fN⊛(x)
(
fee(x)fnn(x)

)i
fen(x)

ℓ+r−2i−1.

Case 2: The first bounce of P is a left bounce and its last bounce is a right bounce. In this case,
there are i segments to place the left bounces, which can be done in

(
ℓ−1
i−1

)
different ways. The

partition of the path into groups is similar as in Case 1, except that the last segment has now no
left bounces. Thus the function fee(x)fne(x)

ℓi+1−1fN⊛(x) from before should be replaced by fE⊛(x).
Multiplying the pieces together we arrive at

ℓ∑

i=1

(
ℓ− 1

i− 1

)(
r − 1

i− 1

)

f⊛E(x)
2fee(x)

i−1fnn(x)
ifen(x)

ℓ+r−2i.

Case 3: The first bounce of P is a right bounce and its last bounce is a left bounce. Again, this
may happen in

(
ℓ−1
i−1

)
different ways. With a similar argument as for the previous step, we get

ℓ∑

i=1

(
ℓ− 1

i− 1

)(
r − 1

i− 1

)

f⊛N(x)
2fee(x)

ifnn(x)
i−1fen(x)

ℓ+r−2i.

Case 4: The first and last bounces of P are right bounces. Thus there are only i−1 segments to place
the left bounces, which can be done in

(
ℓ−1
i−2

)
different ways. These i−1 path segments containing left

bounces are of the form (7) and can therefore be counted by (8). The first segment must be of the
form w1 N|E v1,1N|E · · ·N|E v1,r1−1 N|E with r1 right bounces, and P must end with a bounce-free
segment that starts with an E-step. These two segments are counted by f⊛N(x)fen(x)

r1−1fE⊛(x).
Combining the information for the various pieces of P , we get

ℓ+1∑

i=2

(
ℓ − 1

i − 2

)(
r − 1

i− 1

)

f⊛N(x)fE⊛(x)
(
fee(x)fnn(x)

)i−1
fen(x)

ℓ+r−2i+1.

Finally, Bℓ,r(x) is just the sum of the functions obtained above for the four disjoint cases. �

Theorem 3.3. Let Bℓ,r(x) be the generating function for the number of paths in Lβ/α(k) having

exactly ℓ left bounces and r right bounces on the line y = β
αx. Then for the multivariate generating

function G(x, s, t) =
∑

ℓ,r≥0Bℓ,r(x)s
ℓtr, we have

G(x, s, t) =
g(x) + (2− s− t)

(
gen(x)

2 − gee(x)gnn(x)
)

1 + (2− s− t)gen(x) + (1 − s)(1− t)(gen(x)2 − gee(x)gnn(x))
.
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Moreover, if Gab(x, s, t) denotes the restriction of G(x, s, t) to AB-paths, then

Gee(x, s, t) =
gee(x)

1 + (2− s− t)gen(x) + (1 − s)(1− t)(gen(x)2 − gee(x)gnn(x))
,

Gnn(x, s, t) =
gnn(x)

1 + (2− s− t)gen(x) + (1 − s)(1− t)(gen(x)2 − gee(x)gnn(x))
,

Gen(x, s, t) =
gen(x) + (1− s)

(
gen(x)

2 − gee(x)gnn(x)
)

1 + (2− s− t)gen(x) + (1 − s)(1− t)(gen(x)2 − gee(x)gnn(x))
,

Gne(x, s, t) =
gen(x) + (1 − t)

(
gen(x)

2 − gee(x)gnn(x)
)

1 + (2− s− t)gen(x) + (1 − s)(1− t)(gen(x)2 − gee(x)gnn(x))
.

Proof. First, split G(x, s, t) = f(x) +
∑∞

ℓ=1 Bℓ,0(x)s
ℓ +

∑∞

r=1 B0,r(x)t
r +

∑

ℓ,r≥1 Bℓ,r(x)s
ℓtr. Using

the identities from equation (5), we get

∞∑

ℓ=1

Bℓ,0(x)s
ℓ +

∞∑

r=1

B0,r(x)t
r =

sf⊛E(x)fN⊛(x)

1− sfen(x)
+

tf⊛E(x)fN⊛(x)

1− tfen(x)
.

Furthermore, by the previous lemma and the basic identity

∞∑

ℓ=j+1

∞∑

r=i

(
ℓ− 1

j

)(
r − 1

i− 1

)

yℓzr =
( y

1− y

)j+1( z

1− z

)i

,

the term
∑

ℓ,r≥1Bℓ,r(x)s
ℓtr can be written as the sum of the following four functions:

f⊛E(x)fN⊛(x)
s

1 − sfen(x)

∞∑

i=1

[
stfee(x)fnn(x)

(1 − sfen(x))(1 − tfen(x))

]i

,

f⊛E(x)
2 1

fee(x)

∞∑

i=1

[
stfee(x)fnn(x)

(1− sfen(x))(1 − tfen(x))

]i

,

f⊛N(x)
2 1

fnn(x)

∞∑

i=1

[
stfee(x)fnn(x)

(1 − sfen(x))(1 − tfen(x))

]i

,

f⊛E(x)fN⊛(x)
t

1 − tfen(x)

∞∑

i=2

[
stfee(x)fnn(x)

(1 − sfen(x))(1 − tfen(x))

]i−1

.

Adding these functions and simplifying, we arrive at

G(x, s, t) =
f − (s+ t)

(
f2
en
− feefnn

)

(1 − sfen)(1− tfen)− stfeefnn
,

which by Theorem 2.3 gives

G(x, s, t) =
g + (2− s− t)

(
g2en − geegnn

)

1 + (2− s− t)gen + (1− s)(1 − t)
(
g2en − geegnn

) .

Finally, the claimed equations for the restricted functions Gab(x, s, t) can be obtained in a similar
way after making the appropriate adjustments to Lemma 3.2. �

Note that when s = t = 0 we recover the expression for f(x) (bounce-free case) from Corollary 2.4.
Also, with s = 0 and t = 1 (or equivalently s = 1 and t = 0) we recover Lemma 3.1.
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4. The case when β = 1

For the special case when β = 1, we have

g(x) =

∞∑

k=1

(
(α+ 1)k

k

)

xk,

which is related to the generating function for the Fuss-Catalan numbers 1
αk+1

(
(α+1)k

k

)
. Also,

gee(x) =

∞∑

k=1

(
(α+1)k−2

k

)
xk, gen(x) =

∞∑

k=1

(
(α+1)k−2

k−1

)
xk, gnn(x) =

∞∑

k=1

(
(α+1)k−2

k−2

)
xk,

and equation (1) simplifies to

gee(x) = αgnn(x) + (α − 1)gen(x).

Moreover, one can prove (combinatorially) the related identity

fee(x) = fnn(x) + (α− 1)fen(x),

and we get gen(x)
2 − gee(x)gnn(x) = gnn(x). This allows us to simplify some of the identities from

the previous sections. In fact, Theorem 2.3 becomes

fee(x) =
gee(x)

1 + g(x)− gee(x)
, fen(x) =

gnn(x) + gen(x)

1 + g(x)− gee(x)
, fnn(x) =

gnn(x)

1 + g(x)− gee(x)
,

and the function G(x, s, t) takes the form

G(x, s, t) =
g(x) + (2− s− t)gnn(x)

1 + (2 − s− t)gen(x) + (1− s)(1 − t)gnn(x)
.

Moreover, in terms of the function

cα(x) =

∞∑

k=0

1

αk + 1

(
(α+ 1)k

k

)

xk,

the generating functions for the bounce-free AB-paths can be written as

fee(x) =
(αcα(x)− 1)(cα(x) − 1)

(1− α)cα(x)2 + (α+ 1)cα(x) − 1
,

fnn(x) =
(cα(x)− 1)2

(1− α)cα(x)2 + (α+ 1)cα(x) − 1
,

fen(x) =
cα(x)(cα(x)− 1)

(1− α)cα(x)2 + (α+ 1)cα(x) − 1
.

For α > 1 there seems to be no results in the literature that address the bounce statistics encoded
by G(x, s, t). Only for α = 2, the OEIS [4, A000259, A000305] gives matches for the bounce-free
functions

fee(x) = x+ 4x2 + 18x3 + 89x4 + 466x5 + 2537x6 + 14209x7 + 81316x8 + · · · ,

fen(x) = x+ 3x2 + 13x3 + 63x4 + 326x5 + 1761x6 + 9808x7 + 55895x8 + · · · ,

which are connected to the enumeration of certain rooted planar maps, see [1, 6]. We leave it as an
open problem to find corresponding bijections.
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If α = β = 1, we can use properties of the Catalan generating function c(x) = c1(x) to further
simplify the functions above. In this case, we have

fee(x) = fnn(x) =
xc(x)2 − xc(x)

1 + xc(x)
, fen(x) =

xc(x)2

1 + xc(x)
, and f(x) = 2(c(x)− 1).

Moreover,

G(x, s, t) =
2xc(x) + (2− s− t)(xc(x) − x)

1− 2xc(x) + (2− s− t)x+ (1− s)(1− t)(xc(x) − x)
.

For this special case (α = β = 1), our results coincide with the bounce statistics obtained by Pan
and Remmel in [5]. We refer to their work for other related statistics and information regarding
some combinatorial applications. Here we would like to mention the interesting case of lattice paths
having exactly b bounces (left or right) for which the generating function becomes:1

Gb(x) = 2(c(x)− 1)b+1 = 2xb+1c(x)2b+2 = 2

∞∑

k=1

b+ 1

k + b

(
2k + 2b

k − 1

)

xk+b. (9)

For b = 1, . . . , 6, these sequences are listed in the OEIS (A002057, A003517, A003518, A003519,
A090749, A268446) with corresponding combinatorial interpretations, including the enumeration of
lattice paths, permutation patterns, standard Young tableaux, and other interesting families.

An interesting application of (9), not discussed in [5], is the following connection between lattice
paths with a prescribed number of bounces and standard Young tableaux.

Corollary 4.1. For b, n ∈ N and n > b, the set of lattice paths from (0, 0) to (n, n) that start with
an E-step and have exactly b bounces (left or right) is in one-to-one correspondence with the set of
standard Young tableaux of shape (n+ b, n− b− 1).

Horizontal crosses. In the context of this paper, a cross on a lattice path L ∈ Lβ/α(k) is a point

where L traverses the line y = β
αx. In general, enumerating the elements of Lβ/α(k) by the number

of crosses (vertical or horizontal) is more involved due to the fact that crosses may happen on a
non-lattice point. However, for β = 1, horizontal crosses (if any) occur on a lattice point and can
be easily handled with an inclusion-exclusion argument as we did for the enumeration of bounces.

Lemma 4.2. Let nhcab(x) denote the generating function for the number of AB-paths in L1/α(k)
with no horizontal crosses. Then

nhcee(x) =
gee(x)

1 + gee(x)
and nhcen(x) = nhcne(x) =

gen(x)

1 + gee(x)
.

Thus, lattice paths in L1/α(k) that start with an E-step and never cross the line y = 1
αx horizontally

are enumerated by the generating function

hE⊛(x) =
gee(x) + gen(x)

1 + gee(x)
=

∞∑

k=1

α(α + 2)

(α + 1)k + 1

(
(α + 1)k + 1

k − 1

)

xk.

Using the same technique, it is rather straightforward to combine the avoidance of horizontal
crosses with the avoidance of left and right bounces.

Lemma 4.3. Let Lnhc
1/α(k) be the set of paths in L1/α(k) with no horizontal crosses. The generating

function for the number of paths in Lnhc
1/α(k) that start with an E-step and have no right bounces is

given by

HE⊛(x) =
hE⊛(x)

1 + nhcen(x)
=

gE⊛(x)

1 + gE⊛(x)
= α(cα(x)− 1),

1Using Lemma 3.2 together with the additional simplification f⊛E(x)fN⊛(x) = c(x)− 1.
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where cα(x) is the Fuss-Catalan generating function.

Observe that any path in Lnhc
1/α(k) that starts with an N-step will remain above the line y = 1

αx

and must necessarily end with an E-step. This is precisely the set of rational Dyck paths with slope
1/α, which is enumerated by the Fuss-Catalan numbers. Thus HNE(x) = cα(x) − 1.

Once again, for α > 1 we did not find results concerning the enumeration of horizontal crosses.
Only for α = 2 the OEIS contains the sequence A046646 corresponding to

HE⊛(x) = 2x+ 6x2 + 24x3 + 110x4 + 546x5 + 2856x6 + 15504x7 + 86526x8 + · · ·

This function enumerates certain rooted planar maps, see [1].

5. Summary and final remarks

The main focus of this paper has been the enumeration of lattice paths from (0, 0) to (αk, βk) by

their bounces with respect to the line y = β
αx. A complete solution is provided by the generating

functions in Theorem 3.3, all expressed in terms of the simpler binomial functions gee, gen, and gnn.
The special case α = β = 1 was recently studied by Pan and Remmel [5] from the enumerative

and combinatorial points of view. For this case, we give a connection between lattice paths with
exactly b bounces and standard Young tableaux of shape (n+ b, n− b − 1), see Corollary 4.1.

It is worth mentioning that for b = 2 or 3, the function given in (9) is connected to certain permu-
tation patterns. In fact, x3c(x)6 counts the number of permutations containing a single occurrence
of an increasing subsequence of length three, cf. [3, 2], and x5c(x)8 enumerates permutations with a
single increasing subsequence of length three, with no two elements adjacent, cf. [2].

For other values of α and β there seems to be very little information in the literature. Only for
the case α = 2, β = 1, we found connections between bounce-free paths and the enumeration of
certain rooted planar maps, cf. [1]. However, the fact that the case β = 1 leads to the Fuss-Catalan
numbers suggests connections with other combinatorial structures.
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