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FROM DYCK PATHS TO STANDARD YOUNG TABLEAUX

JUAN B. GIL, PETER R. W. MCNAMARA, JORDAN O. TIRRELL, AND MICHAEL D. WEINER

Abstract. The number of Dyck paths of semilength n is certainly not equal to the number
of standard Young tableaux (SYT) with n boxes. We investigate several ways to add
structure or restrict these sets so as to obtain equinumerous sets. Our most sophisticated
bijective proof starts with Dyck paths whose k-ascents for k > 1 are labeled by connected
matchings on [k] and arrives at SYT with at most 2k − 1 rows. Along the way, this
bijection visits k-noncrossing and k-nonnesting partial matchings, oscillating tableaux and
involutions with decreasing subsequences of length at most 2k−1. In addition, we present
bijections from eight other types of Dyck and Motzkin paths to certain classes of SYT.

1. Introduction

Two classic and well-studied sets in combinatorics are the set of Dyck paths and the set
of standard Young tableaux (SYT). These sets are certainly not equinumerous. On the one
hand, the number of Dyck paths with semilength n is the Catalan number Cn and, starting
at C0, gives the sequence [19, A000108]:

1, 1, 2, 5, 14, 42, 132, 429, . . . .

Asymptotically,

Cn ∼ 4n

n
3

2

√
π

by Stirling’s formula. On the other hand, the number SYT(n) of standard Young tableaux
with n boxes gives the sequence [19, A000085]:

1, 1, 2, 4, 10, 26, 76, 232, . . .

and, asymptotically,

SYT(n) ∼
(n

e

)
n
2 e

√
n

(4e)
1

4

.

A proof, which also makes use of Stirling’s formula, can be found in [11, Theorem 8].
We address the following question: in what ways can we add extra structure or restrictions

to either set of objects to yield equinumerous sets? Roughly speaking, our goal is to reconcile
the two numbers Cn and SYT(n).

One well-known way to perform such a reconciliation is to observe that the number of
Dyck paths of semilength n equals the number of SYT of shape (n, n). Indeed, to map
bijectively from an SYT of shape (n, n) to a Dyck path, locate the numbers in the SYT
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in increasing order, and let an appearance on the upper row (resp. lower row) in English
notation give an up-step (resp. down-step) on the Dyck path.

Our main reconciliation goes in the other direction of adding extra structure to the Dyck
paths, and involves some ubiquitous combinatorial objects, including perfect matchings,
noncrossing partitions and nonnesting partitions, as well as their generalizations. Our
approach is motivated by the noncrossing partition transform (see Callan [8]), which can
be defined in terms of partial Bell polynomials as follows. For a sequence (xn), define (yn)
by

y0 = 1, yn =

n
∑

k=1

1

(n− k + 1)!
Bn,k(1!x1, 2!x2, . . . ) for n ≥ 1, (1.1)

where Bn,k denotes the (n, k)-th partial Bell polynomial defined as

Bn,k(z1, . . . , zn−k+1) =
∑

α∈πk(n)

n!

α1! · · ·αn−k+1!

(z1
1!

)α1 · · ·
(

zn−k+1

(n− k + 1)!

)αn−k+1

with πk(n) denoting the set of (n − k + 1)-part partitions of k such that α1 + 2α2 + · · · +
(n − k + 1)αn−k+1 = n. As shown in [3], if (xn) is a sequence of nonnegative integers, yn
gives the number of Dyck paths of semilength n such that each j-ascent may be labeled in
xj different ways. For example, we use xj = 0 if j-ascents are to be avoided. Recall that an
ascent of a Dyck path is a maximal consecutive sequence of up-steps, and it is a j-ascent
if it consists of j up-steps. As expected, if (xn) is the sequence of ones, then yn = Cn. In
general, (yn) enumerates configurations obtained by adorning the ascents with structures
whose elements are counted by (xn). In this paper, we are interested in a combinatorial
structure on Dyck paths that gives a configuration equinumerous to SYT. Rather than just
numbers, our labels on the ascents will be combinatorial objects, which we describe in the
next paragraph. A similar approach to counting labeled Catalan objects using partial Bell
polynomials has been used in [4] for partitions of polygons, in [5] for weighted compositions,
in [6] for rational Dyck paths, and the present paper can be seen as a new strand in this
program of work.

Let [n] denote the set {1, 2, . . . , n}. A graph on [n] is a partial matching if every vertex
has degree at most one. We will also refer to such graphs as involutions since they are
clearly in bijection with self-inverse permutations of [n]. We will call vertices of degree zero
singletons. A partial matching is a perfect matching if every vertex has degree exactly one;
note that the existence of a perfect matching implies that n is even. We will represent
partial matchings by graphs on the number line with the edges drawn as arcs, with these
arcs always drawn above the number line, as in Figure 1.1. A partial matching is a connected
matching if these arcs together with the n points on the number line form a connected set
as a subset of the plane. For example, in Figure 1.1, the matching on the left is connected
whereas the matching on the right has four connected components. Note that a partial
matching on [n] with n > 1 can only be connected if it is a perfect matching. When n = 1,
we consider its unique partial matching (consisting of no arcs) to be connected.

Definition. A cm-labeled Dyck path is a Dyck path where each k-ascent is labeled by a
connected matching on [k].
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1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Figure 1.1. Two partial matchings, namely (15)(28)(36)(47) and (16)(23)(4)(57)(8).

First note there are no connected matchings on [k] when k is odd and greater than 1, so
all the ascents in a cm-labeled Dyck path must be of even length or length 1. Secondly, a
cm-labeled Dyck path all of whose ascents are length 1, 2 or 4 is equivalent to its unlabeled
version since there is a unique connected matching on [k] when k = 1, 2, 4. The first
interesting case is when a Dyck path has 6-ascents, because then there are 4 ways to label
each 6-ascent:

For an explicit example of a cm-labeled Dyck path, see Figure 1.2.

Figure 1.2. A cm-labeled Dyck path.

This brings us to our promised reconciliation between Dyck paths and standard Young
tableaux.

Theorem 1.1. The number of cm-labeled Dyck paths of semilength n equals SYT(n).

In fact, we will prove a significant refinement of this theorem. Abusing terminology,
we will use the term singleton for a 1-ascent. In a partial matching, two arcs (i, j) and
(k, ℓ) form a crossing if i < k < j < ℓ or, equivalently, if the arcs cross in the graphical
representation of the partial matching. A k-crossing is a set of k arcs in a partial matching
M that are pairwise crossing, and the crossing number of M is the largest k such that M
has a k-crossing. A partial matching is k-noncrossing if it has no k-crossings. For example,
the partial matching (15)(28)(36)(47) on the left in Figure 1.1 is 4-noncrossing and has
crossing number 3 due to the arcs (15)(36)(47).

Our main result is the following theorem, which we will prove bijectively in Section 2.

Theorem 1.2. The number of cm-labeled Dyck paths of semilength n with s singletons and
k-noncrossing labels equals the number of standard Young tableaux with n boxes, s columns
of odd length, and at most 2k − 1 rows.
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Letting k be sufficiently large in Theorem 1.2 and summing over s yields Theorem 1.1.

Example 1.3. The set of cm-labeled Dyck paths of semilength n with 2-noncrossing labels
is precisely the set of Dyck paths of semilength n with ascents of length 1 or 2. Since this set
is in bijection with the set of Motzkin paths of length n (see [7]), Theorem 1.2 with k = 2
gives the known correspondence to SYT with n boxes and at most 3 rows. ([23] includes
an enumeration of these SYT; see [13] for a bijection from Motzkin paths to these SYT.)

The two ways we have mentioned so far to reconcile the number of Dyck paths and SYT
share the feature that only one of these two sets needs to be modified to obtain a bijection.
Specifically, the full set of Dyck paths of semilength n is in bijection with the SYT of shape
(n, n), while Theorem 1.1 tells us that the full set of SYT with n boxes is in bijection
with the Dyck paths of semilength n adorned with additional structure. There are further
reconciliations obtained by restricting both the set of Dyck paths and the set of SYT. For
example, the number of Dyck paths of semilength n without singleton ascents equals the
number of SYT of “flag shape” with n boxes. Five such special cases with bijective proofs
are the subject of Section 3, including one that arises from the Bell polynomial viewpoint.

Further connections between Dyck and Motzkin paths and SYT are examined in Sec-
tion 4. In particular, we consider the affect of assigning colors to the singletons of a Dyck
path. We obtain an elegant expression for the generating function for SYT of height at
most 2k − 1 in terms of the generating function for k-noncrossing perfect matchings. We
conclude with a result (Proposition 4.1) that shows that three classes of Motzkin paths are
in bijection with SYT.

2. cm-Labeled Dyck paths to SYT

The goal of this section is to bijectively prove Theorem 1.2. Our bijection will actually
be a composition of a series of bijections as illustrated in Figure 2.1.

The second step involving [10] is not needed if we just want to prove Theorem 1.1, but
it is needed to control the number of rows as bounded by 2k − 1 as in Theorem 1.2. The
reason, as we will see, is that the Robinson–Schensted–Knuth (RSK) algorithm behaves
well with respect to nestings. Nestings are defined for partial matchings in an analogous
way to crossings: two arcs (i, j) and (k, ℓ) form a nesting if i < k < ℓ < j. A k-nesting is a
set of k arcs in a partial matching that are pairwise nesting, with the nesting number and
k-nonnesting defined in a way parallel to the analogous terms for crossings. For example,
the partial matching (15)(28)(36)(47) on the left in Figure 1.1 has nesting number 2 due to
the arcs (28)(36) but is 3-nonnesting.

2.1. Dyck paths to noncrossing partial matchings. The first component of this bijec-
tion is based on one which Callan [8] says “is essentially due to Prodinger [22],” and maps
from Dyck paths to noncrossing partitions. Prodinger takes plane trees as his domain, but
could equally have worked in the language of Dyck paths (see [28, Theorem 1.5.1]).

Consider a cm-labeled Dyck path of semilength n with k-noncrossing labels. We number
the up-steps in the following fashion. First number the down-steps with [n] in increasing
order from left-to-right. Then move each such label horizontally to the left until it meets
its corresponding up-step, resulting in a labeling on the up-steps. See Figure 2.2 for an
example.



FROM DYCK PATHS TO STANDARD YOUNG TABLEAUX 5

cm-labeled Dyck paths of semilength n
with s singletons and k-noncrossing labels

k-noncrossing partial matchings on [n] with s singletons

k-nonnesting partial matchings on [n] with s singletons

Involutions on [n] with decreasing subsequences
of length at most 2k − 1 and with s fixed points

Standard Young tableaux with n boxes,
at most 2k − 1 rows, and s odd columns

Subsection 2.1

Subsection 2.2, also [10]

Subsection 2.3

Subsection 2.4 (RSK)

Figure 2.1. Structure of the proof of Theorem 1.2.

3

2

1

6

7

8

9

11

4

5

10

Figure 2.2. Numbering the up-steps of a cm-labeled Dyck path.

Our partial matching is then the one inherited from the cm-labeled Dyck path, with the
connected matching on each ascent applied to the ascent’s numbers. In our example, we
get (1, 3)(2, 9)(4, 5)(6, 7)(8, 11)(10); see Figure 2.3. Since the cm-labels were k-noncrossing,
so is the partial matching, and clearly the number of singletons on the Dyck path equals
the number of singletons in the matching, as required.

To invert the map, each connected component of the partial matching corresponds to
a particular ascent of the Dyck path. The ascent’s numerical labels are the numbers of
the connected component, and appear on the Dyck path in increasing order from top to
bottom, while the ascent’s cm-label is inherited directly from the partial matching. We
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1 2 3 4 5 6 7 8 9 10 11

Figure 2.3. Partial matching (1, 3)(2, 9)(4, 5)(6, 7)(8, 11)(10).

order the ascents from left-to-right according to the sizes of their smallest numerical labels
i. To complete the inverse map, we need to determine the length of each descent as follows.
Let Ai denote the set of numerical labels appearing in the ascent with smallest label i or
appearing in any ascent further to the left. The length of the descent following the up-step
labeled with i will be the largest j such that {i, i + 1, . . . , i + j − 1} ⊆ Ai. For example,
in Figure 2.2 we have A6 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 11}, so the descent following the up-step
with i = 6 is of length 4 since the numbers 6, 7, 8, 9 all appear in A6 but 10 does not.

2.2. Noncrossing to nonnesting partial matchings. This step works by modifying a
known bijection between perfect matchings and oscillating tableaux. We follow a technique
from [10] by first mapping a partial matching to an oscillating tableau, then transposing
the tableau, and then mapping the result back to a partial matching. As we will see, the
results of [10] imply that the final partial matching will be k-nonnesting if and only if the
initial one is k-noncrossing. Our maps will be constructed so as to preserve the number of
singletons.

In fact, we will use a slight variant of an oscillating tableau, which we define next. We
will think of a partition λ = (λ1, . . . , λk) in terms of its Young diagram in English notation,
meaning an array of left-justified rows of boxes with λi boxes in the ith row from the top.

Definition 2.1. A weakly oscillating tableau of shape λ and length n is a sequence of
partitions Λ = (λ0, λ1, . . . , λn) such that:

(i) λ0 = ∅, the empty partition;
(ii) λn = λ;
(iii) for 1 ≤ i ≤ n, λi is obtained from λi−1 by either doing nothing, adding a box, or

deleting a box.

We obtain the standard definition of an oscillating tableau by removing the possibility
that λi = λi−1. Oscillating tableaux were originally defined by Berele [2]. We restrict our
attention to weakly oscillating tableaux of empty shape, i.e., λn = ∅.

The bijection we now present between partial matchings and weakly oscillating tableaux
is a mild variant of a bijection of Stanley between perfect matchings and oscillating tableau
of empty shape, which was extended to arbitrary shapes by Sundaram [31].

Given a partial matching M on [n], represented as a graph on the number line as in
Figure 2.4, we construct a sequence of tableaux T 0, . . . , T n as follows. The resulting weakly
oscillating tableau Λ will be the sequence of shapes (λ0, . . . , λn), where λj is the shape of
T j. We work from T n down to T 0, beginning by setting T n = ∅, the empty tableau. For
n ≥ j ≥ 1, construct T j−1 according to the following rules.

(1) If j is a singleton in M , then set T j−1 = T j.
(2) If j is the right-hand endpoint of an arc (i, j) in M , then RSK insert1 i into T j .

1See [24, §3.1] or [30, §7.11] for an introduction to RSK insertion.
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j 0 1 2 3 4 5 6 7 8 9

T j ∅ 1
1
2

1 3
2

1
2

1
2
5

2
5

5 5 ∅

λj ∅ ∅

M j ∅ ∅ ∅ ∅ (3, 4) (3, 4)
(3, 4)
(1, 6)

(3, 4)
(1, 6)
(2, 7)

(3, 4)
(1, 6)
(2, 7)

(3, 4)
(1, 6)
(2, 7)
(5, 9)

Table 1. The sequences constructed in Example 2.2.

(3) If j is the left-hand endpoint of an arc (j, k) in M , then remove j (and the box that
contained j) from T j.

Example 2.2. Consider the partial matching (1, 6)(2, 7)(3, 4)(5, 9)(8) shown in Figure 2.4.
The sequence T 0, . . . , T 9 is given on Table 1. Recall that the construction of the T j proceeds
from right to left, and that T j−1 is determined by the properties of the number j, rather
than of j−1. The resulting oscillating tableau is the sequence in the third row of the table,
read from left to right.

1 2 3 4 5 6 7 8 9

Figure 2.4. The partial matching of Example 2.2.

Let us next define the inverse map. Along the way, we will need to reverse an RSK
insertion given the location of the new box that resulted from the insertion. The process
for reverse insertion can be deduced by carefully inverting the steps of RSK insertion; see
the proof of [24, Theorem 3.1.1] or [30, Theorem 7.11.5] for more details.

So suppose we have an oscillating tableau Λ = (λ0, . . . , λn), and let us construct a
sequence (T 0,M0), . . . , (T n,Mn), where T j is a tableaux of shape λj , and M j is a partial
matching on [n] such that Mn will be the result of the inverse map. We begin by setting
(T 0,M0) = (∅, ∅) and, for 1 ≤ j ≤ n, we construct (T j,M j) from left to right according to
the following rules.

(1) If λj = λj−1, then set (T j,M j) = (T j−1,M j−1).
(2) If λj ⊂ λj−1, then obtain T j from T j−1 by reverse RSK insertion, starting with the

entry k in the box in position λj \ λj−1. This will result in an entry i ≤ k leaving
T j−1. Add the pair (i, j) to M j−1 to obtain M j.

(3) If λj ⊃ λj−1, let T j be obtained from T j−1 by adding the box λj \ λj−1 with entry
j, and simply let M j = M j−1.
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For an example of the inverse map, see Table 1, where the pairs in M j are listed vertically
for compactness; we see that M9 is indeed the partial matching given in Figure 2.4.

To deduce that the maps above indeed give a bijection from partial matchings to oscil-
lating tableau, there are two approaches we can take. The first is to observe that each of
the three steps in the inverse map invert the same-numbered step in the forward map. The
second approach is to refer to [31, Lemma 2.2], which proves the bijection in the case of
perfect matchings. To see that this proof extends to partial matchings, we merely need to
observe that the procedures are unchanged in the setting of partial matchings except for
the addition of the harmless rules numbered (1) which say to change nothing.

With this bijection in place, we now construct the composite bijection from k-noncrossing
partial matchings to k-nonnesting partial matchings. Let M be a k-noncrossing matching of
[n] with s singletons, which maps to an oscillating tableau Λ = (λ0, . . . , λn). As we will jus-
tify, switching crossings to matchings requires nothing more than transposing/conjugating
the partitions to obtain Λt :=

(

(λ0)t, . . . , (λn)t
)

. Applying the inverse map from above

results in a partial matching, which we denote by M t.
We leave it as an exercise for the reader to check that for the matching M of Example 2.2,

we get M t = (1, 9)(2, 4)(3, 7)(5, 6). Observe that M has a 3-crossing and a 2-nesting,
whereas M t has a 2-crossing and a 3-nesting. Explaining why this is no coincidence is
essentially our task for the remainder of this subsection.

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

Figure 2.5. The partial matchings M and M t for Example 2.2.

First, though, let us observe that the number of singletons is the same for M and M t.
Indeed, suppose j is a singleton in M , which is exactly the condition that implies T j−1 =
T j, and equivalently λj−1 = λj and (λj−1)t = (λj)t. Letting (T t)j denote the tableau
corresponding to (λj)t in the inverse map, we have that (λj−1)t = (λj)t if and only if
(T t)j−1 = (T t)j , which is exactly the requirement for j to be absent from the pairs of M t

and hence be a singleton in M t.
To complete this subsection it remains to show that M is k-noncrossing if and only if

M t is k-nonnesting. The main results of [10] work in the more general setting of set parti-
tions rather than matchings, and objects known as vacillating tableaux are the appropriate
replacement for oscillating tableaux. However, as Chen et al. remark in their Section 5,
their results can be restricted to the case of perfect matchings and oscillating tableaux.
As before, singletons have no harmful effects on the bijections involved, so their results
also apply to partial matchings and weakly oscillating tableaux. In this setting, [10, Theo-
rem 3.2] states that for a partial matchingM with corresponding weakly oscillating tableaux
Λ = (λ0, . . . , λn), the crossing (resp. nesting) number of M is the largest number of rows
(resp. columns) in any λi. Thus the crossing number of M equals the nesting number of
M t, as required.

2.3. Nonnesting partial matchings to involutions. In this subsection, we justify the
third bijection from the diagram given in Figure 2.1.
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Partial matchings M of [n] are clearly in bijection with involutions π of [n], with the arc
(i, j) corresponding to the transposition (i j). As a working example, the partial matching
in Figure 2.4 gives the permutation (16)(27)(34)(59)(8) = 674391285. The number of
singletons in M clearly equals the number of fixed points of π. Observe that a k-nesting in
M results in a decreasing subsequence of length 2k in π, and if the k-nesting additionally
has a singleton under its middle arc, then π will have a decreasing subsequence of length
2k + 1. Conversely, and less obviously, decreasing subsequences of maximum length in π
give rise to k-nestings as stated precisely in Lemma 2.3 below. In our example, the nesting
(1, 6)(3, 4) corresponds to the decreasing subsequence 6431, while (5, 9)(8) corresponds to
the decreasing subsequence 985. Once we prove Lemma 2.3, we get the desired conclusion for
this subsection: k-nonnesting partial matchings M of [n] with s singletons are in bijection
with involutions π of [n] with maximal decreasing subsequence of length at most 2k−1 and
with s fixed points.

A stronger version of the result below was given by Post [21, Theorem 5.2]; a remark
that follows Post’s proof notes the existence of the method we use.

Lemma 2.3. Suppose M is a partial matching of [n] that corresponds to the involution
π = (π1, . . . , πn) when the arcs of M are treated as transpositions in π. If the longest
decreasing subsequence of π has length m then either:

(1) m = 2k is even, and M has a k-nesting, or
(2) m = 2k + 1 is odd, and M has a k-nesting and a singleton that lies underneath the

middle arc in the nesting.

Proof. It will be helpful to represent π in an n-by-n grid in the customary fashion, with
each πi = j corresponding to a dot in the ith column and jth row from the bottom. See
Figure 2.6 for the diagram of the involution 674391285 of Figure 2.4.

There are three key observations to make about such diagrams. The first is that, since
π is an involution, the positions of the dots are symmetric about the diagonal shown in
the figure. Secondly, a decreasing subsequence of π is represented by a subset of dots of
decreasing height from left to right. Thirdly, again since π is an involution, the dots above
the diagonal can also be interpreted as the pairs of the partial matching M : the dot in
column i and row j with i < j denotes the arc (i, j). The singletons of M are clearly given
by the dots along the diagonal. Under this interpretation, the k-nestings of M are then
the subsets of k dots, all above the diagonal, that decrease in height from left to right. For
example, the dots at (1,6) and (3,4) give one of the 2-nestings of Figure 2.4.

Let D = (πi1 , . . . , πim) be a decreasing subsequence of maximum length m in π and
suppose first that m = 2k. In the diagram of π suppose there are ℓ dots coming from D
that appear above the diagonal. If ℓ = k, then this immediately yields a k-nesting in M .
For example, if D = 7431 in our running example, we obtain the nesting (2, 7)(3, 4). If
ℓ > k, then we can produce a decreasing subsequence of length 2ℓ by taking these ℓ dots
along with their reflective images across the diagonal. This yields a contradiction with D
having maximum length m = 2k. If ℓ < k, we can consider the 2k − ℓ dots on or below the
diagonal; since D is decreasing, at most one of these is on the diagonal. Taking these 2k− ℓ
dots along with their reflective images above the diagonal yields a decreasing subsequence
of length at least 4k − 2ℓ− 1, which leads again to a contradiction.
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1 2 3 4 5 6 7 8 9

1
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3

4

5

6

7

8

9

Figure 2.6. The diagram of the involution 674391285 = (16)(27)(34)(59)(8)

It remains to consider the odd case m = 2k + 1. If there are k dots appearing above
the diagonal and one dot appearing on the diagonal, we get the desired conclusion: M has
a k-nesting and a singleton that lies underneath the middle arc in the nesting. For the
remaining cases, we get a contradiction by arguing as in the previous paragraph. �

2.4. Involutions to SYT. The final step of the proof of Theorem 1.2 is to put such
involutions π in bijection with SYT T on [n] with at most 2k − 1 rows and with s odd
columns. The RSK algorithm bijectively maps a permutation σ of [n] to a pair (P,Q) of
SYT each with n boxes and of the same shape λ, and maps σ−1 to (Q,P ). See [24, Chapter 3]
or [30, Chpater 7] for an introduction to the RSK algorithm, and [24, Theorem 3.6.6] or [30,
Theorem 7.13.1] for the result of Schützenberger [26] about σ−1. Thus the RSK algorithm
restricts to a bijection between involutions π of [n] and SYT T with n boxes.

We finish the proof by direct application of two results from the literature. The first
is Schensted’s Theorem [25], [24, Theorem 3.3.2], [30, Theorem 7.23.17], which states that
the number of rows of T equals the length of the longest decreasing subsequence of π. The
second result [1, 27] gives that the number of fixed points in π equals the number of odd
columns in T , as desired.

3. Dyck paths to SYT of hook and flag shape

In this section, we consider five bijections that map Dyck paths with certain restrictions
to SYT of special shapes. The first two bijections have the same starting point: we define
a map φ from the set of Dyck paths of semilength n to the set of partitions of [n] as
follows. First number the down-steps of the Dyck path with [n] in increasing order from
left to right. At each peak UD, label the up-step with the number already assigned to its
paired down-step. (Here and elsewhere, U (resp. D) denotes an up-step (resp. down-step).)
Working through the ascents from left to right, label the remaining up-steps from top to
bottom on each ascent in a greedy fashion. The resulting labeling gives a partition of [n]
whose blocks are the labels on the ascents. For example, the path in Figure 3.1 gives the
partition 1237-48-5-69. As in Figure 3.1, we will represent such a partition by a tableau-like
array where the column entries are increasing from top to bottom and give the blocks of
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the partition while the top row is also increasing and contains the smallest entry from each
block; we will call such an array a modified tableau.

1

4 5

6

2

3

7

8

9 φ
1

2

3

7

4

8

5 6

9

Figure 3.1. Example of the map φ, where the columns of the array on the
right are the blocks of the resulting partition.

The map φ is clearly injective, and we will use it to obtain bijections between certain
Dyck paths and SYT. Note that the difference of the smallest entries in two consecutive
blocks gives the number of down-steps between the corresponding ascents on the path.

3.1. Hook shapes. An SYT is said to be of hook shape if its shape is (k, 1ℓ) for some k and
ℓ, where 1ℓ denotes a sequence consisting of ℓ copies of 1. A Dyck path of semilength n with
k peaks and k returns is a Dyck path of the form U

j1D
j1 · · ·UjkD

jk with j1 + · · · + jk = n.
There are

(

n−1
k−1

)

such paths, which is the number of compositions of n with k parts as well

as the number of SYT of shape (k, 1n−k). These equal cardinalities suggest a bijection
involving the map φ.

Proposition 3.1. For 1 ≤ k ≤ n, Dyck paths of semilength n with k peaks and k returns
are in bijection with SYT of shape (k, 1n−k).

Proof. Given a Dyck path of the form U
j1D

j1 · · ·UjkD
jk with j1 + · · · + jk = n, we apply

the map φ to get the partition [1, . . . , j1][j1 +1, . . . , j1 + j2] · · · [n− jk +1, . . . , n], which can
be represented as a modified tableau. We then obtain an SYT of hook shape by pushing
all the boxes below the first row into the first column. For example,

φ
1

2

3 4

5

6

1

2

5

6

3 4

.

For the inverse, let a1, a2, . . . , ak be the entries of the first row of a given SYT of shape
(k, 1n−k). Move the boxes that appear below the first row to the unique place such that the
modified tableau T has columns with increasing consecutive entries. The length of column
i in T is then the length of the ith ascent (from left to right) on the Dyck path, and for
i = 1, . . . , k − 1, the difference ai+1 − ai gives the number of down-steps following the ith
ascent. This uniquely determines a Dyck path with k peaks and k returns. �

Corollary 3.2. The number of Dyck paths of semilength n with as many peaks as returns
equals the number of SYT of hook shape with n boxes.
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3.2. Flag shapes. We next consider results related to SYT of shape (k, k, 1n−2k), which
we will refer to as SYT of flag shape. Using the hook-length formula, one can check that
the number of such tableaux is

1

n+ 1

(

n+ 1

k

)(

n− k − 1

k − 1

)

, (3.1)

which is [19, A033282].
For a fixed k, Stanley [29] gave a bijection from dissections of an (n − k + 2)-gon using

exactly k− 1 diagonals to SYT of shape (k, k, 1n−2k). We will give a bijection that extends
this to the Dyck path setting. Analogous to the way that Narayana numbers refine Catalan
numbers by considering the number of peaks, we get the following result.

Proposition 3.3. For 1 ≤ k ≤ ⌊n2 ⌋, Dyck paths of semilength n with k peaks and no

singletons are in bijection with SYT of shape (k, k, 1n−2k).

Proof. We will present the bijection using the illustrative example:

We apply the map φ to a Dyck path of semilength n with no singletons and represent the
resulting partition of [n] as a modified tableau:

1

2

4

3

5

6

7

9

10

8

11

The SYT of flag shape is then produced by pushing all the boxes below the second row into
the first column:

1

2

4

9

10

3

5

6

7

8

11

Conversely, given an SYT of shape (k, k, 1n−2k), let us call the entries of the first row
a1, a2, . . . , ak from left to right, and let us use b1, b2, . . . , bk for the entries in the second row.
We rearrange the boxes that appear below the second row so that the result is in the image
of φ as follows: move the box containing the number j into the unique column i whereby
bi < j < bi+1 (where we let bk+1 = n + 1). In other words, the columns of the resulting
modified tableau form a partition P of [n] with the property that when the smallest entry of
each block of the partition is removed, the remaining entries form an increasing sequence of
n− k numbers. Finally, we construct a corresponding Dyck path D as follows. The length

https://oeis.org/A033282
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of block i in P will be the length of the ith ascent of the path (from left to right), and for
i = 1, . . . , k− 1, the difference ai+1 − ai will be the number of down-steps following the ith
ascent. By design, we have P = φ(D). �

Summing over k = 1, . . . , ⌊n2 ⌋, we recover two manifestations of the sequence [19, A005043]
of “Riordan numbers.”

Corollary 3.4. The number of Dyck paths of semilength n without singleton ascents equals
the number of SYT of flag shape with n boxes.

Remark 3.5. Note that, letting n = 2k in Proposition 3.3, we obtain that Ck equals the
number of Dyck paths of semilength 2k with k peaks and no singletons, an apparently new2

interpretation of the Catalan number Ck.

Remark 3.6. There is a less direct way to construct a bijection proving Proposition 3.3
using results already in the literature. An increasing tableau is a semistandard Young
tableau whose rows and columns are strictly increasing and the set of entries is an initial
segment of the positive integers. In [20], Pechenik gives a bijection from SYT of shape
(k, k, 1n−2k) to increasing tableaux of shape (n−k, n−k) whose maximum entry is at most
n. He also provides a bijection from such increasing tableaux to noncrossing partitions of
n into k blocks each of size at least 2. By the bijection from [8] mentioned at the start of
Subsection 2.1, these noncrossing partitions are in bijection with Dyck paths of semilength
n with k peaks and no singletons, as required.

Another connection between Dyck paths and SYT of flag shape begins with a result from
[3]. A special case of the Dyck paths considered there is the set Dn(1, 1) which denotes
the set of Dyck paths of semilength 2n created from strings of the form D and U

2j
D
j for

j = 1, . . . , n. In [3, Theorem 3.5], the number of such Dyck paths with exactly k peaks is
shown to be

(

n+ k

k − 1

)

(k − 1)!

n!
Bn,k(1!, 2!, . . .). (3.2)

Since Bn,k(1!, 2!, . . .) =
n1
k!

(

n−1
k−1

)

as shown, for example, in [12, §3.3, eqn. (3h)], the quantity

in (3.2) is equal to
1

n+ k + 1

(

n+ k + 1

k

)(

n− 1

k − 1

)

,

which is exactly the number of SYT of shape (k, k, 1n−k) (cf. (3.1)). Thus we obtain the
following reconciliation.

Proposition 3.7. For 1 ≤ k ≤ n, Dyck paths in Dn(1, 1) with k peaks are in bijection with
SYT of shape (k, k, 1n−k).

Example 3.8. For n = 2, the three elements of D2(1, 1) are

2 At least this interpretation does not appear among the 214 interpretations in [28].

https://oeis.org/A005043
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and the three SYT are
1
2
3

1 3
2 4

1 2
3 4

We can also bijectively prove Proposition 3.7: starting with a element of Dn(1, 1) with
k peaks, replace each building block U

2j
D
j by U

j+1
D to obtain a Dyck path of semilength

n+k with k peaks and no singleton ascents, and then apply the bijection of Proposition 3.3.

Remark 3.9. Note that in the case k = n of Proposition 3.7, we have yet another (pre-
sumably new) interpretation of the Catalan numbers as Dyck paths of semilength 2n with
exactly n peaks and all ascents of even length such that an ascent of length 2j is followed
by a descent of length at least j.

3.3. SYT with two rows. We finish collecting the five bijections of this section by men-
tioning two that map to SYT with two rows. In [17], Gudmundsson studies certain families
of Dyck paths, SYT, and pattern avoiding permutations. The main result in [17] related to
our work is the following theorem for which the author provides a bijective proof.

Theorem ([17]). Let d = k+ p. The class of Dyck paths of semilength n that begin with at
least k successive up-steps, end with at least p successive down-steps, and touch the x-axis
at least once somewhere between the endpoints is equinumerous with the class of SYT of
shape (n, n− d).

Here is a different connection with the same class of SYT.

Proposition 3.10. For 0 ≤ d ≤ n, Dyck paths of semilength n + 1 having exactly d + 1
returns are in bijection with SYT of shape (n, n− d).

The bijection is defined as follows. Given a Dyck path of semilength n + 1 with exactly
d + 1 returns, number each step from left to right ignoring the first up-step and skipping
every down-step that touches the x-axis. Then create the SYT of shape (n, n−d) by placing
the labels of the n up-steps in the first row and the labels of the n− d labeled down-steps
in the second row. For example:

1

2 3

4 5 6

7

8 9

10

1 2 5 7 8 10

3 4 6 9

We leave it to the reader to check that this map is indeed bijective.

4. Further remarks and other connections

4.1. Colored singletons. Let aj denote the number of all possible cm-labels for an ascent
of length 2j. This is the number of connected matchings on [2j] and is given by the sequence
[19, A000699]

1, 1, 4, 27, 248, 2830, 38232, 593859, 10401712, . . .

https://oeis.org/A000699
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Therefore, if we define the sequence (xn) by

x1 = 1,

x2n+1 = 0 and x2n = an for n ≥ 1,

then from Theorem 1.1 and equation (1.1) we deduce that

SYT(n) =

n
∑

ℓ=1

1

(n− ℓ+ 1)!
Bn,ℓ(1!, 2!a1, 0, 4!a2, 0, . . . ). (4.1)

Observe that SYT(n) is a special case of the sequence

y(α)n =

n
∑

ℓ=1

1

(n− ℓ+ 1)!
Bn,ℓ(1!α, 2!a1, 0, 4!a2, 0, . . . ) (4.2)

that counts the number of cm-labeled Dyck paths of semilength n, where singletons (ascents
of length 1) may be colored in α ∈ N0 different ways. The case α = 0 means that no

singletons are allowed. In this case, y
(0)
2n−1 = 0 for all n ≥ 1 while y

(0)
2n gives the number of

perfect matchings on [2n], which are counted by the double factorials (2n− 1)!!. Moreover,
in the latter case, the bijection discussed in Subsection 2.1 maps cm-labeled Dyck paths of
semilength n with k-noncrossing labels to k-noncrossing perfect matchings on [2n].

Another interesting instance of (4.2) is when α = 2, i.e. each singleton may be colored in
two ways. In this case, (4.2) gives the sequence [19, A005425] whose nth term can be defined
as the number of involutions on [n] whose fixed points can each be colored in two different
ways. In fact, for any positive integer α, the maps from Subsections 2.1–2.3 just need trivial
modifications to get a bijection between cm-labeled Dyck paths whose singletons can each
be colored in α ways to involutions whose fixed points can each be colored in α ways. As is
the case for α = 0 or 1, this bijection will preserve the k-noncrossing property of the labels
in the Dyck paths.

4.2. Generating functions. Let A(t) be the the generating function for the number of
connected matchings on [2n], and let Y (t) be the corresponding function that enumerates
SYT with n boxes. Equation (4.1) implies that Y (t) is the noncrossing partition transform
of X(t) = t+A(t2). Thus, in terms of generating functions, this means (cf. Callan [8, §4])

tY (t) =

(

t

1 +X(t)

)〈−1〉
,

where 〈−1〉 denotes compositional inverse. In other words,

Y (t)− 1 = X(tY (t)), or equivalently, (1− t)Y (t) = 1 +A(t2Y (t)2). (4.3)

Further, if P (t) is the generating function for the number of perfect matchings on [2n], then
P (t2) is the noncrossing partition transform of A(t2), and we have

1 + P (t2) =
1

t

(

t

1 +A(t2)

)〈−1〉
.

https://oeis.org/A005425
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This implies

(

t(1 + P (t2))
)〈−1〉

=
t

1 +A(t2)
, or equivalently, P

(

t2

(1 +A(t2))2

)

= A(t2).

Combining this identity with (4.3), we obtain

P

(

t2Y (t)2

(1− t)2Y (t)2

)

= A(t2Y (t)2) = (1− t)Y (t)− 1,

which implies

Y (t) =
1 + P (t2/(1− t)2)

1− t
.

While this formula is known [19, A001006], our approach using the noncrossing partition
transform gives the same identity when restricted to k-noncrossing perfect matchings on
[2n] and SYT with n boxes and height at most 2k− 1. In other words, if Pk(t) denotes the
generating function for the number of k-noncrossing perfect matchings on [2n], and if Yk(t)
enumerates SYT with n boxes and height at most 2k − 1, then

Yk(t) =
1 + Pk(t

2/(1− t)2)

1− t
.

This is the elegant expression we promised in the Introduction. For some values of k, these
sequences are listed in [19] as follows:

k k-noncrossing matchings SYT of height ≤ 2k − 1

2 A000108 A001006
3 A005700 A049401
4 A136092 A007578
5 A251598 A212915

4.3. Labeled Motzkin paths enumerated by SYT(n). Our main bijection in Section 2
adds extra structure to Dyck paths of length 2n to obtain objects equinumerous to SYT
with n boxes. In this section we will discuss other equinumerous sets which instead are
obtained by adding extra structure to Motzkin paths of length n.

Proposition 4.1. The following objects, defined by Motzkin paths of length n with s flat
steps and some additional structure, are in bijection with partial matchings on [n] having s
singletons (and thus also with SYT with n boxes and s odd columns):

◦ Height-labeled Motzkin paths, meaning each down-step starting at height i is given
a label from [i].

◦ Full rook Motzkin paths, which have rooks placed in their lower shape such that there
is exactly one in the “row” beneath each up-step and exactly one in the “column”
beneath each down-step, where “row” and “column” refer to the 45◦ rotation.

◦ Yamanouchi-colored Motzkin paths which can be defined by their simple correspon-
dence with weakly oscillating tableaux. Up, down, and flat steps correspond to
adding, removing, or leaving as-is (respectively), and the label specifies the row in
which to add or remove a box.

https://oeis.org/A001006
https://oeis.org/A000108
https://oeis.org/A001006
https://oeis.org/A005700
https://oeis.org/A049401
https://oeis.org/A136092
https://oeis.org/A007578
https://oeis.org/A251598
https://oeis.org/A212915
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For instance, for the partial matching (1, 6)(2, 7)(3, 4)(5, 9)(8) discussed in Example 2.2,
we have the labeled Motzkin paths in Figure 4.1.

3 1

1

1

(a) Height-labeled Motzkin path

R

R R
R

(b) Full rook Motzkin path1

2

1 1 3 3

2

1

(c) Yamanouchi-colored Motzkin path
(compare λj in Table 1)

Figure 4.1. Motzkin paths corresponding to (1, 6)(2, 7)(3, 4)(5, 9)(8).

In contrast, the corresponding cm-labeled Dyck path is given in Figure 4.2.

1

2

5

6

7

9

3

4

8

Figure 4.2. cm-labeled Dyck path corresponding to (1, 6)(2, 7)(3, 4)(5, 9)(8).

Before proving Proposition 4.1, let us put it in context with related results in the litera-
ture. The bijection with height-labeled Motzkin paths is somewhat well known. The other
two bijections are simple extensions of the better-known case when s = 0. Height-labeled
Motzkin paths are a case of the histoires of orthogonal polynomials. This bijection is due to
Françon and Viennot [15, 16]. In the Dyck path case (s = 0), height-labeled paths appear
in Callan’s survey of double factorials [9], and are also called Hermite histoires. Again for
the case when s = 0, full rook Motzkin paths are better known as full rook placements in
Ferrers shapes. These were used by Krattenthaler [18] to extend the work of Chen et al. [10].
For a reader already familiar with Fomin growth diagrams, full rook Motzkin paths are a
simple intermediate step in the bijection between height-labeled and Yamanouchi-colored
Motzkin paths. Yamanouchi-colored Motzkin paths were introduced by Eu et al. [14], who
gave a definition and bijection using the language of Motzkin paths.



18 GIL, MCNAMARA, TIRRELL, AND WEINER

Proof of Proposition 4.1. First, there is a simple bijection between partial matchings and
full rook Motzkin paths. Each pair (i, j) in the matching with i < j indicates an up-step at
step i and a down-step at step j. A singleton at i indicates a flat-step at step i. We then
draw the path from left to right according to these steps and place rooks at the positions
determined by the matching, as in Figure 4.2(b). For the reverse map, simply match the
two steps diagonal from each rook, and leave the flats as singletons.

To make the bijection between height-labeled and full rook Motzkin paths easier to state,
we use the terms “row” and “column” for the shape beneath the full rook path by considering
the result of rotating it 45◦ counterclockwise. We assign height-labels to each down-step
starting at height i (from left to right) according to the height of the rook in the column
below, ignoring any rows with a rook in an earlier column. For example, in Figure 4.1,
the first down-step in (a) has label 3 because in (b) the rook is at height 3 in the column
beneath this down-step. A more interesting case is the third column, where the down-step
has label 1 because it has a column of four beneath it, but ignoring the row with the rook
already placed, there are three places available and the rook is in the first. Observe that the
number of places available is always the starting height of the down-step, so we do indeed
arrive at a height-labeled Motzkin path. Clearly, this map is easily reversed.

Finally, we defined Yamanouchi-colored Motzkin paths by their correspondence with
weakly oscillating tableaux, so the bijection with partial matchings is simply the one we
have already seen in Subsection 2.2. �
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