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TORSION TABLE FOR THE LIE ALGEBRA niln

LEON LAMPRET AND ALEŠ VAVPETIČ

Abstract. We study the Lie ring niln of all strictly upper-triangular n×n

matrices with entries in Z. Its complete homology for n≤8 is computed.
We prove that every pm-torsion appears in H∗(niln;Z) for pm≤n−2. For

m=1, Dwyer [1] proved that the bound is sharp, i.e. there is no p-torsion in
H∗(niln;Z) when prime p>n−2. In general, for m>1 the bound is not sharp,
as we show that there is 8-torsion in H∗(nil8;Z).

As a sideproduct, we derive the known result, that the ranks of the free
part of H∗(niln;Z) are the Mahonian numbers (=number of permutations of
[n] with k inversions), using a different approach than in [4].

1. Introduction

Let niln be the Lie algebra of integral n×n strictly upper-triangular matrices.
The complete homology Hk(niln;Z) is known only for n≤6 [3]:

k\n 2 3 4 5 6
0 Z Z Z Z Z
1 Z Z2 Z3 Z4 Z5

2 Z2 Z5 ⊕ Z2 Z9 ⊕ Z2
2 Z14 ⊕ Z3

2

3 Z Z6 ⊕ Z2 Z15 ⊕ Z8
2 ⊕ Z2

3 Z29 ⊕ Z20
2 ⊕ Z4

3

4 Z5 Z20 ⊕ Z10
2 ⊕ Z3

3 Z49 ⊕ Z47
2 ⊕ Z13

3 ⊕ Z3
4

5 Z3 Z22 ⊕ Z10
2 ⊕ Z3

3 Z71 ⊕ Z79
2 ⊕ Z26

3 ⊕ Z9
4

6 Z Z20 ⊕ Z8
2 ⊕ Z2

3 Z90 ⊕ Z118
2 ⊕ Z35

3 ⊕ Z12
4

7 Z15 ⊕ Z2
2 Z101 ⊕ Z138

2 ⊕ Z36
3 ⊕ Z12

4

8 Z9 Z101 ⊕ Z118
2 ⊕ Z35

3 ⊕ Z12
4

9 Z4 Z90 ⊕ Z79
2 ⊕ Z26

3 ⊕ Z9
4

10 Z Z71 ⊕ Z47
2 ⊕ Z13

3 ⊕ Z3
4

11 Z49 ⊕ Z20
2 ⊕ Z4

3

12 Z29 ⊕ Z3
2

13 Z14

14 Z5

15 Z

The main reason why computations for larger n are exceedingly difficult is that the
chain complex C∗=Λ∗

niln is immense. It has 2(
n

2) generators, which is more than
2 million for n=7. In the paper, we divide C∗ in numerous direct summands [[w]]

(corresponding to sequences w ∈ {1, . . . , n}n with w1+ . . .+wn =
(
n+1
2

)
) and show

how many of them are isomorphic (up to dimension shift), many are contractible
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2 LEON LAMPRET AND ALEŠ VAVPETIČ

and many are obtained from smaller ones as the cone of a chain map [[w′]]
·t
→ [[w′]].

The direct summands corresponding to permutations of (1, . . . , n) are generated by
just one element, hence those contribute only to free part. We show that any other
direct summand contributes only to torsion, so we get the free part of homology.

Complex. Let eij be the matrix with all entries 0 except 1 in the position (i, j).
The chain complex C∗ =Λ∗

niln, due to Chevalley (1948), is generated by wedges
ea1b1∧. . .∧eakbk, where 1≤ai<bi≤n for all i. From now on, for the sake of brevity
and clarity, we shall omit the ∧ symbols. The boundary is defined by

∂(ea1b1 . . . eakbk) =
∑

i<j(−1)i+j [eaibi , eajbj ]ea1b1 . . . êaibi . . . êajbj . . . eakbk ,

where [eab, ecd] equals ead if b=c, equals −ecb if a=d, and equals 0 otherwise.

AMT. For some computations later on, we shall use algebraic Morse theory, so
we include a short review of it. To a chain complex of free modules (C∗, ∂∗) we
associate a weighted digraph ΓC∗ (vertices are basis elements of C∗, weights of edges
are nonzero entries of matrices ∂∗). Then we carefully select a matching M in this
digraph, so that its edges have invertible weights and if we reverse the direction of
every e∈M in ΓB∗ , the obtained digraph ΓM

C∗
contains no directed cycles and no

infinite paths in two adjacent degrees. Under these conditions (i.e. if M is a Morse
matching), the AMT theorem ([7], [3], [5]) provides a homotopy equivalent complex

(C̊∗, ∂̊∗), spanned by the unmatched vertices in ΓM
C∗

, and with the boundary ∂̊∗ of

v∈C̊k given by the sum of weights of directed paths in ΓM
C∗

to all critical v′∈C̊k−1.
For more details, we refer the reader to the three articles above (which specify the
homotopy equivalence), or [6] for a quick introduction and formulation.

2. Subcomplexes

For a set M = {(a1, b1), . . . , (ak, bk)} ⊆ {(i, j); 1 ≤ i < j ≤ n} we denote eM =
ea1b1 . . . eakbk . For Mi := {x; (i, x)∈M} we have eM =∧n−1i=1e{i}×Mi

. We define the
weight vector w̃(eM )= (w̃1, . . . , w̃n) by w̃i = |{x; (x, i)∈M}|−|{y; (i, y)∈M}|, i.e.
the number of times i appears on the right in eM minus the number of times i
appears on the left in eM . Then

∑n
i=1w̃i = 0. Every summand in ∂(eM ) has the

same weight as eM . Therefore a submodule [w̃] of Λ∗
niln, spanned by the basis

elements with weight w̃, forms a chain subcomplex which is a direct summand.
Most equalities will be described more conveniently using the modified weight

w(eM ) = (1, . . . , n)− w̃(eM ) = (1− w̃1, . . . , n− w̃n). Then
∑n

i=1wi =
(
n+1
2

)
and

i−n≤ w̃i≤ i−1 implies 1≤wi≤n for all i. We denote [[w]]=[(1, . . . , n)−w] and let
[[w]]k be the complex [[w]] dimensionally shifted by k. Let Sn :=

{
(w1, . . . , wn) ∈

{1, . . . , n}n; w1 + . . .+wn =
(
n+1
2

)}
, so that Λ∗

niln =
⊕

w∈Sn
[[w]]. Notice that

[[w1, . . . , wn−1, n]]=[[w1, . . . , wn−1]] and [[1, w2, . . . , wn]]=[[w2−1, . . . , wn−1]].

Example 2.1. Let us take a look at bracket subcomplexes in Λ∗
niln for n≤4.

Set S2 consists of permutations of (1, 2). Furthermore, there holds Hk[[1, 2]] =

Hk〈∅〉∼=
{
Z; if k=0
0; if k 6=0 and Hk[[2, 1]]=Hk〈e12〉∼=

{
Z; if k=1
0; if k 6=1 .

Set S3 consists of permutations of (1, 2, 3), (2, 2, 2). Furthermore, Hk[[1, 2, 3]] =

Hk〈∅〉 ∼=
{
Z; if k=0
0; if k 6=0 , Hk[[1, 3, 2]] = Hk〈e23〉 ∼=

{
Z; if k=1
0; if k 6=1 , Hk[[2, 1, 3]] = Hk〈e12〉 ∼=
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{
Z; if k=1
0; if k 6=1 ,Hk[[2, 3, 1]]=Hk〈e13e23〉∼=

{
Z; if k=2
0; if k 6=2 , Hk[[3, 1, 2]]=Hk〈e12e13〉∼=

{
Z; if k=2
0; if k 6=2 ,

Hk[[3, 2, 1]]=Hk〈e12e13e23〉∼=
{
Z; if k=3
0; if k 6=3 , Hk[[2, 2, 2]]=Hk〈e13, e12e23〉≃0.

Set S4 consists of permutations of (1,1,4,4), (1,2,3,4), (1,3,3,3), (2,2,2,4), (2,2,3,3).
The largest complexes are [[3,2,3,2]]=〈e12e14e24, e13e14e34, e12e14e23e34, e12e13e24e34〉
and [[2,3,2,3]]= 〈e14e23, e13e24, e12e23e24, e13e23e34〉, with [[3,2,3,2]]∼= [[2,3,2,3]]1. See
the final chapter for the complete computation of H∗nil4. ♦

Lemma 2.2. [[w1, . . . , wn]] ∼= [[n+1−wn, . . . , n+1−w1]].

Proof. Define τ(eab)=en+1−b,n+1−a and τ(∧k
i=1eaibi) = (−1)k+1∧k

i=1τ(eaibi). Now
eM ∈ [[w1, . . . , wn]] implies τ(eM )∈ [[n+1−wn, . . . , n+1−w1]], because

wn+1−i(τ(ea1b1 . . . eakbk)) = wn+1−i(en+1−b1,n+1−a1 . . . en+1−bk,n+1−ak
)

= n+1− i− |{j; aj= i}|+ |{j; bj= i}|
= n+1− (i−|{j; bj= i}|+|{j; aj= i}|)
= n+1− wi(ea1b1 . . . eakbk).

From [τ(eab), τ(ecd)]=−τ([eab, ecd]), we obtain

∂τ(ea1b1 . . . eakbk) = (−1)k+1
∑

i<j(−1)i+j [τeaibi, τeajbj] . . . τ̂ (eaibi) . . . τ̂ (eajbj ) . . .

= (−1)k
∑

i<j(−1)i+jτ [eaibi , eajbj ] . . . τ̂ (eaibi) . . . τ̂ (eajbj ) . . .

= τ∂(ea1b1 . . . eakbk),

so τ is a chain map. Since τ ◦τ=id, our τ is an isomorphism of chain complexes. �

Lemma 2.3. [[w1, w2, . . . , wn]] ∼= [[w2, . . . , wn, w1]]2w1−n−1.

Proof. Define a linear map ϕ : [[w1, w2, . . . , wn]] −→ [[w2, . . . , wn, w1]]2w1−n−1 by

ϕ
(
∧n−1
i=1e{i}×Mi

)
= (−1)ΣM1eMC

1 ×{n+1} ∧
n−1
i=2 e{i}×Mi

,

where MC
1 = {2, . . . , n}\M1; it is convenient to have indices in the codomain go

from 2 to n+1 instead of from 1 to n. There holds

wi(ϕ(eM )) = i−|{x; ex,i+1∈ϕ(eM )}|+|{y; ei+1,y∈ϕ(eM )}|
= i−

(
|{x; ex,i+1∈eM}|+

{
−1; e1,i+1∈eM
0 ; e1,i+1 /∈eM

)
+
(
|{y; ei+1,y∈eM}|+

{
1; e1,i+1 /∈eM
0; e1,i+1∈eM

)

= i+1−|{x; ex,i+1∈eM}|+|{y; ei+1,y∈eM}| = wi+1(eM ) for i<n and
wn(ϕ(eM )) = n−|{x; ex,n+1∈ϕ(eM )}|+|{y; en+1,y∈ϕ(eM )}|

= n−(n−1−|M1|)+0 = 1−0+|M1| = w1(eM ).

Length difference of eM and ϕ(eM) is (n−1−|M1|)−|M1|=n−1−2(w1−1)=n+1−2w1.
Thus ϕ is a well-defined bijection. Denoting M \x∪y := (M\{x})∪{y}, we have

ϕ∂(e{1}×M1
eN ) = ϕ

(∑
x∈M1, y∈Nx\M1

εxye{1}×(M1\x∪y)eN\{(x,y)} + (−1)|M1|e{1}×M1
∂eN

)

=
∑

x∈M1, y∈Nx\M1

(−1)y−x+ΣM1εxye(M1\x∪y)C×{n+1}eN\{(x,y)} + (−1)|M1|+ΣM1eMC
1 ×{n+1}∂eN ,

∂ϕ(e{1}×M1
eN) = ∂

(
(−1)ΣM1eMC

1 ×{n+1}eN
)

=
∑

y∈Nx∩MC
1 , x/∈MC

1

(−1)ΣM1(−ε′xy)e(MC
1 \y∪x)×{n+1}eN\{(x,y)} + (−1)ΣM1+|MC

1 |eMC
1 ×{n+1}∂eN

=
∑

x∈M1, y∈Nx\M1

(−1)1+ΣM1ε′xye(M1\x∪y)C×{n+1}eN\{(x,y)} + (−1)n−1+|M1|+ΣM1eMC
1 ×{n+1}∂eN.

for εxy, ε
′
xy∈{1,−1}. Since [ey,n+1, ex,y]=−ex,n+1, there is a minus before ε′xy. We

must show that (−1)y−xεxy = (−1)nε′xy: if α=(position of x in M1), β=(position

of (x, y) in N), γ=(position of y in M1\x∪y), then y in MC
1 has position y−γ−1

and x in MC
1 \y∪x has position x−α, so (−1)y−xεxy=(−1)y−x+α+(|M1|+β)+(γ−1)=
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(−1)n+(y−γ−1)+(n−1−|M1|+β)+(x−α−1)=(−1)nε′xy. Therefore ϕ∂=(−1)n−1∂ϕ, hence
ϕ(eM) :=

{
ϕ(eM)(−1)n−1; if |M|∈2N
ϕ(eM) ; if |M|/∈2N

is an isomorphism of chain complexes. �

Lemma 2.4. [[w1, . . . , wk−1, n, wk+1, . . . , wn]] ∼= [[w1, . . . , wk−1, wk+1, . . . , wn]]n−k and
[[w1, . . . , wk−1, 1, wk+1, . . . , wn]] ∼= [[w1−1, . . . , wk−1−1, wk+1−1, . . . , wn−1]]k−1.

Proof. We can identify [[w1, . . . , wn−1, n]] with [[w1, . . . , wn−1]]. By Lemma 2.3,

[[w1, . . . ,wk−1,n,wk+1, . . . ,wn]]∼=[[wk+1, . . . ,wn,w1, . . . ,wk−1,n]]−2
∑

n
i=k+1wi+(n−k)(n+1)

∼=[[wk+1, . . . ,wn,w1, . . . ,wk−1]]−2
∑

n
i=k+1wi+(n−k)(n+1)

∼=[[w1, . . . ,wk−1,n,wk+1, . . . ,wn]](n−k)·1.

We can identify [[1, w2, . . . , wn]] with [[w2−1, . . . , wn−1]]. By Lemma 2.3,

[[w1, . . . ,wk−1,1,wk+1, . . . ,wn]]∼=[[1,wk+1, . . . ,wn,w1, . . . ,wk−1]]2
∑k−1

i=1wi−(k−1)(n+1)

∼=[[wk+1−1, . . . ,wn−1,w1−1, . . . ,wk−1−1]]2
∑k−1

i=1wi−(k−1)(n+1)

∼=[[w1−1, . . . ,wk−1−1,wk+1−1, . . . ,wn−1]]2(k−1)−(k−1).

This establishes the first and second part of the claim. �

If all elements in a sequence w=(w1, . . . , wn) are distinct (i.e. w is a permutation
of (1, . . . , n)), then by applying Lemma 2.4 n times, we see that [[w]] has only one
generator, namely eM =

∧
i<j,wi>wj

eij , the inversions of w. Indeed, wk(eM ) =

k−|{i; eik ∈ eM}|+|{j; ekj ∈ eM}| = k−|{i; i< k, wi>wk}|+|{j; k< j, wk >wj}| =
1+|{i; i<k, wi<wk}|+|{j; k<j, wk>wj}| = 1+|{r; r 6=k, wr<wk}| = wk.

Let Fn={(w1, . . . , wn)∈Sn; wi 6=wj for i 6=j}. Then
⊕

w∈Fn
[[w]] is a submodule

of the free part FH∗(niln). In Lemma 4.2, we will show that for every w /∈Fn the
homology of the complex [[w]] has only torsion, so FH∗(niln) ∼=

⊕
w∈Fn

[[w]]. Thus

we can calculate FH∗(niln), which was already known by Kostant [4, Theorem
5.14], who used the Laplacian operator on Λ∗

niln to get the following result:

Theorem 2.5. FHk(niln) ∼= ZT (n−1,k), where T (n−1, k) is a Mahonian number.

Proof. Mahonian numbers (OEIS A008302) are given by the recurrence T (0, 0)=1,

T (0, k) = 0 for k 6= 0, and T (n, k) =
∑n−1

i=0 T (n−1, k−i) for n> 0. Since T (1, k) =
1, 1, 0, . . ., the theorem is true for n=2. By Lemma 2.4, we have

F∗ :=
⊕

w∈Fn
[[w]] =

⊕
i∈[n],w∈Fn−1

[[w1, . . .,wi−1,n,wi, . . .,wn−1]] ∼=
⊕

i∈[n],w∈Fn−1
[[w]]n−i.

By induction, rankFk=
∑n

i=1T (n−2, k−(n−i))=
∑n−1

j=0 T (n−2, k−j)=T (n−1, k). �

3. Filtrations

Let w=(2, w2, . . . , wn), so every wedge in [[w]] contains exactly one e1∗. There
is a natural filtration of [[w]] by subcomplexes: if Fw

k is spanned by {e1ieM ; i≥k},
then 0 = Fw

n+1 ≤ Fw
n ≤ . . . ≤ Fw

2 = [[w]]. The quotient Fw
k /F

w
k+1 has generators

{[e1keM ]; e1keM ∈Fw
k } and boundary ∂[e1keM ]=−[e1k ∂eM ], therefore

Fw
k /F

w
k+1

∼= [[1, w2, . . . , wk−1, wk+1, wk+1, . . . , wn]]1
∼= [[w2−1, . . . , wk−1−1, wk, wk+1−1, . . . , wn−1]]1.

(3.1)

Lemma 3.1. If wi=wj=wk∈{2, n−1} for distinct i, j, k, then H∗[[w1, . . . ,wn]] ∼= 0.
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Proof. By Lemmas 2.3 and 2.2, we may assume that i= 1 and wi =wj =wk = 2.
For any r /∈{j, k} there holds Fw

r /F
w
r+1

∼= [[w2−1, . . . , 1, . . . , wr, . . . , 1, . . . , wn−1]]1 ∼=
[[w2−2, . . . , 0, . . . , wr−1, . . . , wn−2]]k ∼= 0, by (3.1) and Lemma 2.4. Thus we have
0=Fw

n = . . .=Fw
k+1 <Fw

k = . . .=Fw
j+1 <Fw

j = . . .= [[w]] and a long exact sequence

of a pair . . .→Hn+1
[[w]]
Fw

k

χ
→HnF

w
k →Hn[[w]]→Hn

[[w]]
Fw

k

χ
→Hn−1F

w
k → . . .. To prove

H∗[[w]]∼=0, it suffices to show that χ is an isomorphism, where χ(x+Fw
k )=[∂(x)].

Let x∈ [[w]]/Fw
k =Fw

j /F
w
j+1, so x=e1j · · · . By wk =2, x=e1je{2,...,j,...,k−1}×{k} · · · .

By wj=2, x=[e1je{2,...,j−1}×{j}e{2,...,j,...,k−1}×{k}eM ] with no indices j and k in M .
Let y∈Fw

k =Fw
k /F

w
k+1, so y=e1k · · · . Since wj=2, y=e1ke{2,...,j−1}×{j} · · · . Since

wk=2, y=e1ke{2,...,j−1}×{j}e{2,...,ĵ,...,k−1}×{k}eM with no indices j and k in M .

Since Hn
[[w]]
Fw

k

= Ker∂
Im∂ , its elements are sent by ∂ to Fw

k , so in x the only multipli-

cation is [e1j , ejk]=e1k. Thus χ sends x 7→y and is bijective. �

Lemma 3.2. [[. . . , 2, 2, . . .]] ≃ 0 and [[. . . , n−1, n−1, . . .]] ≃ 0.

Proof. By Lemmas 2.3 and 2.2, it suffices to show that [[w]] :=[[2, 2, w3, . . . , wn]] ≃ 0.
Now [[w]] consists of e1ieM with i≥3 and e12e2ieM , where 2 is not an index in M .

Hence M={e12e2ieM →e1ieM ; e1ieM ∈ [[w]]} is a Morse matching with M̊=∅. �

Lemma 3.3. Let w=(2, w2, w3, . . . , wn) and w′=(2, w3, . . . , wn, w2). Then Fw
3

∼=
[[w′]]2w2−n−2/F

w′

n . If H∗[[w2, w3−1, . . . , wn−1]] ∼= 0, then H∗[[w]] ∼= H∗[[w
′]]2w2−n−2.

Proof. Define a linear map ϕ : Fw
3 → [[w′]]2w2−n−2/F

w′

n by

ϕ
(
e1b ∧

n−1
i=2e{i}×Mi

)
= (−1)ΣM2 [e1b eMC

2 ×{n+1}∧
n−1
i=3e{i}×Mi

],

where MC
2 ={3, . . . , n}\M2 and indices in the codomain are 1, 3, . . . , n+1. Our ϕ

is a bijection and proof that it is a chain map is similar to the one in Lemma 2.3.
Let H∗[[w2, w3−1, . . . , wn−1]] ∼= 0, which by (3.1) is H∗(F

w
2 /F

w
3 ). By the long

exact sequence and first part, H∗[[w]] =H∗F
w
2
∼=H∗F

w
3
∼=H∗([[w

′]]2w2−n−2/F
w′

n ). By

(3.1), H∗F
w′

n
∼= H∗[[w3−1, . . . , wn−1, w2]] ∼= H∗[[w2, w3−1, . . . , wn−1]]n−2w2

∼= 0, so

by the long exact sequence, H∗([[w
′]]/Fw′

n ) ∼= H∗[[w
′]] and the result follows. �

Recall that any chain map ϕ : B∗ →C∗ induces a chain complex D∗ =Coneϕ,
where Dn = Bn−1⊕Cn and ∂(b, c) =

(
∂(b), ϕ(b)−∂(c)

)
. Furthermore, there is an

exact sequence . . .→Hn+1D∗→HnB∗
ϕ∗
→HnC∗→HnD∗→Hn−1B∗

ϕ∗
→ . . ..

Lemma 3.4. Let w=(2, w2, . . . , wk, 3, 3, wk+3, . . . , wn) and w′=(w2−2, . . . , wk−2,

3, wk+3−2, . . . , wn−2). Then H∗[[w]] ∼= H∗Cone
(
[[w′]]k

·2
−→[[w′]]k

)
.

Proof. Let k=1, so w=(2,3,3, . . .). By (3.1) and Lemma 3.2, Fw
k /F

w
k+1≃0 for k≥4,

so H∗F
w
4
∼=0 and H∗[[w]] ∼= H∗([[w]]/F

w
4 ). There are 4 types of generators in [[w]]/Fw

4 :

• A = {[e12e23e2ae3beM ]; all indices in M are ≥4},
• B = {[e13e23e3ae3beM ]; all indices in M are ≥4},
• C = {[e12e2ae2beM ]; all indices in M are ≥4},
• D = {[e13e2ae3beM ]; all indices in M are ≥4}.

The set M = {A∋e12e23e2aeM →e13e2aeM ∈D} is a Morse matching, with critical

elements M̊=B∪C. Nontrivial zig-zag paths go from B to C and come in pairs:
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[e13e23e3ae3beM ] [e13e2ae3beM ]

[e12e23e2ae3beM ] [e12e2ae2beM ]

1

−1

1 and

[e13e23e3ae3beM ] [e13e2be3aeM ]

[e12e23e2be3aeM ] [e12e2ae2beM ],

−1

−1

−1

which add up to ·2. We have 〈M̊〉/〈C〉 ∼= [[w′]]2 (omit e13e23 and indices 1, 2) and

〈C〉∼=[[w′]]1 (omit e12 and indices 1, 3), so H∗[[w]]∼=H∗〈M̊〉∼=H∗Cone
(
[[w′]]1

·2
→ [[w′]]1

)
.

Finally, if k≥ 2, then H∗[[w]] ∼= H∗[[2, 3, 3,wk+3, . . . ,wn,w2, . . . ,wk]]∑k
i=2(2wi−n−2)

∼= H∗ Cone
(
·2

�

[[3,wk+3−2, . . . ,wn−2,w2−2, . . . ,wk−2]]1+
∑

k
i=2(2wi−n−2)

)
∼= H∗ Cone(

·2

�

[[w2−2, . . . , wk−2, 3, wk+3−2, . . . , wn−2]]1+
∑

k
i=2(2wi−n−2)−

∑
k
i=2(2(wi−2)−(n−1))

)
∼=

H∗Cone
(
[[w′]]k

·2
−→ [[w′]]k

)
by Lemmas 3.2, 3.3, 2.3, so the job is done. �

Lemma 3.5. Let w=(2, w2, . . . , wk−1, 2, wk+1, . . . , wn).

(1) Let A={e{1,...,k−1}×{k}ekaeM ∈ [[w]]} and B={e1ae{2,...,k−1}×{k}eM ∈ [[w]]; a>k}.

There exists a Morse matching M for [[w]], such that M̊=A∪B, ∂̊|B=∂|B,

∂̊|A: e{1,...,k−1}×{k}ekaeM 7→ (−1)k+1
(
e{1,...,k−1}×{k}∂(ekaeM)+nMe1ae{2,...,k−1}×{k}eM

)

+
∑

(b,c)∈X(−1)ǫbc+k+1e1ce{2,...,k−1}×{k}ebaeM\{(b,c)},

where nM = |{b∈{1, . . . , k−1}; (b, a) /∈M}|, ǫbc=(position of (b, c) in M), and
X = {(b, c)∈M ; b<k<c, (b, a) /∈M}.

(2) H∗[[w]] ∼= H∗ Coneϕ for some chain map ϕ : Fw
k+1→Fw

k+1.

(3) H∗[[2,w2, . . . ,wn−2,2,wn]] ∼= H∗ Cone
(
·(wn−1)

�

[[w2−1, . . . ,wn−2−1,1,wn]]1
)
.

Proof. (1): There are four types of generators in [[w]]: A, B,

C = {e1ae{2,...,k−1}×{k}eM ; a<k, there is no index 1 or k in M},
D = {e{1,...,â,...,k−1}×{k}eM ; 1<a<k, there is no index 1 or k in M}.

Set M=
{
C∋e1ae{2,...,k−1}×{k}eM →e{1,...,â,...,k−1}×{k}eM ∈D

}
is a Morse matching,

with M̊=A∪B. Zig-zag paths starting in B are arrows and end in B, so ∂̊|B=∂|B.

Zig-zag paths starting in A are e{1,...,k−1}×{k}ekaeM
(−1)k+1

−→ e1ae{2,...,k−1}×{k}eM and

e{1,...,k−1}×{k}ekaeM e{1,...,b̂,...,k−1}×{k}ebaeM

e1be{2,...,k−1}×{k}ebaeM e1ae{2,...,k−1}×{k}eM for nM choices,

e1ce{2,...,k−1}×{k}ebaeM\{(b,c)} for (b, c)∈X.

(−1)b

(−1)b+1

(−1)k+1

(−1)ǫbc+k+1

(2): Follows from (1), because 〈B〉=Fw
k+1 and 〈M̊〉/〈B〉∼= 〈B〉1 (we mod out B, so

2nd and 3rd summand in ∂̊|A are 0, thus e{1,...,k−1}×{k}ekaeM 7→e1ae{2,...,k−1}×{k}eM

is a chain isomorphism). Ergo ϕ is the part of ∂̊|A that goes to B.
(3): Follows from (2), since Fw

k+1 =Fw
n
∼= [[w′]]1 (omit e1n and index 1) and X = ∅

and nM = |{b∈{1, . . . , n−2}; (b, n) /∈M}|=n−1−(n−wn)=wn−1. �

Dwyer [1] reports how Kunkel proved thatH∗niln has p-torsion for prime p<n−1.
Now we can easily see that H∗niln also has pm-torsion for every pm<n−1:

Example 3.6. Let q=pm=n−2 and w=(2, 3, . . . , q+1, 2, q+1). By Lemma 3.5,

H∗[[w]] ∼= H∗ Cone([[w
′]]1

·q
−→ [[w′]]1). Since w′=(2, . . . , q, 1, q+1) is a permutation of

(1, . . . , q+1) and |{(i, j); i< j, w′
i>w′

j}|= q−1, we have Hk[[w
′]] ∼=

{
Z; if k=q−1
0; if k 6=q−1 , so

Hk[[w]] ∼=
{
Zq; if k=q
0 ; if k 6=q . If q<n−2, then H∗[[w, q+3, . . . , n]] ∼= H∗[[w]]. ♦
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In [1], Dwyer proved that there is no p-torsion in H∗niln for any prime p≥n−1.
The next example shows that H∗niln can have pm-torsion for some pm≥n−1:

Example 3.7. Let w=(2,4,7,5,4,2,5,7). By Lemma 3.5, H∗[[w]]∼=H∗Cone(ϕ
�

Fw
7 ).

By (3.1), Fw
8
∼=[[3,6,4,3,1,4,7]]1∼=[[3,6,4,3,1,4]]1∼=[[2,5,3,2,3]]5∼=[[2,3,2,3]]8 has H∗

∼=Z2

generated by [e18eM ] with M={(2,7), (4,5)}∪{(i,6); i=2, . . . , 5}∪{(3,i); i=4, 5, 7}.
By Lemmas 2.4, 2.2, 3.5, we get

H∗F
w
7 /F

w
8

∼= H∗[[3,6,4,3,1,5,6]]1 ∼= H∗[[2,5,3,2,4,5]]5 ∼=
∼= H∗[[2,3,5,4,2,5]]5 ∼= H∗ Cone

(
·4

�

[[2,4,3,1,5]]6
)
.

Because H∗[[2,4,3,1,5]]∼=Z generated by [e14e23e24e34], we have H∗[[2,3,5,4,2,5]]∼=Z4

generated by [e16eN ], where N={(2,3), (2,4), (2,5), (3,4)} and

∂
(∑5

i=2 e1iei6eM
)
= −4e16eM ∈ [[2,3,5,4,2,5]]. (3.2)

Then [e16eN ′ ] generates H5[[2,5,3,2,4,5]] ∼= H5[[2,3,5,4,2,5]], where N ′ = {(7−y, 7−
x); (x, y) ∈ N}, and [e17e28eP ] generates H10F

w
7 /F

w
8

∼= H10[[2,5,3,2,4,5]]5, where
P = {(3,4), (3,5), (3,7), (4,5)}∪{(i,6); i= 2, . . . , 5}. From the long exact sequence
for Fw

8 ≤ Fw
7 we get that H∗F

w
7

∼= 0 for ∗ 6= 10 and H10F
w
7 is an extension of

H10F
w
7 /F

w
8
∼=Z4 by H10F

w
7
∼=Z2, so it is isomorphic to Z4×Z2 or Z8. By (3.2),

∂
(∑

i∈{3,4,5,7}[e17e2iei8eP ]
)
= 4[e17e28eP ] ∈ Fw

7 /F
w
8 , but

∂
(∑

i∈{3,4,5,7} e17e2iei7eP
)
= −4e17e27eP + e18eM ∈ Fw

7 . (3.3)

Thus [e17e27eP ] is of order 6=4, soH10F
w
7
∼=Z8. IfR={(2,8), (3,4), (3,5), (3,7), (4,5)},

then e16e67e27eP = e{1,...,5}×{6}e67eR. By Lemma 3.5,

∂̊(e{1,...,5}×{6}e67eR) = ±nRe17e{2,...,5}×{6}eR ± e18e{2,...,5}×{6}e27eR\{(2,8)},

where nR = |b∈{1, . . . , 5}; (b, 7) /∈R}|=4. By (3.3), ∂̊(e{1,...,5}×{6}e67eR) is trivial
or ±8e17e2iei8eP . In both cases the morphism ϕ : Fw

7 →Fw
7 is homologically trivial.

Consequently, we can conclude that Hk[[w]] ∼=
{
Z8; if k∈{10,11}
0 ; if k/∈{10,11} . ♦

4. Free part of homology

We can generalise the filtration from the previous section to an arbitrary complex
[[w1, . . . , wn]]=[[w]]. In every eM ∈ [[w]], there are exactly t :=w1−1 occurences of e1∗.
Thus Fw

k :=
〈
e1i1 . . . e1iteM ; i1+. . .+it≥k, 1 is not in M

〉
≤ [[w]] is a subcomplex.

Define w(i1, . . . , it)∈Sn−1 as (w′
2, . . . , w

′
n), where w′

j=
{wj ; if j∈{i1,...,it}
wj−1; if j /∈{i1,...,it}

. Then

Fw
k /F

w
k+1

∼=
⊕

i1+...+it=k[[w(i1, . . . , it)]]t. (4.1)

Example 4.1. Let us compute H∗[[3,3,3,3,3]]. By Lemmas 3.2, 3.5, (4.1), Fw
10=0,

Fw
9 /F

w
10

∼= [[2,2,3,3]]2≃ 0, H∗F
w
8 /F

w
9
∼=H∗[[2,3,2,3]]2∼=Z2 generated by [e13e15 e24e35],

Fw
7 /F

w
8

∼= [[3,2,2,3]]2⊕ [[2,3,3,2]]2 ≃ 0, H∗F
w
6 /F

w
7

∼=H∗[[3,2,3,2]]2 ∼= H∗[[2,3,2,3]]3 ∼= Z2

generated by [e12e14 e23e25e35], Fw
5 /F

w
6
∼= [[3,3,2,2]]2 ≃ 0, Fw

5 = [[w]]. Thus H∗[[w]]∼=
H∗F6 and H∗F

w
7
∼=H∗F

w
8
∼=H∗F

w
8 /F

w
9
∼=Z2 generated by [e13e15 e24e35]. In the exact

sequence . . .→Hk+1
Fw

6

Fw
7

χ
→HkF

w
7 →HkF

w
6 →Hk

Fw
6

Fw
7

χ
→Hk−1F

w
7 → . . . our χ sends

[e12e14 e23e25e35] 7→ [e13e14e25e35+e14e15e23e35] =
[−e13e15e24e35−∂(e13e15e23e34e35)+∂(e13e14e25e34e45)].

It is an isomorphism, hence by exactness, H∗[[3,3,3,3,3]] ∼= H∗F
w
6

∼= 0. ♦
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Lemma 4.2. For w∈Sn\Fn=:Tn, the homology of [[w]] has only torsion.

Proof. The proof is by induction on n. The claim is trivial for n=2 because T2=∅.
Let n>2 and w∈Tn. By Lemma 2.3 we may assume that w1≤wi for all i. If w1=1,
then by Lemma 2.4, [[w]]∼=[[w2−1, . . . wn−1]], the claim holds by induction. If w1≥3,
all elements of the sequence w(i1, . . . , iw1−1) are at least 2, so w(i1, . . . , iw1−1)∈Tn−1.
By (4.1) and induction, FH∗(F

w
k /F

w
k+1)

∼= 0 for all k, hence FH∗[[w]] ∼= 0.
Now let w1 = 2. If w(i) ∈ Tn−1 for all i ∈ {2, . . . n}, then the same argument

as for the case w1 ≥ 3 shows that FH∗[[w]] ∼= 0. Suppose there exists i such that
w(i) ∈ Fn−1. Then wi = n−1, w1 = 2, and the other elements of the sequence w
form a permutation of (2, . . . , n−1), so there are exactly two numbers j < i such
that w(j), w(i) ∈ Sn−1. If the second number 2 (the first one is w1 = 2) appears
after the position i, we can use Lemma 3.5 to show that the free part of H∗[[w]] is
trivial. Anyway, in the filtrations of [[w]] there are exactly two subquotients with
nontrivial free part of homology, and in both cases the rank of free part is 1. So
to prove that FH∗[[w]] ∼= 0, it is enough to show that some nontrivial multiple of
the generator of FH∗F

w
j+1 is in the image of the boundary morphism of the long

exact sequence of the pair Fw
j+1≤Fw

j . Because FH∗F
w
i+1

∼= 0, the pair Fw
j+1≤Fw

j

may be replaced with the pair Fw
j+1/F

w
i+1 ≤ Fw

j /F
w
i+1. Because Fw

i /F
w
i+1

∼= [[w(i)]]
and w(i)∈Fn−1, a generator of FH∗(F

w
i /F

w
i+1) is of a form [e1ieM ]=: [x], such that

∂eM = 0 and no multiple of eM is in Im∂. For a ∈ {2, . . . , i−1} let xa = e1aeMa
,

where Ma=M∪{(a, i)}. Let na(b, c) be the position of (b, c) in Ma. Then

∂(
∑i−1

a=2(−1)na(a,i)[xa])

=
∑i−1

a=2

(
(−1)na(a,i)+1+na(a,i)[x] +

∑
(a,b)∈Ma

(−1)na(a,i)+1+na(a,b)[e1beMa\{(a,b)}]

+
∑

(c,a)∈Ma
(−1)na(a,i)+na(c,a)+na(a,i)+nc(c,i)−2[e1aeMc−{(c,a)}]

)

= −(i− 2)[x] +
∑i−1

a=2

∑
(a,b)∈Ma

(−1)na(a,i)+na(a,b)+1[e1beMa\{(a,b)}]

+
∑i−1

a=2

∑
(c,a)∈Ma

(−1)nc(c,i)+na(c,a)−2[e1aeMc\{(a,b)}].

Because [e1beM ]=0 for b>i, the middle sum runs only over (a, b)∈Ma with b≤ i.
Because na(a, b)=nb(a, b), the last two sums are the same with the opposite sign,

therefore ∂(
∑i−1

a=2(−1)na(a,i)[xa]) = −(i− 2)[x]. Since i≥3, our [x] is of finite order
in H∗(F

w
j /F

w
i+1)

∼= H∗[[w]]. �

Lemma 4.3. Hk[[wn, . . . , w1]] ∼= H(n2)−k−1[[w1, . . . , wn]] for (w1, . . . , wn)∈Tn.

Proof. Let (C∗, δ∗) be the dual of the complex (C∗, ∂∗) of niln, let fM be the dual of
a basis element eM , and N=

(
n
2

)
. Define τ∗ : C∗→CN−∗ by τ(eM )=εMfMC , where

εM is the sign of the permutation (M,MC) of {(i, j); 1≤ i< j≤n}. By [2, p.640],
τ∗ is a chain isomorphism, i.e. τk−1∂k = δN−kτk. For eM ∈ [[w1, . . . , wn]] we have

wi

(
τ(eM )

)
= i−|{x; (x, i)∈MC}|+|{x; (i, x)∈MC}|
= i−

(
i−1−|{x; (x, i)∈M}|

)
+
(
n−i−|{x; (i, x)∈M}|

)
= n+1−wi,

hence τ([[w1, . . . , wn]])= [[n+1−w1, . . . , n+1−wn]]
∗∼=[[wn, . . . , w1]]

∗ by Lemma 2.2.
Now the result follows from Lemma 4.2 and the universal coefficient theorem. �
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5. Computations

We have H∗niln
∼=

(⊕
w∈Fn

H∗[[w]]
)
⊕
(⊕

w∈Tn
H∗[[w]]

)
. Free part

⊕
w∈Fn

H∗[[w]] is
known from 2.5. For the torsion part, we use Lemma 2.4:

TH∗(niln) ∼=
(
⊕1,n/∈w∈TnH∗[[w]]

)
⊕

(
⊕1∈w∈TnH∗[[w]]

)
⊕
(
⊕n∈w∈TnH∗[[w]]

)
⊕1,n∈w∈TnH∗[[w]]

∼=
(
⊕1,n/∈w∈TnH∗[[w]]

)
⊕

⊕w∈Tn−1
⊕n

k=1H∗[[w]]k−1⊕H∗[[w]]n−k

⊕w∈Tn−2
⊕i∈[n−1],j∈[n]H∗[[w]]i−1+n−j

∼=
(
⊕1,n/∈w∈TnH∗[[w]]

)
⊕

⊕n−1
k=0TH∗+k(niln−1)

2

⊕2n−3
i=0 TH∗+i(niln−2)min{i+1,2n−2−i}

.

By induction and Lemmas 3.1, 3.2, it suffices to calculate only H∗[[w]] coming from

T̃n :=
{
w∈Tn; 1, n /∈w, ∄i : wi=wi+1∈{2, n−1}, ∄i<j<k : wi=wj=wk∈{2, n−1}

}
.

Define maps α, β, γ : T̃n→T̃n by α(w1, . . . , wn)=(w2, . . . , wn, w1), β(w1, . . . , wn)=
(n+1−wn, . . . , n+1−w1), γ(w1, . . . , wn) = (wn, . . . , w1). Let ∼ be the smallest

equivalence relation on T̃n with w∼ξ(w) for ξ∈{α, β, γ}. By Lemmas 2.3, 2.2, 4.3,
we need to compute H∗ only for one complex in each equivalence class.

Case n=4: The set S4 consists of all permutations of (1,1,4,4), (1,2,3,4), (1,3,3,3),

(2,2,2,4), (2,2,3,3), whilst T̃4/∼ = {(2, 3, 2, 3)}. Now [[3, 2, 3, 2]] ∼= [[2, 3, 2, 3]]1 has
only 4 generators, so H∗ can be computed directly, but let us use Lemma 3.5:

H∗[[2, 3, 2, 3]] ∼= H∗Cone([[2,1,3]]1
·2
→ [[2,1,3]]1). Since [[2, 1, 3]]=〈e12〉, we conclude that

Hk[[2, 3, 2, 3]]∼=
{
Z2; if k=2
0 ; if k 6=2 . Hence the torsion part is THk(nil4) ∼=

{
Z2; if k∈{2,3}
0 ; if k/∈{2,3} .

Case n=5: Set T̃5/∼ consists of a=(2, 3, 4, 2, 4), b=(2, 3, 3, 3, 4), c=(2, 3, 3, 4, 3),

d = (3, 3, 3, 3, 3). By Lemma 3.5, H∗[[a]] ∼= H∗ Cone([[2, 3, 1, 4]]1
·3
→ [[2, 3, 1, 4]]1) ∼={

Z3; if k=3
0 ; if k 6=3 . By Lemma 3.4, H∗[[b]] ∼= H∗ Cone([[1, 3, 2]]2

·2
→ [[1, 3, 2]]2) ∼=

{
Z2; if k=3
0 ; if k 6=3 ,

andH∗[[c]] ∼= H∗ Cone([[3, 2, 1]]1
·2
→ [[3, 2, 1]]1) ∼=

{
Z2; if k=4
0 ; if k 6=4 . By Example 4.1,H∗[[d]] ∼=

0. Because β(a)=(2, 4, 2, 3, 4)=α3(a), β(b)=(2, 3, 3, 3, 4)= b, β(c)=(3, 2, 3, 3, 4)=
α4(c), and γ(x) 6=αi(x) for all x∈{a, b, c} and all i, we conclude that

⊕

w∈T̃n

Hk[[w]] =
⊕

x∈{a,b,c}

⊕

i∈{0,...,4}

(
Hk[[α

i(x)]] ⊕Hk[[γα
i(x)]]

)
=





Z
4
2⊕Z

2
3; k=3,

Z
6
2⊕Z

3
3; k=4,

Z
6
2⊕Z

3
3; k=5,

Z
4
2⊕Z

2
3; k=6.

Case n=6 is still doable by hand. Set T̃6/∼ has 28 elements: 9 cases are done by
Lemma 3.4, 6 by Lemma 3.5, and the rest by examining their filtration. There are
only 3 classes containing no 2 or n−1: (3, 3, 3, 4, 4, 4), (3, 3, 4, 3, 4, 4), (3, 4, 3, 4, 3, 4).

Cases n=7, 8 require a computer. The set T̃7/∼ has 250 elements, and T̃8/∼ has
3485 elements. See the table below for the homology of nil7 and nil8.

Cases n≥9: The set T̃9/∼ has 59 102 elements. We have not been able to com-
pute, among other things, the homology of the complex [[5,5,5,5,5,5,5,5,5]].

6. Afterword

6.1. Conclusion. We have seen that methods, designed for a specific family of Lie
algebras, where we partition the problem into smaller pieces and solve only the
nontrivial nonequivalent parts, can enable us to compute more than twice as much
data compared with the usual approach.

6.2. Acknowledgment. This research was supported by the Slovenian Research
Agency (research core funding no. P1-0292, J1-7025, J1-8131).
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k\n 7 8
0 Z Z
1 Z6 Z7

2 Z20⊕Z4
2 Z27⊕Z5

2

3 Z49⊕Z35
2 ⊕Z6

3 Z76⊕Z57
2 ⊕Z8

3

4 Z98⊕Z124
2 ⊕Z27

3 ⊕Z6
4 Z174⊕Z253

2 ⊕Z45
3 ⊕Z9

4

5 Z169⊕Z303
2 ⊕Z78

3 ⊕Z28
4 ⊕Z4

5 Z343⊕Z793
2 ⊕Z168

3 ⊕Z53
4 ⊕Z8

5

6 Z259⊕Z635
2 ⊕Z168

3 ⊕Z65
4 ⊕Z17

5 Z602⊕Z2132
2 ⊕Z479

3 ⊕Z164
4 ⊕Z47

5

7 Z359⊕Z1122
2 ⊕Z275

3 ⊕Z112
4 ⊕Z38

5 Z961⊕Z4880
2 ⊕Z1050

3 ⊕Z380
4 ⊕Z145

5

8 Z455⊕Z1674
2 ⊕Z384

3 ⊕Z160
4 ⊕Z56

5 Z1415⊕Z9882
2 ⊕Z1927

3 ⊕Z730
4 ⊕Z309

5 ⊕Z8

9 Z531⊕Z2096
2 ⊕Z481

3 ⊕Z196
4 ⊕Z63

5 Z1940⊕Z17721
2 ⊕Z3178

3 ⊕Z1200
4 ⊕Z524

5 ⊕Z5
8

10 Z573⊕Z2238
2 ⊕Z522

3 ⊕Z210
4 ⊕Z64

5 Z2493⊕Z27826
2 ⊕Z4781

3 ⊕Z1728
4 ⊕Z766

5 ⊕Z12
8

11 Z573⊕Z2096
2 ⊕Z481

3 ⊕Z196
4 ⊕Z63

5 Z3017⊕Z38810
2 ⊕Z6504

3 ⊕Z2253
4 ⊕Z1007

5 ⊕Z18
8

12 Z531⊕Z1674
2 ⊕Z384

3 ⊕Z160
4 ⊕Z56

5 Z3450⊕Z48576
2 ⊕Z7902

3 ⊕Z2720
4 ⊕Z1219

5 ⊕Z17
8

13 Z455⊕Z1122
2 ⊕Z275

3 ⊕Z112
4 ⊕Z38

5 Z3736⊕Z54457
2 ⊕Z8614

3 ⊕Z3011
4 ⊕Z1351

5 ⊕Z11
8

14 Z359⊕Z635
2 ⊕Z168

3 ⊕Z65
4 ⊕Z17

5 Z3836⊕Z54457
2 ⊕Z8614

3 ⊕Z3011
4 ⊕Z1351

5 ⊕Z11
8

15 Z259⊕Z303
2 ⊕Z78

3 ⊕Z28
4 ⊕Z4

5 Z3736⊕Z48576
2 ⊕Z7902

3 ⊕Z2720
4 ⊕Z1219

5 ⊕Z17
8

16 Z169⊕Z124
2 ⊕Z27

3 ⊕Z6
4 Z3450⊕Z38810

2 ⊕Z6504
3 ⊕Z2253

4 ⊕Z1007
5 ⊕Z18

8

17 Z98⊕Z35
2 ⊕Z6

3 Z3017⊕Z27826
2 ⊕Z4781

3 ⊕Z1728
4 ⊕Z766

5 ⊕Z12
8

18 Z49⊕Z4
2 Z2493⊕Z17721

2 ⊕Z3178
3 ⊕Z1200

4 ⊕Z524
5 ⊕Z5

8

19 Z20 Z1940⊕Z9882
2 ⊕Z1927

3 ⊕Z730
4 ⊕Z309

5 ⊕Z8

20 Z6 Z1415⊕Z4880
2 ⊕Z1050

3 ⊕Z380
4 ⊕Z145

5

21 Z Z961⊕Z2132
2 ⊕Z479

3 ⊕Z164
4 ⊕Z47

5

22 Z602⊕Z793
2 ⊕Z168

3 ⊕Z53
4 ⊕Z8

5

23 Z343⊕Z253
2 ⊕Z45

3 ⊕Z9
4

24 Z174⊕Z57
2 ⊕Z8

3

25 Z76⊕Z5
2

26 Z27

27 Z7

28 Z
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