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TORSION TABLE FOR THE LIE ALGEBRA nil,

LEON LAMPRET AND ALES VAVPETIC

ABSTRACT. We study the Lie ring nil, of all strictly upper-triangular n xn
matrices with entries in Z. Its complete homology for n <8 is computed.

We prove that every p™-torsion appears in Hy(nilp;Z) for p™ <n—2. For
m=1, Dwyer [I] proved that the bound is sharp, i.e. there is no p-torsion in
H, (nily; Z) when prime p>n—2. In general, for m>1 the bound is not sharp,
as we show that there is 8-torsion in Hy(nilg;Z).

As a sideproduct, we derive the known result, that the ranks of the free
part of Hy(nily;Z) are the Mahonian numbers (=number of permutations of
[n] with k inversions), using a different approach than in [4].

1. INTRODUCTION

Let nil,, be the Lie algebra of integral n x n strictly upper-triangular matrices.
The complete homology Hy,(nil,,; Z) is known only for n<6 [3]:

K\n|2 3 4 5 6

0 |z z Z Z Z

1 |z 7?2 73 z* A

2 7P 1P Ly 7° L3 7" o 73

3 Z 7°0Zy ZVoZieZ; 7oL olZj

4 A X LY oL 1LY LY & 1P ® L

5 z3 297 o3 L' @1 o735 & 7Y

6 Y/ e Zi0 73 19 e Zi® a1 & 71
7 7" & 73 7' ¢ 75°° © 73° @ 13°
8 z° 2 o7V e 23 @ 712
9 z4 ZP 2 ® 23 0 73
10 Z Z' oLy @ 213 o 73

11 ¥ o7 o 74

12 ¥ & 73

13 z"

14 A

15 Y/

The main reason why computations for larger n are exceedingly difficult is that the
chain complex C, = A*nil,, is immense. It has 2\2/ generators, which is more than
2 million for n="7. In the paper, we divide C, in numerous direct summands [w]
(corresponding to sequences w € {1,...,n}" with wy+...+w, = ("3')) and show
how many of them are isomorphic (up to dimension shift), many are contractible
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and many are obtained from smaller ones as the cone of a chain map [w'] X4 [w'].
The direct summands corresponding to permutations of (1,...,n) are generated by
just one element, hence those contribute only to free part. We show that any other
direct summand contributes only to torsion, so we get the free part of homology.

Complex. Let e;; be the matrix with all entries 0 except 1 in the position (i, j).
The chain complex C,. = A*nil,,, due to Chevalley (1948), is generated by wedges
€arbi N - - Neqb,, Where 1 <a; <b; <n for all <. From now on, for the sake of brevity
and clarity, we shall omit the A symbols. The boundary is defined by

—

8(6a1b1. . .eakbk) = Ei<j(_1>i+j [eaibi,eajbj]ealbl. .. eaibi. . (Z;b\] .. eakbk,

where [eqp, €cq] equals eqq if b=¢, equals —e, if a=d, and equals 0 otherwise.

AMT. For some computations later on, we shall use algebraic Morse theory, so
we include a short review of it. To a chain complex of free modules (Cy,0) we
associate a weighted digraph I', (vertices are basis elements of C., weights of edges
are nonzero entries of matrices di). Then we carefully select a matching M in this
digraph, so that its edges have invertible weights and if we reverse the direction of
every e€ M in I'p_, the obtained digraph Fé/*‘ contains no directed cycles and no
infinite paths in two adjacent degrees. Under these conditions (i.e. if M is a Morse
matching), the AMT theorem ([7], [3], [5]) provides a homotopy equivalent complex
(CD’*, 8*), spanned by the unmatched vertices in Fé’i , and with the boundary O, of

veCy given by the sum of weights of directed paths in Fé’i to all critical v’ € Cy_1.
For more details, we refer the reader to the three articles above (which specify the
homotopy equivalence), or [6] for a quick introduction and formulation.

2. SUBCOMPLEXES

For a set M = {(a1,b1),..., (ak,bk)} C {(4,7);1 <i < j<n} we denote ey =
€arby - - - Cayby- For Mi:={z;(i,z) € M} we have eny =N!Zje(;yxn,. We define the
weight vector w(epr) = (Wr,...,Wwy) by w; = |[{z; (z,7) € M}|—|{y; (i,y) € M}|, ie.
the number of times ¢ appears on the right in ejp; minus the number of times i
appears on the left in ep;. Then > @w; =0. Every summand in d(eas) has the
same weight as eps. Therefore a submodule [w] of A*nil,, spanned by the basis
elements with weight w, forms a chain subcomplex which is a direct summand.

Most equalities will be described more conveniently using the modified weight
w(en) = (1,...,n)—w(en) = (L—@1,...,n—wy,). Then Y1 jw; = ("F') and
i—n<w; <i—1 implies 1 <w; <n for all i. We denote [w]=][(1,...,n)—w] and let
[w]i be the complex [w] dimensionally shifted by k. Let S, := {(w1,...,w,) €
{1,...,n}" wr + ...+ w, = ("‘2"1)}, so that A*nil, = ,,cs, [w]. Notice that
Jwi, ..., wpa,n]=[wi,...,wea] and [1,we,...,w,]=[ws—1,...,w,—1].
Example 2.1. Let us take a look at bracket subcomplexes in A*nil,, for n <4.

Set S consists of permutations of (1,2). Furthermore, there holds Hy[1,2] =
H(0)= {57 1420 and Hy[2.1]=Hyler)= {7 1421

Set Ss consists of permutations of (1,2,3),(2,2,2). Furthermore, Hy[1,2,3] =

W) = {0 HL3.20 = Hileas) = {5121, Hil2,1,3] = Hifero) =
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{%i i Zz , Hi[2,3,1] = Hi(e13e23) = {% it Z;S, Hi[3,1,2]= Hy(e12e13) = {% i Zz’
H[3,2, 1]]:Hk<612613623>§{§2 iﬁ Z;g, Hi[2,2,2]=Hy(eis, e12€23) ~0.
Set 84 consists of permutations of (1,1,4,4), (1,2,3,4), (1,3,3,3), (2,2,2,4), (2,2,3,3).

The largest complexes are [3,2,3,2] = (12€14€24, €13€14€34, €12€14€23€34, €12€13€24€34)
and [2,3,2,3] = (e14€23, €13€24, €12€23€24, €13€23€34), With [3,2,3,2] =[2,3,2,3]1. See

the final chapter for the complete computation of H,nily. %
Lemma 2.2. [wy,...,w,] 2 [n+1—wy,...,n+1—w].

Proof. Define 7(eap) =e€nt1-bnt+1—a and 7(AE_eap,) = (=1)FFIAE_ 7(e4,p,). Now
em € Jwi, ..., wy] implies 7(epr) €[n+1—wy,...,n+1—w], because

wﬂ+1—i(T(ealb1 s eakbk)) = wn+1—i(en+1—b1,ﬂ+1—a1' 3 en"t‘l—bk;n"l‘l_ak)
=n+1—i—{jia;=1}+[{j;b;=1}|
=n+1—(i—[{j;bj=i}+[{j;a;=i})
=n+1—wi(eap; ---€Capby)-
From [t(eap), 7(eca)] =—T7([€an, €cd]), We obtain
aT(ealbl - 'eakbk) = (_1)k+1 Zi<j(_1)?+j [T6aibi’ 7-e‘ljbj] s 7/:(etl«;bi) s ?(eajbj) s
= (—l)k Zi<j(_1)l+]/r[eaibi7 eajbj] P ?(eaibi) .. .?(eajbj) N
= Ta(ealbl .. .eakbk),
so 7 is a chain map. Since 7o7T=id, our 7 is an isomorphism of chain complexes. [
Lemma 2.3. [wy,ws,...,w,] = [wa, ..., wn, w1]2w—n—1-
Proof. Define a linear map ¢: [wy, wa, ..., w,] — [wa, ..., wn, w1]2w—n—1 by
p(NZTeqiyx) = (_1)ZM6MIC><{71+1} NIZ5 €qiyx s
where M ={2,...,n}\ My; it is convenient to have indices in the codomain go
from 2 to n+1 instead of from 1 to n. There holds
wilplem)) = i= {2 e i1 €plenn) | +{ys iy Eplen)}
=i—({;exincen}+{ 0! o) + ({y; ernp€en |+ {0 b gan)
=i+1—{z;esinc€emt|+{y; einy€em}| = wiy1(en) fori<n and

wn(p(enr)) = n—{z; eann € plem) H+Hy; ent1,y €plen)}|
n—(n—1—|M1|)—|—0 e 1—0+|M1| e wl(eM).

Length difference of eys and ¢(eyy) is (n—1—| My |)—|M;|=n—1-2(w1—1) =n+1—2w;.
Thus ¢ is a well-defined bijection. Denoting M\ zUy := (M\{z})U{y}, we have

PA(eqpyxanen) = ¢ e, yenang Syt xMi\zuy) ey + (=1 e fyas den)

e %ézv\a(fl)y_“wl Eoy €M\ 2Uy)Ox (i1} eN((ay) + (DT ey o 0 e,
T 15 x 1
do(eqyxanen) = ((=1)"Meyoy niayen) 3
= > (=1)>M (_Eéy)e(lwlc\yUm)><{n+l}eN\{($>y)} + (‘UEMIHMl IeMle {n+l}8€N
yENNMS, ¢ MC
e %N\(I\/?1>1+EMI5;116(M1\1U9)C><{"Jrl}eN\{(I»y)} + (=) MM e oy D
T 1 T 1
for &,y, €5, € {1, —1}. Since [ey nt1, €xy] = —€znt1, there is a minus before ¢;,. We
must show that (—1)Y""e,, = (—1)"¢,,: if a=(position of x in M;), = (position

of (x,y) in N), yv=(position of y in M;\zUy), then y in M{ has position y—vy—1
and 2 in M \yUz has position x—a, so (—1)¥ "%, = (—1)y et (M+AH)+0-1) =
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(=)= D1 =M Ha—al) — (_1)ng! - Therefore pd=(—1)""9¢p, hence

SN [elanE)n it MleN ; :

= X is an isomorphism of chain complexes. [l
Plem) {«P(eM) ; if [M]gan 18 A1 ISOMOTPIIS piexes
Lemma 2.4. [wy,. .., Wek1,M, Wity Wn] = w1, ... We1, Wht1, -« - Wp]ln—k and
[wi, .. w1, Wi, wa] 2 [wr—1,. . weg — 1w —1, o wn — 1] k-1

Proof. We can identify [wy,...,wp1,n] with Jws,...,wy—1]. By Lemma 23

Ilea sy Wh—1, N Wt - - - awn]] = [[wk+17 ey Wn, W, - - awkflvn]]—QZ?: qwi+(n—k)(n+l)
Hwii, - wnwi, Wk 25w (k) (n41)
= Ileu oo s Wh—1,1, Wit - - - 7wn]](nfk)-1'

We can identify [1,ws, ..., w,] with Jwe—1,..., w,—1]. By Lemma [Z3]

[wi, oo w1, LWk« W] LWkt - -+ Wiy W1 -+ o W 1]]22 g, — (hd) (b
= [wpp—1, ... o wp—Law—1, .. wpa—1], K, — (k1) (1)
w1, ... wiea—1wea—1, ... ,wn—l]]z(k_l)_(k_l).
This establishes the first and second part of the claim. O
If all elements in a sequence w= (w1, ..., w,) are distinct (i.e. w is a permutation

of (1,...,n)), then by applying Lemma 2.4 n times, we see that [w] has only one
generator, namely ej; = /\i<j’wi>wjeij, the inversions of w. Indeed, wi(en) =

—{iseir €enmt+{Jsens €Eem ] = k—|{i;i <k,w; >wi}H+|{j; k <j,wr >w,;}| =
T+ {i i<k, w; <wg |+ {7 k<j,wip>w; }| = 1+ |{r;r#k, w, <wy }| = wg.

Let F={(w1, ..., wn) €Sp; w; #w; for i#j}. Then P, » [w] is a submodule
of the free part F'H,(nil,). In Lemma 2] we will show that for every w ¢ F, the
homology of the complex [w] has only torsion, so F'H.(nil,) = @, ¢, [w]. Thus
we can calculate F'H,(nil,), which was already known by Kostant [4, Theorem
5.14], who used the Laplacian operator on A*nil,, to get the following result:

Theorem 2.5. FHy(nil,) = ZT"1F) where T(n—1,k) is a Mahonian number.

Proof. Mahonian numbers (OEIS A008302) are given by the recurrence 7'(0,0)=1,
T(0,k)=0 for k#0, and T(n, k) =31 T(n—1,k—1) for n>0. Since T'(1,k)=
1,1,0,..., the theorem is true for n=2. By Lemma [2.4] we have

Fo = Quer vl = Biepm,wer, v, - wirnwi, -] = @igpywer, [wln-i

By induction, rank Fyy =3 T'(n—2, k—(n—i)) =77 — o T(n=2,k—j)=T(n-1,k). O

3. FILTRATIONS

Let w=(2,ws,...,w,), so every wedge in [w] contains exactly one eq,. There
is a natural filtration of [w] by subcomplexes: if F}¥ is spanned by {ei;ear; i >k},
then 0 = FY, < FY < ... < Fy’ = [w]. The quotient Fy/Fy’, ;| has generators

{lerrenm]; erwenms € F¥} and boundary d[e1renr] = —[e1x Denr], therefore
FEFE =1 we, .., we, wetl, Wiy, - -, wn]y (3.1)
> [wo—1, ..., wi—1, wg, Wrr1—1, . . ., wp—1]1. '

Lemma 3.1. If w;, =wj =wy €{2,n—1} for distinct i, j, k, then H,Jws, ... w,] = 0.
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Proof. By Lemmas and 221 we may assume that ¢ =1 and w; = w; = w, =2.
For any r¢ {j, k} there holds F*/F}% | = [wa—1,...,1,...;wy, ..., 1,...,w,—1]y =
Jwa—2,...,0,...,w.—1,...,w,—2]x = 0, by (BI) and Lemma 24 Thus we have

O=FY=...=F, <F=...=F}4, <F}’=...=[w] and a long exact sequence
of a pair ... — Hn+1% ES H,FY — Hp,[w] — Hn% ES H, F}’ —.... To prove
H, [w] 20, it suffices to show that X is an isomorphiksm, where x(z+FY)=[0(x)].
Let z € [w]/Fy’ =F}'/F},, s0 x=eyj---. By wp =2, x=erje(a j .  k1}x{k} "
By w; =2, x=[e1jefa, . j1}x{j}6{2.....j,...k—1}x{k} M| With no indices j and k in M.
Let yEF,;“:F,;“/F,;il, SO y=ey . Since w; =2, y=ei1xe{2, . j1ix{j} - Since

W =2, y=e1xe{2
Since Hn% = Iﬁffg, its elements are sent by 0 to F}*, so in « the only multipli-

k
cation is [e1, ejx] =e€1x. Thus x sends z+—>y and is bijective. O

U2, G eIk} EM with no indices j and k in M.

.....

Lemma 3.2. [...,2,2,...]~0and[...,n—1,n—1,...] = 0.

Proof. By Lemmas 23 and [Z2] it suffices to show that [w]:=[2,2, ws,...,w,] ~ 0.
Now [w] consists of ey;epr with >3 and ejzegiens, where 2 is not an index in M.
Hence M ={ejzeq,ens — e1iepr; eiens € [w]} is a Morse matching with M=¢. O

Lemma 3.3. Let w=(2,ws,ws,...,wy,) and w' =(2,ws, ..., wy,ws). Then F3’ =
[ ]2wpn—2/F" If HyJwa, ws—1, ... w,—1] 20, then H.[w] = H.[w']2w,—n_a2-

Proof. Define a linear map ¢: F¥ — [w']ow, —n_2/F2 by
plew A peqipar) = (—1)M2 ey eng{nH}/\?;ée{i}xMi]a

where M$ ={3,...,n}\ M, and indices in the codomain are 1,3,...,n+1. Our ¢
is a bijection and proof that it is a chain map is similar to the one in Lemma
Let H,Jwa,ws—1,...,w,—1] = 0, which by &) is H.(F3"/F%"). By the long
exact sequence and first part, H[w] = H,F3* = H,F2* = H,([w']2w,—n_2/F*"). By
B, H*Fff/ > Hfws—1,...,wy,—1,ws] & H.Jwa,ws—1,...,wp—1]pn—2u, =0, so
by the long exact sequence, H, ([w']/F¥") = H,[w'] and the result follows. O

Recall that any chain map ¢: B, — C, induces a chain complex D, = Cone ¢,
where D,, = B, .1 ®C,, and 9(b,c) = (9(b), ¢(b) —9(c)). Furthermore, there is an

exact sequence ...— H, 1 D, — H, B, " H,C.—H,D,—H, 1B.%5. ...

Lemma 3.4. Let w=(2,wa,..., Wk, 3,3, Wkt3,- .., Wy) and w' = (we—2, ..., wp—2,
3, Wit3—2,...,wy,—2). Then H,Jw] = H*Cone(ﬂw’ﬂki)ﬂw’]]k).

Proof. Let k=1, so w=(2,3,3,...). By 1) and Lemma[3.2] F;/F}’,, ~0 for k>4,
so H,F}’=0 and H,[w] 2 H.([Jw]/F;’). There are 4 types of generators in [w]/F}:

o A = {[e1aeazeaqespens]; all indices in M are >4},
o B = {[e1sea3esqespens]; all indices in M are >4},
o C ={[e1zeaqeen];  all indices in M are >4},
o D ={[e1zeanespens];  all indices in M are >4}.

The set M = {A>e12ea3e2,6n — €13€24e0 € D} is a Morse matching, with critical
elements M= BUC. Nontrivial zig-zag paths go from B to C' and come in pairs:
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[613623€3a€3b6M]— 17[613 €2q 63b€M] [613 62363a63b6M]— —17 [613€2b63a6M]
—1 —1
[e12ea3eaqeavent] L —sle1aeaaeapers] and  [e12e23eamesaen]L 1 —le12eaqeamen],

which add up to -2. We have (M)/(C) = [w']s (omit eseq3 and indices 1,2) and
(CY2[w']; (omit €12 and indices 1, 3), so H, [w] = H, (M) =~ H,Cone([w']y 3 [w']y).

Finally, if k> 2, then H,[w] & H.[2,3,3,wk+3, - .. ,Wn,W2, ... ’wk]]Zfzz(Zwrnfﬂ
=~ H, Cone (-2(}[[3,w;€+3—2, e Wp—2,we—2, ... 7wk_2]]1+2’;2(2wi—n—2)) =~ H, Cone

~

(~2O[[w2—2, e w2, 3, W32, . .. ,wn—2]]1+2§:2(2wi_n_2)_ §:2(2(wi_2)_(n_1))) =

H,Cone ([w'] N [w']x) by Lemmas B2 B3], 23] so the job is done. O

Lemma 3.5. Let w=(2,wa, ..., Wk1,2, Wk, -, Wn)-

(1) Let A={eq1,. . p-1}x{k}€ram € [w]} and B={eiseqa,.., k1)x{k) M 60[[w]]; a>k}.
There exists a Morse matching M for [w], such that M=AUB, 0|p=0|p,

Aat eqr kaypqryeraenr = D eqr 1y O(€raen) Fnare1ae s,k 1ixk) M)

+ D peyex DT erces | kayx(ryebaanp.op
where nyy=[{be{l,...,k—1}; (b,a) ¢ M }|, ep. = (position of (b,c) in M), and
X ={(b,c)eM; b<k<ec,(ba)¢ M}.
(2) H.[w] = H, Coney for some chain map ¢: Fi5,— F},.
(8) H.[2,ws,... wy2,2w,] = H, CODQ(-(wn—l)C‘[[’wz —1,... Wy —1,1,wn]]1).

Proof. (1): There are four types of generators in [w]: A, B,

C = {e1a€qo,... k1}x{ryem; a<k, there is no index 1 or k in M},

D ={eq,...a,. k1yxqryem; 1<a<k, there is no index 1 or k in M}.
Set M= {0961a€{2
with M= AUB. Zig-zag paths starting in B are arrows and end in B, so 5|B =0|p.

Zig-zag paths starting in A are ey k,l}x{k}ekaeM(ﬂlelae{Q _____ k—1Ix{k}€M and

k—1}x{k}EM —>€{1,..a,...k—1}x{k} EM ED} is a Morse matching,

.....

€{1,....k—1}x{k}E€ka€M b €11,..,b,... k—1}x{k} Cba M
o { i .
C16€{2,... k—1}x{k} CbaCM < (1 — €1a€{2,... k—1}x{k}EM for nps choices,
(_l)ebc+k+1

Y~ €1c€{2, . k-1 }x{k}Cba€M((b,c)y fOr (b,c)EX.

o

(2): Follows from (1), because (B)=Fy’, | and (M)/(B)=(B) (we mod out B, so

is a chain isomorphism). Ergo ¢ is the part of 8| 4 that goes to B.
(3): Follows from (2), since F;,, = FY = [w']; (omit e;,, and index 1) and X =0
and nyr={be{l,...,n=2}; (b,n)¢ M}|=n—1—(n—w,)=w,—1. O

Dwyer [I] reports how Kunkel proved that H,nil,, has p-torsion for prime p <n—1.
Now we can easily see that H,nil,, also has p™-torsion for every p™ <n—1:
Example 3.6. Let g=p™=n—2 and w=(2,3,...,9+1,2,¢+1). By Lemma 3]
H,[w] = H, Cone([w']1 =% [w']1). Since w'=(2,...,q,1,q+1) is a permutation of
(1,...,q+1) and [{(i,7); i <j,w;>wj}|=g—1, we have Hy[w'] = {% ;12 ﬁ;gj, SO
Hy[w] = {%qf i z;g. If g<n—2, then H.[w,q+3,...,n] = H,[w]. O
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In [I], Dwyer proved that there is no p-torsion in H,nil,, for any prime p>n—1.
The next example shows that H,.nil,, can have p™-torsion for some p™ >n—1:

Example 3.7. Let w=(2,4,7,5,4,2,5,7). By Lemma B35 H,[w] = H,Cone(y C F}").
By (BE), Fg'= [[3,674,371,477]]12 [[3,6,4,3,1,4]]1 = [[2’573’273]]52 [[273’273]]8 has H, =7
generated by [ejgens] with M ={(2,7), (4,5)}U{(:,6);i=2,...,5}U{(3,i);i=4,5,7}.
By Lemmas 2.4 2.2] B.5] we get
H*F'?)/Féw = I{*[[3’67453715576]]1 = H*[[27553725475]]5 =
=~ H.,[2,3,5,4,2,5]5 = H, Cone(-4C[2,4,3,1,5]¢).

Because H,[2,4,3,1,5] 2Z generated by [e14e23€24€34], we have H,[2,3,5,4,2,5] 2Z,4
generated by [ejgen], where N ={(2,3),(2,4),(2,5),(3,4)} and

6(2?:2 611'61'66]\4) = —dejgen € [[2,3,5,4,2,5]]. (32)
Then [e1gen’] generates Hs[2,5,3,2,4,5] = Hs[2,3,5,4,2,5], where N’ = {(7T—y,7—
x); (z,y) € N}, and [ei7essep] generates HyoF¥/Fg’ = Hy[2,5,3,2,4,5]5, where
P={(34),(3,5),(3,7),(4,5)}u{(i,6);i=2,...,5}. From the long exact sequence
for Fg’ < F}* we get that H.F' =2 0 for * # 10 and HyoF7" is an extension of
HyoFY/FY =74 by HioFY =7, so it is isomorphic to Z4 X Zs or Zs. By (3.2),

8(21-6{3)475)7} [617621'61'86]3]) = 4[6176286]3] S F%)/Fgw, but

8(Eie{374)577} 617621'61'7613) = —4eirearep + e1gen € F7P. (3.3)

Thus [er7ezrep] is of order #4, so HioF¥ =2 Zg. If R={(2,8), (3,4), (3,5), (3,7), (4,5)},
then ejgesrearer = eq1,. 5yxf6}e67er. By Lemma [3.5]

o

8(6{1,...,5}><{6}6676R) = j3”1%6176{2,...,5}x{6}6R + €18€{2,....5}x{6}C2TCR\{(2,8)} »

where np=1be{1,...,5}; (b,7) ¢ R}|=4. By B3], 5(6{17.“)5}X{6}6676R) is trivial
or £8ej7eze;zep. In both cases the morphism ¢: F7¥ — F7” is homologically trivial.
Zg; if k€{10,11} 0

Consequently, we can conclude that Hy[w] = {0 L it kg {1011} -

4. FREE PART OF HOMOLOGY

We can generalise the filtration from the previous section to an arbitrary complex

[wi,...,w,]=[w]. In every ey € [w], there are exactly ¢:=w;—1 occurences of ey..

Thus F} := <eli1 ...eten; it . .+i >k, 1 is not in M> <[w] is a subcomplex.
Define w(i1, ..., i) €Spa as (wh, ..., wy,), where w)= {ijil g;;gizg . Then
F/F, = @i i —elwlin, i) (4.1)

Example 4.1. Let us compute H,[3,3,3,3,3]. By Lemmas B2, B (1)), F{=0,
F/F =~(2,2,3,3]2~0, H.FF/FY > H,[2,3,2,3]2 27 generated by [e1ze15 e24€35],
Fo/Fe 2 [3,2,2,3]2®[2,3,3,2]2 = 0, H.F2/FY 2 H,[3,2,32], 2 H.[2,3.2,3]5 = Z»
generated by [612614 623625635], F;}/ng = [[3,3,2,2]]2 >~ 0, Fgu = [[’LU]] Thus H* [[’LU]] =
H.Fs and H FY >~ H FY > H FY/FY =275 generated by [e1zes ea4e35]. In the exact
sequence ....— iyl 2 HyFy — Hy F' = Hy 7 5 Hy 1 . . our  sends

[612614 623625635] = [613614625635+614615€23635] =
[—613615624635—3(613615623634635)+3(€13€14625€34645)]-

It is an isomorphism, hence by exactness, H,[3,3,3,3,3] = H.F§’ = 0. %
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Lemma 4.2. For weS\F,=:T,, the homology of [w] has only torsion.

Proof. The proof is by induction on n. The claim is trivial for n=2 because 75 =10.
Let n>2 and we7,. By Lemma 2.3 we may assume that wy <w; for all ¢. If w; =1,
then by Lemma 24 [w] = [we—1,...w,—1], the claim holds by induction. If w; >3,
all elements of the sequence w(iy, ..., iyu,—1) are at least 2, so w(i1, ..., tw,—1) € Tn-
By (&1) and induction, FH,(F}’/F},) = 0 for all k, hence F'H.[w] = 0.

Now let wy = 2. If w(i) € Tpy for all 4 € {2,...n}, then the same argument
as for the case w; > 3 shows that FH,[w] = 0. Suppose there exists ¢ such that
w(i) € Fp1. Then w; =n—1, w; =2, and the other elements of the sequence w
form a permutation of (2,...,n—1), so there are exactly two numbers j < i such
that w(j), w(i) € Sp—1. If the second number 2 (the first one is wy = 2) appears
after the position i, we can use Lemma [35] to show that the free part of H,[w] is
trivial. Anyway, in the filtrations of Jw] there are exactly two subquotients with
nontrivial free part of homology, and in both cases the rank of free part is 1. So
to prove that FH,[w] 2 0, it is enough to show that some nontrivial multiple of
the generator of F'H,F}%, is in the image of the boundary morphism of the long
exact sequence of the pair F;ﬂ’rl < F}’. Because FH,F{; = 0, the pair F;”H <FE}
may be replaced with the pair le/ W1 S EPEY,. Because FY/FY, =2 [w(i )]]
and w(i) € F—1, a generator of FH (F{“/F}Y ) is of a form [eysens] =:[z], such that
depr =0 and no multiple of eps is in Imd. For a €{2,...,i—1} let z, = e1qen,,
where M,=MU{(a,%)}. Let ny(b, c) be the position of (b,¢) in M,. Then

O (1))
= > ((—1)””(a’i)+1+"“(a’i) [2] + 2 (apyenr, (D@D e gpens | an))]
+ 2 (e ayens, (—1)re (@D Fnaleatnalaiine(en -2 [elaeMcf{(aa)}])
(i —2)[a] + Yo, S tamyen, (D@D @O e en \ ap)]
+Z (eyent, (—1)CT @2 e e (a )]

Because [e1penr] =0 for b>4, the middle sum runs only over (a,b) € M, with b<i.
Because ng(a,b) =ns(a,b), the last two sums are the same with the opposite sign,
therefore (Y% (—1)"(@)[z,]) = —(i — 2)[x]. Since i>3, our [z] is of finite order
in Ho(F}'/FY,) = Hi[w]. O

Lemma 4.3. Hi[w,,...,w] = H(g)fkq[[wlv'-'vwn]] for (wr,...,w,) €T,.

Proof. Let (C* 6*) be the dual of the complex (Cy, 0,) of nil,,, let far be the dual of
a basis element ¢y, and N = (") Define 7, : Cy — CN=* by 7(ear) =enr fure, where
en is the sign of the permutation (M, M) of {(i,); 1<i<j<n}. By [2, p.640],
7, is a chain isomorphism, i.e. 7410 = 6™ *71;. For ey € [wy, . .., w,] we have

wi(r(ear)) = i—|{; (i) € MOY|+|{a; (i, ) e MOY]
=i—(i—1-|{z; (z,) e M}|)+ (n—i—|{z; (i, ) e M}|) = n+1—-w;,

hence 7([wy,...,w,])=[n+1—w1,...,n+1—w,]* Z[w,,...,w1]* by Lemma 22
Now the result follows from Lemma and the universal coefficient theorem. [
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5. COMPUTATIONS

We have Honily, = (D, e He[w]) & (D eq He[w]). Free part @, He[w] is
known from For the torsion part, we use Lemma 2.4t

TH.(nil,) 2 (81 nguer, Ha[o]) @ (2222 2o b1)o (Gcror, - 101)

D1,ncweT, He[w]
= (@1, ngwer, Hi[w]) ®

QuweT, 4 O He[wli1 @ H o [w]n—i
BweT, o®Picin1],jen] Hx [wlicitn—j

n—1 . 2
~ I I TH, |y (nil, 1)
(@rngwer, Heul) & T P T Hay s (nily ) min (20213

By induction and Lemmas Bl B2 it suffices to calculate only H,[w] coming from
ﬁ::{we'ﬁl; Lingw, Pi: wi=w; 1 €{2,n—1}, Pi<j<k: wi:wj:wke{ln—l}}.
Define maps «, 8,7: Tn— T by a(wy, ..., wn)=(ws,...,wp,w1), Blwy,... wy)=
(n+l—wy,...,n+1—wy), y(wi,...,wy) = (Wn,...,w1). Let ~ be the smallest
equivalence relation on 7,, with w~E&(w) for £€{w, 8,7}. By Lemmas 2.3 2.2 [4.3]
we need to compute H, only for one complex in each equivalence class.

Case n=4: The set S4 consists of all permutations of (1,1,4,4), (1,2,3,4), (1,3,3,3),
(2,2,24), (2,2,3,3), whilst T1/o = {(2,3,2,3)}. Now [3,2,3,2] = [2,3,2,3]: has
only 4 generators, so H, can be computed directly, but let us use Lemma
H.[2,3,2,3] = H, Cone([2,1,3]: —2>[[2 1,3]1). Since 2,1, 3] =(e12), we conclude that

Hi[2,3,2,3] N{Z2; i Z;ég Hence the torsion part is T Hy(nily) = {22; 11; :;g g%

Case n=5: Set ’73/~ consists of a=(2,3,4,2,4),b=(2,3,3,3,4), c=(2,3,3,4,3),
d=(3,3,3,3,3). By Lemma B3] H.[a] = H, Cone([2,3,1,4]1 3 [2,3,1,4];) =
{6 1423, By Lemma B H.[o] = H. Cone([1,3,2]: 3 [1,3,2],) = {{ 125,
and H,[c] = H, Cone([3,2,1]1 3 [3,2,1]1) = {%2; i +-1 . By Example[LI] H,[d] =
0. Because 5(a) = (2,4,2,3,4) =a3(a), B(b)=(2,3,3,3,4)=b, B(c)=(3,2,3,3,4) =
a*(c), and y(z)#ai(x) for all z€{a,b,c} and all i, we conclude that

Z3DZ3; k=3,

_ _ ) 289z3; k=4,

D mlvl- & D ( 1@ Hlo'(0)]) = 4 ziez ios
weT, z€{a,b,c} i€{0,...,4} Z3D73; k=6.

Case n=6 is still doable by hand. Set ’7% /~ has 28 elements: 9 cases are done by
Lemma [34] 6 by Lemma [3.5] and the rest by examining their filtration. There are
only 3 classes containing no 2 or n—1: (3,3,3,4,4,4), (3,3,4,3,4,4), (3,4, 3,4,3,4).

Cases n="7, 8 require a computer. The set ’T7 /~ has 250 elements, and ’7§ /~ has
3485 elements. See the table below for the homology of nil; and nilg.

Cases n>9: The set %/N has 59 102 elements. We have not been able to com-
pute, among other things, the homology of the complex [5,5,5,5,5,5,5,5,5].

6. AFTERWORD

6.1. Conclusion. We have seen that methods, designed for a specific family of Lie
algebras, where we partition the problem into smaller pieces and solve only the
nontrivial nonequivalent parts, can enable us to compute more than twice as much
data compared with the usual approach.

6.2. Acknowledgment. This research was supported by the Slovenian Research
Agency (research core funding no. P1-0292, J1-7025, J1-8131).
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E\n |7 8
0 Z Z
A Al
2 | Z*eZ3 ey
3 | ZY0LPoLs ARV
4 798 @Z%ZAL @Z§7 @Zg Z174 @2353 @Z§5 @Zz
5 |23 elPeleZ; VAR YAt/ Y etV A
6 Z259 @2335 @Z§68 @Zg5 @Zé7 Z602 @Z%le @Z§79 @Zzll&l @Zé'?
7 2359 @2%122 @2375 69241112 @Zg8 Z961 692421880 ®Z§O5O EBZZ8O @2%45
8 Z455 @Z%G'ﬁl @Z§84®Z}160 EBZ?,G Z1415 @Zg882 @Z%927@ZZSO EBZ?)OQ @28
9 Z531 @25096 @Z§81 @Z}l% @Zg3 Z194O @Z%7721 @23178 @Z}EOO @Z?)24 @Zg
10 Z573 @23238 @2322 @ZZIO @Zg4 7,2493 @Z%7826 @Z§781 @Z}l728 @ZgGﬁ @Z§2
11 Z573 @23096 @Z§81 @Z}lQG @Zg3 Z3017 @Z38810 @23504 @2421253 @Z%O(W @ZéS
12 Z531 @Z%G'ﬁl @2384 @Ziﬁo @ZgG Z3450 EBZ%&")?G 6925902 @2421720 @Zé219 @Zé7
13 Z455 @2%122 ®Z§75 69241112 @Zg8 Z3736 @Zg4457@2§614 @ZiOll EBZ%BSI @Zél
14 2359 @2335 @Z§68 EBZ25 EBZ§,7 Z3836 @Zg4457®2§614 6922011 @Z%351 @Zél
15 7,259 @2303 @258 @24218 @Zé Z3736 @Z38576 @25902 @2421720 @ZL})QI‘Q @Zé7
16 Zlﬁ9 @Z%24@Z§7@Zg Z3450 @Z38810 @23504 @2421253 @Z%O(W @ZéS
17 ZQS EBZ%5 @Zg Z3017 @Z%7826 @Z§781 692411728 @ZEGS @Zé2
18 Z49 EBZ% Z2493 @Z%7721 @Zgl'?S @Z}EOO @Zg24 @Zg
19 Z2O Z1940 @Zg882 EBZ115927 @ZZBO EBZ?)OQ @28
20 ZG Z1415 @Z%EBO @Z%O50@Zi80 @Zé45
21 7, 7,961 @23132 @Z§79@Z}164 @Z?j
22 2 LIPS 1P O LT O 78
23 oL o LY oL
24 "oy oL
25 YARLEYA
26 z*
27 /4
28 Z
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