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Abstract

Magnitude is an invariant of metric spaces with origins in enriched

category theory. Using potential theoretic methods, Barceló and Carbery

gave an algorithm for calculating the magnitude of any odd dimensional

ball in Euclidean space, and they proved that it was a rational function

of the radius of the ball. In this paper an explicit formula is given for

the magnitude of each odd dimensional ball in terms of a ratio of Hankel

determinants of reverse Bessel polynomials. This is done by finding a

distribution on the ball which solves the weight equations. Using Schröder

paths and a continued fraction expansion for the generating function of

the reverse Bessel polynomials, combinatorial formulae are given for the

numerator and denominator of the magnitude of each odd dimensional ball.

These formulae are then used to prove facts about the magnitude such as its

asymptotic behaviour as the radius of the ball grows.
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1 Introduction

1.1 Background
Magnitude was originally introduced by Leinster [9] as a measure of the ‘size’ of

finite metric spaces by formal analogy with his definition of Euler characteristic

of finite categories. It soon became clear [11] that this definition could be

extended to many compact infinite metric spaces, such as compact subsets of
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Euclidean space and this was formalized by Meckes [12]. (See Section 1.3 for

more details on the definition of magnitude.) For instance, the magnitude of the

line segment of length 2R — also known as the 1-ball of radius R — is given by

R + 1.

Despite its abstract origins, magnitude has been found to have connections

with many areas of mathematics. For instance, in [10] deep connections with

biodiversity measurement were given; in [23] differential geometric methods

were used to relate magnitude to curvature; in [13] analytic methods were

used to relate magnitude to Minkowski dimension and potential theory; in [8]

homological algebraic methods were used to relate magnitude to graph theory

and categorification.

Various computations and calculations led to questions about whether this

Euler characteristic-like invariant satisfied an inclusion-exclusion principle; such

a thing was certainly satisfied in dimension 1, but in higher dimension it seemed

like it might only work asymptotically as the metric was scaled up. Numerical

computations were inconclusive and the exact magnitude of any Euclidean

subset of dimension greater than 1 was unknown.

In a recent paper [2], Barceló and Carbery showed, amongst other things,

that the magnitude of any odd dimensional ball could be calculated using ideas

of potential theory introduced by Meckes [13]. In particular, they showed how

the magnitude potential of such a ball is a solution to a boundary value problem

which they were able to reduce to a linear system, and then they applied a

recursive method to compute the magnitude of the odd ball, which is seen to

be, for fixed dimension, a rational function of the radius of the ball, and this

rational has integer coefficients.

Barceló and Carbery calculated the following by hand using their algorithm,

where

��Bn
R

��
denotes the magnitude of the n-dimensional ball of radius R.��B1

R

�� � R + 1��B3

R

�� � R3 + 6R2 + 12R + 6

3!��B5

R

�� � R6 + 18 R5 + 135 R4 + 525 R3 + 1080 R2 + 1080 R + 360

5! (R + 3)��B7

R

�� � R10 + 40R9 + 720R8 + · · · + 1814400R2 + 1209600R + 302400

7! (R3 + 12R2 + 48R + 60)

Barceló and Carbery observed, but didn’t prove, that the coefficients are non-

negative; one might hope that if they are positive integer coefficients then they

are actually counting something. They also claimed that they could bound

the degree of the denominator by
3n2−2n+7

8
. We will prove stronger statements

and give combinatorial formulae for the coefficients of the numerator and

denominator. They used Fourier analysis to prove that

��Bn
R

�� → 1 as R → 0

and that

��Bn
R

�� � Rn/n! + O(Rn−1) as R → ∞; both of these statements will be

consequences of our formulae for the numerator and denominator.

These calculations of Barceló and Carbery showed that in general the

magnitude does not satisfy an inclusion-exclusion principle. More recent

work of Gimperlein and Goffeng [6] showed that domains in a fixed Euclidean

space asymptotically satisfy a version of the inclusion-exclusion principle.

Barceló and Carbery essentially solved a differential equation to find the
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magnitude, we will essentially solve an integral equation. A key ingredient will

be what is basically a special function identity which we will prove in Section 3

using PDE methods inspired by [2].

1.2 The main results
There are three main goals of this paper: firstly to show that the magnitude of an

odd-dimensional ball can be calculated by solving the weight equation, without

necessarily finding a potential; secondly, to give simple and explicit formulae for

the numerator and denominator of the magnitude

��B2p+1

R

��
in terms of ‘Hankel

determinants’ of the sequence (χi(R))∞i�0
of ‘reverse Bessel polynomials’; and

thirdly to give combinatorial expressions for these Hankel determinants and

thus prove properties of the magnitude of odd dimensional balls. Before stating

the main results precisely we should define the reverse Bessel polynomials and

the notion of Hankel determinant.

Let (χi(R))∞i�0
denote the sequence of reverse Bessel polynomials, so that

χi(R) is a degree i integer polynomial in R. The sequence begins as follows:

χ0(R) � 1;

χ1(R) � R;

χ2(R) � R2

+ R;

χ3(R) � R3

+ 3R2

+ 3R;

χ4(R) � R4

+ 6R3

+ 15R2

+ 15R.

There are many ways to define this sequence, but we can take the recursion

relation as a definition:

χi+2(R) � R2χi(R) + (2i + 1)χi+1(R). (1)

A standard reference for these polynomials is Grosswald [7], but wikipedia [22]

is as good a place as any to learn about them; note that the indexing used

can vary from author to author, here we have taken the version which forms a

Sheffer sequence. These reverse Bessel polynomials are related to the functions

ψi : (0,∞) → R of Barceló and Carbery [2] by χi(R) � eRR2iψi(R) — see

Proposition 13 — and are related to the modified spherical Bessel functions [3,

Section 10] by χi(R) � 2

π eRRi+1ki−1(R).
Now we should see what a Hankel determinant is. If (αi)∞i�0

is a sequence of

elements in a commutative ring, then, for p � 0, 1, 2, . . . , the pth Hankel deter-
minant of the sequence is the determinant det[αi+ j]pi , j�0

, that is the determinant

of the matrix with constant anti-diagonals:����������
α0 α1 α2 . . . αp
α1 α2 . . . . . . αp+1

α2 . . . . . . αp+2

...
...

αp . . . . . . α2p

���������� .
The main results on magnitude that will be proved in this paper can be

collected into the following statement.
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The Main Theorem. Suppose that n � 2p + 1 is an odd positive integer. The
magnitude

��Bn
R

�� of the n-ball with radius R can be expressed as the ratio of integer
polynomials in the following way:

��Bn
R

�� � det[χi+ j+2(R)]pi , j�0

n! R det[χi+ j(R)]pi , j�0

,

where χi(R) is the ith reverse Bessel polynomial.
There is a common monomial factor in the above numerator and denominator.

Defining the kth superfactorial via sf(k) :�
∏k

i�0
i!, we can write

��Bn
R

�� � Np (R)
n! Dp (R) , where

Np(R) :�

det[χi+ j+2(R)]pi , j�0

sf(p)Rp+1

; Dp(R) :�

det[χi+ j(R)]pi , j�0

sf(p)Rp .

These polynomials have combinatorial expressions as sums of weights of collections
of disjoint Schröder paths (the terminology is explained in Section 6):

Np(R) �
∑

σ∈Xp+1

W2(σ, R), Dp(R) �
∑

σ∈Xp−1

W0(σ, R),

where Xk is a certain set of collections of disjoint Schröder paths.
Both Np(R) and Dp(R) are monic integer polynomials with positive coefficients and,

in particular, non-zero constant terms. The constant terms satisfy Np(0) � n! Dp(0).
Thus |Bn

R | → 1 as R→ 0.
The degrees of the polynomials are given by the following:

deg(Np(R)) � (p + 1)(p + 2)/2; deg(Dp(R)) � (p − 1)p/2.

The leading terms are as follows, for κ :�
1

2
(p + 1)(p + 2):

Np(R) � Rκ
+
(p+1)2(p+2)

2
Rκ−1

+
p(p+1)3(p+2)(p+3)

8
Rκ−2

+ O(Rκ−3),

Dp(R) � Rκ−2p−1

+
(p−1)p(p+1)

2
Rκ−2p−2

+
(p−2)(p−1)p(p+1)3

8
Rκ−2p−3

+ O(Rκ−2p−4).

Thus there is the following asymptotic behaviour of magnitude:��Bn
R

�� � 1

n!

(
Rn

+
n(n+1)

2
Rn−1

+
(n−1)n(n+1)2

8
Rn−2

)
+ O(Rn−3) as R→∞.

Sketch proof. The rest of the paper will flesh out the following strategy.

1. Guess the form of the weighting distribution on the ball Bn
R.

2. Give an expression for

∫
S2p

R
e−|x−s|

dx in terms of reverse Bessel polynomials.

3. Use the above two items to solve the weight equations for the ball.

4. Use Cramer’s Rule to express the magnitude as a ratio of determinants.

5. Show that these determinants are equal to the Hankel determinants above.

6. Use the theory of continued fractions to give combinatorial expressions for

the Hankel determinants in terms of counting weighted Schroder paths.
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7. Use these combinatorial expressions to give the degrees of the polynomials,

the positivity of the coefficients and the formulae for the leading and

constant terms. �

You are invited to perform the exercise of calculating theHankel determinants

in the theorem when p � 1 and p � 2 and verifying that the correct formulae for

the magnitude are obtained. (Many of the calculations in this paper are verified

in the SageMath notebook available as [24].)

Note by comparison with [2] that we have proved that the degree of the

denominator is bounded by
n2−3n+3

8
. This bound is strict in dimensions that

have been calculated numerically, i.e. up to n � 45. In fact, up to that dimension

the numerator and denominator polynomials are all irreducible over Q.
From the above theorem we get the following corollary which Barceló and

Carbery proved using Fourier theory [2, Theorem 1]. (This does not necessarily

hold for metric spaces which cannot be isometrically embedded in Euclidean

space [9, Example 2.2.8].)

Corollary 1. If X is a non-empty, compact subset of some Euclidean space and tX
denotes X scaled by a factor of t then

|tX | → 1 as t → 0.

Proof. As X is non-empty, we have some x ∈ X. As X ⊂ Re
for some e we can

isometrically embed X in Rn
for some odd n. As X is compact, it is bounded, so

there is some R with X ⊂ Bn
R. Thus {tx} ⊂ tX ⊂ tBn

R � Bn
tR. By themonotonicity

of magnitude for subsets of Euclidean space [9, Corollary 2.4.4] this means

1 �
��{tx}

�� ≤ ��tX
�� ≤ ��Bn

tR

��
. By the theorem above we have

��Bn
tR

��→ 1 as t → 0 and

the result follows from the Sandwich Rule. �

The rest of this introduction will describe how the Hankel determinant

formula is obtained. The details of proofs will be given in the body of the paper.

The combinatorial interpretation of the Hankel determinants and the remaining

results about the magnitude are proved in Section 6.

1.3 Weightings and weight distributions
In this section we will give the definition due to Meckes of the correct notion

of weighting and weight equation on a convex subset of Euclidean space. The

strategy for finding the magnitude of an odd dimensional ball will be to ‘simply’

solve the weight equation. We will start with a reminder of the notion of

weighting and weight equation on a finite metric space.

Magnitude was defined by Leinster on finite metric space as follows. If A is

a finite metric space then a weighting on A is a function w : A→ R such that∑
x

w(x)e−d(x ,s)
� 1 for all s ∈ A.

This is called the weight equation. If a weighting exists then the magnitude is

defined to be the total weight, |A| B ∑
x w(x). This is independent of any choice

of weighting. A weighting is known to exist for every finite subset of Euclidean

space.
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Following calculations in [11], Meckes [12] showed that magnitude could be

extended to a unique maximal lower semicontinuous function on the space of

compact ‘positive definite’ spaces. This class of metric spaces includes compact

subsets of Euclidean space. One way of calculating the magnitude of an infinite

compact subset X ⊂ Rn
of Euclidean space is by taking a sequence (Ai)∞i�0

of

finite subsets — Ai ⊂ X — which tend to X in the Hausdorff topology, then we

have |X | � limi |Ai |.
Taking aweighting onAi for each i, gives a sequence of finite signedmeasures

on X. One might hope that they tend to a measure µ on X which satisfies the

obvious analogue of the weighting equation above, namely∫
x

e−d(x ,s)
dµ(x) � 1 for all s ∈ X,

and that one could then calculate the magnitude |X | as the total mass of µ,
ie.

∫
X dµ. This will work for some spaces such as the closed interval B1

R, see [23].

Unfortunately, it does notwork in general, as a sequence of finite signedmeasures

which tends pointwise to a limit does not typically tend to a signed measure.

Here is a simple example of that.

Define the sequence (µi)∞i�0
of finitely supported signed measures on the

real line R by µi B iδ0 − iδ
1/i , where δa is the Dirac delta measure supported at

a ∈ R. Then the sequence converges pointwise because if f is a differentiable

function then∫
R

f dµi �
f (0) − f (1/i)

1/i → f ′(0) as i →∞.

But the functional f 7→ f ′(0) is not represented by any signed measure. Rather

it is a distribution.

In general terms, a distribution on Rn
is a linear functional on some suitable

class of functions, say smooth and decaying appropriately to zero at∞. We will

describe some specific spaces of distributions below. We will write 〈w , f 〉 for
the evaluation of a distribution w on a function f .

Here are a few of examples of distributions.

(i) For each (appropriately integrable) function g we have an associated

distribution with 〈g , f 〉 B
∫

x∈Rn g(x) f (x)dx.

(ii) For each signedmeasure µwehave an associateddistributionwith 〈µ, f 〉 B∫
Rn f dµ.

(iii) Generalizing the derivative mentioned above, for any cooriented, smooth,

codimension one submanifold Σ of Rn
, and i ∈ N we have the distribution

wi given by

〈wi , f 〉 B
∫
Σ

∂i

∂ν i f (x)dx,

where
∂
∂ν means derivative in the normal direction to the submanifold.

Meckes [13] showed that, for the magnitude of subsets of Rn
, we need to

consider distributions in the following Bessel potential space:

H−i(Rn) :�
{

w ∈ S′(Rn) | (1 + ‖·‖2)−i/2ŵ ∈ L2(Rn)
}
,
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where S′(Rn) is the space of tempered distributions and ŵ is the Fourier

transform of the distribution w.

For non-analysts the definition of Bessel potential space might look a little

intimidating, but we will really only need the theorem below together with the

fact that certain specific distributions, similar to the examples above, live in a

Bessel potential space. These are all proved in Section 2.

Theorem 2 (Meckes [14]). Suppose K is a compact, convex subset ofRn , for n � 2p+1,
with nonempty interior, int(K). Suppose that we have a distribution w ∈ H−(p+1)(Rn),
which is supported on K and satisfies

〈w , e−d(s,·)〉 � 1 for every s ∈ int(K),

then w is the unique weight distribution on K.
Moreover, if 1 is any smooth function which is 1 on K then the magnitude of K is

given by
|K | � 〈w , 1〉. (2)

This theorem is essentially a summary of ideas from [13] and [2].

1.4 How we find the magnitude of an odd ball
Wewill find themagnitude of an odd ball by using Theorem 2 above. Sowewant

to find a weight distribution w on the n-ball Bn
R ⊂ Rn

, this means a distribution

w ∈ H−(p+1)(Rn)which is supported on the ball and satisfies the weight equation〈
w , e−|·−s|〉

� 1 for all s ∈ Rn
with |s| < R. (3)

We will guess that the weight distribution w has a particular form, namely some

multiple of the Lebesgue measure on the ball plus some linear combination of

integration of normal derivatives on the boundary sphere; so we will guess that

for a suitably smooth function f the distribution evaluates on f as follows:

〈w , f 〉 � 1

n!ωn

(∫
x∈Bn

R

f dx +

p∑
i�0

βi(R)
∫

x∈Sn−1

R

∂i

∂ν i f dx

)
, (4)

where, as above,
∂
∂ν means differentiate in the normal direction to the boundary,

where ωn is the volume of the unit n-dimensional ball and where

{
βi(R)

}p
i�0

is a set of unknown functions of R which will be found by solving the weight

equation (3). This guess is based on low-dimensional calculations following on

from ideas in [2]. The fact that this distribution is in the Bessel potential space

H−(p+1)(Rn) is proved in Section 2.2.

Once we have shown that we can solve the weight equation for this w then

we can find the magnitude using equation (2):

��Bn
R

�� � 〈w , 1〉 � 1

n!ωn

(∫
Bn

R

1 dx + β0(R)
∫

Sn−1

R

1 dx

)
�

1

n!ωn

(
ωnRn

+ β0(R)σn−1Rn−1
)

7



�
1

n!

(
Rn

+ nβ0(R)Rn−1
)
, (5)

where σn−1 denotes the volume of the unit (n−1)-sphere andwherewe have used

the fact that σn−1/ωn � n. So the goal now is to solve the weight equation (3)

using a weight distribution of the form (4); to do this we will need to prove a

rather non-obvious integral identity.

1.5 The key integral identity and its generalization
Thekey to the solution to theweight equation (3) lies in evaluating, for s ∈ int(Bn

R),
the integral over the sphere

1

n!ωn

∫
x∈Sn−1

R

e−|x−s|
dx,

where, as usual, ωn is the volume of the unit n-ball. By spherical symmetry,

the only dependence of this expression on the vector s is via its magnitude |s|:
we will write s � |s|. This expression will be thought of as a function of R and

s, with R > s ≥ 0 and we are going to express it in terms of the reverse Bessel

polynomials and another sequence of functions which we will now introduce.

The reverse Bessel polynomials are closely related to the modified spherical

Bessel functions of the second kind. The next sequence of functions we are

interested in are closely related to modified spherical Bessel functions of the first
kind [3, Section 10], but I don’t have a good name for them. Let (τi)∞i�0

denote

the sequence of functions R→ Rwhich has τ0 � cosh and satisfies the recursion

relation

τi+1(s) � − 1

s τ
′
i(s).

The sequence begins in the following way:

τ0(s) � cosh(s);

τ1(s) � −
sinh (s)

s
;

τ2(s) �
cosh (s)

s2

− sinh (s)
s3

;

τ3(s) � −
sinh (s)

s3

+
3 cosh (s)

s4

− 3 sinh (s)
s5

;

τ4(s) �
cosh (s)

s4

− 6 sinh (s)
s5

+
15 cosh (s)

s6

− 15 sinh (s)
s7

.

It is not obvious that these functions are well defined at s � 0, but this is proved

in Proposition 11.

We can now state the key result required for solving the weight equation.

Theorem 3 (The Key Integral). For n � 2p + 1 an odd integer, R > 0, with s a point
in the interior of the ball Bn

R, and s � |s|, then

1

n!ωn

∫
x∈Sn−1

R

e−|x−s|
dx �

(−1)p e−R

2
p p!

p∑
i�0

(
p
i

)
χp+i(R)τi(s).

8



In the process of proving the above key integral we will prove a more general

result. We will need to introduce the sequence of functions (ψi(r))∞i�0
, used by

Barceló and Carbery [2]. These can be defined by taking ψ0(r) � e
−r

and using

the same recurrence relation as for τi , namely,

ψi+1(r) � − 1

rψ
′
i(r).

The sequence begins in the following way:

ψ0(r) � e
−r

ψ1(r) � e
−r

(
1

r

)
ψ2(r) � e

−r
(

1

r2

+
1

r3

)
ψ3(r) � e

−r
(

1

r3

+
3

r4

+
3

r5

)
ψ4(r) � e

−r
(

1

r4

+
6

r5

+
15

r6

+
15

r7

)
.

These are related to modified spherical Bessel functions of the second kind (see

below) and are related to the reverse Bessel polynomials by χi(r) � r2i
e

rψi(r) as
shall be proved in Proposition 13.

We can now state the more general theorem which we shall prove.

Theorem 4. For 0 ≤ j ≤ p, s ∈ R2p+1, with s � |s| and R > s ≥ 0∫
x∈S2p

R

ψ j(|x − s|)dx � (−2π)p2e
−R

p− j∑
i�0

(
p − j

i

)
χi+p(R)τi+ j(s).

The integral we want, Theorem 3, is then just the case j � 0, as the volume of

the unit radius odd ball has the formula ω2p+1 �
2(p!)(4π)p
(2p+1)! . We will prove this

more general case, because we obtain the case j � 0 by proceeding inductively

downward from j � p. The proof of this theorem is given in Section 3 and uses

PDE methods inspired by results in [2].

It is worth noting here the relationship of the above integral with a Bessel

function identity. One can show that our functions are related to the modified

spherical Bessel functions via

τi(x) � (−1)i
√
π
2

Ii−1/2(x)
x i−1/2 and ψi(x) �

√
2

π

Ki−1/2(x)
x i−1/2 ,

where Iν and Kν are the modified Bessel functions of the first and second kind

respectively. Using these and polar coordinates on the sphere, we can write the

above integral identity in the following way,√
2

π

∫ π

0

K j−1/2(w)
w j−1/2 sin

2p−1(θ)dθ

9



� (−1)p− j(p − 1)! 2
p

p− j∑
m�0

(−1)m
(
p − j

m

)
R2m Kp+m−1/2(R)

Rp+m−1/2 ·
Im+ j−1/2(s)

sm+ j−1/2 ,

where w �
√

R2 + s2 − 2Rs cos θ.
I have not been able to find this result in the literature at all. However, the

‘base case’ for the induction, when j � p, becomes the following√
2

π

∫ π

0

Kp−1/2(w)
wp−1/2 sin

2p−1(θ)dθ � (p − 1)! 2
p Kp−1/2(R)

Rp−1/2 ·
Ip−1/2(s)

sp−1/2 ,

and this — or the unmodified analogue — is standard in Bessel function

literature, e.g. [21, 11.42 (16)] or [1, (4.11.6)].

1.6 Corollaries of the key integral identity
In order to solve the weight equation (3) using the weighting w defined in

(4), as well as integrating the expression e−|x−s|
over the sphere, as in the key

result above, we also need to integrate it over the ball, and to integrate its

normal derivatives over the sphere. Fortunately, these integrals can be obtained

reasonably straightforwardly from the key result. The proofs are given in

Section 4.

Firstly, integrating over the ball we have the following.

Corollary 5. For n � 2p + 1 an odd integer, R > 0, s a point in the interior of the ball
Bn

R, and s � |s|, then

1

n!ωn

∫
x∈Bn

R

e−|x−s|
dx � 1 − (−1)p e−R

2
p p!

p∑
i�0

(
p
i

)
χp+i+1(R)

R
τi(s).

This is proved in Section 4.1.

For integrating the normal derivatives over the sphere, it makes sense to

simplify the notation by introducing the operator δ defined on functions of R by

δ f (R) :� e−RR2p d

dR
(
eRR−2p f (R)

)
.

Remember that p is supposed to be a fixed integer, so although δ depends on p
we won’t include it in the notation.

Corollary 6. For n � 2p + 1 an odd integer, R > 0, s a point in the interior of the ball
Bn

R, and s � |s|, then

1

n!ωn

∫
x∈Sn−1

R

∂ j

∂ν j e−|x−s|
dx �

(−1)p e−R

2
p p!

p∑
i�0

(
p
i

)
δ jχp+i(R)τi(s).

This is proved in Section 4.2.

We will see below in Lemma 23 that δ jχp+i(R) can be expressed as a suitable

linear combination of reverse Bessel functions.
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1.7 Solving the weight equation
We can now use the corollaries of the key integral identity to solve the weight

equation for an odd ball. The weight equation (3) for the weighting w defined

in (4) is the following:

1

n!ωn

(∫
x∈Bn

R

e−|x−s|
dx +

p∑
i�0

βi(R)
∫

x∈Sn−1

R

∂i

∂ν i e−|x−s|
dx

)
� 1 for all |s| < R.

We want to solve this to find the set {β j(R)}pj�0
. Substituting in the expressions

from Corollaries 5 and 6 we find

1 − (−1)p e−R

2
p p!

p∑
i�0

(
p
i

)
χp+i+1(R)

R
τi(s)

+

p∑
j�0

β j(R)
(−1)p e−R

2
p p!

p∑
i�0

(
p
i

)
δ jχp+i(R)τi(s) � 1.

Rearranging and simplifying leads to the following:

p∑
i�0

(
p
i

) p∑
j�0

β j(R)δ jχp+i(R)τi(s) �
p∑

i�0

(
p
i

)
χp+i+1(R)

R
τi(s).

As this needs to be true for all s < R and as the set of functions {τi}∞i�0
is linearly

independent, we can compare the coefficients of τi(s) for each i � 0, . . . , p and

obtain the following linear system:

p∑
j�0

δ jχp+i(R)β j(R) � χp+i+1(R)/R for i � 0, . . . , p.

We have thus obtained the following theorem.

Theorem 7. The set of functions {β j(R)}pi�0
satisfies the linear system

©­­­«
χp(R) δχp(R) δ2χp(R) . . . δpχp(R)
χp+1(R) δχp+1(R) δ2χp+1(R) . . . δpχp+1(R)

...
...

...
...

χ2p(R) δχ2p(R) δ2χ2p(R) . . . δpχ2p(R)

ª®®®¬
©­­­«
β0(R)
β1(R)
...

βp(R)

ª®®®¬ �

©­­­«
χp+1(R)/R
χp+2(R)/R

...
χ2p+1(R)/R

ª®®®¬
if and only if the distribution w defined in (4) is a weight distribution on the ball Bn

R.

Solving this linear system will lead to expression for the magnitude, as

from (5) we have that the magnitude is given by

��Bn
R

�� � 1

n!

(
Rn + nβ0(R)Rn−1

)
.

We will see below how to use this to get a formula for the magnitude without

explicitly finding β0(R), but first it is worth pausing for an example.

1.8 An example
It is very easy from the above theorem to get a computer algebra system such

as SageMath calculate the entries in the linear system and solve it (for instance,

11



see [24]). The entries are almost polynomials in the sense that multiplying

through by Rp−1
will give all entries being integer polynomials which means

that computation can be done quite efficiently.

For example, we can look at the case where n � 5, i.e. p � 2. There the

system looks as follows.(
R2+R −R2−3R−3 (R3+5R2+12R+12)/R

R3+3R2+3R −R3−4R2−9R−9 (R4+5R3+17R2+36R+36)/R
R4+6R3+15R2+15R −R4−6R3−21R2−45R−45 (R5+6R4+27R3+87R2+180R+180)/R

) (
β0(R)
β1(R)
β2(R)

)
�

(
R2+3R+3

R3+6R2+15R+15

R4+10R3+45R2+105R+105

)
And the solution is

©­«
β0(R)
β1(R)
β2(R)

ª®¬ �
1

(R + 3)R4

©­«
3R5 + 27R4 + 105R3 + 216R2 + 216R + 72

(3R4 + 29R3 + 108R2 + 180R + 120)R
(R3 + 9R2 + 27R + 24)R2

ª®¬ .
We are really interested in the magnitude and this can be calculated using the

formula (5):��B5

R

�� � 1

n!

(
Rn

+ nβ0(R)Rn−1
)
,

�
R5

5!

+
3R5 + 27R4 + 105R3 + 216R2 + 216R + 72

4!(R + 3)

�
1

5!

R6 + 18R5 + 135R4 + 525R3 + 1080R2 + 1080R + 360

R + 3

.

Reassuringly, this is the same as the formula given at the beginning of the paper.

1.9 Hankel determinant formula
We can now get to the formula for magnitude in terms of Hankel determinants

of reverse Bessel polynomials.

We know from (5) that the magnitude of an odd dimensional ball satisfies

the following equation

−nRn−1β0(R) + n!

��Bn
R

�� � Rn .

We can include this in the linear system from Theorem 7 to get the extended

linear system

©­­­­­«
χp(R) δχp(R) . . . δpχp(R) 0

χp+1(R) δχp+1(R) . . . δpχp+1(R) 0

...
...

...
...

χ2p(R) δχ2p(R) . . . δpχ2p(R) 0

−nRn−1
0 . . . 0 n!

ª®®®®®¬
©­­­­­«
β0(R)
β1(R)
...

βp(R)��Bn
R

��
ª®®®®®¬
�

©­­­­­«
χp+1(R)/R
χp+2(R)/R

...
χ2p+1(R)/R

Rn

ª®®®®®¬
. (6)

Cramer’s Rule then gives us a formula for the magnitude

��Bn
R

��
as a ratio of

determinants. Then by various properties of the reverse Bessel polynomials and

sequences of row and column operations that are detailed in Section 5 we obtain

the following theorem.

12



Theorem 8. For n � 2p + 1 the magnitude of the n-dimensional radius R ball can be
expressed as the following ratio involving Hankel determinants:

|Bn
R | �

det[χi+ j+2(R)]pi , j�0

n! R det[χi+ j(R)]pi , j�0

.

We have now achieved the second of our goals. This formula is a very

compact and beautiful way of expressing the magnitude of an odd ball. The

formula, however, remains somewhat mysterious. It is not clear why such a

formula should exist. Certainly the heavily computational way it is obtained in

Section 5 does not shed any light on this. I was able to guess the formula as I

spotted patterns in some other calculations.

All that aside, this formula does give an easy and memorable way to

implement the calculation of magnitude in computer algebra such as SageMath

or Maple. However, as it stands it does not tell us much about the actual

polynomials in the numerator or denominator. For instance, I do not know how

to show directly from the above definition what the degrees of the polynomials

are or that the coefficients are all positive. Fortunately, there are deep connections

between Hankel determinants, continued fractions and combinatorics that can

be exploited here.

1.10 Combinatorial formulae via Schröder paths
There is a classical theory allowing the calculation of the Hankel determinants

of a sequence of numbers (ai)∞i�0
using a continued fraction expansion of the

generating function

∑
i ai t i

of the sequence. A stumbling block in using this

approach in the current context is that this usually gives a simple factorization

of the Hankel determinants whereas the Hankel determinants here turn out to

typically be irreducible polynomials (up to trivial factors of R). This is basically

means that the generating function of the reverse Bessel polynomials can not

have a continued fraction expansion of the usual Stieltjes-type or Jacobi-type.

There has been more recent work on the case when the sequence consists of

polynomials rather than numbers; in particular, Alan Sokal has a large work

in progress [19]. I asked Sokal about the reverse Bessel polynomials, and he

was able to find a Thron-type continued fraction expansion (see Theorem 31).

This made the revesrse Bessel polynomials the first non-trivial example he had

come across of a sequence of polynomials which has a Thron expansion but no

Stieltjes or Jacobi expansion.

With this continued fraction expansion in hand, one can apply combinatorial

techniques — such as the Karlin-McGregor-Lindström-Gessel-Viennot Lemma

(Theorem 33) — to give formulae for the Hankel determinants appearing in

the magnitude in terms of counting weighted ‘Schröder paths’. We see in

Theorem 26 that

det

[
χi+ j(R)

] p
i , j�0

� Rpsf(p)
∑

σ∈Xp−1

W0(σ, R),

det

[
χi+ j+2(R)

] p
i , j�0

� Rp+1sf(p)
∑

σ∈Xp+1

W2(σ, R),

13
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Figure 1: On the left is a graph of the base-10 logarithm of the coefficients

of the polynomial N22(R), which is the numerator of the magnitude of the

45-dimensional ball; this clearly illustrates the log-concavity. On the right is a

plot in the Argand plane of the complex roots of N22(R); these all lie between

the pictured rays {z | arg(z) � 3π/4} and {z | arg(z) � 5π/4}. Both sets of data

were computed numerically with SageMath.

where the sums are over certain collections of Schröder paths. In fact, each

summand in the two sums above is a monomial so it is possible to give

combinatorial expressions for each of the coefficients in the numerator and

denominator polynomials. These expressions are used in Section 6 to prove all

of the remaining results about the magnitude of odd balls in the Main Theorem.

1.11 Further observations about the magnitude of odd balls
We finish the introduction with a few observations which merit additional study.

You might have noticed that the numerator and denominator at low degree

are unimodal — so the coefficients rise to a maximum and then fall — or more

specifically are log-concave — a polynomial with positive coefficients

∑
i aiRi

is

log-concave if a2

i ≥ ai−1ai+1 for all i. According to SageMath, both Np(R) and
Dp(R) are log-concave for p ≤ 22; however, I do not even know how to prove

that they are unimodal. Sokal [19] has other examples of Hankel determinants

of sequences of enumerative polynomials that appear, according to computer

calculations, to be log-concave, so this is perhaps a more general phenomenon.

To give an example, in Figure 1, the logarithms of the coefficients in the

numerator polynomial N22(R) are plotted and they are seen to form a concave

set of points. Plotting the coefficients of the denominators gives similar looking

results. An alternative way to think of the polynomials is in terms of their roots.

The roots of N22(R) as pictured in Figure 1 were calculated using high-precision

arithmetic in SageMath [24]. The pattern is typical for all numerators and

denominators that have been calculated (i.e. up to p � 22) in that the roots all lie

in the sector {z | 3π/4 < arg(z) < 5π/4}. This gives added weight to the idea

that the polynomials are log-concave as any real polynomial with all of its roots

in the sector {z | 2π/3 < arg(z) < 4π/3} is log-concave (see [20, Propostion 7]).

Two further intriguing observations are the following:

14



1. the derivative

d|Bn
R |

dR appears to involve the Hankel determinant with a shift

of one, det[χi+ j+1(R)]pi , j�0
;

2. the second logarithmic derivative

d
2

log |Bn
R |

dR2
appears to be minus one times

a ratio of polynomials with positive coefficients, implying, in particular,

that |Bn
R | is log-concave as a function of R (investigating this was suggested

by Mark Meckes).

You can verify these observations by using the SageMath notebook [24]. It looks

like there is still plenty of structure to be found in the magnitude of odd balls.
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2 Bessel potential spaces and weight distributions

In this section we will prove the results we need about Bessel potential spaces,

proving Theorem 2 about the characterization of weight distributions for subsets

of Rn
and proving that the individual terms in our guess for the weight

distribution of an odd ball are all in the correct Bessel potential space.

2.1 Characterization of weight distributions in Rn

Here we will give the proof of Theorem 2 due to Meckes [14].

Note first that the Bessel potential space H−i(Rn) is the linear dual of the

following Sobolev space:

H i(Rn) :�
{

f ∈ L2(Rn)
�� ∂α

∂xα f ∈ L2(Rn) for all |α | ≤ i
}
,

where α is a multi-index.

Now denote by Z : H−(p+1)(Rn) → Hp+1(Rn) the canonical isometry between

the dual spaces which can be described explicitly in terms of Fourier transforms

[13, Section 5]. Suppose that w ∈ H−(p+1)(Rn) is a distribution which satisfies

the hypotheses of the theorem. Let h � Zw, so that w �
1

n!ωn
(I − ∆)p+1h, where

∆ is the Laplacian on Rn
.

Then

h(x) � 〈w , e−d(x ,·)〉 � 1 for all x ∈ int K.

But since all functions in Hp+1(Rn) are continuous we have

h(x) � 1 for all x ∈ K. (7)

15



If f is compactly supported in the complement of K, then

〈(I − ∆)p+1h , f 〉 � n!ωn 〈w , f 〉 � 0,

as w is supported in K, so

(I − ∆)p+1h � 0 in the weak sense on Rn\K. (8)

By [2, Proposition 2], there is a unique h in Hp+1(Rn) satisfying equations (7)

and (8), so by [13, Proposition 5.7], h is the potential function of K, and therefore

w is the weighting of K.

The final part of the theorem, equation (2), follows from [13, Proposition 4.2].

2.2 Examples of distribution in H−(i+1)(Rn)
Here we give examples of distributions in Bessel potential spaces. These in fact

show that our putative weight distribution w, defined by (4), lives in H−(p+1)(Rn)
as required.

The following lemma was suggested by Michael Renardy [18] as part of the

strategy to prove the theorem which follows.

Lemma 9. If M is a compact subset ofRn and we have a continuous differential operator
of order i of the form D �

∑
|α |≤i eα ∂α

∂xα , where α runs over multi-indices. Then the
distribution w defined by

〈w , f 〉 :�

∫
M
D f dvolRn

lies in the Bessel potential space H−i(Rn).

Proof. As H−i(Rn) is dual to the Sobolev space H i(Rn), as mentioned in the

previous subsection, it suffices to show that there exists a Λ ∈ R such that for

any smooth function f ∈ H i(Rn)we have��〈w , f 〉
�� ≤ Λ‖ f ‖H i (Rn ).

Here we will use the norm ‖ f ‖H i (Rn ) :�
∑
|α |≤i



 ∂α

∂xα f




L2(Rn ) which is equivalent

to the Hilbert space norm on this Sobolev space.

Let ED :� max|α |≤i supx∈M eα(x); this is finite as D is continuous and M is

compact. We have��〈w , f 〉
�� � ����∫

M
D f dvolRn

���� � ����∫
M

∑
|α |≤i

eα ∂α

∂xα f dvolRn

����
≤ ED

∑
|α |≤i

∫
M

�� ∂α
∂xα f

��
dvolRn ≤ ED

∑
|α |≤i

Vol(M) 1

2



 ∂α

∂xα f




L2(M)

≤ ED Vol(M) 1

2

∑
|α |≤i



 ∂α

∂xα f




L2(Rn ) � ED Vol(M) 1

2 ‖ f ‖H i (Rn ) ,

as required, where the second-to-last inequality comes from the Cauchy-Schwarz

inequality. �
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Note in particular that the identity operator is of order 0 and thus of order

p + 1, this means that for the n-dimensional ball Bn
R ⊂ Rn

the distribution w
given by 〈w , f 〉 :�

∫
Bn

R
f dvolRn is in H−(p+1)(Rn).

Theorem 10. Suppose Σn−1 ⊂ Rn is a smooth submanifold which bounds a compact
subset M ⊂ Rn . Define the distribution wi , for 0 ≤ i ≤ p, by

〈wi , f 〉 :�

∫
Σ

∂i f
∂ν i dvolΣ

where ∂
∂ν denotes differentiation in the outward pointing normal direction. Then

wi ∈ H−(p+1)(Rn).

Proof. Extend the normal vector field ν onΣ to a smooth vector field ν̄ onRn
, this

can be done using the Tubular Neighbourhood Theorem so that ν̄ vanishes away

from some neighbourhood of Σ. We have
∂
∂ν � ν · ∇, so using the Divergence

Theorem we have

〈wi , f 〉 �
∫
Σ

∂
∂ν

(
∂i−1 f
∂ν i−1

)
dvolΣ �

∫
Σ

ν · ∇
(
∂i−1 f
∂ν i−1

)
dvolΣ

�

∫
M
∇2

(
∂i−1 f
∂ν̄ i−1

)
dvolRn .

As ∇2 ◦ ∂i−1

∂ν̄i−1
is a continuous differential operator of order i + 1 and hence

of order p + 1, because i ≤ p, so by the lemma above we have that wi ∈
H−(p+1)(Rn). �

3 Proof of the generalized key integral

In this section we wish to prove Theorem 4, which says that for 0 ≤ j ≤ p,
s ∈ R2p+1

, with s � |s| and R > s ≥ 0∫
x∈S2p

R

ψ j(|x − s|)dx � (−2π)p2e
−R

p− j∑
i�0

(
p − j

i

)
χi+p(R)τi+ j(s). (9)

The result we want for solving the weight equation is the case when j � 0.

3.1 Sketch of the proof
Before going in to the proof, let us sketch the proof here.

The principal ingredient is an observation of Barceló and Carbery [2]. We

consider the functions ψi(r) and τi(r) as spherically symmetric functions on Rn

(where n � 2p + 1) so that r represents the radial coordinate. We denote by ∆ the

Laplace operator on Rn
. Then the observation is that the differential operator

(I − ∆)will ‘move us up’ each of our sequences of functions, more precisely,

(I − ∆)ξi(r) � 2(p − i)ξi+1(r)

17



where ξi(r) is either ψi(r) or τi(r). From this we can show that if ξ is a

spherically symmetric smooth function defined in a neighbourhood of the origin

and (I − ∆)kξ(r) � 0 for p ≥ k ≥ 1 then ξ(r) is a linear combination of the set of

functions {τi(r)}pi�p−k+1
.

By differentiating under the integral sign we deduce that

(I − ∆s)p− j+1

∫
x∈S2p

R

ψ j(|x − s|)dx � 0

(where ∆s indicates that we are differentiating with respect to s) and thus by the

above we have ∫
x∈S2p

R

ψ j(|x − s|)dx �

p− j∑
i�0

ap , j,i(R)τi+ j(s),

for some functions (ap , j,i(R))p− j
i�0

, which we need to identify.

In the simplest case of j � p we can substitute s � 0 and show that the sole

unknown function ap ,p ,0(R) has the form we want, thus giving the integral in

this case. We work ‘downwards’ to j � 0 from there.

Applying the operator (I − ∆s) to both sides of (3.1) we find

(p − j)
∫

x∈S2p
R

ψ j+1(|x − s|)dx �

p− j∑
i�0

(p − j − i)ap , j,i(R)τi+ j+1(s).

We assume that the integral for ψ j+1 is in the form we want so we know the left

hand side of the above equation. From the linear independence of the set of

functions {τi}i we can deduce the correct formulae for {ap , j,i}p− j−1

i�0
, which just

leaves ap , j,p− j and this can be calculated by substituting s � 0 into (3.1). In this

way we obtain the generalized key integral (9), and, in particular for j � 0, the

key integral, Theorem 3.

3.2 Basic properties of our functions
Here we will obtain some useful facts about the sequences of functions (ψi(r))∞i�0

and (τi(r))∞i�0
. Firstly their initial terms are as follows:

ψ0(r) � e
−r

; τ0(r) � cosh(r)

Both sequences satisfy the same recurrence relation

ξi+1(r) � − 1

r ξ
′
i(r). (10)

For r , 0, the second sequence is the even part of the first: τi(r) � 1

2
(ψi(r) +

ψi(−r)). It is not completely obvious, but is easy to prove, that τ(0) is well-

defined.

Proposition 11. For i ≥ 0 the function τi(r) is an even function defined on all of R,
in particular at r � 0. It has Taylor expansion

τi(r) � (−1)i
∞∑

k�0

r2k

(2k)! · (2k + 1) · (2k + 3) · · · (2k + 2i − 1) ,
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and so
τi(0) �

(−1)i
1 · 3 · 5 · · · (2i − 1) .

Proof. It suffices to prove the expression for the Taylor series. This is a straight-

forward induction using the recursive definition τi+1(r) � − 1

r τ
′
i(r). �

The functions satisfy the following recursion relation.

Theorem 12. For i ≥ 1, both sequences (ψi(r))∞i�0
and (τi(r))∞i�0

satisfy

ξi+1(r) � (ξi−1(r) + (2i − 1)ξi(r))/r2.

Proof. We will prove the formula inductively. It is easily checked for the case

i � 1 for both sequences of functions. Then, by the recursion formula (10),

ξi+1(r) � − 1

r ξ
′
i(r)

� −1

r

(
ξi−2(r) + (2i − 3)ξi−1(r)

r2

)′
� −

ξ′i−2
(r)r2 − ξi−2(r)2r + (2i − 3)ξ′i−1

(r)r2 − (2i − 3)ξi−1(r)2r

r5

� −−ξi−1(r)r2 − (2i − 3)ξi(r)r2 − 2 (ξi−2(r) + (2i − 3)ξi−1(r))
r4

�
ξi−1(r)r2 + (2i − 3)ξi(r)r2 + 2r2ξi(r)

r4

�
ξi−1(r) + (2i − 1)ξi(r)

r2

,

and the result follows by induction. �

From this we can express the relation between the function ψi and the reverse

Bessel polynomial χi .

Proposition 13. For i ≥ 0

χi(r) � e
r r2iψi(r).

Proof. By the above theorem we have

ψi+2(r) � (ψi(r) + (2i + 1)ψi+1(r))/r2.

Multiplying through by e
r r2i+4

we find that e
r r2iψi(r) satisfies the defining

recursion relation (1) for the reverse Bessel polynomials. You can check that for

i � 0, 1 the functions agree, therefore they agree for all i. �

The above recursive relation can be written in the following fashion.

ξi−1(r) � −(2i − 1)ξi(r) + r2ξi+1(r). (11)

If this is thought of as writing the ‘decrease the index by one’ operation as

‘identity times a scalar depending on the index plus increase index by one times

r2
’, then decreasing the index by k is doing the sum of those two operations k

times. In general, if we have two commuting operations A and B then there is a

Leibniz formula (A + B)k �
∑k

m�0

( k
m

)
Ak−mBm

. The following expression, which

we will use in Theorem 4 below, ought to be seen in that context, but I don’t see

how to make that rigourous.
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Lemma 14. For i ≥ 1 and 0 ≤ k ≤ i, both sequences (ψi(r))∞i�0
and (τi(r))∞i�0

satisfy
the following formula:

ξi−k(r) �
k∑

m�0

(
k
m

) ( i∏
`�i+1−(k−m)

−(2` − 1)
)

r2mξi+m(r).

Proof. Let’s simplify the notation by writing A j �
∏i

`�i+1− j −(2` − 1). The

formula holds vacuously for k � 0. We use the recursion relation (11) and then

proceed inductively.

ξi−k � −(2(i − k) + 1)ξi−k+1
(r) + r2ξi−k+2

(r)

� −(2(i − k) + 1)
k−1∑
m�0

(
k − 1

m

)
Ak−1−m r2mξi+m(r)

+ r2

k−2∑
m�0

(
k − 2

m

)
Ak−2−m r2mξi+m(r)

�

k−1∑
m�0

(
k − 1

m

)
(−(2(i − k) + 1))Ak−1−m r2mξi+m(r)

+

k−2∑
m�0

(
k − 2

m

)
Ak−2−m r2m+2

(
−(2i + 2m + 1)ξi+m+1(r)

+ r2ξp+m+2

)
�

k−1∑
m�0

(
k − 1

m

)
(−(2(i − k) + 1))Ak−1−m r2mξi+m(r)

+

k−2∑
m�0

(
k − 2

m

)
Ak−2−m r2m+2

(
−(2i + 2m + 1)

)
ξi+m+1(r)

+

k−2∑
m�0

(
k − 2

m

)
Ak−2−m r2m+4ξp+m+2 ,

reindexing the sums,

�

k∑
m�0

[
−
(
k − 1

m

)
(2i − 2k + 1) −

(
k − 2

m − 1

)
(2i + 2m − 1)

−
(

k − 2

m − 2

)
(2i + 2m − 2k + 1)

]
Ak−1−m r2mξi+m(r),

using

(k−1

m

)
m �

( k−2

m−1

)
(k − 1),

�

k∑
m�0

[(
k − 1

m

)
+

(
k − 2

m − 1

)
+

(
k − 2

m − 2

)]
(
−(2i − 2(k − m) + 1)

)
Ak−m−1r2mξi+m(r)
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�

k∑
m�0

(
k
m

)
Ak−m r2mξi+m(r),

as required. �

We finish this subsection by showing that our functions satisfy a second

order differential equation.

Theorem 15. For i ≥ 0 and r > 0, both ψi and τi satisfy the following differential
equation:

ξ′′i (r) + 2i
r ξ
′
i(r) − ξi(r) � 0.

Proof. This is proved by induction. It is clearly true for both ψ0 and τ0. To prove

the inductive step, begin by substituting in the inductive definition (10).

ξ′′i+1
+

2i+2

r ξ′i+1
� (− 1

r ξ
′
i)
′′
+

2i+2

r (− 1

r ξ
′
i)
′

� −( 2

r3
ξ′i − 2

r2
ξ′′i +

1

r ξ
′′′
i ) − 2i+2

r (− 1

r2
ξ′i +

1

r ξ
′′
i )

� − 1

r [ξ
′′′
i +

2i
r ξ
′′
i − 2i

r2
ξ′i]

� − 1

r [ξ
′′
i +

2i
r ξ
′
i]
′
� − 1

r ξ
′
i � ξi+1.

The next to last equality comes from the inductive hypothesis. �

3.3 The Laplacian and spherically symmetric functions on Rn

As throughout this paper n � 2p + 1 is a fixed odd integer. Here we will think

of functions of r as being spherically symmetric functions on Rn
. Our proof of

the generalized key integral will rely on the behaviour on the set of functions

{ψi} ∪ {τi} with respect to a certain differential operator defined in terms of the

Laplacian operator ∆. Indeed, we will show that this set of functions spans the

solution set of a certain differential equation. Theorem 16 and Corollary 17 were

obtained in [2], but the proofs given here are more direct.

The Laplacian operator ∆ is a differential operator defined on functions on

Rn
; for a spherically symmetric function g(r) the Laplacian is given by

∆g(r) � g′′(r) + n−1

r g′(r).

A fundamental property (observed in [2]) is that the operator (I − ∆)moves us

along the sequence of functions.

Theorem 16. For i ≥ 0 both sequences (ψi(r))∞i�0
and (τi(r))∞i�0

satisfy the following
formula:

(I − ∆)ξi(r) � 2(p − i)ξi+1(r).

Proof. The result follows from the differential equation in Theorem 15 and the

defining recurrence relation (10):

(I − ∆)ξi(r) � ξi(r) − ξ′′i (r) − n−1

r ξ′i(r)
�

2i
r ξ
′
i(r) − n−1

r ξ′i(r)
� (n − 1 − 2i)ξi+1(r). �
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Corollary 17. For k ≥ 1 and i ≥ 0 both sequences (ψi(r))∞i�0
and (τi(r))∞i�0

satisfy the
following formula

(I − ∆)kξi � 2
k(p − i)(p − i − 1) . . . (p − i − k + 1)ξi+k .

So if, further, i ≤ p and i + k > p then

(I − ∆)kξi � 0.

We can use this to show how subsets of our functions span a certain solution

sets.

Theorem 18. For p ≥ k ≥ 1, if g is a spherically symmetric smooth function defined
on a neighbourhood of the origin in Rn with (I − ∆)k g(r) � 0 then there exists a set of
constants {ci}pi�p−k+1

such that

g(r) �
p∑

i�p−k+1

ciτi(r).

Proof. By Corollary 17, the set {ψp−k+1
, . . . , ψp , τp−k+1

, . . . , τp} gives us of 2k
linearly independent solutions to the order 2k linear differential equation

(I − ∆)k g(r) � 0, so this set spans the space of solutions. The function ψi , for

i ≥ 1 has a singularity of order 2i − 1 and the function ψ0(r) is e
−r

which is

not differentiable at the origin as a spherically symmetric function; thus any

solution which is smooth at the origin must be a linear combination of the set of

functions {τp−k+1
, . . . , τp}. �

3.4 Proof of the theorem
We will begin with the following first approximation to Theorem 4 and then

find the functions ap , j,i(R).

Proposition 19. For p ∈ N>0 and 0 ≤ j ≤ p, there is a set of functions {ap , j,i(R)}p− j
i�0

such that for 0 < R and 0 ≤ s < R∫
x∈S2p

R

ψ j(|x − s|)dx � 2(−2π)p
p− j∑
i�0

(
p − j

i

)
ap , j,i(R)τi+ j(s).

Proof. For the moment, fix R > 0. Observe that ψ j(r) is smooth for r , 0 so for

fixed x ∈ R2p+1
with |x| � R and |s| < R we have ψ j(|x − s|) is a smooth function

of s. As (I − ∆s)p− j+1ψ j(|s|) � 0, and the Laplacian is translation invariant,

(I −∆s)p− j+1ψ j(|x− s|) � 0. Averaging over a sphere will not reduce smoothness

so for all |s| < R we have

∫
x∈S2p

R
ψ j(|x − s|)dx is a smooth, spherically symmetric

function of s. Then differentiating under the integral sign we find

(I − ∆s)p− j+1

∫
x∈S2p

R

ψ j(|x − s|)dx �

∫
x∈S2p

R

(I − ∆s)p− j+1ψ j(|x − s|)dx

� 0.
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Now we can just apply the lemma above to find that there is a set of constants

{ci}p− j
i�0

so that ∫
x∈S2p

R

ψ j(|x − s|)dx �

p− j∑
i�0

ciτi+ j(s).

But these ‘constants’ depend on our fixed R, so rescaling these functions of R
appropriately we find a set of functions {ap , j,i(R)}p− j

i�0
such that∫

x∈S2p
R

ψ j(|x − s|)dx � 2(−2π)p
p− j∑
i�0

(
p − j

i

)
ap , j,i(R)τi+ j(s),

for s < R, as required. �

We now just have to prove that for given p and 0 ≤ j ≤ p we have ap , j,i(R) �
R2p+2iψp+i(R). I cannot see any obvious reason why these are independent of j.
We will inductively work down from j � p to j � 0. First we will do the base

case of j � p. (As mentioned in the introduction, this is equivalent to a known

result in the literature about modified spherical Bessel functions.)

Proposition 20. For R > s � |s| we have∫
x∈S2p

R

ψp(|x − s|)dx � 2(−2π)pR2pψp(R)τp(s).

Proof. By Proposition 19 we have∫
x∈S2p

R

ψp(|x − s|)dx � 2(−2π)p ap ,p ,0(R)τp(s), (12)

for some function ap ,p ,0(R). Substituting s � 0 and writing σ2p for the volume of

the unit 2p-dimensional sphere, the left hand side of (12) becomes∫
x∈S2p

R

ψp(|x|)dx �

∫
x∈S2p

R

ψp(R)dx � σ2pR2pψp(R)

�
2(2π)p

1 · 3 · 5 · · · (2p − 1)R
2pψp(R)

� 2(−2π)pτp(0)R2pψp(R),

where the formula for τp(0)was given in Theorem 11. The result follows from

comparing with the right hand side of equation (12). �

Now we can prove the general case.

Proof of Theorem 4. We work inductively downwards. Assume that for given p,
the theorem holds for all j satisfying 0 ≤ k < j ≤ p. We will prove that it holds

for j � k. We know that∫
x∈S2p

R

ψk(|x − s|)dx � 2(−2π)p
p−k∑
i�0

(
p − k

i

)
ap ,k ,i(R)τi+k(s).

23



Thus

(I − ∆s)
∫

x∈S2p
R

ψk(|x − s|)dx � (I − ∆s)2(−2π)p
p−k∑
i�0

(p−k
i

)
ap ,k ,i(R)τi+k(s).

So ∫
x∈S2p

R

(I − ∆s)ψk(|x − s|)dx � 2(−2π)p
p−k∑
i�0

(p−k
i

)
ap ,k ,i(R)(I − ∆s)τi+k(s).

Then, by Theorem 16 and the translation invariance of ∆s,∫
x∈S2p

R

(p − k)ψk+1
(|x − s|)dx � 2(−2π)p

p−k∑
i�0

(p−k
i

)
ap ,k ,i(R)(p − k − i)τi+k+1

(s).

By the inductive hypothesis, the left hand side of the above equation has the

form

2(−2π)p
p−(k+1)∑

i�0

(p−(k+1)
i

)
(p − k)R2p+2iψp+i(R)τk+1+i(s).

But as

(p−k−1

i

)
(p − k) �

(p−k
i

)
(p − k − i), the previous equation becomes

p−k−1∑
i�0

(p−k−1

i

)
(p − k)R2p+2iψp+i(R)τk+1+i(s)

�

p−k−1∑
i�0

(p−k−1

i

)
(p − k)ap ,k ,i(R)τk+1+i(s).

From the linear independence of the set of functions {τi(s)}pi�0
we deduce that

ap ,k ,i(R) � R2p+2iψp+i(R) for i � 0, . . . , p − k − 1. It just remains to find ap ,k ,p−k .

To do this we will consider the case s � 0.

We now know

1

2(−2π)p
∫

x∈S2p
R

ψk(|x − s|)dx �

p−k−1∑
i�0

(
p − k

i

)
R2p+2iψp+i(R)τk+i(s)

+ ap ,k ,p−k(R)τp(s). (13)

Taking s � 0, and writing σ2p for the volume of the unit 2p-dimensional sphere,

the left hand side becomes

1

2(−2π)p
∫

x∈S2p
R

ψk(|x|)dx �
σ2pR2pψk(R)

2(−2π)p � τp(0)R2pψk(R)

because as noted above, in Proposition 20, σ2p � 2(−2π)pτp(0).
Writing ψk(R) � ψp−(p−k)(R)we can use Lemma 14 and find this is equal to

τp(0)R2p
p−k∑
i�0

(
p − k

i

) ( p∏
`�1+k+i

− (2` − 1)
)
R2iψp+i(R)
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� τp(0)R2p
p−k∑
i�0

(
p − k

i

)
τk+i(0)
τp(0)

R2iψp+i(R)

�

p−k∑
i�0

(
p − k

i

)
τk+i(0)R2p+2iψp+i(R).

Comparing this with the right hand side of equation (13) shows that ap ,k ,p−k(R)
is of the required form and the theorem is proved. �

We have now proved the key integral identity for solving the weight equation.

4 Proofs of the corollaries of the key integral

In this section we will prove Corollaries 5 and 6 which are needed for solving

the weight equation.

4.1 Integration over a ball
Here we will prove Corollary 5 about integration of e

−|x−s|
over the ball of given

radius by using the result on the integration over the spheres of various radius.

Note first the following two lemmas.

Lemma 21. For n ≥ 1 and s ∈ Rn we have

1

n!ωn

∫
x∈Rn

e
−|x−s|

dx � 1.

Proof. By translating the origin and noting that the volumes of the unit (n − 1)-
sphere and unit n-ball are related by σn−1 � nωn , we have∫

x∈Rn
e
−|x−s|

dx �

∫
x∈Rn

e
−|x|

dx �

∫ ∞

r�0

e
−r rn−1σn−1dr

� Γ(n)σn−1 � (n − 1)! nωn � n!ωn .

�

Lemma 22. For i � 0, 1, 2, . . . and R > 0 we have∫ ∞

R
χi(r)e−r

dr �
e−Rχi+1(R)

R
.

Proof. Observe first that

d

dr

(
− e−rχi+1(r)

r

)
�

d

dr

(
−ψi+1(r)r2i+1

)
� rψi+2(r)r2i+1 − ψi+1(r)(2i + 1)r2i

� e
−r r−2 (χi+2(r) − (2i + 1)χi+1(r))

� e−rχi(r).
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So, by the Fundamental Theorem of Calculus,∫ ∞

r�R
e−rχi(r)dr �

[
− e−rχi+1(r)

r

]∞
r�R

�
e−Rχi+1(R)

R
,

as required. �

We can now do the integral over the ball:

1

n!ωn

∫
x∈Bn

R

e
−|x−s|

dx �
1

n!ωn

(∫
x∈Rn

e
−|x−s|

dx −
∫
|x|>R

e
−|x−s|

dx
)

� 1 −
∫ ∞

r�R

1

n!ωn

∫
x∈Sn−1

r

e
−|x−s|

dx dr

� 1 −
∫ ∞

r�R

(−1)pe
−r

2
p p!

p∑
i�0

(
p
i

)
χi+p(r)τi(s)dr

� 1 − (−1)p
2

p p!

p∑
i�0

(
p
i

) (∫ ∞

r�R
e
−rχi+p(r)dr

)
τi(s)

� 1 − (−1)pe
−R

2
p p!

p∑
i�0

(
p
i

)
χi+p+1(R)

R
τi(s),

which is as required.

4.2 Integration of the normal derivatives over a sphere
Here we will prove Corollary 6 about integration of the normal derivatives of

e
−|x−s|

, for fixed s, over a sphere of given radius.

We want to do differentiation under the integral sign, but the region we

are integrating over — the radius R sphere — depends on the thing, R, we are

differentiating with respect to. The trick is to rescale and write the integral as an

integral over the unit radius sphere. Then differentiation in the normal direction

just becomes differentiation with respect to R. We will write x̂ for a vector on

the unit sphere S2p
.

1

n!ωn

∫
x∈S2p

R

∂ j

∂ν j

(
e
−|x−s|

)
dx

�
1

n!ωn

∫
x̂∈S2p

∂ j

∂ν j

(
e
−|Rx̂−s|

)
R2p

dx̂

�
1

n!ωn

∫
x̂∈S2p

d
j

dR j

(
e
−|Rx̂−s|

)
R2p

dx̂

� R2p d
j

dR j

(
1

n!ωn

∫
x̂∈S2p

e
−|Rx̂−s|

dx̂
)

� R2p d
j

dR j

(
R−2p 1

n!ωn

∫
x̂∈S2p

e
−|Rx̂−s| R2p

dx̂
)

� R2p d
j

dR j

(
R−2p 1

n!ωn

∫
x∈S2p

R

e
−|x−s|

dx

)
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� R2p d
j

dR j

(
R−2p (−1)pe

−R

2
p p!

p∑
i�0

(
p
i

)
χi+p(R)τi(s)

)
�
(−1)pe

−R

2
p p!

p∑
i�0

(
p
i

)
e

RR2p d
j

dR j

(
R−2p

e
−Rχi+p(R)

)
τi(s)

�
(−1)pe

−R

2
p p!

p∑
i�0

(
p
i

)
δ jχi+p(R)τi(s),

as required.

5 Magnitude in terms of Hankel determinants

[In this section, everything will be a function of R, so we will remove it from the

notation, writing χi and β j instead of χi(R) and β j(R).]
The goal of this section is to prove Theorem 8 which gives the following

formula for the magnitude in terms of Hankel determinants of reverse Bessel

polynomials.

|Bn
R | �

det[χi+ j+2]pi , j�0

n! R det[χi+ j]pi , j�0

.

The proof will be computational and not give much insight as to why such a

compact formula in possible.

We start here with the linear system (6) which has the magnitude as one

of the unknowns. Then Cramer’s Rule immediately gives us a formula for the

magnitude in terms of determinants.

��Bn
R

�� �

����������
χp δχp . . . δpχp χp+1/R
χp+1 δχp+1 . . . δpχp+1 χp+2/R
...

...
...

...
χ2p δχ2p . . . δpχ2p χ2p+1/R
−nRn−1

0 . . . 0 Rn

��������������������
χp δχp . . . δpχp 0

χp+1 δχp+1 . . . δpχp+1 0

...
...

...
...

χ2p δχ2p . . . δpχ2p 0

−nRn−1
0 . . . 0 n!

����������
�:

N
D
. (14)

We define N and D, respectively, to be the numerator and denominator of

this expression. We can, with a bit of work, express them in terms of Hankel

determinants. First, here is a lemma, the second part of which makes good

on our promise — from after Corollary 6 — that we will see that δ jχm will be

written as a suitable linear combination of reverse Bessel functions.

Lemma 23. Suppose that m ∈ {0, 1, 2, . . . }, 0 ≤ j ≤ m and k ∈ Z then

1. δ(Rkχm) � −Rk+1χm−1 − Rk−1(2p − k − 1)χm ;
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2. δ jχm � (−1) j
(
R jχm− j +

∑ j
t�1

f (p , j, t)R j−2tχm− j+t
)
, where f (p , j, t) is an

integer which is independent of m;

3. δ j(R−1χm) � (−1) j
(
R j−1χm− j+

∑ j
t�1

g(p , j, t)R j−2t−1χm− j+t
)
, where g(p , j, t)

is an integer which is independent of m.

Proof. For part 1 we will proceed by induction on m. First note that

δ(Rk) � eRR2p d

dR

(
e−RR−2pRk )

� eRR2p (−e−RR−2pRk
+ (−2p + k)e−RR−2pRk−1

)
� −Rk − (2p − k)Rk−1.

We have χ0 � 1, χ1 � R and χ2 � R2 + R, so

δ(Rkχ1) � δ(Rk+1) � −Rk+1 · 1 − (2p − k − 1)Rk−1 · R

and

δ(Rkχ2) � δ(Rk+2

+ Rk+1) � δ(Rk+2) + δ(Rk+1)
� −Rk+2 − (2p − k − 2)Rk+1 − Rk+1 − (2p − k − 1)Rk

� −Rk+1 · R − (2p − k − 1)Rk−1(R2

+ R),

thus the result holds for m � 1, 2.
Now suppose the result is true for m ≤ m′, we use the recursion relation (1)

for the reverse Bessel polynomials to show that it holds when m � m′ + 1.

δ(Rkχm′+1) � δ(Rk(R2χm′−1 + (2m − 1)χm′))
� δ(Rk+2χm′−1) + (2m − 1)δ(Rkχm′)
� −Rk+3χm′−2 − Rk+1(2p − k − 3)χm′−1

− (2m − 1)Rk+1χm′−1 − Rk−1(2m − 1)(2p − k − 1)χm′

� −Rk+1(R2χm′−2 + (2m − 3)χm′−1)
− Rk−1(2p − k − 1)(R2χm′−1 + (2m − 1)χm′)

� −Rk+1χm′ − Rk−1(2p − k − 1)χm′+1.

Thus the result for part 1 follows by induction.

For part 2 we proceed by induction on j. Here the second equality uses the

inductive hypothesis and the fact that δ is Z-linear, while the third equality uses

part 1.

δ j+1(χm) � δ
(
δ j(χm)

)
� (−1) j

[
δ(R jχm− j) +

∑ j
t�1

f (p , j, t)δ(R j−2tχm− j+t)
]

� (−1) j+1

[
R j+1χm− j−1 + R j−1(2p − j − 1)χm− j+∑ j

t�1
f (p , j, t)

{
R j−2t+1χm− j+t−1+
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(2p − ( j − 2t) − 1)R j−2t−1χm− j+t

}]
� (−1) j+1

[
R j+1χm−( j+1) + R( j+1)−2(2p − ( j + 1))χm−( j+1)+1

+∑ j
t�1

f (p , j, t)R j+1−2tχm−( j+1)+t+∑ j
t�1

f (p , j, t)
(
2(p + t) − j − 1

)
R( j+1)−2t−2χm−( j+1)+t+1

]
� (−1) j+1

[
R j+1χm−( j+1)+

R( j+1)−2
(
(2p − ( j + 1)) + f (p , j, 1)

)
χm−( j+1)+1

+∑ j
t�2

f (p , j, t)R( j+1)−2tχm−( j+1)+t+∑ j
s�2

f (p , j, s − 1)
(
2(p + s) − j − 3

)
R( j+1)−2sχm−( j+1)+s+

f (p , j, j)(2p + ( j + 1) − 2)R−( j+1)χm

]
� (−1) j+1

[
R j+1χm−( j+1)+(
(2p − ( j + 1)) + f (p , j, 1)

)
R( j+1)−2χm−( j+1)+1

+∑ j
t�2

(
f (p , j, t) + f (p , j, t − 1)(2(p + t) − j − 3)

)
×

R( j+1)−2tχm−( j+1)+t+

f (p , j, j)(2p + ( j + 1) − 2)R−( j+1)χm

]
The last line means that we can define f (p , j, t) inductively: for j ≥ 0 we have

f (p , j, 0) � 1, f (p , j, j + 1) � 0 and for t � 1, . . . , j + 1

f (p , j + 1, t) � f (p , j, t) + (2(p + t) − j − 3) f (p , j, t − 1).

Part 3 is proved by using part 2 together with the easy-to-check Leibniz-type

formula

δ j(R−1χm) �
j∑

a�0

(
j
a

)
d

a

dRa (R−1)δ j−a(χm).

You will find that g(p , j, t) � ∑t
`�0

j!
( j−`)! f (p , j − `, t − `). �

Armed with this lemma we can now prove that the denominator and

numerator can each be written in terms of a Hankel determinant of reverse

Bessel functions.

Lemma 24. The denominator of the magnitude of the n-ball as given in (14) can be
expressed in the following form:

D � n! R(p+1)p/2
det[χi+ j]pi , j�0

.
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Proof. We see immediately, by expanding along the final column, that

D � n!

��������
χp δχp . . . δpχp
χp+1 δχp+1 . . . δpχp+1

...
...

...
χ2p δχ2p . . . δpχ2p

��������.
We can use part 1 of the above lemma to rewrite the second, j � 1, column and

then add (2p − 1)R−1
times the first, j � 0, column to obtain

D � n!

��������
χp −Rχp−1 − R−1(2p − 1)χp δ2χp . . . δpχp
χp+1 −Rχp − R−1(2p − 1)χp+1 δ2χp+1 . . . δpχp+1

...
...

...
...

χ2p −Rχ2p−1 − R−1(2p − 1)χ2p δ2χ2p . . . δpχ2p

��������
� n!

��������
χp −Rχp−1 δ2χp . . . δpχp
χp+1 −Rχp δ2χp+1 . . . δpχp+1

...
...

...
...

χ2p −Rχ2p−1 δ2χ2p . . . δpχ2p

��������.
Now we work to the right, inductively, column-by-column, using Lemma 23

part 2 and adding a suitable linear combination of the columns to the left and

find the following expression for D.

D � n!

��������
χp −Rχp−1 R2χp−2 . . . (−R)pχ0

χp+1 −Rχp R2χp−1 . . . (−R)pχ1

...
...

...
...

χ2p −Rχ2p−1 R2χ2p−2 . . . (−R)pχp

��������.
If we now reverse the order of the columns, then we pick up a minus sign for

each pair of columns we switch and these precisely cancel out the minus signs in

the matrix. Then taking out the factor of R j
in each column we find the required

form of the denominator:

D � n! R(p+1)p/2

��������
χ0 . . . χp
χ1 . . . χp+1

...
...

χp . . . χ2p

��������.
�

Lemma 25. The numerator of the magnitude of the n-ball as given in (14) can be
expressed in the following form:

N � R(p+1)p/2−1

det[χi+ j+2]pi , j�0
.

Proof. By adding n/R times the final column to the first column and expanding

along the bottom row we have

N � Rn

��������
χp + nχp+1/R2 δχp . . . δpχp
χp+1 + nχp+2/R2 δχp+1 . . . δpχp+1

...
...

...
χ2p + nχ2p+1/R2 δχ2p . . . δpχ2p

�������� .
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For the first, j � 0, column we have Ni ,0 � χp+i + nχp+i+1/R2
. By the recursion

relation for the reverse Bessel polynomials we have R2χp+i + (2p+2i+1)χp+i+1 �

χp+i+2, but n � 2p + 1 and so Ni ,0 � χp+i+2/R2 + 2iχp+i+1/R2
.

For the second, j � 1, column we have

Ni ,1 � δχp+i � −Rχp+i−1 − R−1(2p − 1)χp+i

� −R−1(χp+i+1 − (2p + 2i − 1)χp+i) − R−1(2p − 1)χp+i

� −R−1χp+i+1 − 2iR−1χp+i .

For the rest of the entries we have, by the Z-linearity of δ,

Ni , j � δ
jχp+i � δ

j−1δχp+i � −δ j−1(R−1χp+i+1) − 2iδ j−1(R−1χp+i).

This gives

N � Rn

�������
R−2χp+2 −R−1χp+1 ... −δp−1(R−1χp+1)

R−2χp+3+2R−2χp+2 −R−1χp+2−2R−1χp+1 ... −δp−1(R−1χp+2)−2δp−1(R−1χp+1)
R−2χp+4+4R−2χp+3 −R−1χp+3−4R−1χp+2 ... −δp−1(R−1χp+3)−4δp−1(R−1χp+2)

... ... ...
R−2χ2p+2+2pR−2χ2p+1 −R−1χ2p+1−2pR−1χ2p ... −δp−1(R−1χ2p+1)−2pδp−1(R−1χ2p )

������� .
Now we can work inductively from the top row down, subtracting two lots of

the top row from the second row, then subtracting four lots of the resulting row

from the third row, and so on downwards. This gives

N � Rn

����������
R−2χp+2 −R−1χp+1 −δ(R−1χp+1) . . . −δp−1(R−1χp+1)
R−2χp+3 −R−1χp+2 −δ(R−1χp+2) . . . −δp−1(R−1χp+2)
R−2χp+4 −R−1χp+3 −δ(R−1χp+3) . . . −δp−1(R−1χp+3)

...
...

...
...

R−2χ2p+2 −R−1χ2p+1 −δ(R−1χ2p+1) . . . −δp−1(R−1χ2p+1)

���������� .
Now using Lemma 23 part 3, and the same argument as in Lemma 24 above, we

get

N � Rn

����������
R−2χp+2 −R−1χp+1 χp . . . (−R)p−2χ2

R−2χp+3 −R−1χp+2 χp+1 . . . (−R)p−2χ3

R−2χp+4 −R−1χp+3 χp+2 . . . (−R)p−2χ4

...
...

...
...

R−2χ2p+2 −R−1χ2p+1 χ2p . . . (−R)p−2χp+2

���������� .
Again, as in the proof above, switching the order of columns removes the minus

signs, and taking out the appropriate factor of R from each column gives the

required form of N as R(p+1)p/2−1
det[χi+ j+2]pi , j�0

. �

Theorem 8, which we were aiming to prove, on the magnitude in terms

of a ratio of Hankel determinants, now follows from the expressions for the

numerator and denominator in Lemmas 24 and 25.

6 Schröder path formulae for the determinants

So far we know that the magnitude of an odd ball can be obtained from the ratio

of two Hankel determinants of reverse Bessel polynomials. In this section we
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Figure 2: A 3-collection σ with the associated weights of W0 marked on

(neglecting the trivial weights on the ascending steps). Thus W0(σ, R) � 120R3
.

Subtracting two from each marked numerical weight gives W2(σ, R) � 2 × 3 ×
4 × R3 � 24R3

.

use the fact that the generating function of reverse Bessel polynomials has a

continued fraction expansion in order to get combinatorial expressions for the

Hankel determinants in terms of ‘Schröder paths’. This will allow us to give the

degrees of the numerator and denominator, to give their leading terms and to

show that all of the coefficients are positive.

6.1 Main results
In this section we will state the combinatorial expression for the Hankel deter-

minants of reverse Bessel polynomials (this will be proved in the next section)

and then use this to prove all the remaining results about the magnitude of odd

balls.

There is a beautiful theory relating Hankel determinants of sequences with

a continued fraction expansion to counting weighted Schröder paths. Let us

begin with some notation.

A Schröder path is a finite directed path on the lattice Z2
where each step in

the path is either an ascent, going from (x , y) to (x + 1, y + 1), a descent, going
from (x , y) to (x + 1, y − 1), or a flat step, going from (x , y) to (x + 2, y). Four
such paths are shown in Figure 2 (one of the paths is an empty path).

For i ∈ {0, 1, 2, . . . } define points Pi :� (−i , i) and Qi :� (i , i). Define

a disjoint k-collection to be a set of disjoint Schröder paths from {Pi}ki�0
to

{Qi}ki�0
, where disjoint means that they have no vertices in common. (Note that

paths cannot cross as the vertices will lie on the sub-lattice of points where the

sum of coordinates is even.) A 3-collection is shown in Figure 2. Let Xk be the

set of such k-collections.
As an aside, it is perhaps worth mentioning, although it does not seem to be

important here, that the disjoint k-collections are in bĳection with the perfect

matchings of an Aztec diamond (see [4]) and thus there are 2
k(k+1)/2

of them. All

eight disjoint 2-collections are shown in Figure 3.

A path weightingwill be a way to associate a weight to each step in a path.

Let W0 be the following path weighting: associate 1 to each ascending step, the

indeterminate R to each flat step and y + 1 to each descending step which starts

at height y. See Figure 2 for an example. For a k-collection σ we define W0(σ, R)
to be the product of the weights of all of the steps in the collection.

Similarly, let W2 be the path weighting which associates 1 to each ascending
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step, R to each flat step and y to each descending step which starts at height

y − 1.

We can now state the theorem, proved in the next subsection, which gives

a combinatorial expression for each Hankel determinant of reverse Bessel

polynomials that we are interested in, in terms of weighted sums of k-collections
of Schröder paths.

Theorem 26. Recalling that sf(k) :�
∏k

i�0
i! is the kth superfactorial, we have

det

[
χi+ j(R)

] p
i , j�0

� Rpsf(p)
∑

σ∈Xp−1

W0(σ, R)

det

[
χi+ j+2(R)

] p
i , j�0

� Rp+1sf(p)
∑

σ∈Xp+1

W2(σ, R).

Before proving this we will see some examples and prove the important

consequences for magnitude. Combining the above with Theorem 8 we imme-

diately get the following combinatorial expression for the magnitude of an odd

ball.

Corollary 27. For n � 2p + 1 the magnitude of an n-ball of radius R is as follows:��Bn
R

�� � ∑
σ∈Xp+1

W2(σ, R)
n!

∑
σ∈Xp−1

W0(σ, R)

This leads us to define the pth numerator polynomial and pth denominator
polynomial, respectively, as follows:

Np(R) :�

∑
σ∈Xp+1

W2(σ, R); Dp(R) :�

∑
σ∈Xp−1

W0(σ, R).

We can calculate some examples. The 2-collections in X2 are shown in

Figure 3 labelled with the weightings from W0. From that we see

D3(R) �
∑
σ∈X2

W0(σ, R) � R3

+ (4 + 4 + 4)R2

+ (12 + 16 + 20)R + 60

� R3

+ 12R2

+ 48R + 60,

and, subtracting 2 from each numerical label, we also see

N1(R) �
∑
σ∈X2

W2(σ, R) � R3

+ (2 + 2 + 2)R2

+ (2 + 4 + 6)R + 6

� R3

+ 6R2

+ 12R + 6.

You can check that these are indeed the denominator and numerator polynomials

of the magnitudes |B7

R | and |B
3

R |, respectively, as given in the introduction.

We can now prove some basic facts about the numerator and denominator

which you would hope to be true if you had stared at the examples in the

introduction and done some further computation. These are not at all obvious

from the Barceló and Carbery algorithm nor from the determinantal formulae.
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Figure 3: The eight 2-collections of Schröder paths in X2, labelled with the

weightings from W0.

Theorem 28. 1. The numerator polynomial Np(R) is monic of degree (p+1)(p+2)
2

with all coefficients positive.

2. The denominator polynomial Dp(R) is monic of degree p(p−1)
2

with all coefficients
positive.

3. The constant terms are related by Np(0) � n! Dp(0).

Proof. 1. The highest degree monomials contributing to Np(R) come from

(p + 1)-collections with the maximal number of flat steps; there is precisely

one of those, where all of the steps are flat, as in the last picture of Figure 3,

and its weighting is R(p+1)(p+2)/2
, thus Np(R) is monic of the required

degree.

Clearly each coefficient in Np(R) is non-negative. To show that the

coefficient of Ri
is non-zero for each 0 ≤ i ≤ (p + 1)(p + 2)/2 it suffices to

show that there is a (p + 1)-collection with i flat steps. We can start with

the (p + 1)-collection with (p + 1)(p + 2)/2 flat steps as above, then remove

flat steps from the top line, one at a time, until we have a roof shape, i.e. a

single inverted ‘v’. Then we can remove flat steps from the second-to-top

line, and so on, until we have no flat steps, but just a decreasing sequences

of roofs as in the first picture of Figure 3.

2. This is proved similarly to the above.

3. The constant term of Np(R) is given by W2(σp+1

roof
, R) where σ

p+1

roof
is the

(p + 1)-collection consisting of p + 1 roofs on top of each other and no

flat steps. Similarly, the constant term of Dp(R) is given by W0(σp−1

roof
, R).

In Figure 4 you can see that you can identify σ
p−1

roof
weighted with W0

as sitting inside σ
p+1

roof
weighted with W2. The extraneous weights are

1, 2, 3, . . . , 2p + 1 and thus

W2(σp+1

roof
, R) � n! W0(σp−1

roof
, R)
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Figure 4: The constant terms in the polynomials N3(R) and D3(R), seen here as

W2(σ4

roof
, R) and W0(σ2

roof
, R).

as required. �

These polynomials also appear to be log-concave, as do some other polyno-

mials arising as Hankel determinants of sequences of classical polynomials [19];

however, it is not clear how to go about proving this.

Now we can examine the combinatorics a little deeper to obtain the leading

terms of the numerator and denominator polynomials.

Theorem 29. Writing κ :�
1

2
(p + 1)(p + 2), we have

Np(R) � Rκ
+
(p+1)2(p+2)

2
Rκ−1

+
p(p+1)3(p+2)(p+3)

8
Rκ−2

+ O(Rκ−3),

Dp(R) � Rκ−n
+
(p−1)p(p+1)

2
Rκ−n−1

+
(p−2)(p−1)p(p+1)3

8
Rκ−n−2

+ O(Rκ−n−3).
Proof. We will prove the result for the numerator polynomial Np(R), the denom-

inator polynomial proof is almost identical.

The subleading term in Np(R) comes from summing over (p + 1)-collections
in Xp+1 which have exactly one ascending and one descending step. This must

happen on the top path, as if both the path above and below are flat there is no

room for ascending or descending. We will split the path from Pi to Qi into i
‘zones’, numbered from 1 to i, each zone is of width two, so that a flat step could

lie in either one or two zones. Consider a (p + 1)-collection with one ascending

and one descending step, these occur on the top path. Let ζ1 be the zone that

the ascent lies in and ζ2 be the zone that the descent lies in. Then

1 ≤ ζ1 ≤ ζ2 ≤ p + 1, i.e. 1 ≤ ζ1 < ζ2 + 1 ≤ p + 2,

and such a pair of numbers determines the collection uniquely, see Figure 5, so

there are

(p+2

2

)
such collections and each has W2 weighting of (p + 1)Rκ−1

. Thus

the total contribution is

(p+2

2

)
(p + 1)Rκ−1 �

1

2
(p + 1)2(p + 2)Rκ−1

, as required.

Similarly, the subsubleading term in Np(R) comes from summing over (p+1)-
collections in Xp+1 which have exactly two ascending and two descending steps.

There are three kinds of such collection and these are pictured in Figure 6.

In each case the zones of the ascents and descents are given by four number

ζ1 , ζ2 , ζ3 , ζ4 which satisfy

1 ≤ ζ1 ≤ ζ2 < ζ3 ≤ ζ4 ≤ p + 1,
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ζ1 ζ2Pp+1 Qp+1

Pp Qp

Pp−1 Qp−1

Figure 5: The single type of (p + 1)-collection with one ascent and one descent,

with the zones of the ascent and descent marked on.

ζ1 ζ2 ζ3 ζ4Pp+1 Qp+1

Pp Qp

Pp−1 Qp−1

ζ1 ζ2 ζ3 ζ4Pp+1 Qp+1

Pp Qp

Pp−1 Qp−1

ζ1

ζ2 ζ3

ζ4Pp+1 Qp+1

Pp Qp

Pp−1 Qp−1

Figure 6: The three types of (p + 1)-collection with two ascents and two descents,

with the zones of the ascents and descents marked on.

i.e. 1 ≤ ζ1 < ζ2 + 1 < ζ3 + 1 < ζ4 + 2 ≤ p + 3.

Thus there are

(p+3

4

)
collections of each type. The W2–weightings on the three

types are respectively (p+1)(p+2)Rκ−2
, (p+1)2Rκ−2

and p(p+1)Rκ−2
. Hence the

total contribution is

(p+3

4

)
(p + 1)

(
(p + 2) + (p + 1) + p

)
�

1

8
p(p + 1)3(p + 2)(p + 3),

as required.

For the denominator polynomial Dp(R) we consider essentially the same

collections as above but in Xp−1 with the pathweighting W0. Then there are

(p−1

2

)
collections with one ascent and one descent, each of which has W0–weighting of

(p + 1)Rκ−n−1
giving the required contribution.

For the three types of collections with two ascents and two descents there

are

(p+1

4

)
of them with W0–weightings respectively of (p + 1)(p + 2)Rκ−n−2

,

(p + 1)2Rκ−n−2
and p(p + 1)Rκ−n−2

, giving the required contribution. �

Using the above leading terms of the polynomials together with long division

and the fact that |Bn
R | �

Np (R)
n! Dp (R) gives the following corollary.

Corollary 30. Asymptotically, the magnitude of an odd dimensional ball has the
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following form:��Bn
R

�� � 1

n!

(
Rn

+
n(n+1)

2
Rn−1

+
(n−1)n(n+1)2

8
Rn−2

)
+ O(Rn−3) as R→∞. �

Gimperlein and Goffeng [6] have shown that the first two subleading terms in

the asymptotic expansion of themagnitude of a domain inR2p+1
are proportional

to, respectively, the volume of the boundary and the total mean curvature of the

boundary. They use the above result to pin down the constants of proportionality.

6.2 Proof of the combinatorial formulae
In this section we will prove Theorem 26 giving combinatorial formulae for the

Hankel determinants of the reverse Bessel polynomials.

A classical first step in obtaining an interpretation of theHankel determinants

of a sequence is to find a continued fraction expansion of the generating function

of the sequence. Usually, Stieltjes or Jacobi-type continued fraction expansions

are used, but when I gave Alan Sokal the reverse Bessel polynomials for

considerations he was excited by the fact that this was the first instance of a

“combinatorially interesting” sequence of polynomials for which there was no

Stieltjes-type or Jacobi-type expansion but there was a Thron-type expansion.

(See also Barry’s formula given at [15].)

Theorem 31 (Sokal [19]). There is the following Thron-type continued fraction
expansion for the generating function of the reverse Bessel polynomials.

∞∑
i�0

t iχi(R) �
1

1 − Rt

1 − t

1 − Rt − 2t

1 − Rt − 3t

1 − Rt − 4t
1 − . . .

Proof. In [19, Proposition 31.3] Sokal gives a Thron-type continued fraction for

the augmented Bessel polynomials {Yi−1(x)}∞i�0
, but χi(R) � RiYi−1(1/R) and

on substitution we get the above theorem. �

The next step is to give a path-counting interpretation to the terms in the

generating function of a continued fraction expansion. We will need some

notation first. Given sequences α � (α1 , α2 , . . . ) and δ � (δ1 , δ2 , . . . ) of elements

in some commutative ring R, let Wα,δ be the path weighting which assigns 1

to each ascending step, assigns αi to each descending step coming down from

height i and assigns δi+1 to each flat step at level i.

Theorem 32 (Fusy–Guitter–Oste–Van der Jeugt–Sokal, [5, 17, 19]). If (Ti)∞i�0
is

a sequence of elements in a commutative ring R whose generating function has the
following Thron-type continued fraction expansion

∞∑
i�0

t iTi �
1

1 − δ1t − α1t

1 − δ2t − α2t

1 − δ3t − α3t
1 − . . .

,
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for some sequences α � (α1 , α2 , . . . ) and δ � (δ1 , δ2 , . . . ) of elements in the ring R,
then Ti counts the Wα,δ–weighted Schröder paths from (a , 0) to (a + 2i , 0) for any a:

Ti �
∑

γ : (a ,0) (a+2i ,0)
Wα,δ(γ). �

Clearly in the reverse Bessel polynomials case we are working in the ring

R � Z[R] with α � (R, 1, 2, 3, 4, . . . ) and δ � (0, 0, R, R, R, . . . ). We will write

the corresponding path weighting just as WrB.

The next ingredient is the wonderful result relating Hankel determinants to

collections of non-intersecting paths in a graph.

Theorem 33 (Karlin-McGregor-Lindström-Gessel-Viennot Lemma, unpermuted

version). Let G be a directed acyclic graph and let {Ki}ki�0
and {L j}kj�0

be two sets of
vertices. Let W be a weighting on the edges of G, taking values in the commutative ring
R. Let Mi , j for i , j � 0, . . . , k denote the weighted count of paths from Ki to L j :

Mi , j :�

∑
γ : Ki L j

W(γ)

Suppose that every disjoint collection of k + 1 paths from {Ki}ki�0
and {Li}ki�0

must
connect vertex Ki to Li for i � 0, . . . , k. Let X(K0 , . . . , Kk ; L0 , . . . , Lk) denote all such
disjoint collections. Then the determinant of the matrix M gives the weighted count of
disjoint collections of paths:

det[Mi , j]ki , j�0
�

∑
σ∈X(K0 ,...,Kk ;L0 ,...,Lk )

W(σ). �

To apply this, we let G be the graph whose vertices are the points in Z2
and

whose edges are the three types of steps in Schröder paths. Then defining points

in Z2
by Ui :� (−2i , 0) and Vi :� (2i , 0) for i ∈ {0, 1, 2, . . . } and combining the

above two theorems we obtain the following.

Theorem 34. If (Ti)∞i�0
is a sequence having a Thron-type continued fraction expansion

as in Theorem 32 then the Hankel determinants of the sequence (Ti)∞i�0
count the

Wα,δ–weighted disjoint collections of Schröder paths:

det[Ti+ j]ki , j�0
�

∑
σ∈X(U0 ,...,Uk ;V0 ,...,Vk )

Wα,δ(σ)

and

det[Ti+ j+2]ki , j�0
�

∑
σ∈X(U1 ,...,Uk+1

;V1 ,...,Vk+1
)
Wα,δ(σ). �

We now apply this theorem to the reverse Bessel polynomials, to obtain

combinatorial formulae for their Hankel determinants. However, the formulae

given in the above theorem are not quite those in Theorem 26 as they do not

have the factor taken out and the end-points are incorrect.

Let’s look first at det[χi+ j(R)]pi , j�0
. By Theorem 26, this involves a sum over

disjoint collections in X(U0 , . . . ,Up ; V0 , . . . ,Vp) weighted by WrB. Consider the
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Figure 7: A disjoint collection σ in X(U0 , . . . ,U4; V0 , . . . ,V4) with the path

weighting WrB marked on. The dashed lines mark the region in which the

collection can do something interesting.

example given in Figure 7. This is typical in that everything outside the marked

sector is fixed, one could have a flat step from (−1, 1) to (1, 1) but as δ2 � 0

this would carry a weight of 0 and thus this collection would be ignored in the

sum. It is clear from the picture that the fixed part outside the marked sector

contributes a factor of Rpsf(p) to the weighting of the collection. The part inside

the marked sector can be moved down so that the apex is at the origin, then it

becomes precisely a (p − 1)-collection in Xp−1, and in this new position the path

weighting is precisely W0. Thus

det

[
χi+ j(R)

] p
i , j�0

� Rpsf(p)
∑

σ∈Xp−1

W0(σ, R).

as required.

The case of det[χi+ j+2(R)]pi , j�0
is similar but involves one subtlety. We have

det[χi+ j+2]ki , j�0
�

∑
σ∈X(U1 ,...,Uk+1

;V1 ,...,Vk+1
)
WrB(σ).

We are going to take the regionmarked by the dashed lines in Figure 8. There are

two things to consider which essentially cancel out. Firstly, there is no vertex at

(0, 0). In theorywe could have a horizontal path from U1 to V1, but theweighting

assigns 0 to such flat steps at height 0, so we can ignore these. However, we can

have a path which dips down to (0, 0) as in the left hand picture of Figure 8. This

carries a weight of R so cannot be ignored. Secondly, any flat step from (−1, 1)
to (1, 1) carries a weight of 0 so will be ignored in the count. However, we have

an involution on the collections in X(U1 , . . . ,Uk+1
; V1 , . . . ,Vk+1

) which replaces

a dip down to (0, 0) by a flat step from (−1, 1) to (1, 1) and vice versa, such that

the weighting WrB gets replaced by the weighting in which the dip is weighted

by zero and the flat step from (−1, 1) to (1, 1) is weighted by R. (For example,

we go from the weighted collection on the left hand side of Figure 8 to the one

on the right hand side.) As above we can take out as a factor all of the weights

appearing outside the marked sector as these will appear in all diagrams. On

the other hand, the weighting inside the marked region is W2. This gives us

det

[
χi+ j+2(R)

] p
i , j�0

� Rp+1sf(p)
∑

σ∈Xp+1

W2(σ, R)
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Figure 8: On the left, a disjoint collection σ in X(U1 ,U2 ,U3; V1 ,V2 ,V3), which

includes a dip down to the origin, with the path weighting WrB marked on.

On the right, the dip is replaced with a flat step with the alternative weighting

(essentially W2) marked on it. The dashed lines mark the region in which

collections can do something non-trivial.

as required.

Thus Theorem 26 is proved, and we have proved all the combinatorial facts

we wanted to prove about the magnitude of odd balls.
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