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We use results on Dyck words and lattice paths to derive a formula for the exact number of binary
words of a given length with a given minimal abelian border length, tightening a bound on that
number from Christodoulakis et al. (Discrete Applied Mathematics, 2014). We also extend to any
number of distinct abelian borders a result of Rampersad et al. (Developments in Language Theory,
2013) on the exact number of binary words of a given length with no abelian borders. Furthermore,
we generalize these results to partial words.

1 Introduction

Abelian borders and abelian periods are defined similarly to their classical counterparts based on abelian
equivalence. Two words are abelian equivalent if they have the same Parikh vector (a vector that records
the frequency of each letter occurring in the word); equivalently, if the two words are the same up to
a permutation of characters. For example, the word 010000010010100 has, in particular, an abelian
border of length 3 since the prefix of length 3, 010, is abelian equivalent to the suffix of length 3,
100. It has an abelian period of length 4 as the following factorization suggests: 0100 | 0001 | 0010 |
100. Connections between these concepts exist (see, e.g., [7]). Abelian versions of some well-known
results such as Fine and Wilf’s periodicity theorem [11} 2] and the critical factorization theorem [1]] were
proposed. Several algorithms that efficiently compute abelian periods in a given word were developed
[12, 15, 18]]. Abelian concepts were reviewed in [9]]; applications include sequencing from compomers
[3], permutation pattern discovery in biosequences [14], gapped permutation patterns for comparative
genomics [21]], and jumbled pattern matching [5. 4! 16]].

Christodoulakis et al. [10] studied abelian borders in words over an alphabet of size two. They
investigated the number of such words with fixed minimal border length by establishing connections
with Dyck words. A Dyck word is a word over the alphabet {0, 1} that has the same number of zeros
and ones and that has no prefix with more ones than zeros, e.g., 0100110101 is a Dyck word but 0110
is not. The language of Dyck words is equivalent to the language of balanced parentheses: 0101000111
corresponds to ()()((())). The number of Dyck words of length 2n is given by the Catalan number
C,= ﬁ (2;’) Christodoulakis et al. [10] gave bounds on the number of binary words of a given length
with no abelian borders and on the number of binary words of a given length with at least one abelian
border. They also described an algorithm to find the minimal abelian border of a binary word of length
n in O(y/n) time on average (when the word has an abelian border). They left as open problems the
derivation of tighter bounds and the generalization to larger alphabet sizes.

Rampersad et al. [22] investigated the number of words with or without abelian borders by estab-
lishing connections with lattice paths; in particular, they used lattice paths to find the exact number of
binary words of a given length with no abelian borders. Similarly to a construction given in [22], we can
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visualize a word w over {0, 1} as an ordered pair of increasing lattice paths, where one path corresponds
to the prefixes of the word, and the other corresponds to the suffixes. A step to the right represents the
letter 0, and a step upward represents the letter 1. An intersection between the two paths after k steps
indicates an abelian border of length k. If we graph the distance in steps between the prefix path and the
suffix path, we get a Motzkin path which consists of steps diagonally upward corresponding to 0, steps
diagonally downward corresponding to 1, and steps straight forward corresponding to 2. If we remove
the straight forward steps, we get a Dyck path. A binary word has an abelian border of a given length if
and only if the corresponding Dyck path is encoded by a Dyck word or the bitwise negation of a Dyck
word [[10]].

Since lattice paths have been studied independently of the (relatively new) concept of abelian borders
(see, e.g., [13L[16]), in this paper we use known results about lattice paths to discover properties of words
with abelian borders. Among other results, by counting pairs of lattice paths by intersections, we derive
a formula, that involves the Catalan number, for the exact number of binary words of a given length
with a given minimal abelian border length, tightening the abovementioned bound on that number from
Christodoulakis et al. [10]. We also extend the abovementioned result of Rampersad et al. [22] to any
number of distinct abelian borders. Furthermore, we generalize these results to partial words. Other
enumerative applications of non-intersecting lattice paths can be found in [[17].

Our paper is the first attempt to study abelian borders of partial words (abelian periods were studied
in [2]). Our paper’s contents are as follows: In Section 2, we review some basic concepts on partial
words such as abelian borders. In Section 3, we describe an O(n) time algorithm to compute the minimal
abelian border of a given partial word of length n over an alphabet of any size. It is an adaptation of
an algorithm from [10]. In Section 4, we extend to partial words a relation from [[10] between minimal
abelian borders and Dyck words. In Section 5, we apply results from intersecting lattice paths to the
enumeration of abelian borders for total words. We also count abelian bordered partial words using
lattice paths. Finally in Section 6, we conclude with some remarks.

2 Preliminaries

Let X be a finite and non-empty set of characters, called an alphabet. A sequence of characters from X is
referred to as a fotal word over L. A partial word over ¥ is a sequence of characters from X, = XU {¢},
where ¢, a new character which is not in X, is the “don’t care” or “hole” character (it represents an
undefined position). A partial word may have zero or more holes, while a total word has zero holes. A
total word is also a partial word. In the rest of the paper, when we refer to a “letter” we mean a character
from the alphabet X (we will never call the ¢ character a letter since it does not belong to X). We will
use “word” and “total word” as equivalent terms. The length of a partial word w, denoted by |w|, is
the number of X, characters in w, e.g., if w = abbacooc then |w| = 8. The empty word is the word of
length zero and we let € denote it. The set of all words over X is denoted by X*. Similarly, the set of all
non-empty words over X is denoted by Z. We let X" denote the set of all words of length n over £. We
can similarly define X%, X1, and X! for partial words over X.

A completion over ¥ of a partial word w, denoted by W, is a total word constructed by replacing
each ¢ in w with some letter in X (i.e., we fill all the holes in w). If w has one or more holes and X has
more than one letter, then there is more than one distinct completion of w and in this case W denotes an
arbitrary completion of w unless otherwise specified.

A partial word u is a factor of a partial word w if there exist (possibly empty) partial words x,y such
that w = xuy. We say that u is a prefix of w if x = €. Similarly, u is a suffix of w if y = €. Starting
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numbering positions from 0, we let wli|] denote the character in position i of w and let wli..j] denote the
factor of w from position i to position j (inclusive). We let w” denote w concatenated with itself m times.

If u and v are partial words of equal length over ¥, then u is contained in v, denoted by u C v, if
uli] = vli] for all i such that u[i] € £; in other words, the set of non-hole positions in u is a subset of the set
of non-hole positions in v. Partial words u and v are compatible, denoted by uTv, if there exists a partial
word w such that u C w and v C w, i.e., there are completions # of u and ¥ of v such that 7 = V.

The number of occurrences of a letter @ in a partial word w is denoted by |w|,. The Parikh vector of w
over X = {ay,...,ar_1} is defined as y(w) = (|w|q, - .., |W|q,_,). Note that we do not count occurrences
of the ¢ character in Parikh vectors. A partial word u is abelian compatible with a partial word v, denoted
by u$v, if a permutation of u is compatible with v (this implies that u and v are of equal length). For
example, the partial words abobbo and bbboab are abelian compatible. Note that for total words u and v
of same length, we have u $ v if and only if y(u) = y(v), i.e., if u and v are permutations of one another
(we also say that u and v are abelian equivalent).

For a non-empty partial word w, if non-empty partial words xj,x2, u,v exist such that w = xju = vx,
and x; $ xp, we call w abelian bordered. In this case, a total word x exists such that x; $ x and x; $ x, and
x is called an abelian border of w (we also call x1,x; abelian borders of w). Two abelian borders x,y
of w are equivalent if and only if |x| = |y|. We refer to non-equivalent abelian borders as distinct. An
abelian border x of w is minimal if |x| > |y| implies that y is not an abelian border of w and x is maximal
if |x| < [y| implies that y is not an abelian border of w.

Equivalence of abelian borders being an equivalence relation, we identify abelian borders by their
equivalence classes to avoid counting equivalent borders multiple times, but we will not refer to the
equivalence classes explicitly. Since we are only interested in identifying and counting distinct abelian
borders, we hereafter use the phrase the abelian border of length k to mean the equivalence class of
abelian borders of length k, and we refer to this equivalence class by one of its representatives.

If a total word of length # has an abelian border of length £, then it must also have an abelian border
of length n — k. For example, the word babbbbba of length 8 has abelian borders of lengths 2, 3, 4, 5,
and 6. Note that equivalent abelian borders of a total word always come in pairs of the same length. Note
also that for a total word of length n, abelian borders come in complementary pairs whose lengths sum
to n (if n is even, then any abelian border of length 7 is equivalent to its complementary partner) [10].
However for a partial word of length n, we may have an abelian border of length greater than L%J with
no complementary abelian border of shorter length. For example, bboa has no abelian borders of length
two or less, but it does have the non-abelian border bba (bbo $ bba and boa $ bba).

The following proposition shows that all partial words of length at least two without abelian borders
are total words.

Proposition 1. If w is a partial word of length greater than one, with at least one hole, then w has an
abelian border.

3 Computing the minimal abelian border

We now present an algorithm, based on algorithm SHORTEST-ABELIAN-BORDER in [10]]. Our algorithm
computes the length of the minimal abelian border of a given non-empty partial word w (over an alphabet
of any size) and runs in O(n) time, where 7 is the length of the input w. We provide the pseudo-code.
Algorithm MINIMAL-ABELIAN-BORDER-PARTIAL works as follows. We can assume without loss
of generality that w is a partial word over the alphabet {0,...,6 —1}. We define V as a vector which
gives the difference between the Parikh vectors of a prefix and a suffix of equal length, as defined in [10].
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Algorithm 1 MINIMAL-ABELIAN-BORDER-PARTIAL(w, 1, 0)
Require: w, a partial word with letters in X = {0,1,...,0 — 1}, and n > 1, the length of w
I: V< (0,0,...,0), [V| =0, and holes = 0;
2: if w[0] =< or wn— 1] =< then
return 1;
4: else
52 Viw[0]]=V[w[0]]+1and Viwn—1]] =V[wr—1]] - 1;
6:  if V{w[0]] = 0 then
7
8
9

W

return 1;
else
: V| =2;
10: fori<-1ton—1do
11: if w[i] = o then
12: holes = holes + 1;
13: else
14: Viwli]] = VIwli]] + 1;
15: if V{w[i]] > O then
16: V| =|V|+1;
17: else if V[wli]] <0 then
18: V|=1|V|-1;
19: if win — 1 —i] = o then
20: holes = holes + 1;
21: else
22: Viwn—1=i]]=Viwn—-1-i]—1;
23: if Viwin—1—1i]] > 0 then
24: V| =1|V|-1,
25: else if V[w[n — 1 —1i]] <0 then
26: V= |V|+1;
27: if |V| < holes then
28: return i+ 1;

29: return n;

We define the magnitude of V, denoted by |V, as the sum of the absolute values of the entries in V. This
variable |V| represents the “absolute total difference” between two Parikh vectors. The variable holes
keeps track of the number of holes we have encountered so far in w.

Every time we read a letter from the left side of the partial word, we increment the entry of V
corresponding to that letter, e.g., if we read the letter 3 then we increment V[3]. Similarly, every time we
read a letter on the right side, we decrement the corresponding entry of V. This process of incrementing
and decrementing corresponds to calculating Parikh vectors for the prefix and suffix and then subtracting
them. Each time we increment or decrement an entry in V, we check the new value of that entry and
adjust |V| accordingly. For example, if we increment V [w[i]] by 1 and V[w[i]] < O after this action, then
|V | must be decreased by 1. Every time we read a ¢ instead of a letter, we count it by incrementing holes
but do nothing to V since holes are not counted in Parikh vectors.

Each time we finish moving “inward” by one position on each side, we check to see if we have found
an abelian border. This is equivalent to checking whether the prefix up to the current position is abelian
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compatible with the suffix of the same length; this is equivalent to checking whether |V| is less than or
equal to the total number of holes in both the prefix and the suffix.

Unlike the algorithm in [[10] for total words, we must run through the entire length of the partial word
instead of stopping halfway. If the input partial word has no abelian borders, then we return the length
of the partial word. Note that by Proposition |1} this can only occur when the input is a total word.
Proposition 2. Algorithm MINIMAL-ABELIAN-BORDER-PARTIAL computes the minimal abelian bor-
der for any partial word of length n over any finite alphabet and runs in O(n) time.

4 Abelian borders and Dyck words

We extend a result from [10], which relates minimal abelian borders to Dyck words (see Proposition E]
below). We start with a lemma and a definition.

Lemma 1. A partial word w has an abelian border of length k if and only if there exists a completion of
w? with an abelian border of length k.

Definition 1. Let w be a total word over {0,1} with |w| =n>2. Let 1 <k <n.
o The %-form of w, denoted by % (w), is a total word over {0, 1,2} of length k defined by

’

0, ifwli]=0andwn—1—i=1
0;

Zw)il=141, ifwli]=1andwin—1—1]
2, ifwlil=whn—-1-1].

o The Zi-form of w, denoted by 23(w), is a total word over {0,1} defined by removing the twos
from % (w).

For example, if w = 1010011001, then %5 (w) = 22100 and Z5(w) = 100. If w = 010, then #53(w) =
222 and Z3(w) = €. Note that Z%(w) is a subsequence of (not necessarily consecutive) letters of w.

A Dyck word of length 2n > 0 is a total word over {0,1} which consists of n zeros and n ones
arranged so that no prefix of the word has more ones than zeros. We call a Z;-form Dyckian if it is a
Dyck word or the bitwise negation of a Dyck word. For a given partial word w of length n with & holes,
we let D(w) denote the set of all Z;((w2);) such that 1 <k <n, 0<i<2*—1, (w?); is a completion
of w?, and ff}c((wjz)l) is Dyckian. Note that there are 2% distinct completions of w? (since w? has 2k
holes) and they can be ordered lexicographically. For example, let w = 1100. Then the completions of
w? = 11001100 are (w2)g = 11001100, (w2); = 11001110, (w2), = 11101100, (w2)3 = 11101110. So
D(w) = {Z((W)o), Z3((W)1), Za((w)3)}. Looking at D(w), the following proposition implies that
the minimal abelian border of w has length 3. The proof’s main idea comes from [10, Lemma 1].
Proposition 3. A partial word w over {0, 1} of length at least two has a minimal abelian border of length
min{k | there exists i such that Zi((w2);) € D(w)}.

5 Abelian borders and lattice paths

We can represent a word over {0, 1} as an ordered pair of paths of equal length on the lattice Z*. The first
path corresponds to the prefixes, and the second path corresponds to the suffixes. Both paths begin at the
origin (the southwest corner of the lattice). For the prefix, we start with the leftmost letter and step right
every time we see a zero and up every time we see a one. For the suffix, we start with the rightmost letter
and step in the same manner. Note that both paths are monotonically increasing, also called minimal.



F. Blanchet-Sadri, K. Chen & K. Hawes 61

Lemma 2 ([22]). A total word w over {0,1} has an abelian border of length k if and only if the lattice
paths for w meet after k steps.

Figure [1| gives an example of a lattice representation of a word that has abelian borders. If we draw
the paths diagonally (taking a step diagonally upward for a zero and diagonally downward for a one) and
treat them as discrete functions of the prefix (suffix) length, then we can easily take the absolute differ-
ence between these functions, and this difference is precisely |V| as in Algorithm MINIMAL-ABELIAN-
BORDER-PARTIAL. Note that since we are dealing with total words, we have an abelian border of length
k if and only if |V| = O after k steps, and this corresponds to a meeting of the two paths.

We can also think of the graph of |V| as corresponding to the %;-form of w, where a zero gets a step
diagonally upward, a one gets a step diagonally downward, and a two gets a step straight forward. Note
that this is a Motzkin path. Similarly, we can extend this correspondence to Z;-forms by removing all
of the straight steps from the graph. Just as we saw a relationship between Z-forms, Dyck words, and
abelian borders in Proposition |3} here we have that a word has an abelian border of length k if and only if
the 2. graph is a Dyck path. A Dyck path of length 2n is a sequence of n upward steps and n downward
steps that starts at the origin and never passes below the horizontal axis. As the name suggests, Dyck
paths are coded by Dyck words [13].

Lattice representation Diagonal form

%4 graph g graph

Figure 1: The word w = 01000101 has abelian borders of length 2 and 6; %(w) = 10122010 and
Z5(w) =101010.

5.1 The total word case

First, we count binary words of a given length with a given minimal abelian border length. Theorem 4 in
[10]] gives a bound on that number, but by counting pairs of lattice paths we can find the exact number.
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1 (2n

ol G ), which enumerates Dyck words of length 2n.

Our formula involves the Catalan number, C,, =

Theorem 1. The number of binary total words of length n with minimal abelian border of length k,
1 <k< 4] is2m Gy

Proof. The result can easily be checked for k = 1, so suppose that k > 2. Clearly, we want to count the
number of ordered pairs of increasing lattice paths of equal length which meet for the first time after &
steps. For a given rectangle with dimensions r x (n — r) on the lattice, the number of ordered pairs of
increasing lattice paths which begin at the southwest corner of the rectangle and meet at the northeast
corner (without meeting in between) is given by

2 n—1 n—1
2Nn71,r:7
n—1 r r—1

where N, , = 1 (’:) (rfl) is the Narayana number [16].

n
For an abelian border of length k, we want to find all such paths for all rectangles such that the

southwest corner is at the origin and the perimeter of the rectangle is 2k. It is easy to see that there are
k — 1 such rectangles. For each rectangle, we calculate the number of permissible pairs of paths, giving

a total of
kil 2 (k—1\ (k-1
Sk—1\ r r—1)°

There is a relationship between the Narayana numbers and the Catalan numbers, namely

/! "1 /n n 1 2n
ZNn’r:;n<r> (r—l) :n—|—1<n> =Cn M

r=1

which can be seen by the fact that N, , counts the number of Dyck paths of length 2n that have r peaks

[19]. Using Equation (), we get
k=1
2 (k—1\ (k-1
— =2Cy_1.
rg’l k—1 ( r > <r— 1) k=l

Since we do not care what happens after the minimal abelian border, every position numbered from k to
n—k — 1 can either be one of two distinct letters, so we also need to count each of these possibilities.
There are 2"~ 2% such configurations possible, so for the total number of binary words of length n with
minimal abelian border of length k we arrive at 2"~ 2*+1C;_;. O

Second, we can also use lattice paths to find the exact number of binary total words of a given length
that have no abelian borders. This result was proved by Rampersad et al. in [22]] using a similar method
with Motzkin paths.

Theorem 2. The number of binary partial words of length n with no abelian borders is equal to the
number of binary total words of length n with no abelian borders, which is (Z ) when n is even, and

2
Z(V,ﬂ;ll) when n is odd.

2

Third, we use lattice path methods to arrive at a more general formula for counting binary total words
of a given length with a given number of distinct abelian borders. As was the case with Theorem I] the
following theorem uses formulas for counting the number of ordered pairs of lattice paths that intersect
in particular ways [16]. Note that when m = 0, this reduces to Theorem 2]
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Theorem 3. The number of binary total words of length n with m distinct abelian borders is

m, if n and m are both even;

m=1 (nf”‘T”)! . . .
27 (m+ 1) e, if nis even and m is odd;

_m_q . . .
227 (M), if nis odd and m is even;

0, if n and m are both odd.

Proof. When n and m are even, the number of binary words of length n with m distinct abelian borders
is precisely the number of ordered pairs of minimal lattice paths of length 7 which start at the origin,
intersect exactly 7 times, and end at different points. By [16], this is equal to

(# of such paths that intersect % times and end anywhere)

m
— (# of such paths that intersect 7~ 1 times and end at the same point) .

If p =7 and g = 7, then this quantity is

4 (2p - q) _ qzqw_ 2)
p pl(p—q)!

By substituting our fractions into Equation (2)) and simplifying, we get our result.

When n is even and m is odd, first recall that for total words, abelian borders come in complementary
pairs whose lengths sum to n. The only abelian border length that does not have a complementary partner
which is distinct is the abelian border of length 2, so the only way a word can have an odd number m of
abelian borders is if it has an abelian border of this length. This corresponds to pairs of minimal lattice
paths of length 5 which begin at the origin, end at the same point, and intersect ’"T_l times (not including
the origin or the end point). This is given by

_ m+3
ZMT_I(m—i-l) ( )!

When #n is odd and m is even, note that if a given word of length n has prefix and suffix lattice paths

which after L%J steps have intersected r times, then the word has a total of 2r distinct abelian borders.

Therefore, for a word with m distinct abelian borders, the number of options for the first L%J steps is

n—z—1
n—1 ’
2
Since the first L%J steps determine all but one of the letters in the word, and the middle letter does not
affect the number of abelian borders, the total number of binary words of length n with m abelian borders
is twice the above quantity. Finally, when n and m are odd, it follows immediately from the above that

an odd number of abelian borders can only occur when the length is even. Therefore, there are no words
of odd length having an odd number of distinct abelian borders. O

S

2
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5.2 The partial word case

We generalize Theorem [I] and Theorem [3] to partial words. First, we count the number of partial words
of a given length with a given minimal abelian border length.

Theorem 4. The number of partial words of length n with h holes over an alphabet of size o with
minimal abelian border of length k, n > 2k, is

h
— 2k .
Y so(k,j) (n . ) o A
- h—j
J

where g (k, j) is the number of words of length 2k over an alphabet of size & with j holes and a minimal
abelian border of length k.

Proof. For 0 < j < hthere are g (k, j) choices for the prefix and suffix of length k containing a total of j
holes, and there are n — 2k remaining positions in the partial word, exactly # — j of which must be holes.
For each position that is a letter, there are ¢ possibilities, and there are n — 2k — h+ j such positions. [

In the k = 1 case, we can compute the g4 (k, j)’s. For A = 1, the number of partial words of length n
with & holes over an alphabet of size ¢ with minimal abelian border of length one, where n > 2, is

1

) )
Y eat.i)(} )0
j=0 1=J

where g5(1,0) = 0 and g5(1,1) =20. For h > 2, the number of partial words of length n with & holes
over an alphabet of size ¢ with minimal abelian border of length one, where n > 2, is

h
) .
Y ss(1,)) (n ) o2,
j=0 h=

where g(1,0) =0, g65(1,1) =20, g5(1,2) =1, and g5(1, j) =0 for j € [3..h]. In the 6 = 2 case, we
can compute the g5 (k, j)’s using the next corollary. To illustrate the proof, the total words over {0, 1},
up to renaming of letters and reversal, of length 2k = 10 with minimal abelian border length k =5 are
0000100001,0001100011,0001100101,0001101001,
0010100011,0010100101,0011101101,

the underlined positions are the k ways to insert a hole while preserving the minimal abelian border.

Corollary 1. Fork>2and 0 < j <k, the equality g, (k, j) = 2(];)Ck,1 holds. Thus for k > 2, the number
of binary partial words with h holes of length n, n > 2k, with minimal abelian border of length k is

h
k\ (n—2k\ .;
f l’l,k,h :211—2k+lc B <> < - )2]—/1.
(ko) 2007

Second, we count the number of partial words of a given length with a given number of distinct
abelian borders. In the proof of Proposition |1} we saw that a partial word of length n with one hole must
have at least an abelian border of length n — 1. By induction on A, if we insert a hole into a partial word
with & — 1 holes, we are guaranteed to get an additional abelian border of length n — A.

Theorem 5. A partial word w of length n with h holes, 0 < h < n, has at least h distinct abelian borders.
In particular, w has at least abelian borders of lengths n —1,n—2,... . n—h.
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We next focus on the one-hole case. Experimental data suggest some elegant formulas in this case.

Theorem 6. If n is even, then the number of binary partial words of length n with exactly one hole and
n— 1 distinct abelian borders is 4(3"/% —2"/?),

Proof. 1t is clear that for n even and m = n — 1, each binary partial word of length n with exactly one
hole and m distinct abelian borders generates, through renaming of letters and reversal, three other partial
words with the same properties. So to get the number of partial words satisfying the desired properties,
we need to find the number of “unique” partial words satisfying them and multiply by 4; “unique” is
defined in terms of the hole being in the first half of the partial word and the first non-hole letter being 0.
The first few values are given in Table[I} For example, for n = 6, there are 9 unique partial words with ¢
in position 0, 6 with ¢ in position 1, and 4 with ¢ in position 2, for a total of 19.

length\i 0 1 2 22
2 1

4 3 2

6 9 6 4

8 27 18 12

10 81 54 36

n 20%3G-D | 21 3(3-2) | 22 3(3-3) | ... | 2051 x 30

Table 1: Number of unique binary partial words of even length n with one hole in position i and with
n — 1 distinct abelian borders.

Thus, the number of unique partial words N for a given n is
N=20x3G"0 421 %3672 4+22x3G3) 4. 420G % 30,

This is a geometric series with ratio %, so N =32 _2n/2,

For n = 2, there is one unique partial word. For n = 4, there are three unique partial words with ¢
in position 0 and two with ¢ in position 1. Then to build the partial words of length n 4 2 from those of
length n, when n > 4, we proceed as follows. Each partial word ag - - "An2dy Ay of length n gives
rise to a partial word of length n 4- 2 by inserting a pair of suitable letters between an2 and az, to obtain

three partial words of the form ag - - an2abay - --a,—. Then there are 27 additional unique partial words
2
of length n+ 2 with ¢ in position 5. O

It is clear that each binary partial word of even length n with exactly one hole having a minimal
abelian border of length n — 1 generates, through renaming of letters and reversal, three other partial
words with the same properties. So to get the number of partial words satisfying the desired properties,
we need to find the number of “unique” partial words satisfying them and multiply by 4; “unique” is
defined in terms of the hole being in the first half of the partial word and the first non-hole letter being 0.

Lemma 3. If a binary partial word of even length n, n > 4, with exactly one hole in the first half having
a minimal abelian border of length n — 1 starts with 0, then it ends with 11. Therefore if such w = uv,
, is unique, then |ulo > |v|o and |u|; < |v|; — 1.

with |u| = |v

Lemma 4. The number of unique binary partial words of even length n, n > 4, with exactly one hole in
the first half and no 1 in the first half having a minimal abelian border of length n — 1 is (5 — 1)2(3*2).
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Lemma S. The number of unique binary partial words of even length n, n > 4, with exactly one hole in
the first half and exactly one 0 in the first half having a minimal abelian border of lengthn — 1 is 1; such
partial word is of the form 001" 2,

Proposition 4. The number of unique binary partial words of even length n, n > 6, with exactly one hole

in the first half and exactly two O’s in the first half having a minimal abelian border of length n — 1 is

Vlz n
T2

Proof. We proceed by induction. For the basis n = 6, the unique partial words are 0c0011, 000111,
000011, 000111 and the result holds. For the inductive step, we show how to build the unique partial
words W' = ag - -az_jabay ---a,_y of length n+2 with minimal abelian border of length (n+2)—1
and exactly two 0’s in the first half, where ab € {00,01,10,11}, from the unique partial words w =
ap---as_paz---ay— of length n with minimal abelian border of length n — 1 but not necessarily with
exactly two 0’s in the first half (there could be only one O in the first half).

By Lemma [3] the first half of w, say u, has more 0’s than the second half, say v. If we start with a
unique partial word w with |u|op = 2, then we obtain a unique partial word w' that satisfies our desired
properties by inserting the pair ab = 11 of letters between a;_; and ay. There are '2—2 —5—2suchw’s
by the inductive hypothesis. For some of these w’s, it is also possible to insert the pair ab = 10, i.e.,
when |v|g = 0. There are n — 4 such w’s resulting in n — 4 unique w' with 10 in the middle. Indeed
when n = 6, the n — 4 = 2 unique w' are 06010111 and 00010111. When n > 6, we first claim that
w[%+2.n+1] = 12. Indeed by Lemma the number of 0’s in w'[5 4 1..n+ 1] is zero or one, so it is
one in this case. We now claim that w'[1] # 1; otherwise, w' has an abelian border of length (n+2) —2 <
(n+2)— 1. If w'[0..1] = 0o, then there are 5 — 2 positions left in the first half to position the other 0,
while if w'[0..1] = 00, then there are 5 — 2 positions left in the first half to position the o.

If we start with a unique partial word w with |u|o = 1, then w = 001”2 by Lemma|5| We obtain a
unique partial word w' that satisfies our desired properties by inserting ab = 00 or ab = 01.

There are also two unique w’ with a o in position 5. When n = 6, the two unique w’ are 00100111 and
001o1111. When n > 6, we first claim that w'[5 +2..n41] = 1. Indeed by Lemma the number of 0’s
in w'[5 + 1..n+ 1] is zero or one. If it is one and that 0 appears in w'[5 +2..n+ 1], then w’ has an abelian
border of length § +2 < (n+2) — 1, implying a contradiction. We now claim that w'[1] = 0; otherwise,
w’ has an abelian border of length (n+42) —2 < (n+2) — 1. So the two unique w’ are 001220012 and

0012720112, Altogether, there are % —5—2+n—-4+2+2= ("22)2 — % — 2 unique w'. O

Proposition 5. The number of unique binary partial words of even length n, n > 6, with exactly one
hole in the first half and exactly one 1 in the first half having a minimal abelian border of length n — 1 is

(8-2)(2G"2D (2 -3)+1).

Proof. We proceed by induction. For the basis n = 6, the unique partial word is 001111 by Lemma
and the result holds. For the inductive step, we show how to build the unique partial words w' =
aop-- ~a%_1aba% -+ ay—1 of length n+ 2 with minimal abelian border of length (n+2) — 1 and exactly one
1 in the first half, where ab € {00,01,10,11}, from the unique partial words w = ay - - “an_1dn - dp-)
of length n with minimal abelian border of length n — 1 but not necessarily with exactly one 1 in the first
half (there could be no 1 in the first half).

Let u be the first half of w and v be the second half. If we start with a unique partial word w with
|u|; = 1, then we obtain a unique partial word w’ that satisfies our desired properties by inserting the pair
ab =00 or ab = 01 of letters between axz 1 and as. There are (5 — 2)(2(z-2) (5 —3)+1) such w’s by the

inductive hypothesis. If we start with a unique partial word w with [u|; = 0, then there are (5 — 1)2(:-2)
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such w’s by Lemmal4} We obtain a unique partial word w’ that satisfies our desired properties by inserting
ab = 11. For some of those w’s, we can also insert ab = 10. To see how many such w'’s there are, the ¢
can be in any position in {1,...,5 — 1}. The last two positions are 11. There are 2(3-2) 1 choices for
the 5 —2 positions after the middle 10. The —1 comes from the fact that these positions cannot be all 0’s
(otherwise, there would be an abelian border of length 5 +1 < (n+2) —1).

There are also (4 —3)2(271 +2 unique w' with a © in position 4. We first claim that w'[1] = 0;
otherwise, w' has an abelian border of length (n+2) —2 < (n+2) — 1. We next claim that for 2 <
i <5, if w[0..]] =01 then w'[n — i+ 1..n— 1] # 0" !; otherwise, w' has an abelian border of length
(n+2)—(i+1) < (n+2) — 1. So if the 1 in the first half is in position 2, there are (2 —1)2(272) unique
corresponding w/, if the 1 in the first half is in position 3, there are (2% — 1)2(%*3) unique corresponding
w', ..., and if the 1 in the first half is in position 5 — 1, there are (2(2-2) —1)2! unique corresponding w’.

So, we get a total of (5 — 3)2(3=1) 42 unique w' with a o in position 5 O

Theorem 7. The number of binary partial words of even length n with exactly one hole having a minimal
abelian border of length n — 1 is @(2"~1).

Proof. Let f(n,n—1,1) denote the number of binary partial words of even length n with exactly one
hole having a minimal abelian border of length n — 1. For n = 2, there is one unique partial word with ¢
in position 0. For n = 4, there is one unique partial word with ¢ in position 1 by Lemma ] or Lemma 5]
Then, for n > 4, to build the unique partial words of length n + 2 with minimal abelian border of length
(n+2) — 1 from those of length n with minimal abelian border of length n — 1, we proceed as follows.
Each unique binary partial word w = ag - - “an_1an Ay of even length n with exactly one hole having
a minimal abelian border of length n — 1 gives rise to a partial word of length n + 2 by inserting a pair
ab of letters, ab € {00,01, 11}, between az_y and az, to obtain three unique partial words of the form
w =ap-- -az_yabay ---a,_;. For some w’s, it is sometimes also possible to insert the pair ab = 10.

To see this, let w be as above. By our convention, w starts with 0, and by Lemma [3] w ends with
11. Since w has no abelian border of any length in {1,...,5}, w' has no such abelian border. Clearly,
w' has also no abelian border of any length in {3 +2,...,n}. If ab € {00,11}, then ag---ay _,a is not
abelian compatible with ba% ---a,_1 and such w' has no abelian border of length % + 1. If ab = 01, then
ap---ar_ya is not abelian compatible with bag -+-a,_1 since the number of 0’s in ag - - “an_ is greater
than the number of 0’s in ag - dp—| by Lemma and so such w' has no abelian border of length % +1.

Then there are 2(2~2) 4 2"~* additional unique partial words w’ of length n + 2 with ¢ in position 3
To see this, we first claim that w'[1] = 0; otherwise, w’ has an abelian border of length (n+2) —2 <
(n+2)—1. So we can write w' = 00ucv11, where u and v are total words of length 5 —2 and § — 1,
respectively. There are 222 possibilities for u, ranging from u = 1272 to u = 022, On the one hand,
by the proof of Proposition 4, if # = 1272 then there are 2 unique partial words of length n 4 2 with o
in position %, i.,e., 0012726012 and 001226112, On the other hand if u = 022, there are 22! unique
such partial words. Altogether, there are 2+4+46+4---+ 2(3-1) unique partial words of length n + 2
with o in position %, for a total of 2(1 +2+43 4 ---+2(:72)) = 2(5-2) 4. 214,

Thus, the number of unique partial words with exactly one hole of length n 4 2 having a minimal
abelian border of length (n+2) — 1 satisfies

3f(”72_1’1)+2(%—2)_'_2n—4< f(n+27(n:2)_1=1) < 4f(”12_111)+2(’§’—2)+2n—4.

From this we deduce that, for n sufficiently large, if f(n,n—1,1) is O(2"~!) then f(n+2,(n+2)—1,1)
is 02021 and if f(n,n—1,1) is Q(2""!) then f(n+2,(n+2) —1,1) is Q(2"+2)-1), O
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Theorem [7]equivalently states that the number of binary partial words of even length n with exactly
one hole and one abelian border is ®(2"~!). This is implied by Theorem |5| that guarantees at least a
minimal border of length n — 1 when a partial word has at least one hole. We can prove that for n
sufficiently large, the number of binary partial words of even length n with exactly one hole and m,
m > 1 odd, distinct abelian borders is bounded from above by the number of binary partial words of
length n with exactly one hole and one abelian border. The proof is based on the following lemmas.

First, we consider unique binary partial words of even length n with exactly one hole in position 0

and m distinct abelian borders.
Lemma 6. Let m > 1 be odd. If a binary partial word of even length n, n > 4, has exactly one hole in
position 0 and m distinct abelian borders, then three of these abelian borders have lengths 1,5,n— 1.
Furthermore, for k € {1,...,5 — 1}, we have that k is an abelian border length if and only if n —k is an
abelian border length.

Similarly, we can show that for odd m, if a binary partial word of odd length n, n > 3, has exactly

one hole and m distinct abelian borders, then the hole is not in position 0.
Lemma 7. Let m > 1 be odd. If a partial word w = ag---az_az---ay—1 of even length n, n > 6,
over the alphabet {0, 1} has exactly one hole in position 0 and m distinct abelian borders, then for j €
{2,...,5 =1} and ab € {00,11}, the partial word W' = aq---a;_1aa; -- “az_1@n - Ap-jo1bap-j e an
has exactly m distinct abelian borders.

Now, we consider unique binary partial words of even length n with exactly one hole in position 1

and m distinct abelian borders.
Lemma 8. Let m be odd. If a binary partial word of even length n, n > 6, has exactly one hole in
position 1 and m distinct abelian borders, then n— 1 is an abelian border length and fork € {2,...,5 — 1}
we have that k is an abelian border length if and only if n — k is an abelian border length. Consequently,
either both 1,75 are abelian border lengths or none is an abelian border length.

If m =3 in Lemma 8} then an abelian border of length 1 would imply an abelian border of length 2
(and also one of length n — 2), so there would be at least four distinct border lengths, a contradiction. So
neither 1 nor 75 is an abelian border length in the m = 3 case when the position of the hole is 1.

Lemma 9. Let m be odd. If a partial word w = ag---ay_yaz ---an— of even lengthn, n > 6, over {0,1}
has exactly one hole in position 1 and m distinct abelian borders, then for at least three pairs ab in
{00,01,10,11}, the partial word w' = ag - - 'a%_]aba% -+ -ay—1 has exactly m distinct abelian borders.

Next, we consider unique binary partial words of even length n with exactly one hole in position i,
where 2 <i < 7 — 1, and m distinct abelian borders.

Lemma 10. Let m > 1 be odd. If a binary partial word of even length n, n > 8, has exactly one hole in
position i, 2 <i < % — 1, and m distinct abelian borders, one whose length is 1, then two of these abelian
borders have lengths n—2,n — 1. Furthermore, for k € {i+1,...,5 — 1}, we have that k is an abelian
border length if and only if n — k is an abelian border length.

Lemma 11. Let m > 1 be odd. If a partial word w = aq---ax_jax ---an— of even length n, n > 8,
over the alphabet {0,1} has exactly one hole in position i, 2 < i < 5 — 1, and m distinct abelian
borders, one whose length is 1, then for at least three pairs ab in {00,01,10,11}, the partial word
w=ag-- 'a%,laba% -+~ ay_1 has exactly m distinct abelian borders.

The m = 1 case of the next theorem follows from Theorem[7} The general m > 1 odd case is similar to
the m = 1 case, the only difference is that we can have some more trivial values. We can prove the result
based on the location of the hole, inserting three or four pairs in {00,01,10, 11} in suitable positions of
partial words of even length n to get partial words of length n + 2, and finding the dominant term.
Theorem 8. If m is odd, then the number of binary partial words of length n with exactly one hole and
m distinct abelian borders is ®(2"1).
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6 Conclusion

Computer experiments strongly suggest that the following conjectures are true. The integer A191386(n)
in Sloane’s Online Encyclopedia of Integer Sequences (OEIS) gives the number of ascents of length 1
in all dispersed Dyck paths of length n. A dispersed Dyck path is one or more Dyck paths connected by
one or more horizontal steps [[8], or equivalently a Motzkin path of length n with no horizontal steps at
positive heights. An ascent is a maximal sequence of upward steps. The first few values of this sequence
(starting atn = 0) are 0, 0, 1, 2, 5, 10, 23, 46, 102, 204, 443, 886, 1898, 3796, 8054.

Conjecture 1. The number of binary partial words of length n with exactly one hole having a minimal
abelian border of length k < n is

A191386(n), ifn>3isoddandk=n—1;
24191386(n—1), ifn>4isevenandk=n—1;
24191386 2), ifn>5isoddandk=n-—2;
44191386(n—3), ifn>6isevenandk=n—2.

f(nk,1) =

(n—
(n—

Note that Theorem [5] suggests that Conjecture [I]is true if and only if the number of binary partial
words of length n with exactly one hole and exactly one abelian border is A191386(n) when n is odd and
2A191386(n— 1) when n is even.

Conjecture 2. The set of binary total words without abelian borders is non-context-free.
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