THE SET OF k-UNITS MODULO n

JOHN H. CASTILLO AND JHONY FERNANDO CARANGUAY MAINGUEZ

Abstract

Let R be a ring with identity, $\mathcal{U}(R)$ the group of units of R and k a positive integer. We say that $a \in \mathcal{U}(R)$ is k-unit if $a^{k}=1$. Particularly, if the ring R is \mathbb{Z}_{n}, for a positive integer n, we will say that a is a k-unit modulo n. We denote with $\mathcal{U}_{k}(n)$ the set of k-units modulo n. By $\mathrm{du}_{k}(n)$ we represent the number of k-units modulo n and with $\mathrm{rdu}_{k}(n)=\frac{\phi(n)}{\mathrm{du}(n)}$ the ratio of k-units modulo n, where ϕ is the Euler phi function. Recently, S. K. Chebolu proved that the solutions of the equation $\operatorname{rdu}_{2}(n)=1$ are the divisors of 24 . The main result of this work, is that for a given k, we find the positive integers n such that $\operatorname{rdu}_{k}(n)=1$. Finally, we give some connections of this equation with Carmichael's numbers and two of its generalizations: Knödel numbers and generalized Carmichael numbers.

S. K. Chebolu [2] proved that in the ring \mathbb{Z}_{n} the square of any unit is 1 if and only if n is a divisor of 24 . This property is known as the diagonal property for the ring \mathbb{Z}_{n}. Later, K. Genzlinger and K. Lockridge [7] introduced the function $\mathrm{du}(R)$, which is the number of involutions in R (that is the elements in R such that $a^{2}=1$), and provided another proof to Chebolu's result about the diagonal property. The diagonal property also has been studied in other rings. For instance, S. K. Chebolu [4] found that the polynomial ring $Z_{n}\left[x_{1}, x_{2}, \ldots, x_{m}\right]$ satisfies the diagonal property if and only if n is a divisor of 12 and S. K. Chebolu et al. [3] also characterized the group algebras that verifies this property.

Let R be a ring with identity and $\mathcal{U}(R)$ the group of units of R. The aim of this paper is to study the elements of a ring with the following property: for a given $k \in \mathbb{Z}^{+}$, we say that an element a in $\mathcal{U}(R)$ is a k-unit if $a^{k}=1$. So, we ask for the number of this elements, and for that we extend the definitions of the functions given by K. Genzlinger and K. Lockridge [7], particularly du ${ }_{k}(R)$ will represent the number of k-units of R. Here we present a formula for this function when $\mathcal{U}(R)$ can be expressed as a finite direct product of finite cyclic groups and when $R=\mathbb{Z}_{n}$. Furthermore, we study the case when $R=\mathbb{Z}_{n}$ and each unit is a k-unit. Previously, as mentioned before, this problem has been considered when $k=2$ and more generally for fields and group algebras when k is a prime number, see [3].

In the other hand, a well studied topic in number theory are the Carmichael's numbers, which in terms of the k-unit concept, are composite positive integers such that any unit is an $(n-1)$-unit. Here, we find some connections between the equation $\operatorname{rdu}_{k}(n)$ and the concepts of Knödel and generalized Carmichael numbers.

In the sequel, for x an element of a group G, by $|x|$ we denote the order of x. Besides, for a prime number p and a positive integer n, the symbol $\nu_{p}(n)$ means the exponent of the greatest power of p that divides $n, \operatorname{gcd}(a, b)$ denotes the greatest common divisor of a and b, and ϕ is the Euler's totient function. If $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and f is a defined function on A, we write

$$
\prod_{a \in A} f(a)=f\left(a_{1}\right) \cdot f\left(a_{2}\right) \cdots f\left(a_{n}\right),
$$

and when $A=\varnothing$, we assume that $\prod_{a \in A} f(a)=1$.

1. Set of k-units of a Ring

In this section we give some definitions and get some preliminary results.

Definition 1. Let R be a ring with identity, $a \in R$ and $k \in \mathbb{Z}^{+}$. We say that a is a k-unit of R if $a^{k}=1$. We will denote with $\mathcal{U}_{k}(R)$ the set of k-units of R.

When $R=\mathbb{Z}_{n}$, for a given $n \in \mathbb{Z}^{+}$, we will use the symbol $\mathcal{U}_{k}(n)$ to denote the set of k-units of \mathbb{Z}_{n}, and we will call it the set of k-units modulo n.

Example 2. In \mathbb{Z}_{5}, when we square the elements of $\mathcal{U}\left(\mathbb{Z}_{5}\right)$ we have that

$$
1^{2}=1,2^{2}=4,3^{2}=4,4^{2}=1
$$

Then, the 2 -units modulo 5 are 1 and 4 , that is, $\mathcal{U}_{2}(5)=\{1,4\}$.
We can verify that $\mathcal{U}_{2}(5)$ is a subgroup of $\mathcal{U}\left(\mathbb{Z}_{5}\right)$. Actually, this is a property for rings with an abelian unit group.
Theorem 3. Let R be a ring with identity such that $\mathcal{U}(R)$ is an abelian group. Then $\mathcal{U}_{k}(R)$ is a subgroup of $\mathcal{U}(R)$.
Proof. It is sufficient to prove that if $a, b \in \mathcal{U}_{k}(R)$, then $a b^{-1} \in \mathcal{U}_{k}(R)$. Indeed, if $a^{k}=1$ and $b^{k}=1$, then $\left(a b^{-1}\right)^{k}=a^{k}\left(b^{k}\right)^{-1}=1$.

When $\mathcal{U}_{k}(R)$ is a finite set, we will denote with $\operatorname{du}_{k}(R)$ the number of k-units of R; that is,

$$
\begin{equation*}
\mathrm{du}_{k}(R)=\left|\mathcal{U}_{k}(R)\right| . \tag{1}
\end{equation*}
$$

Specially, if $R=\mathbb{Z}_{n}$, $\mathrm{du}_{k}(n)$ will represents the number of k-units modulo n.
Although, in our definitions k can be any positive integer, actually we could restrict it to the set of divisors of $|\mathcal{U}(R)|$, of course when the latter is finite. In fact, take $d=\operatorname{gcd}(k,|\mathcal{U}(R)|)$. If $x \in \mathcal{U}_{k}(R)$, then $x^{k}=1$, and therefore the order of x divides k. Moreover, as $|x|$ is a divisor of $|\mathcal{U}(R)|$, also divides d. Thus, $x^{d}=1$, and then $x \in \mathcal{U}_{d}(R)$, which implies that $\mathcal{U}_{k}(R) \subseteq \mathcal{U}_{d}(R)$. Similarly, we can prove that if $x \in \mathcal{U}_{d}(R)$, then $x \in \mathcal{U}_{k}(R)$. So, we have proved that $\mathcal{U}_{k}(R)=\mathcal{U}_{d}(R)$, result that we summarize in the next proposition.

Proposition 4. Let k be a positive integer and assume that $\mathcal{U}(R)$ is finite. Then

$$
\mathcal{U}_{k}(R)=\mathcal{U}_{d}(R)
$$

where $d=\operatorname{gcd}(k,|\mathcal{U}(R)|)$.
The following result is an special case of the previous one.
Theorem 5. If $\mathcal{U}(R)$ is a finite cyclic group, then $\operatorname{du}_{k}(R)=\operatorname{gcd}(k,|\mathcal{U}(R)|)$.
Proof. Let $x \in \mathcal{U}_{k}(R)$ and g a generator of $\mathcal{U}(R)$. So, there exists an integer $0 \leq l<|\mathcal{U}(R)|$ such that $x=g^{l}$.

Then, $x^{k}=g^{k l}=1$ if and only if $k l \equiv 0(\bmod |\mathcal{U}(R)|)$. The last congruence has $\operatorname{gcd}(k,|\mathcal{U}(R)|)$ solutions modulo $|\mathcal{U}(R)|$, see [9, Prop. 3.3.1]. Thus, x takes $\operatorname{gcd}(k,|\mathcal{U}(R)|)$ values and, therefore, $\operatorname{du}_{k}(R)=\operatorname{gcd}(k,|\mathcal{U}(R)|)$.

We can give another proof to the Theorem 5 using the following property of the Euler's ϕ function, $\sum_{e \mid d} \phi(e)=d$, see [9, Prop. 2.2.4].

Proof. Take $d=\operatorname{gcd}(k,|\mathcal{U}(R)|)$. Then $x \in \mathcal{U}_{k}(R)=\mathcal{U}_{d}(R)$ if and only if the order of x divides d. Thus, the number of k-units in R is equal to the number of elements of $\mathcal{U}(R)$ such that its order is a divisor of d. So,

$$
\begin{aligned}
\operatorname{du}_{k}(R) & =\operatorname{du}_{d}(R)=\mid\{x \in \mathcal{U}(R):|x| \text { divides } d\} \mid \\
& =\sum_{e \mid d}|\{x \in \mathcal{U}(R):|x|=e\}| .
\end{aligned}
$$

As e is a divisor of d, then it is also a divisor of $|\mathcal{U}(R)|$. Therefore, the number of elements of order e in $\mathcal{U}(R)$ is $\phi(e)$, see [6, Thm. 4.4] and thus

$$
\mathrm{du}_{k}(R)=\sum_{e \mid d} \phi(e)=d .
$$

Now we are interested in finding an expression to this function when the group $\mathcal{U}(R)$ is isomorphic to the direct product of finite cyclic groups. Here and subsequently C_{r} denotes the cyclic group of order r.

In some occasions we will apply our definition of k-unit and the function $\operatorname{du}_{k}, \operatorname{pdu}_{k}$ and rdu_{k} for groups. Previously, it was unnecessary, because it might be ambiguous, for instance, du ${ }_{k}\left(\mathbb{Z}_{n}\right)$ could be understand as the quantity of k-units of a ring or a group.

Theorem 6. Let R be a commutative ring with identity. If $\mathcal{U}(R) \cong C_{r_{1}} \times \cdots \times C_{r_{s}}$ for some positive integers r_{1}, \ldots, r_{s}, then

$$
\mathrm{du}_{k}(R)=\prod_{i=1}^{s} \operatorname{gcd}\left(k, r_{i}\right)
$$

Proof. By the given isomorphism we get that $\operatorname{du}_{k}(R)=\operatorname{du}_{k}\left(C_{r_{1}} \times \cdots \times C_{r_{s}}\right)$. Let a be a k-unit of R and b its image under the isomorphism. Then b is a k-unit of $C_{r_{1}} \times \cdots \times C_{r_{s}}$ if and only if each i-th component of b is a k-unit in $C_{r_{i}}$. So, $\operatorname{du}_{k}(R)=\operatorname{du}_{k}\left(C_{r_{1}}\right) \cdots \operatorname{du}_{k}\left(C_{r_{s}}\right)$. In this way, from Theorem 5, we obtain that $\operatorname{du}_{k}(R)=\operatorname{gcd}\left(k,\left|C_{r_{1}}\right|\right) \cdots \operatorname{gcd}\left(k,\left|C_{r_{s}}\right|\right)$, and the result follows.

If $\mathcal{U}(R)$ is finite, we define the proportion and ratio functions of k-units of $R, \mathrm{pdu}_{k}(R)$ and $\operatorname{rdu}_{k}(R)$, respectively as follows

$$
\begin{align*}
\operatorname{pdu}_{k}(R) & =\frac{\operatorname{du}_{k}(R)}{|\mathcal{U}(R)|} \tag{2}\\
\operatorname{rdu}_{k}(R) & =\frac{|\mathcal{U}(R)|}{\operatorname{du}_{k}(R)}=\frac{1}{\operatorname{pdu}_{k}(R)} .
\end{align*}
$$

When $\mathcal{U}(R)$ is an abelian group, Theorem 3 and Lagrange's Theorem, see [6, Thm. 7.1], guarantee that $\operatorname{du}_{k}(R)$ divides $|\mathcal{U}(R)|$, and therefore $\operatorname{rdu}_{k}(R) \in \mathbb{Z}^{+}$. For the ring \mathbb{Z}_{n}, we will use pdu ${ }_{k}(n)$ and $\operatorname{rdu}_{k}(n)$ to denote the proportion and ratio functions of the k-units modulo n, respectively. Since $\left|\mathcal{U}\left(\mathbb{Z}_{n}\right)\right|=\phi(n)$, we have that

$$
\operatorname{pdu}_{k}(n)=\frac{\operatorname{du}_{k}(n)}{\phi(n)}
$$

and

$$
\operatorname{rdu}_{k}(n)=\frac{\phi(n)}{\operatorname{du}_{k}(n)} .
$$

Example 7. Previously, we got that $\mathcal{U}_{2}(5)=\{1,4\}$. Thus,

$$
\operatorname{du}_{2}(5)=\left|\mathcal{U}_{2}(5)\right|=2, \operatorname{pdu}_{2}(5)=\frac{\operatorname{du}_{2}(5)}{\left|\mathcal{U}\left(\mathbb{Z}_{5}\right)\right|}=\frac{1}{2}, \operatorname{and}_{\operatorname{rdu}_{2}(5)}=\frac{1}{\operatorname{pdu}_{k}(5)}=2
$$

2. The group of k-units modulo n

In this section we find an expression for $\operatorname{du}_{k}(n)$ from the prime factorization of n.
The following theorem shows that the functions given by (1) and (2) are multiplicatives when $R=\mathbb{Z}_{n}$, which implies that the task is reduced to calculate du_{k} for powers of primes.

Theorem 8. The functions $\mathrm{du}_{k}, \mathrm{pdu}_{k}$ and rdu_{k} defined on \mathbb{Z}_{n} are multiplicatives.

Proof. We will demonstrate that if s and t are relatively primes positives integers, then $\mathrm{du}_{k}(s t)=$ $\mathrm{du}_{k}(s) \mathrm{du}_{k}(t)$.

By the Chinese Remainder Theorem, see [9, Thm. 1', p. 35], we have that $\mathbb{Z}_{s t} \cong \mathbb{Z}_{s} \times \mathbb{Z}_{t}$, so the number of k-units modulo n is equal to the number of k-units in $\mathbb{Z}_{s} \times \mathbb{Z}_{t}$.

Let $(x, y) \in \mathbb{Z}_{s} \times \mathbb{Z}_{t}$ be a k-unit. Then $(x, y)^{k}=\left(x^{k}, y^{k}\right)=(1,1)$ if and only if $x^{k}=1$ in \mathbb{Z}_{s} and $y^{k}=1$ in \mathbb{Z}_{t}. Thus, (x, y) is a k-unit of $\mathbb{Z}_{s} \times \mathbb{Z}_{t}$ if and only if x is a k-unit modulo s and y is a k-unit modulo t. Therefore, $\mathrm{du}_{k}(s t)=\mathrm{du}_{k}\left(\mathbb{Z}_{s} \times \mathbb{Z}_{t}\right)=\mathrm{du}_{k}(s) \mathrm{du}_{k}(t)$.

Since $d u_{k}$ and ϕ are multiplicatives, we have that

$$
\begin{aligned}
& \operatorname{pdu}_{k}(s t)=\frac{\operatorname{du}_{k}(s t)}{\phi(s t)}=\left(\frac{\operatorname{du}_{k}(s)}{\phi(s)}\right)\left(\frac{\operatorname{du}_{k}(t)}{\phi(t)}\right)=\operatorname{pdu}_{k}(s) \operatorname{pdu}_{k}(t), \text { and } \\
& \operatorname{rdu}_{k}(s t)=\frac{1}{\operatorname{pdu}_{k}(s t)}=\left(\frac{1}{\operatorname{pdu}_{k}(s)}\right)\left(\frac{1}{\operatorname{pdu}_{k}(t)}\right)=\operatorname{rdu}_{k}(s) \operatorname{rdu}_{k}(t)
\end{aligned}
$$

By the last theorem and with the aim of finding an expression to $\mathrm{du}_{k}(n)$ using the prime factorization of n, we will consider when n is a prime power. In order to apply the Theorem 6 , we recall the following result, see [6, p. 160], which expresses $\mathcal{U}\left(\mathbb{Z}_{p^{\alpha}}\right)$ as an external direct product of cyclic subgroups, where p is a prime number and α is a positive integer.

Proposition 9. Let p be a prime number and α a positive integer. Then

$$
\mathcal{U}\left(\mathbb{Z}_{p^{\alpha}}\right) \cong \begin{cases}C_{1}, & \text { if } p^{\alpha}=2^{1} \\ C_{2}, & \text { if } p^{\alpha}=2^{2} \\ C_{2} \times C_{2^{\alpha-2}}, & \text { if } p=2 \text { and } \alpha \geq 3 \\ C_{\phi\left(p^{\alpha}\right)}, & \text { if } p \text { is odd }\end{cases}
$$

Theorem 10. If α is a positive integer greater than or equal to 3 , then

$$
\operatorname{du}_{k}\left(2^{\alpha}\right)= \begin{cases}1, & \text { if } k \text { is odd; } \\ 2 \operatorname{gcd}\left(k, 2^{\alpha-2}\right), & \text { if } k \text { is even. }\end{cases}
$$

Proof. By Proposition 9, we have that $\mathcal{U}\left(\mathbb{Z}_{2^{\alpha}}\right) \cong C_{2} \times C_{2^{\alpha-2}}$. Applying Theorem 6, we get that $\operatorname{du}_{k}\left(2^{\alpha}\right)=\operatorname{gcd}(k, 2) \operatorname{gcd}\left(k, 2^{\alpha-2}\right)$.

From theorems 5, 8 and 10 we obtain the following result.
Theorem 11. Assume that $n=2^{\alpha} m$, where α is a non-negative integer and m is an odd positive integer. If $m=\prod_{i=1}^{r} p_{i}^{r_{i}}$ is the prime factorization of m, then

$$
\operatorname{du}_{k}(n)= \begin{cases}\prod_{i=1}^{r} \operatorname{gcd}\left(k, \phi\left(p_{i}^{r_{i}}\right)\right) & \text { if } k \text { is odd or } \alpha=1 ; \\ 2 \prod_{i=1}^{r} \operatorname{gcd}\left(k, \phi\left(p_{i}^{r_{i}}\right)\right) & \text { if } k \text { is even and } \alpha=2 ; \\ 2 \operatorname{gcd}\left(k, 2^{\alpha-2}\right) \prod_{i=1}^{r} \operatorname{gcd}\left(k, \phi\left(p_{i}^{r_{i}}\right)\right) & \text { if } k \text { is even and } \alpha \geq 3\end{cases}
$$

3. On the Equation $\operatorname{rdu}_{k}(n)=1$

Recently, S. K. Chebolu [2] studied the positive integers n such that each $u \in \mathcal{U}\left(\mathbb{Z}_{n}\right)$ satisfies that $u^{2}=1$, which is equivalent to study the n 's that verify the equation $\operatorname{rdu}_{2}(n)=1$. In this section, for a given positive integer k we characterize the solutions of the equation $\operatorname{rdu}_{k}(n)=1$, which clearly is an extension of the work made by S. K. Chebolu. As a consequence, at the end of the section we obtained a new proof of the principal result of S. K. Chebolu [2].

In general, we say that a ring satisfies the equation $\operatorname{rdu}_{k}(R)=1$, if its unit group is equal to its k-units set; it means that, $a^{k}=1$ for each $a \in \mathcal{U}(R)$.

From Theorem 5, we get the result below.

Theorem 12. Let R be a ring such that $\mathcal{U}(R)$ is a cyclic finite group. Then $\operatorname{rdu}_{k}(R)=1$ if and only if $|\mathcal{U}(R)|$ divides k.

The following theorem gives a condition to a ring R to satisfy the equation $\operatorname{rdu}_{k}(R)=1$ when $\mathcal{U}(R)$ is isomorphic to a finite external direct product of finite cyclic groups.

Theorem 13. Let R be a commutative ring with identity such that $\mathcal{U}(R) \cong C_{r_{1}} \times \cdots \times C_{r_{s}}$ for some positive integers r_{1}, \ldots, r_{s}. Then, $\operatorname{rdu}_{k}(R)=1$ if and only if r_{i} divides k.

Proof. By the hypothesis $|\mathcal{U}(R)|=\prod_{i=1}^{s} r_{i}$ and, from Theorem 6, we have that $\operatorname{du}_{k}(R)=\prod_{i=1}^{s} \operatorname{gcd}\left(k, r_{i}\right)$. Thus, $\operatorname{rdu}_{k}(R)=1$ if and only if $\prod_{i=1}^{s} \operatorname{gcd}\left(k, r_{i}\right)=\prod_{i=1}^{s} r_{i}$.

Since that $\operatorname{gcd}\left(k, r_{i}\right) \leq r_{i}$, then $\operatorname{gcd}\left(k, r_{i}\right)=r_{i}$, which happens only when each r_{i} divides k.
In the following theorem, for a given positive integer n, we give necessary and sufficient conditions on k such that $\operatorname{rdu}_{k}(n)=1$.

Theorem 14. Assume that $n=2^{\alpha} m$, where α is a non-negative integer and m is an odd positive integer. Then, $\operatorname{rdu}_{k}(n)=1$ if and only if for each prime divisor p of m we have that $\phi\left(p^{\nu_{p}(m)}\right)$ divides k and one of the following conditions is satisfied
(1) $\alpha \in\{0,1\}$,
(2) $\alpha=2$ and k is even,
(3) $3 \leq \alpha \leq \nu_{2}(k)+2$.

Particularly, if k is odd then either $n=1$ or $n=2$.
Proof. The proof is straightforward from the fact that rdu_{k} is multiplicative. Indeed, if the prime factorization of m is

$$
m=\prod_{\substack{p \mid m \\ p \text { prime }}} p^{\nu_{p}(m)}
$$

we have that $\operatorname{rdu}_{k}(n)=1$ if and only if $\operatorname{rdu}_{k}\left(2^{\alpha}\right)=1$ and $\operatorname{rdu}_{k}\left(p^{\nu_{p}(m)}\right)=1$ for each prime divisor p of m.

Therefore, from Theorem 12, we obtain that $\phi\left(p^{\nu_{p}(m)}\right)$ is a divisor of k. Besides, $\phi\left(2^{\alpha}\right)$ divides k, when $\alpha \leq 2$, which demonstrates 1 and 2 . On the other hand, if $\alpha \geq 3$, as $\operatorname{du}_{k}\left(2^{\alpha}\right)=2^{\alpha-1}$, Theorem 10 implies that $\alpha-2 \leq \nu_{2}(k)$.

Conversely, we can prove that if α satisfies the given conditions, then $\operatorname{rdu}_{k}\left(2^{\alpha}\right)=1$.
Since ϕ takes even values (except in 1 or 2), from the facts we have proved previously, then when k is odd, we get that either $n=1$ or $n=2$.

The above result allow us to conclude that the study of the equation $\operatorname{rdu}_{k}(n)=1$, is relevant when k is even. We can now formulate our main result.

Theorem 15. Assume that $k=2^{\beta} M$, with $\beta>0$ and M is an odd positive integer. Then $\operatorname{rdu}_{k}(n)=1$ if and only if n is a divisor of

$$
2^{\beta+2} \prod_{p \in \mathcal{A}} p \prod_{q \in \mathcal{B}} q^{\nu_{q}(M)+1}
$$

where

$$
\mathcal{A}:=\left\{p: p \text { is prime, } p \nmid M \text { y } p=2^{l} d+1 \text {, with } 0<l \leq \beta \text { and } d \mid M\right\},
$$

and

$$
\mathcal{B}:=\left\{q: q \text { is prime, } q \mid M \text { and } q=2^{l} d+1 \text {, with } 0<l \leq \beta \text { and } d \mid M\right\} .
$$

Proof. Suppose that $n=2^{\alpha} m$, with m an odd integer and α a non-negative integer. First of all, since k is even Theorem 14 guarantees the inequality $0 \leq \alpha \leq \beta+2$.

Additionally, Theorem 14 implies that $\phi\left(t^{\nu_{t}(m)}\right) \mid k$ for each prime divisor t of m; that is

$$
\begin{equation*}
t^{\nu_{t}(m)-1}(t-1) \mid k \tag{3}
\end{equation*}
$$

We will study the expression (3) in two cases, depending on whether or not t divides M.
Case 1. Assume that t does not divide M. Then, (3) implies that $\nu_{t}(m)=1$ and $t-1 \mid k$. Thus,

$$
t-1=2^{l} d,
$$

with $0<l \leq \beta$ and d is a divisor of M. The primes t that verify the last conditions are joined in the set \mathcal{A} defined at the statement of the theorem.
Case 2. Suppose that t divides M. Again, from (3) we obtain that $\nu_{t}(m)-1 \leq \nu_{t}(M)$ and $t-1$ is a divisor of

$$
\frac{k}{t^{\nu t(M)}}
$$

this means

$$
t-1=2^{l} d
$$

where $0<l \leq \beta$ and d is a divisor of M. These primes are the elements of the set \mathcal{B} of the theorem.
Therefore, n is a solution of the equation $\operatorname{rdu}_{k}(n)=1$, if it has the form

$$
n=2^{\alpha} \prod_{p \in \mathcal{A}} p^{r(p)} \prod_{q \in \mathcal{B}} q^{s(q)}
$$

with $0 \leq \alpha \leq \beta+2, r(p) \in\{0,1\}$ for each $p \in \mathcal{A}$ and $0 \leq s(q) \leq \nu_{q}(M)+1$ for each $q \in \mathcal{B}$.
An immediate consequence of the above theorem is the following result.
Corollary 16. Assume that $k=2^{\beta} M$, with $\beta>0$ and M an odd positive integer. Then, the number of solutions of $\operatorname{rdu}_{k}(n)=1$ is given by

$$
(\beta+3) 2^{|\mathcal{A}|} \prod_{q \in \mathcal{B}}\left(\nu_{q}(M)+2\right),
$$

where \mathcal{A} and \mathcal{B} are as in the previous theorem.
Theorem 15 allow us to obtain some well known results as we will see in the next section; specially here we give another proof of the principal result of S. K. Chebolu about the divisors of 24 , see [2, Thm. 1.1].
Corollary 17. Let n be a positive integer. Then, n has the diagonal property if and only if n is a divisor of 24.
Proof. Suppose that n has the diagonal property, that is $\operatorname{rdu}_{2}(n)=1$. It is sufficient to find the sets \mathcal{A} and \mathcal{B} of the statement of Theorem 15. In fact, it is easy to check that $\mathcal{A}=\left\{3=2^{1} \times 1+1\right\}$ and $\mathcal{B}=\varnothing$. Therefore, the solutions of the given equation are the divisors of $2^{1+2} \times 3=24$.

For the reciprocal, it is enough to verify that $\operatorname{rdu}_{2}(n)=1$ when n is a divisor of 24 .
In the sequel, we give some examples.
Example 18. Take $k=10=2 \times 5$. Then

$$
\mathcal{A}=\left\{3=2^{1} \times 1+1,11=2^{1} \times 5+1\right\} \text { and } \mathcal{B}=\varnothing \text {. }
$$

Thus, the roots of $\operatorname{rdu}_{10}(n)=1$ are the divisors of $2^{1+2} \times 3 \times 11=264$.
In the proof of the Corollary 17 and in the above example \mathcal{B} is empty; however, this not happen always as we can see in the next example.

Example 19. Consider $k=252=2^{2} \times 3^{2} \times 7$. Then,

$$
\begin{aligned}
\mathcal{A} & =\{5,13,19,29,37,43,127\} \text { and } \\
\mathcal{B} & =\{3,7\},
\end{aligned}
$$

where, for instance, $3=2^{1} \times 1+1$ and $7=2^{1} \times 3+1$. Therefore, the solutions of $\operatorname{rdu}_{252}(n)=1$ are the divisors of

$$
2^{4} \times 5 \times 13 \times 19 \times 29 \times 37 \times 43 \times 127 \times 3^{3} \times 7^{2}=153185861359440,
$$

and there are $5 \times 2^{7} \times(3+1) \times(2+1)=7680$ solutions.

4. Consequences and further work

Finally, in this section, we present how the results demonstrated previously serve to obtain some well known results about Carmichael numbers A002997, and to stablish some connections with two of its generalizations: Knödel numbers A033553, A050990, A050993 and generalized Carmichale numbers A014117, see [5, 8, 10, 12].
4.1. Carmichael numbers. Let a be a positive integer. We say that a composite number n is a pseudoprime base a if

$$
\begin{equation*}
a^{n-1} \equiv 1 \quad(\bmod n) . \tag{4}
\end{equation*}
$$

When we do not know whether n is composite or prime, but satisfies the congruence (4), we say that n is a probable prime base a.

The next theorem gives the number of bases a in $\mathcal{U}\left(\mathbb{Z}_{n}\right)$ such that n is a probable base a, see [5, p. 165]

Theorem 20. Let n be an odd positive integer. Then the number of bases a such that n is a probable prime base a is

$$
B_{p p}(n)=\prod_{p \mid n} \operatorname{gcd}(n-1, p-1)
$$

Proof. Let $n=\prod_{p \mid n} p^{\nu_{p}(n)}$ be the prime factorization of n. First, we observe that $B_{p p}(n)=$ $\mathrm{du}_{n-1}(n)$. Then, from Theorem 11, we have that

$$
B_{p p}(n)=\operatorname{du}_{n-1}(n)=\prod_{p \mid n} \operatorname{gcd}\left(n-1, \phi\left(p^{\nu_{p}(n)}\right)\right)=\prod_{p \mid n} \operatorname{gcd}\left(n-1, p^{\nu_{p}(n)-1}(p-1)\right) .
$$

Since $\operatorname{gcd}(n-1, p)=1$, we obtain that

$$
B_{p p}(n)=\prod_{p \mid n} \operatorname{gcd}(n-1, p-1) .
$$

Definition 21. Let n be an odd composite integer. We say that n is a Carmichael number if $a^{n-1} \equiv 1(\bmod n)$ for each positive integer a relatively prime to n.

Actually, n is a Carmichael number if it is composite and $\operatorname{rdu}_{n-1}(n)=1$. This allow us, to use the previous theorems to prove some known results about Carmichael numbers.

Theorem 22. Let n be an odd and composite integer and k relatively prime to n. Then, $\operatorname{rdu}_{k}(n)=1$ if and only if n is squarefree and $p-1$ divides k for each prime divisor p of n.
Proof. Assume that $n=\prod_{p \mid n} p^{\nu_{p}(n)}$ is the prime factorization of n. By Theorem 15, we have that $\operatorname{rdu}_{k}(n)=1$ if and only if $\phi\left(p^{\nu_{p}(n)}\right)=p^{\nu_{p}(n)-1}(p-1)$ divides k, which only happens when $\nu_{p}(n)=1$ and $p-1$ divides k.

The last result is a generalization of the Korselt criterion, see [5, Thm. 3.4.6].
Corollary 23 (Korselt criterion). Suppose that n is an odd and composite integer. Then, n is a Carmichael number if and only if n is squarefree and for each prime p dividing n we have $p-1$ divides $n-1$.

Proposition 24. Any Carmichael number has at least three prime factors.
Proof. Suppose that $n=p q$, with p and q different primes. As $\operatorname{rdu}_{p q-1}(n)=1$, then $\operatorname{rdu}_{p q-1}(p q)=$ $\operatorname{rdu}_{p q-1}(p) \operatorname{rdu}_{p q-1}(q)=1$.

This implies $\operatorname{rdu}_{p q-1}(p)=1$ and $\operatorname{rdu}_{p q-1}(q)=1$. Now, since

$$
\begin{aligned}
\operatorname{rdu}_{p q-1}(p) & =\frac{\phi(p)}{\operatorname{gcd}(p q-1, \phi(p))} \\
& =\frac{p-1}{\operatorname{gcd}(p q-1, p-1)},
\end{aligned}
$$

then $\operatorname{gcd}(p q-1, p-1)=p-1$. Similarly, we can prove that $\operatorname{gcd}(p q-1, q-1)=q-1$. Furthermore, we have that $\operatorname{gcd}(p q-1, p-1)=\operatorname{gcd}(p q-1, q-1)$ because $p q-1=(p-1)(q-1)+(p-1)+(q-1)$; that is $p-1=q-1$, which is a contradiction.
A. Makowski [10] gave an extension to the concept of Carmichael number, named Knödel numbers, in honour of the Austrian mathematician W. Knödel [11, p. 125].

Definition 25. For $i \geq 1$, let \mathcal{K}_{i} be the set of all the composite integers $n>i$ such that $a^{n-i} \equiv 1$ $(\bmod n)$ for any positive integer a relatively prime to n. We call \mathcal{K}_{i} the i-Knödel set and its elements the i-Knödel numbers.

It is clear that, \mathcal{K}_{1} is the set Carmichael numbers. Similarly, as we did with the Carmichael numbers, we can give an interpretation of the Knödel sets from the concepts studied in this article; in fact, it is easy to stablish that $n \in \mathcal{K}_{i}$ if and only if n is composite and $\operatorname{rdu}_{n-i}(n)=1$.

For a fixed $k \in \mathbb{Z}^{+}$, using Theorem 15, we demonstrated that the set of solutions of the equation $\operatorname{rdu}_{k}(n)=1$ is finite. Although, this is not necessarily always true when k depends on n; for instance \mathcal{K}_{i} is infinite, see $[1,10]$.
L. Halbeisen and N. Hungerbühler [8] proposed another generalization of the Carmichael number concept.

Definition 26. Fix an integer k, and let be

$$
C_{k}=\left\{n \in \mathbb{N}: \min \{n, n+k\}>1 \text { and } a^{n+k} \equiv a \quad(\bmod n) \text { for all } a \in \mathbb{N}\right\} .
$$

L. Halbeisen and N. Hungerbühler proved that $C_{1}=\{2,6,42,1806\}$ and C_{k} is infinite if $1-k>1$ is squarefree. We can stablish that for $k \in \mathbb{Z}$

$$
\begin{equation*}
C_{k} \subset\left\{n \in \mathbb{Z}^{+}: \operatorname{rdu}_{n+k-1}(n)=1\right\} . \tag{5}
\end{equation*}
$$

Therefore, the set C_{1} joint with 1 are the solutions of $\operatorname{rdu}_{n}(n)=1$. Furthermore, expression (5) shows that when $1-k>1$ is squarefree, there are infinitely many solutions to the equation $\operatorname{rdu}_{n+k-1}(n)=1$.

In the sequel, we pose certain questions regarding the number of solutions of the equation $\operatorname{rdu}_{k}(n)=1$, when k depends on n.

- Are there infinitely many $n \in \mathbb{Z}^{+}$shuch that $\operatorname{rdu}_{n+1}(n)=1$?

From Theorem 22, this question is equivalent to ask for the infinitude of positive squarefree integers n such that $p-1$ divides $n+1$ for each prime divisor p of n.

Let $i \in \mathbb{N}$ and $a, b \in \mathbb{Z}$

- Are there infinitely many $n \in \mathbb{Z}^{+}$such that $\operatorname{rdu}_{n+i}(n)=1$?
- Are there infinite $n \in \mathbb{Z}^{+}$such that $\operatorname{rdu}_{a n+b}(n)=1$?

When $b=0$, from Theorem 14, it is enough to take n as a power of 2 .

- In general, are there infinitely many $n \in \mathbb{Z}^{+}$such that $\operatorname{rdu}_{f(n)}(n)=1$, for a polynomial $f(x)$ with integer coefficients? If the answer is negative, for which polynomials $f(x)$ the equation $\operatorname{rdu}_{f(n)}(n)=1$ has infinite many solutions and for which has finite many solutions?

5. Acknowledgements

The authors are members of the research group: "Algebra, Teoría de Números y Aplicaciones, ERM". J. H. Castillo was partially supported by the Vicerrectoría de Investigaciones Postgrados y Relaciones Internacionales at Universidad de Nariño. The authors also were partially supported by COLCIENCIAS under the research project "Aplicaciones a la teoría de la información y comunicación de los conjuntos de Sidon y sus generalizaciones (110371250560)".

We are grateful to Professor Gilberto García-Pulgarín for his suggestions that help to improve this article.

References

[1] W. R. Alford, A. Granville, and C. Pomerance, There are infinitely many Carmichael numbers, Ann. of Math. (2) 139(3) (1994), 703-722.
[2] S. K. Chebolu, What is special about the divisors of 24?, Math. Mag. 85(5) (2012), 366-372.
[3] S. K. Chebolu, K. Lockridge, and G. Yamskulna, Characterizations of Mersenne and 2-rooted primes, Finite Fields Appl. 35 (2015), 330-351.
[4] S. K. Chebolu and M. Mayers, What is special about the divisors of 12?, Mathematics Magazine 86(2) (2013), 143-146.
[5] R. Crandall and C. Pomerance, Prime numbers. A computational perspective, Springer, New York, second edition, 2005.
[6] J. Gallian, Contemporary Abstract Algebra, Cengage Learning, Belmont, 7th edition.
[7] K. Genzlinger and K. Lockridge, Sophie Germain primes and involutions of \mathbb{Z}_{n}^{\times}, Involve 8(4) (2015), 653-663.
[8] L. Halbeisen and N. Hungerbühler, On generalized Carmichael numbers, Hardy-Ramanujan J. 22 (1999), 8-22.
[9] K. Ireland and M. Rosen, A classical introduction to modern number theory, Vol. 84 of Graduate Texts in Mathematics, Springer-Verlag, New York, second edition, 1990.
[10] A. Makowski, Generalization of Morrow's D numbers, Simon Stevin 36 (1962/1963), 71.
[11] P. Ribenboim, The new book of prime number records, Springer-Verlag, New York, 1996.
[12] N. J. A. Sloane, The on-line encyclopedia of integer sequences, June published electronically at http://oeis.org.

2010 Mathematics Subject Classification: Primary 11A05, 11A07, 11A15, 16U60.
Keywords: Diagonal property, diagonal unit, unit set of a ring, k-unit, Carmichael number, Knödel number and Carmichael generalized number.
(Concerned with sequences $\underline{A 033553}, \underline{A 050990}, \underline{A 050993}$ and A014117.)

[^0]
[^0]: John H. Castillo, Departamento de Matemáticas y Estadística, Universidad de Nariño
 E-mail address: jhcastillo@udenar.edu.co
 Jhony Fernando Caranguay Mainguez, Departamento de Matemáticas y Estadística, Universidad De Nariño

 E-mail address: jfernandomainguez@gmail.com

