ON A LUSCHNY QUESTION

VLADIMIR SHEVELEV

Abstract

Let $E_{n}(x)$ be Euler polynomial, $\nu_{2}(n)$ be 2 -adic order of $n,\{g(n)\}$ be the characteristic sequence for $\left\{2^{n}-1\right\}_{n \geq 1}$. Recently Peter Luschny asked (cf. [5], sequence A135517): is A135517(n) the denominator of $E_{n}(x)-E_{n}(1)$? According to a formula in A091090, this question is equivalent to the following one: is the denominator of $E_{n}(x)-E_{n}(1)$ equal to $2^{\nu_{2}(n+1)-g(n)}$? In this note we answer this question in the affirmative.

1. Introduction

Let $E_{n}(x)$ be Euler polynomial, $\nu_{2}(n)$ be 2 -adic order of $n,\{g(n)\}$ be the characteristic sequence for $\left\{2^{n}-1\right\}_{n \geq 1}$. Recently Peter Luschny asked (cf. [5], sequence A135517): is $\mathrm{A} 135517(\mathrm{n})$ the denominator of $E_{n}(x)-$ $E_{n}(1)$? According to a formula in A091090, this question is equivalent to the following one: is the denominator of $E_{n}(x)-E_{n}(1)$ equal to $2^{\nu_{2}(n+1)-g(n)}$? In this note we answer this question in the affirmative. Our proof is based on finding a simple explicit expression for the coefficients of Euler polynomial.

Remark 1. Note that Peter Luschny published in OEIS sequence A290646 in which he for the first time asked his question: "Is A290646 = A135517?" and in the version 2 of this note we referred to A290646. But after publication of version 2, the sequence $A 290646$ became a replacement sequence with no relation to this topic. Therefore, in order not to cause any inconvenience to the readers, we are forced to give this third version.

2. SEvERal CLASSIC FORMULAS AND THEOREMS

Euler polynomials $E_{n}(x)$ are defined by generating function

$$
\begin{equation*}
\frac{2 e^{x t}}{e^{t}+1}=\sum_{n=0}^{\infty} E_{n}(x) \frac{t^{n}}{n!} \tag{1}
\end{equation*}
$$

Below we use several known relations [1]

$$
\begin{gather*}
(-1)^{n} E_{n}(-x)=2 x^{n}-E_{n}(x) \tag{2}\\
E_{n}(0)=-E_{n}(1)=-\frac{2}{n+1}\left(2^{n+1}-1\right) B_{n+1}, \quad n=1,2, \ldots \tag{3}
\end{gather*}
$$

1991 Mathematics Subject Classification. 11B68; keywords and phrases: Euler poly-
where $\left\{B_{n}\right\}$ are Bernoulli numbers;

$$
\begin{equation*}
E_{n}^{\prime}(x)=n E_{n-1}(x) \tag{4}
\end{equation*}
$$

We use also the formula which is obtained by combining formulas (14) and (18) in [2] (see also [6]):

$$
\begin{equation*}
B_{n}=\frac{n}{2\left(2^{n}-1\right)} \sum_{j=0}^{n-1}(-1)^{j} S(n, j+1) \frac{j!}{2^{j}} \tag{5}
\end{equation*}
$$

where $\{S(n, j)\}$ are the Stirling numbers of the second kind.
Further recall that, according to Von Staudt-Clausen theorem [4], we have

$$
\begin{equation*}
B_{2 n}=I_{n}-\sum \frac{1}{p}, \tag{6}
\end{equation*}
$$

where I_{n} is an integer, $\{p\}$ are primes for which $p-1$ divides $2 n$.
Finally, denote by $t(n, k)$ the number of carries which appear in addition k and $n-k$ in base 2 , or, the same, in subtracting k from n. Then, by Kummer's known theorem (cf.[3]),

$$
\begin{equation*}
2^{t(n, k)} \|\binom{ n}{k} \tag{7}
\end{equation*}
$$

i.e., $t(n, k)$ is 2-adic order of $\binom{n}{k}$.

3. EXPLICIT FORMULA FOR COEFFICIENTS of $E_{n}(x)$

Let

$$
E_{n}(x)=e_{0}(n) x^{n}+e_{1}(n) x^{n-1}+e_{2}(n) x^{n-2}+\ldots+e_{n-1}(n) x+e_{n}(n) .
$$

Using (2), we immediately find

$$
e_{0}(n)=1, e_{2}(n)=e_{4}(n)=\ldots=0
$$

So, we have

$$
\begin{equation*}
E_{n}(x)=x^{n}+\sum_{\text {odd }} e_{k=1, \ldots, n}(n) x^{n-k} \tag{8}
\end{equation*}
$$

Further, by (4), $e_{k}(n)$ satisfies the difference equation

$$
\begin{equation*}
e_{k}(n)=\frac{n}{n-k} e_{k}(n-1) \tag{9}
\end{equation*}
$$

It is easy to see that the solution of (9) is

$$
\begin{equation*}
e_{k}(n)=C_{k}\binom{n}{k} \tag{10}
\end{equation*}
$$

Firstly, let us find $e_{k}(n)$ for odd n. Then by (3)

$$
e_{n}(n)=C_{n}=E_{n}(0)=-\frac{2}{n+1}\left(2^{n+1}-1\right) B_{n+1}
$$

So, by (10) for odd n we find

$$
\begin{equation*}
e_{k}(n)=-\frac{2}{k+1}\left(2^{k+1}-1\right) B_{k+1}\binom{n}{k} . \tag{11}
\end{equation*}
$$

Now let n be even. Let us show that the formula for $e_{k}(n)$ does not change.
Indeed, again by (4), we have

$$
(n+1) E_{n}(x)=E_{n+1}^{\prime}(x)
$$

So, by (9) and (11), we have

$$
\begin{gathered}
x^{n}+\sum_{\text {odd } k=1, \ldots, n} e_{k}(n) x^{n-k}= \\
\frac{1}{n+1}\left((n+1) x^{n}+\sum_{\text {odd }} C_{k=1, \ldots, n+1}\binom{n+1}{k}(n+1-k) x^{n-k}\right)= \\
x^{n}+\sum_{\text {odd }} \sum_{k=1, \ldots, n-1} C_{k}\binom{n+1}{k} \frac{n+1-k}{n+1} x^{n-k} .
\end{gathered}
$$

Hence, for even n we find

$$
\begin{equation*}
e_{k}(n)=-\frac{2}{k+1}\left(2^{k+1}-1\right) B_{k+1}\binom{n}{k} \tag{12}
\end{equation*}
$$

that coincides with (11).
Let x be a rational number. Below we denote by $N(x)$ the numerator of x and by $D(x)$ the denominator of x, such that $N(x)$ and $D(x)$ are relatively prime.
Now note, that by (7), $D\left(B_{k+1}\right)$ (k is odd) is an even square-free number, while $N\left(B_{k+1}\right)$ is odd. Hence, $\left(2^{k+1}-1\right) N\left(2 B_{k+1}\right)$ is odd number. Finally, by (11)-(12) and (5) we have (for odd k):

$$
\begin{equation*}
e_{k}(n)=-\binom{n}{k} \sum_{j=0}^{k}(-1)^{j} S(k+1, j+1) \frac{j!}{2^{j}} \tag{13}
\end{equation*}
$$

This yields that $D\left(e_{k}(n)\right)$ could be only a power of 2 . This means for (11)(12), that $D\left(e_{k}(n)\right)$ is really

$$
\begin{equation*}
D\left(e_{k}(n)\right)=2^{\left.\nu_{2}(k+1)-\nu_{2}\binom{n}{k}\right)}, \tag{14}
\end{equation*}
$$

where $\nu_{2}(n)$ is 2 -adic order of n.
Add that, since $\operatorname{sign}\left(B_{2 n}\right)=(-1)^{n-1}$, then, by (11)-(12), $\operatorname{sign}\left(e_{k}(n)\right)=$ $(-1)^{\frac{k+1}{2}}$.

4. Answer in the affirmative on the Peter Luschny question

Let, according to the question,

$$
E_{n}^{*}(x)=E_{n}(x)-E_{n}(1) .
$$

By (3),

$$
\begin{equation*}
E_{n}^{*}(x)=E_{n}(x)+E_{n}(0) . \tag{15}
\end{equation*}
$$

In case of odd n, when $E_{n}(0) \neq 0, E_{n}^{*}(0)=2 E_{n}(0)$. So, the formula (14) for the corresponding coefficients $e_{k}^{*}(n)$ takes the form

$$
\begin{equation*}
D\left(e_{k}^{*}(n)\right)=2^{\left.\nu_{2}(k+1)-\nu_{2}\binom{n}{k}\right)-\delta_{n, k}}, \tag{16}
\end{equation*}
$$

where $\delta_{n, k}=1$, if $k=n$, and $\delta_{n, k}=0$, otherwise. Further, by (16), we have

$$
\begin{gather*}
D\left(e_{k}^{*}(n)\right)=2^{\nu_{2}\left((k+1) /\binom{n}{k}\right)-\delta_{n, k}}=2^{\nu_{2}\left((n+1) /\binom{n+1}{k+1}\right)-\delta_{n, k}}= \\
2^{\nu_{2}(n+1)-\nu_{2}\left(\binom{n+1}{k+1}\right)-\delta_{n, k}} . \tag{17}
\end{gather*}
$$

Now, by (7), we have

$$
\begin{gather*}
D\left(E_{n}^{*}(x)\right)=2^{\max (o d d \quad k=1, \ldots, n)\left(\nu_{2}(n+1)-t(n+1, k+1)-\delta_{n, k}\right)}= \\
2^{\nu_{2}(n+1)-\min (o d d \quad k=1, \ldots, n)\left(t(n+1, k+1)+\delta_{n, k}\right)} . \tag{18}
\end{gather*}
$$

Let firstly $n=2^{m}-1, m \geq 1$. Then in (18) we obtain the minimum in case $k=n$ when $t(n+1, k+1)=0$. So, since $\operatorname{delta}(n, n)=1$, the minimum is $1=g(n)$. So, by (18),

$$
D\left(E_{n}^{*}(x)\right)=2^{\nu_{2}(n+1)-g(n)} .
$$

Let now a positive n have not a form $2^{m}-1$. Let us show that in this case the minimum in (18) is 0 . Indeed, take $k=2^{u(n)-1}-1$, where $u(n)$ is the number of $(0,1)$-digits in the binary expansion of n. Then $k<n$ and evidently $t(n+1, k+1)=0$. Since also $\delta(n, k)=0$, then the minimum in (18) is 0 . So,

$$
D\left(E_{n}^{*}(x)\right)=2^{\nu_{2}(n+1)}
$$

and since here $g(n)=0$, we complete the proof.

Acknowledgement. The author thanks Jean-Paul Allouche for sending article [2] and for useful discussions.

References

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, 1972, Ch. 23.
[2] H. W. Gould, Explicit formulas for Bernoulli numbers, Amer. Math. Monthly, 79, no. 1 (1972), 44-51.
[3] H. Hasse, Number Theory, Classics in Mathematics, Springer-Verlag, 2002.
[4] H. Rademacher, Analytic Number Theory, Springer-Verlag, N. Y., 1973.
[5] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences http://oeis.org. [6] Wikipedia, Bernoulli numbers. Subtitle: "Connection with Worpitzky numbers."

Department of Mathematics, Ben-Gurion University of the Negev, BeerSheva 84105, IsRaEL. E-MAIL:SHEVELEV@BGU.AC.IL

