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Abstract

We give an improved algorithm for counting the number of 1324-avoiding permutations,
resulting in 14 further terms of the generating function, which is now known for all lengths ≤ 50.
We re-analyse the generating function and find additional evidence for our earlier conclusion
that unlike other classical length-4 pattern-avoiding permutations, the generating function does
not have a simple power-law singularity, but rather, the number of 1324-avoiding permutations
of length n behaves as

B · µn · µ
√
n

1 · ng.

We estimate µ = 11.600± 0.003, µ1 = 0.0400± 0.0005, g = −1.1± 0.1 while the estimate of B
depends sensitively on the precise value of µ, µ1 and g. This reanalysis provides substantially

more compelling arguments for the presence of the stretched exponential term µ
√
n

1 .

1 Introduction

In an earlier paper [4], two of the current authors gave further coefficients and a detailed analysis
of the generating function for 1324 pattern-avoiding permutations (PAPs), extending the known
ordinary generating function (OGF) by a further 5 terms. That analysis led us to conjecture that,
unlike the known length-4 PAPs, notably the classes Av(1234) [12] and Av(1342) [2], the OGF for
Av(1324) included a stretched exponential term. That is to say, if pn denotes the number of n-step
Av(1324) permutations, then

pn ∼ B · µn · µ
√
n

1 · ng, (1)

where estimates of the parameters were given.
In the present paper, we present a new, substantially improved algorithm that allows us to give

14 further terms1.
This stretched exponential behaviour is not without precedent. There are a number of models

in mathematical physics whose coefficients possess this more complex asymptotic structure. In par-
ticular, Duplantier and Saleur [7] and Duplantier and David [6] studied the case of dense polymers
in two dimensions, and found the partition functions had the asymptotic form const ·µn ·µnσ1 ·ng. In
[21], Owczarek, Prellberg and Brak investigated an exactly solvable model of interacting partially-
directed self-avoiding walks (IPDSAW), and found the coefficients behaved with this asymptotic
form, and estimated σ = 1/2, g = −3/4, while the sub-exponential growth constant µ1 was found
to more than 5 digit accuracy. From [3] the value of µ is exactly known. Subsequently Duplantier

∗email: andrew1324@greatcactus.org
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1The only limit to obtaining additional terms is computer memory. The present calculation required about 4.2TB

of (distributed) memory.
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[5] pointed out that σ = 1/2 is to be expected, not only for IPDSAWs, but also for SAWs in the
collapsed regime. He went on to predict the value of the exponent g in that case. For self-avoiding
walks and polygons attached to a surface and pushed toward the surface by a force applied at their
top vertex, Beaton et al [1] gave probabilistic arguments for stretched exponential behaviour, but

with growth µn
3/7

1 .
Such stretched exponential behaviour is also seen in other combinatorial problems. If one

considers the cogrowth series of certain infinite, finitely generated amenable groups [9], one sees
similar, and sometimes more complex, behaviour. For example, for the lamplighter group, the
coefficients of the cogrowth series ln behave as

ln ∼ const. · 9n · µn
1/3

1 · n1/6,

[23], whereas for the wreath products Z o Z and (Z o Z) o Z the coefficients behave as

wn ∼ const. · 16n · µn
1/3 log2/3(n)

1 · ng,

and

wn ∼ const. · 36n · µ
√
n log(n)

1 · ng,

respectively [22]. For the case of 1324-PAPs we have good numerical evidence for the absence of
such a confluent logarithmic term in the exponent, which we discuss below.

In the next section we give details of the algorithm. In subsequent sections we give our analysis.

2 The algorithm

The algorithm like many is based upon recursive solution of a set of equations

f(S) =
∑

s∈n(S)

f(s)

where n(S) is a set (or possibly multiset if the same s appears with multiplicity) of possible substates
of S, culminating in some final states for which f(S) = 1. These states correspond to the build up
of permutations one entry at a time, with each pass through the equation corresponding to adding
one extra entry.

As an example, one could use this formalism to enumerate all n length permutations, saying
the state is the number n of as yet unchosen elements. Then state n would have n substates, each
n − 1. This reduces to the normal factorial recurrence f(n) = nf(n − 1). To enumerate PAPs, a
more complex state is needed.

In the prior paper [4], the state consisted of a series of numbers being the length of contiguous
series of unchosen elements of the permutation, together with brackets to store sufficient information
to prevent a 1324 pattern. For instance, the state 4(2)1 means that there are four contiguous
numbers left to be chosen, then two contiguous numbers that may not be chosen until all numbers
after them have been chosen, then 1 number. Each pass through the equation reduced the sum of
the available numbers by one.

The big insight is that this is unnecessarily fine grained. If one adds together all states with a
given pattern of brackets and numbers, ignoring what the numbers actually are other than their
total sum, the equations still work. As the start state and end state contain only a single number,
there is no problem in summing them. This significantly reduces the total number of states, and
thus the running time and memory use of the enumeration.

A second insight is that by tracking states by what is taken rather than by what is available,
the states can be represented by Dyck paths, or link patterns, or by any set in bijection with these,
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and enumerated by the Catalan numbers [26]; here we choose to use link patterns, as they provide
a convenient graphical description of the algorithm. Since explicit bijections of these objects in
length say 2k to {1, . . . ,Catalank = (2k)!

k!(k+1)!} are known, we can encode them as integers. The
reader should be warned that k here is not the length of the permutation; it can vary from state
to state, with the upper bound 2k ≤ n.

The intuitive view of this way of tracking states comes from considering a prefix P of a 1324
avoiding permutation of 1 . . . n, and considering what constraints it puts on subsequent elements
of the permutation. If P contains n, then this cannot be part of a 1324 pattern where the 4 is in
the suffix, so the n is irrelevant as a constraint on the future, and can be safely ignored, turning
the problem into a permutation of 1 . . . n − 1. This process is repeated until all numbers in P
are lower than the largest number remaining in the suffix. The remaining numbers in P must be
132 avoiding, as otherwise the largest number, now in the suffix, would cause a 1324 pattern. 132
PAPs of a given length are enumerated by the Catalan numbers, and are readily bijectable to link
patterns.

2.1 States

The algorithm proceeds in time steps, t = 0, . . . , n, where n is the length of the 1324 permutations
to count. We can also parameterise steps by the number s of elements left to insert, with s = n− t.
This number will decrease by one each step through the algorithm, and will generally be assumed
to be present hereafter and not explicitly mentioned.

A state of the algorithm consists of a link pattern, that is a matching of 2k vertices on a line
(i.e., a partition of these vertices into pairs) in such a way that the links (the pairings) can be
drawn in a half-plane without crossing each other. The number k is state-dependent (we shall give
some bounds on k below).

Each link in the link pattern represents a consecutive (but not necessarily ordered) sequence
of elements of the permutation. The right end of the link represents the place of the rightmost
element in this sequence (a potential 3 in the 1324 pattern), and the left end of the link represents
the sequence of consecutive elements containing the smallest number that came earlier in the
permutation than an element of the current sequence (a potential 1 in the 1324 pattern).

New elements in the permutation can be added before or after a link, unless some other link
surrounds it, which would mean that the element would be a 2 in the pattern, and then a 4 would
inevitably arise as the state always assumes the largest element has not arrived (by simplifying the
problem as described above if it has arrived).

As an example of the state from a concrete permutation, see table 1.
Generally, to get all possible child states of a given state one could insert elements into any of

the spaces before or after links that are not surrounded by other links. These elements may or may
not be consecutive with the links on the left and/or right, giving in general four possibilities for
each insertion point:

1. Insert an element not consecutive on either side. This will add a link from the inserted place
back to the start of the pattern.

2. Insert an element consecutive with link to left. This may not be done if inserting to the left
of the pattern. The new element merges in with the arc to its immediate left. Extend the
left end of this arc back to the start of the pattern.

3. Insert an element consecutive with link to right. For all consecutive link openings immediately
to the right of the insertion point, move their openings to the start of the pattern. If there
are no links to the right, then this is the highest number and has no effect.
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Element Notes Result

Start state ∅
5 Not consecutive with anything; future

elements could go either side.

5

4 Consecutive with 5 and so merged into
it.

4−5

2 New link as not consecutive with any-
thing.

2 4−5

7 Larger than a previous link, makes con-
straint that no new elements between 2
and 7 may be added until every element
greater than 7 has been added.

2 4−5 7

10 Removed from consideration as largest
element

2 4−5 7

8 Merged with 7 2 4−5 7−8

9 Merges the 7 − 8 link with the largest
element; said link removed from con-
sideration.

2 4−5

1 Merges with 2 link 1−2 4−5

3 Merges the 1− 2 and 3− 5 links 1−5

6 Merges the 1 − 5 link with the largest
element

∅

Table 1: An example of the state as the permutation 5 4 2 7 10 8 9 1 3 6 is built up. The numbers
above the link diagrams indicate the actual numbers that the link end represents.
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4. Insert an element consecutive with link to both left and right. This may not be done if
inserting to the left of the pattern. This will merge the links on either side of the inserted
element. Erase the link to the left, and for all consecutive link openings immediately to the
right of the insertion point, move their openings to the start of the pattern. If there is no
link to the right, then this just fills in the last space, and erasing the link to the left has dealt
with everything.

An example of these operating in practice is given in figure 1.
Note that a state with more links than remaining elements to insert can never be completed

and should be discarded. Inversely, each step can only increase the size of a link pattern by 2. In
other words, we have the inequalities:

k ≤ min(s, t) where


k = half-size of link patterns,

s = #elements left to insert,

t = #past time steps

(2)

and we recall that s+ t = n.
A link diagram state can be mapped to a state similar to the states used in [4] by replacing

each link by a bracket containing anything under said link, followed by a placeholder for one or
more numbers. The whole thing should be preceded by a placeholder for 0 or more numbers.

Remark. If one uses only moves 1 and 4, one generates this way (the number of) alternating 1324-
avoiding permutations [24].

2.2 Transfer matrix

The set of equations defined by the state and child states above can be solved recursively in a
straightforward manner using dynamic programming, but a more memory efficient method is to
use the transfer matrix method. This involves two sets at each point, a source and a destination.
Start with the “source” set consisting of the start state ∅ and associated multiplicity 1. Then for
each child state of each element in the source set, add that to a “destination” set with the same
multiplicity as associated with the source state. When an element gets added multiple times to
the destination set, sum the multiplicities. Each element in the destination set will now have n− 1
elements remaining. Now clear the (no longer needed) source set, swap the source and destination
set, and repeat the process until down to 0 remaining elements. The multiplicity of the ∅ element
is the desired answer.

An example of the full transfer matrix computation for length seven is given in figure 2. Each
row represents one set in the transfer matrix. Each node contains the state and the associated
multiplicity. Lines between them indicate that the lower state is a child of the upper state; if it is
a child multiple ways, that multiplicity is shown through the thickness of the line. The number of
permutations of n elements can be found from the multiplicity of the ∅ node on line n+ 1 of this
figure.

The transfer matrix saves some memory relative to dynamic programming as old states can
be discarded when not needed. Since each state in a set contains exactly the same number of
remaining elements, there is no need to store that as part of the state. As each link diagram can
be mapped to an integer efficiently, there is no need to use a hash table, rather a simple array can
be used.

The main algorithm then consists of passing elements from one array to another. Instead of
iterating over the source array and computing all destinations, it is possible to do the converse;
to iterate over the destination array and compute all sources. This is mathematically equivalent,
but in the case of parallel processing in a shared memory system it is significantly more efficient
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Figure 1: Construction of all twenty three Av(1324) PAPs of length 4. The numbers in lines match
the actions from section 2.1. The dot diagrams are the permutations being built up (read from top
to bottom), with vertical bars indicating where future dots should be inserted; the link diagram is
the state.

6



∅
1

∅
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2 4 1 1

∅
6 17 7 9 1 1 1 1 1

∅
23 80 42 63 10 12 12 13 15

∅
103 410 251 414

∅
513 2249

∅
2762

Figure 2: The transfer matrix method for Av(1324) PAPs of length 7. Double and triple lines
represent connections with weights of two and three respectively.
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as each thread can be assigned some destination nodes to process, and may write to said nodes
without computationally expensive synchronization with other threads for each write. This allows
almost perfect efficiency of multi-threading on a single shared memory computer. However, this
approach is counter-productive in a message passing parallelisation system, where a shared write is
fast (send a message to the node storing that state), while a shared read is slow (send a message to
the node storing that state, and wait for a response or go on to do something else, saving enough
information to be able to remember what to do with the result when it does return).

The performance (both time and memory) is basically determined by the number of states,
which is the sum of the Catalan numbers up to size n/2 (rounded down). This is obtained by
maximizing k in Eq. (2), i.e., after n/2 iterations the longest states will be those with n/2 links2.
Afterwards, the number of states will reduce as they will be constrained by the number of remaining
elements, being an upper bound on the number of links allowed. As the Catalan numbers grow like
4n/
√
πn3, the algorithm uses roughly 4 times as much memory each time n increases by 2.

2.3 Running

We wrote a C program using message passing to run on a distributed system, and ran it in the
Spartan [20] cluster at the High Performance Computing Centre at the University of Melbourne on
168 cores with 20GB per core. The computation was performed five times, each with computations
performed modulo a number close to 216, so that only 16 bits of storage were needed for each
state. Each run took several hours. The actual answers were then reconstituted using the Chinese
remainder theorem. This produced the series up to length 50 permutations. The series is presented
in table 2 (see also [25]).

3 Differential approximant analysis

The most successful numerical method for extracting the asymptotics from the first few terms of
the OGF of a function with a power-law singularity is the method of differential approximants, due
to Guttmann and Joyce [17], with subsequent refinements due to Baker and Hunter [18] and Fisher
and Au-Yang [10]. Details are given in [14, 16, 13]. In brief, the method fits available coefficients to
a judiciously chosen family of D-finite ordinary differential equations (ODEs), and the singularity
structure of the ODEs is extracted by standard methods [19, 11].

For models with an isolated power-law singularity, the method is very successful, with estimates
of the radius of convergence and critical exponents frequently accurate to 10–20 significant digits
or even more. However, when the method is used to analyse models with singularities that are
not simple power-laws, such as those whose coefficients have stretched-exponential behaviour, the
method fails, though in a predictable manner. In that case one finds that the radius of convergence
estimates are typically only accurate to two or three significant digits, and the critical exponent
estimates are numerically large and sporadic, and cannot be relied upon.

In this way, the method is useful – as is a canary in a coal mine. If one analyses the known
terms of a series with the method of differential approximants and finds estimates of the radius of
convergence to be poorly converged, with numerically large exponent values, which are not mutually
consistent, one can be confident that the underlying OGF does not have a power-law singularity.
Applying the method to the first 30 terms of the Av(1342) and Av(1234) PAPs, which are known
to be D-finite, the complete solution is found. Applying the method to the coefficients we have

2These come from adding 1, 3, 5, up to n−1, in some 132 avoiding permutation. This means there will be exactly
one multiplicity for each state in the first step of the transfer matrix containing that state. Given this, there is no
point storing or calculating these states, reducing the memory use by effectively one term. We used this, and also
the next term – states which had one adjacency – to get yet another term without extra memory use. The formula
for that is somewhat more complex.
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1
2
6
23
103
513
2762
15793
94776
591950
3824112
25431452
173453058
1209639642
8604450011
62300851632
458374397312
3421888118907
25887131596018
198244731603623
1535346218316422
12015325816028313
94944352095728825
757046484552152932
6087537591051072864
49339914891701589053
402890652358573525928
3313004165660965754922
27424185239545986820514
228437994561962363104048
1914189093351633702834757
16130725510342551986540152
136664757387536091240503406
1163812341034817216384582333
9959364766841851088593974979
85626551244475524038311935717
739479176041581588794042743521
6413612398452364144369673970347
55855094052029166019855630997080
488354507551082299792086219184434
4286013140398612535730177106798038
37753338738386034300928290519149333
333720028221302436110132711265898937
2959914488410727889919188039470296624
26338690757116988316771828238926079326
235113956679181729949424482617740434207
2105162587512716675745868833684827184388
18904804517351837590874336467009693522354
170253750251391700942449152528030601519757
1537516984674177479234766336099763469212469

Table 2: The first 50 terms of the Av(1324) series.
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for Av(1324) PAPs, the method suggests that the radius of convergence is around 0.09, with an
exponent variously estimated to be −20 or +15 or anything in between! This is the hallmark of a
non-power-law singularity.

However there is another property of differential approximants that has recently been eluci-
dated that is very useful for our purposes. Trivially, every differential approximant is an ODE.
That ODE reproduces exactly those coefficients used in its construction (obviously), but also im-
plies approximate values for all subsequent coefficients. What is surprising is how accurate these
predicted coefficients can be even when the differential approximants give poor estimates of the
critical point and exponent. We refer to this prediction of additional coefficients beyond those used
in construction of the DA as series extension.

The idea of series extension was introduced and studied in [15], and has been used in several
recent calculations. For example, in [9], the authors took the first 32 coefficients of the cogrowth
series of the group Z o Z discussed above, and used them to predict a further 89 coefficients. The
predicted error was obtained by constructing a number of differential approximants and, for each
coefficient, forming the average among the predicted values. Taking the confidence-interval as 1.5
standard deviations from the mean, they showed that the predicted error was less than or equal
to the actual error. The actual error increased from 1 part in 2.7 × 10−17 for the first predicted
coefficient to 1 part in 4.6 × 10−3 for the eighty-ninth coefficient. In another example where the
solution is not D-finite, that of 4-valent Eulerian orientations, counted by vertices3, the authors
used the first 100 coefficients to usefully predict the next 1000 [8].

The first use of this method here was to calculate the last coefficient. Using 16-bit co-primes, ten
runs would have been needed to calculate p50. The method of series extension allowed us to predict
the first twenty-nine digits of p50, so only three primes were needed to calculate the coefficient, and
we used a fourth as an extra check. For Av(1324) PAPs we have 50 coefficients, and have used
these to estimate the next 200 ratios and the next 175 coefficients. As discussed in [15], the errors
(estimated as 1.5 standard deviations) of the extrapolated ratios increase more slowly than those
of the coefficients, so we can predict more estimated ratios than coefficients.

Further details of the method of differential approximants, its successes and limitations are
discussed in [14]. Further details of its application to series extension can be found in [15].

3.1 Ratio analysis

As in our previous analysis of the 36-term series, our primary tool is based on the behaviour of
the ratio of successive coefficients. We also make use of the approximate ratios and coefficients, as
calculated by the method of series extension.

In the case of a simple power-law singularity with the asymptotic form of the coefficients given
by an ∼ const. · µn · ng, the ratio of the coefficients is

rn =
an
an−1

= µ

(
1 +

g

n
+ O(

1

n2
)

)
. (3)

If on the other hand the coefficients behave as

bn ∼ B · µn · µn
σ

1 · ng,

then the ratio of successive coefficients rn = bn/bn−1, is

rn = µ

(
1 +

σ logµ1
n1−σ

+
g

n
+
σ2 log2 µ1

2n2−2σ
+

(σ − σ2) logµ1 + 2gσ logµ1
2n2−σ

+
σ3 log3 µ1

6n3−3σ
+ O(n2σ−3) + O(n−2)

)
. (4)

3This is equivalent to the 6-vertex problem on a random quadrangulation.
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Figure 3: Plot of ratios of coefficients
against 1

n .

Figure 4: Plot of ratios of coefficients
against 1√

n
.

In particular, when σ = 1
2 , (here we are anticipating our findings), this specialises to

rn = µ

(
1 +

logµ1
2
√
n

+
g + 1

8 log2 µ1

n
+

log3 µ1 + (6 + 24g) logµ1

48n3/2
+ O(n−2)

)
. (5)

In order to determine the nature of the asymptotic form of the coefficients of the Av(1324) OGF,
we first plot the ratios of successive coefficients rn = pn/pn−1 against 1/n, as shown in Figure 3. In
this and subsequent plots we have used the first 50 exact ratios and the subsequent 200 predicted
ratios. Significant curvature is observed. This is inconsistent with an algebraic singularity, as can
be seen from eqn. (3). We next plot the same ratios against 1/

√
n in Figure 4, and the plot is seen

to be visually linear, implying, from eqn. (4) that σ ≈ 1/2. Linear extrapolation implies a limiting
value as n→∞ around 11.60.

We can significantly improve on this estimate by considering the sequence of extrapolants defined
by successive pairs of points. That is to say, one can simply linearly extrapolate successive pairs
of ratios (rk, rk+1) with k increasing up to 2404. A plot of successive extrapolants against 1/n is
shown in figure 5, which appears to be approaching a limit of around 11.60, or slightly below. We
also take σ = 1/2 as our (initial) conjectured value.

We can get somewhat more rapid convergence of the ratios if we remove the term O(1/n) from
eqn. (4), and this we do by calculating the modified ratios

ln = n · rn − (n− 1) · rn−1 = µ

(
1 +

logµ1
4
√
n

+O(n−3/2)

)
. (6)

We show the plot of these modified ratios ln against 1/
√
n in Figure 6, and the linear extrap-

olants of successive pairs of points taken from Figure 6 (as described above) is shown in Figure 7.
We again conclude that µ is very close to, and probably slightly below, 11.60.

In order to more accurately estimate the value of the exponent σ, we note from (4) that

(rn/µ− 1) ∼ const.nσ−1.
4Beyond this value, errors in the extrapolated ratios start to become visible.
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Figure 5: Linear extrapolants of successive
ratios against 1

n .
Figure 6: Modified ratios (6) against 1/

√
n.

A log-log plot of (1 − rn/µ) against log n, where we have taken 11.60 as the value of µ, is an
uninteresting linear plot. However if we calculate the gradient from successive pairs of points, then
the negative of this gradient is an estimator of the exponent 1−σ. We plot these estimators against
1/n in Figure 8, which provides compelling evidence that σ = 1/2. In our subsequent analysis, we
will assume this value. Repeating this analysis with various values of µ around 11.60, we find that
a value slightly below this, around µ ≈ 11.598 is most consistent with σ = 1/2.

Assuming then that σ = 1/2, from (5) it follows that

rn/µ = 1 +
logµ1
2
√
n

+
g + 1

8 log2 µ1

n
+ O(n−3/2).

In order to estimate µ1 and g, we solve, sequentially, the equations

rj/µ = 1 +
c1√
j

+
c2
j

+
c3

j3/2
, (7)

for j = k − 1, j = k and j = k + 1, with k ranging from 3 up to 49.
The results are shown in figures 9 and 10, plotting the parameters c1 and c2 respectively. The

first neglected term in the asymptotics is O(1/n2) which is O(1/n3/2) smaller than the term with
coefficient c1, so c1 is plotted against 1/n3/2. By a similar argument, c2 is plotted against 1/n. A
simple visual extrapolation gives the estimate c1 = −1.6075 ± 0.0025. The plot for c2 is difficult
to extrapolate. It appears to be turning near its end point, and we very tentatively estimate
0 < c2 < 0.1. From (5), c1 = logµ1/2 and c2 = g + 1

8 log2 µ1. Hence we estimate logµ1 ≈ −3.215,
and g ≈ −1.2.

Next we tried direct fitting to the parameters in the assumed asymptotic form. That is to say,
the assumed asymptotic form is

bn ∼ B · µn · µn
σ

1 · ng.

Therefore
log bn ∼ logB + n logµ+ nσ logµ1 + g log n. (8)

So if σ is known, or assumed, we have four unknowns in this linear equation. It is then straight-
forward to solve the linear system

log bk = c1k + c2k
σ + c3 log k + c4

12



Figure 7: Estimates of µ by linear extrap-
olants against 1

n .
Figure 8: Plot of estimates of 1− σ against
1
n .

Figure 9: Plot of estimates of parameter c1
of (7) against 1

n3/2 .
Figure 10: Plot of estimates of parameter
c2 of (7) against 1

n .
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for k = n − 2, n − 1, n, n + 1 with n ranging from 3 up to the maximal number of known or
approximated coefficients. Then c1 estimates log µ, c2 estimates log µ1, c3 estimates g and c4 gives
estimators of logB.

An obvious useful variation is in those cases where, say, µ is known, or accurately estimated.
Then one can solve

log(bn)− n logµ = c2n
σ + c3 log n+ c4 (9)

from three successive coefficients bn−1, bn, bn+1, as before increasing the order of the lowest used
coefficient by one until one runs out of coefficients. We do this below with our best estimate of µ.

Fitting the available coefficients to the four unknowns, we estimate c1 ≈ 2.451, implying µ ≈
11.60, (consistent with our earlier estimate), c2 = −3.225, implying µ1 ≈ exp(−3.225) = 0.0398 . . .,
c3 ≈ −1.15, which is an estimate of the exponent g, and c4 ≈ 1.7 implying B ≈ 5.5.

If we set µ = 11.598, and fit to the remaining three unknowns, we find c2 = −3.228, implying
µ1 ≈ 0.0396, c3 ≈ −1.15, which is an estimate of the exponent g, and c4 ≈ 1.9 implying B ≈ 6.7.

This estimate of the power-law exponent g around −1.15 needs further discussion. A pure
power-law logarithmic term, such as log(1 − µ · z) would correspond to g = −1, as indeed would
z/ log(1 − µ · z). Power-law behaviour of the latter type (the reciprocal of a logarithm) is known
to be difficult to analyse [8], typically giving rise to an exponent estimate of around −1.2 with
most methods of analysis. For this reason we are very cautious in our estimate of the value of the
exponent g, and so quote g = −1.1 ± 0.1, to include the possibility that in fact g = −1 exactly.
Indeed, an alternative analysis in Subsection 3.3 produces an estimate of g which is closer to −1
than this analysis. That being said, if the estimate g ≈ −1.15 can be believed, then seeking the
simplest rational fraction would lead to the guesstimate g = −7/6.

3.2 More complex stretched-exponential term?

As noted above, the stretched exponential exponent can sometimes occur with an exponent that
includes a multiplicative logarithmic factor, as seen in the cogrowth series for certain groups [22].
With the extended series we have, we can test for this as follows: Assume an asymptotic form for
the coefficients of

cn ∼ c · µn · µ
√
n logδ n

1 · ng.

Assume we know, or have a good estimate for, the growth constant µ. Then form the normalised
coefficients dn = cn/µ

n. Then define

en ≡ dn2 ∼ c · µn logδ n
2 · n2g,

where µ2 = µ1 · 2δ. The ratio of successive coefficients is now

r̃n =
en
en−1

= µlog
δ n

2 ·
(

1 +
2g

n

)
.

So if δ = 0, a plot of the ratios against 1/n should go to µ1 as n → ∞; but if δ > 0, the
ratio plot should diverge; while if δ < 0, the ratios should go to 1 as n → ∞. Using the estimate
µ = 11.60 the resultant ratio plot is shown in Figure 11, which is clearly extrapolating to a value
around 0.04, which is precisely the value previously estimated for µ1. Furthermore, this plot is not
hugely sensitive to the estimate of µ. Therefore we find that there is no evidence for a confluent
logarithmic term in the exponent of the stretched-exponential.
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Figure 11: Ratio plot of r̃n vs 1/n, giving estimates of µ2.

3.3 Using differential approximants

As noted above, differential approximants are useful insofar as they indicate that the singularity is
not a pure power-law. They provide a signal, but are then of no further use in their current form.

The presence of the µ
√
n

1 term is responsible for the lack of applicability of the method. However
we can manipulate the series to remove the offending term, and then use this powerful method.
From eqn. (8) one has

log bn ∼ logB + n logµ+
√
n logµ1 + g log n.

Then defining b̃n = log(bn)/
√
n, one has

cn = 2n3/2(b̃n − b̃n−1) =

(
2g − logB +

1

4
· logµ

)
+ n logµ− g log n (10)

So
dn = exp(cn) = D · µn · n−g.

In this way we have transformed the series to one whose coefficients behave asymptotically,
at least to leading order, like a function with an algebraic singularity. We can therefore analyze
the series with coefficients dn by the method of differential approximants (DAs). We summarise
the results in table 3. The column labelled L gives the degree of the inhomogeneous polynomial
of the approximating ODE. The entries give an average value for the position and exponent of
the singularity of the fitted ODEs. Full details of the method are given in [13, 16]. It is seen
that the 2nd-order DAs give estimates of the radius of convergence that can be summarised as
1/µ = 0.086205 ± 0.00003, or µ = 11.600 ± 0.004. The 3rd-order approximants are more stable,
allowing us to estimate µ = 0.086206± 0.00001, or µ = 11.6001± 0.0013. This is remarkably close
to estimates above, obtained by various other means. Note too that the estimate of the exponent
g is now closer to −1 than found by ratio methods, and, as discussed above, could possibly be −1
exactly.

We can also apply other traditional techniques to the transformed series. The ratios of successive
terms (dn) of the transformed series when plotted against 1/n are now linear, but as this doesn’t
give us a better estimate of µ than µ ≈ 11.60, we don’t show the figure here.

So in conclusion we suggest that the coefficients of Av(1324) PAPs behave as

B · µnµ
√
n

1 · ng,
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Table 3: Critical point and exponent estimates for renormalised Av(1324) PAPs

L Second-order DA Third-order DA

1/µ g − 1 1/µ g − 1

0 0.086197 -2.045 0.086206 -2.077
1 0.086210 -2.61 0.086205 -2.078
2 0.086215 -2.173 0.086204 -2.067
3 0.086206 -2.110 0.086205 -2.074
4 0.086203 -2.094 0.086209 -2.084
5 0.086198 -2.055 0.086207 -2.077
6 0.086199 -2.058 0.086206 -2.077
7 0.086195 -2.043 0.086204 -2.071
8 0.086209 -2.18 0.086206 -2.075
9 0.086203 -2.21 0.086205 -2.072
10 0.086167 -2.6 0.086203 -2.062

where µ = 11.600 ± 0.003, µ1 = 0.0400 ± 0.0005, g = −1.1 ± 0.1 while the estimate of B depends
sensitively on the precise value of µ, µ1 and g, so that if we vary these quantities over their
uncertainty range, the subsequent estimate of B ranges from 1 to 13, so we don’t quote an estimate.

For other length-4 PAPs, the growth constant µ is an integer. It is clearly not an integer in
this case. If it is a simple algebraic number – and we have no compelling reason why it should be
– then we note that 9 + 3

√
3/2 = 11.598 . . . is indistinguishable from our numerical estimate. As

discussed above, the exponent g could be exactly −1 (corresponding to some power of a logarithm)
or as high as −6/5, but the closest simple rational is −7/6. Despite these remaining uncertainties,
this reanalysis using a longer series, and with series extension, provides compelling arguments for

the presence of a stretched-exponential term of the form µ
√
n

1 in the case of Av(1324) PAPs.
If we take our most-favoured estimates, µ = 11.598, µ1 = 0.0398, g = −7/6, then B ≈ 9.0, and

the 1000th coefficient is 3.7× 101017. Note that in [27], Steingŕımsson gives a Monte Carlo estimate
of the ratio p1001/p1000 ≈ 11.011. From our central estimates of µ, µ1 and g, we find for this ratio
11.009, which is far better agreement than could reasonably be expected.

Acknowledgements

We wish to thank the High Performance Computing Centre at The University of Melbourne for
access to the Spartan cluster, on which the bulk of the calculations in this paper were performed.
We also wish to thank Dr Iwan Jensen for help in computing the last coefficient. PZJ was supported
by ARC grant FT150100232.

References

[1] Nicholas R. Beaton, Anthony J. Guttmann, Iwan Jensen, and Gregory F. Lawler, Compressed
self-avoiding walks, bridges and polygons, J. Phys. A 48 (2015), no. 45, 454001, 27, doi:10.1088/

1751-8113/48/45/454001. MR3417998.
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