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A new kind of spin-1 chain Hamiltonian consisting of competing dimer and trimer projection
operators is proposed. As the relative strengths and signs of the interactions are varied, the model
exhibits a number of different phases including the gapped dimer phase and the gapless trimer
phase with critical correlations described by a conformal field theory with central charge c = 2.
A symmetry-protected topological phase also exists in this model, even though the microscopic
interactions are not the simple adiabatic extensions of the well-known Haldane or the Affleck–
Kennedy–Lieb–Tasaki model and contains both two- and three-particle permutations. A fourth
phase is characterized by macroscopically degenerate ground states. While bearing almost a one-
to-one resemblance to the phase diagram of the bilinear-biquadratic spin-1 chain Hamiltonian, our
model is rooted on very different physical origin, namely the two competing tendencies of spin-1
particles to form singlets through either dimer or trimer formation.

PACS numbers: 75.78.n, 75.30.Ds, 12.39.Dc, 75.78.Cd

I. INTRODUCTION

Resonating valence bond (RVB) state has been stud-
ied for decades since Anderson proposed it as the ground
state of antiferromagnetic spin-1/2 Heisenberg model on
the triangular lattice [1]. After the Rokhsar-Kivelson
proposal for a short-range dimer RVB on the square lat-
tice [2] followed by the Moessner-Sondhi proposal to the
effect on the triangular lattice[3], quantum dimer model
and the dimer RVB state have been studied thoroughly
for various lattices. A good review of our understanding
of the short-range dimer RVB can be found in Ref. 4. As
a general consensus, a dimer liquid phase with Z2 topo-
logical order forms naturally in the non-bipartite lattice,
but not so in the bipartite lattice.

Recently, we proposed the trimer version of RVB state
on the square lattice [5]. It was carefully argued that a
liquid phase with Z3 topological order should be realized
by the trimer model despite the bipartite nature of the
square lattice. Trimers assumed in Ref. 5 reflect the spin
singlet made from three spin-1 particles in an appropri-
ately chosen spin Hamiltonian. A natural but challeng-
ing question is whether one can write down some mi-
croscopic spin-1 Hamiltonian supporting the trimer spin
liquid phase. To be clear, we refer to the spin singlet
formed by three adjacent spin-1 objects as the trimer.

In quantum trimer models such as proposed by the
present authors [5], as well as in all quantum dimer
models [4] or the recently proposed dimer-pentamer
model [6], orthogonality of different dimer, trimer, or
dimer-pentamer configurations are assumed from the
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outset. Treated as a real spin singlet, of course, the or-
thogonality is lost due to the singlet breaking into higher-
spin configurations, and this is the main reason that writ-
ing down an exact microscopic spin Hamiltonian for res-
onating dimers becomes very hard [7–9]. We can instead
work with a simple enough spin Hamiltonian that em-
bodies a state quite like the quantum dimer or trimer
liquid. Due to the general challenge in writing down two-
dimensional spin models and in solving them reliably, we
are more likely to address the question effectively in the
one-dimensional context first.
Trimerization in spin-1 chain model has had an inter-

esting history. For instance, the issue drew significant
attention in the context of spin-1 bilinear-biquadratic
(BLBQ) Hamiltonian

HBLBQ =

N
∑

i=1

[

cos θ(Si · Si+1) + sin θ(Si · Si+1)
2
]

.

(1.1)

This model encompasses the spin-1 antiferromagnetic
Heisenberg model at θ = 0, [10] exactly solvable Affleck-
Kennedy-Lieb-Tasaki (AKLT) Hamiltonian at tan θ =
1
3 , [11, 12] and several integrable models [13–20] as spe-
cial points. The phase diagram of this model Hamilto-
nian has been carved out over the past several decades
(see Fig. 1)[13–26]. Undoubtedly the most important
phase of the BLBQ model is the Haldane phase, realized
over−π/4 < θ < π/4, which is a translationally invariant
state with massive excitations. More recently, the Hal-
dane phase came to be identified as an example of the
symmetry-protected topological phase, or SPT for short,
with an intriguing double degeneracy in the entanglement
spectrum protected by discrete symmetries [27, 28].
Technically, the phase that took a considerable amount

of effort in clarifying its nature exists over the π/4 <
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θ < π/2 region of the BLBQ model. The θ = π/4
point is the well-known Uimin-Lai-Sutherland (ULS)
Hamiltonian[13, 29, 30], which has the enhanced SU(3)
symmetry despite being a spin-1 model. It is solvable
by Bethe ansatz and possesses gapless spinon modes. An
early pioneering numerical study by Fáth and Sólyom has
seen signatures of period-3 oscillations in various phys-
ical observables. Possibilities of the trimerized ground
state have been raised by several theorists [21, 23]. An
exact Hamiltonian for the three-fold degenerate trimer
solid ground state was proposed by Schmitt et al. [25],
Sólyom and Zittartz [31], and more recently by Rachel
and Greiter [32], in a generalization of the Majumdar-
Ghosh Hamiltonian of the dimer solid ground state of
spin-1/2 chain [33]. As the exact model construction for
the trimer leaned in favor of the gapped ground state with
translational symmetry breaking, the numerics of Fáth
and Sólyom has come down on the side of gapless phase
for π/4 < θ < π/2 region of the BLBQ model. These
days, this region is best described as the spin quadrupo-
lar (SQ) phase after the numerical works such as Refs.
25, 26 that tried to identify the dominant correlations in
this phase.
In this paper, we propose a new class of spin-1 Hamil-

tonians, motivated by the simple observation that there
are two ways in which S = 1 spins can form a singlet: one
is by dimerizing the two adjacent spins, and the other is
by trimerizing the three adjacent spins. Singlet forma-
tion over more than three sites is neglected. We thus
consider a model that consists of dimer and trimer pro-
jection operators as

HDT = −
∑

i

(

cos θ D(i) + sin θ T (i)
)

. (1.2)

This will be called the dimer-trimer (DT) Hamiltonian
throughout the paper. The operators D(i) and T (i) are
proportional to the dimer and trimer projection oper-
ators, respectively, to be defined precisely in the next
section.
The rest of the paper concerns the analysis of the pro-

posed DT Hamiltonian. Dimer and trimer projection
operators are introduced in Sec. II. In Sec. III, the
phase diagram of the DT model is worked out as a func-
tion of θ using the powerful density-matrix renormaliza-
tion group (DMRG) method of identifying the ground
state. Four phases are identified: dimer, SPT, trimer liq-
uid, and macroscopically degenerate, respectively. The
dimer phase is gapped and breaks the translational sym-
metry of the lattice. The trimer liquid phase is criti-
cal and shares many physical properties with the spin
quadrupolar phase of the BLBQ Hamiltonian. The SPT
phase exhibits the even-number degeneracy in the entan-
glement spectrum that remains robust against perturba-
tions [27]. The macroscopically degenerate phase literally
carries the ground state degeneracy that grows exponen-
tially with the lattice size. Interesting parallel with, and
differences from, the phase diagram of the BLBQ model
Hamiltonian is pointed out along the way.

II. DIMER AND TRIMER PROJECTION

OPERATORS

Our first task is to give proper definition to dimer and
trimer operators. Using the spin-1 operator Si at each
lattice site, Sij = Si + Sj for a pair of adjacent sites
(j = i + 1), and Sijk = Si + Sj + Sk for a triplet of
adjacent sites (k = i+2), the dimer and trimer projection
operators can be expressed as

PD(i) =
1

12

(

S
2
ij − 2

) (

S
2
ij − 6

)

=
1

3
(Si · Sj)

2 − 1

3
,

PT (i) = − 1

144

(

S
2
ijk − 2

) (

S
2
ijk − 6

) (

S
2
ijk − 12

)

. (2.1)

Each projection operator gives +1 for the spin singlets,
and 0 for all other spin multiplets. The projectors are
related to D(i) and T (i) in the DT Hamiltonian (1.2) by

D(i) = 3PD(i), T (i) = 6PT (i). (2.2)

It is not widely appreciated in the literature, and there-
fore requires some highlighting here, that the dimer pro-
jection operator is equivalent to the pure-biquadratic
(PBQ) spin interaction up to constants. The PBQmodel,
corresponding to θ = 0 in the DT Hamiltonian, is known
to be exactly solvable [16–20].
The trimer projection operator looks much more com-

plicated by contrast, and involves three-site spin inter-
actions. The trimer singlet state given by the totally
anti-symmetric combination

|trimer〉 = 1√
6

∑

a,b,c

εabc|a, b, c〉, (2.3)

where a, b, c = +1, 0,−1 refers to the Sz eigenvalue, is
invariant under the SU(3) transformation, and εabc is
the antisymmetric tensor. This observation prompted us
to seek an alternative expression in terms of Gell-Mann
matrices, and subsequently use the identity relating the
inner product of Gell-Mann matrices to the exchange op-
erator Pij :

Λi ·Λj = 2Pij −
2

3
, (2.4)

where Λi = (Λ1
i , · · · ,Λ8

i ) is s a collection of eight Gell-
Mann operators at site i. The exchange operator Pij

swaps the state at site i with the state at site j. By using
the exchange operators, we can arrive at an interesting
alternative expression of the trimer projector:

PT (i) =
1

6

(

1 + Pijk + P−1
ijk − Pij − Pjk − Pki

)

. (2.5)

The three-site ring exchange operators [34] are intro-
duced as

Pijk =PjkPij = PikPjk = PijPik,

P−1
ijk =PijPjk = PjkPik = PikPij . (2.6)
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The trimer projector is a sum of three-spin exchange
among the three adjacent sites, minus the pairwise ex-
change for adjacent and second-adjacent sites. Recall-
ing the relation Si · Sj + (Si · Sj)

2 = Pij + 1, the
dimer projection operator can be expressed as PD(i) =
1
3 (Pij − Si · Sj).

TL

Dimer
MD

SQ

Dimer

SPT

Haldane
FM

ULS

AKLT

PT

TB

(a) (b)

FIG. 1: Phase diagram of (a) BLBQ model and (b) DT
model as a function of the mixing angle θ. Abbrevia-
tions stand for FM=ferromagnetic, MD=macroscopically de-
generate, SPT = symmetry-protected topological, SQ=spin-
quadrupolar, TL=trimer liquid. In both phase diagrams, the
dimer phase is topologically trivial and gapped, with ground
states that break the translation symmetry. Haldane (SPT)
phase is topologically non-trivial and translation-invariant.
SQ and trimer phases are both critical and carry the cen-
tral charge c = 2. MD phase has exponentially large ground
state degeneracy. The pure trimer (PT) point on the right
phase diagram possesses the full SU(3) symmetry, as does the
ULS model on the left.

The DT model coincides with the BLBQ Hamiltonian
at the two points, θ = 0, π. Otherwise, the nature of the
ground states for other values of θ remains to be explored.
We have carried out the DMRG calculation, keeping 3000
Schmidt states during the iteration and employing open
boundary condition on a chain of length L = 90, to work
out the phase diagram of the DT model. ITensor library
[35] is employed in the single-site DMRG calculation with
the noise algorithm [36]. By varying θ, we can carve out
most of the phase diagram for −π/2 < θ < π. Ground
states for π < θ < 3π/2 are hard to reach by DMRG due
to the large number of ground state degeneracies. We
use analytic arguments and exact diagonalization study
of the Hamiltonian to gain understanding of the ground
states here.

III. PHASE DIAGRAM

Several order parameters and their correlations were
calculated for each θ, in addition to the spin-spin corre-
lation function. They include the dimer average 〈PD(n)〉,
the trimer average 〈PT (n)〉, and their connected correla-
tion functions, 〈PD(x)PD(x+n)〉 − 〈PD(x)〉〈PD(x+n)〉
and 〈PT (x)PT (x+n)〉−〈PT (x)〉〈PT (x+n)〉. Here, we set
x = N/4, which is sufficient depth that the edge effects

died out. Note that we are using the dimer projector PD

as a measure of the dimer order rather than Si ·Sj , which
is the more commonly used measure of dimer correlations
in the literature. Results using both order parameters
lead to similar conclusions.

Figure 1 shows the phase diagram of the DT model
alongside the well-known one for the BLBQ model. We
were able to identify four phases altogether, bearing a
close resemblance to the BLBQ model despite very dif-
ferent character of microscopic interactions in the two
models.

(a)

(b)

(c)

(d)

FIG. 2: (a) Entanglement entropy, (b) dimer density 〈PD(n)〉,
(c) spin-spin correlation, and (d) dimer-dimer correlation for
θ = −0.45π (left column) close to the phase boundary and
θ = π/12 (right column) deep inside the dimer phase. Period-
2 oscillations appear in all the calculated quantities. Correla-
tion functions in log-linear plots (c) and (d) decay exponen-
tially.
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A. Dimer phase

It is known that the θ = 0, pure biquadratic Hamilto-
nian has the dimerized ground state with 〈PD(n)〉PBQ ≈
D0 + D1(−1)n, in reflection of the spontaneous trans-
lational symmetry breaking in the ground state[17–20].
Numerical data shown in Fig. 2 indeed finds such bi-
nary oscillations of the physical observables in space, as
well as in the entanglement entropy. The trimer average
remains zero within the resolution of our calculation.
Evidence of the gap in the energy spectrum comes

from exponentially decaying correlation functions shown
in Fig. 2 (c)-(d). Starting from the well-known dimer
state at θ = 0, we conclude that the extraneous trimer
interaction coming from θ 6= 0 is not destroying the dimer
order thanks to the protection from the energy gap. The
whole region −π/2 < θ . π/8 shows nearly identical
behavior in the physical quantities calculated, bolstering
the claim that this is the same dimer phase as seen at
the pure-biquadratic point. As a final indicator of the
dimer phase, the lowest level in the entanglement spec-
trum shows the characteristic alternation between single
and triple degeneracy depending on the even and odd
position of the cut. The same feature exists in the dimer
phase of the BLBQ Hamiltonian [37].

B. SPT phase

A very different feature emerges as soon as one moves
past θ = π/8. While all the calculated quantities for
θ = π/8 = 12π/96 have the characteristic properties of
the dimer phase - e.g. compare Fig. 2(a) to Fig. 3(a)
- the same calculation done at θ = 13π/96 gives a com-
pletely different picture; see Fig. 3(b)-(d). Even with
our choice of finely spaced angles θ, it was hard to detect
gradual changes in calculated properties near the phase
boundary, suggesting that it is likely the first-order phase
transition separating the dimer from the other phase tak-
ing place for θ & π/8, which we came to identify with the
SPT (Haldane) phase [48]
The period-2 oscillation vanishes completely in this

phase in restoration of the translation symmetry. At
the same time the trimer average becomes non-zero,
〈PT (i)〉 6= 0, while the dimer average continues to remain
finite. A check on the Haldane phase of the BLBQ Hamil-
tonian confirms that these order parameters are nonzero
there, too. It is still a gapped phase, as one can deduce
from various exponential correlations and the flatness of
the entanglement entropy shown in Fig. 3.
The most important check on the nature of the new

phase comes from the entanglement spectrum. As in the
Haldane phase of the BLBQ model [27], the entire entan-
glement spectrum of the DT model over this phase has
the degeneracy in multiples of four. For instance in Fig.
3, the fourfold degeneracy is only slightly imperfect at
θ = 13π/96, presumably due to a finite-size effect, but
completely restored at larger θ. The Haldane phase of the

(a)

(b)

(c)

(d)

FIG. 3: Entanglement entropy (left column) and entangle-
ment spectrum near the middle of the lattice (right column)
in the dimer phase (a) θ = π/8, and in the SPT phase (b)
13π/96, (c) 14π/96, and (d) 15π/96. At θ = π/8, EE still
has the period-2 oscillation and ES shows the alternating
3 − 1 − · · · degeneracy of the lowest levels characteristic of
the dimer phase. At θ = 13π/96, EE loses the period-2 struc-
ture and ES shows the 4-fold (sometimes 8-fold or 12-fold)
degeneracy in the entire spectra. The trend continues for
θ = 14π/96 and 15π/96.
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BLBQ Hamiltonian has the characteristic degeneracy in
multiples of two [27].

(a) (b) (c)

FIG. 4: Entanglement spectrum in the SPT phase at θ =
14π/96 and the system size N = 60 for the DT model with
extra perturbation (3.1). (a) only B 6= 0. (b) Only A and B
nonzero. Twofold degeneracy survives throughout the whole
spectrum in both cases. (c) only C nonzero. The even degen-
eracy is lifted, signaling the destruction of SPT phase.

To rule out the possibility that the fourfold degener-
acy in the entanglement spectrum is not accidental, we
subject the DT Hamiltonian to various perturbations as
suggested in Ref. 27:

δH =A
∑

i

(Sx
i S

y
i + Sy

i S
x
i ) +B

∑

i

Sz
i

+ C
∑

i

(Sz
i − Sz

i+1)(S
x
i S

x
i+1 + Sy

i S
y
i+1)

+ C
∑

i

(Sx
i S

x
i+1 + Sy

i S
y
i+1)(S

z
i − Sz

i+1). (3.1)

According to the SPT criterion of Ref. 27, the addition
of moderate amounts of A and B terms in the above
should not break even multiplicity of the entanglement
spectrum, but the addition of the C term should. As
shown in Fig. 4, this is exactly what we find for the DT
Hamiltonian in the putative topological phase. Although
the fourfold degeneracy was accidental and is easily lifted,
the twofold degeneracy survives the perturbation as long
as it does not violates the symmetry requirement.
After these stringent checks, we conclude that the re-

gion π/8 . θ < π/4 is a gapped topological phase which
is commonly known as the SPT lately [27, 28]. For this
range of θ values in the DT model, the two-site permuta-
tion, three-site ring exchange, and Heisenberg-type spin
interaction all contribute. Although in its appearance
this model does not resemble the AKLT or the Heisen-
berg Hamiltonian at all, we claim that they all belong to
the same SPT phase.

C. Trimer liquid phase

Another phase appears as θ = π/4 is crossed. As
with the dimer-SPT phase boundary, our numerics in

(b)DT ( )

(a)

(c)

(d)DT ( )

ULS

DT ( )

FIG. 5: Entanglement entropy (left column) and trimer av-
erage 〈PT (n)〉 for the trimer liquid phase at several θ values.
The ULS results are shown in (a) for comparison [38]. The red
curves in the entanglement entropy plots indicate the fitting
to the Calabrese-Cardy formula.

the SPT phase was not able to identify explicitly a grad-
ual decrease in the energy gap or the divergence of cor-
relation length near the phase boundary. In the BLBQ
Hamiltonian, the phase boundary separating the Haldane
phase from the gapless, spin-quadrupolar phase was the
ULS point in possession of exact SU(3) symmetry. The
symmetry of the DT model at or around θ = π/4 is
not SU(3). The true SU(3)-symmetric point in the DT
model is at θ = π/2, lying deep inside this new phase.
Based on a number of checks, we conclude the gapless
phase is very similar in physical properties to the spin-
quadrupolar phase in the BLBQ model is realized over
π/4 < θ < π. To be more precise, the phase is criti-
cal, with a good fit of the entanglement entropy behavior
to the conformal field theory prediction with the central
charge equal to 2. The same statement applies to the
spin-quadrupolar phase as well [26, 37].

As shown in Fig. 5, period-3 oscillations appear in
the entanglement entropy and the trimer density 〈PT 〉.
The dimer order remains very close to zero throughout
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the trimer phase. The cut-position dependence of the
entanglement entropy can be fit to the Calabrese-Cardy
formula [38–40]

Sn = SCFT
n + Sosc

n + c′

SCFT
n =

cN
6

log

[

2L

π
sin

(πn

L

)

]

Sosc
n =

∑

a

F a
(n

L

) cos(2aπn/N)

|L sin(πn/L)|∆a
. (3.2)

Here, Sn is the EE of the subsystem of length n, cN =
N − 1 and ∆a are the central charge and scaling dimen-
sion of the SU(N)1 Wess–Zumino–Witten theory, respec-
tively. Non-universal constant c′ and the universal scal-
ing function F a, also adequately approximated as a con-
stant, can be chosen to fit the EE data as well as one
can. All the entanglement entropies calculated within
the trimer phase fit nicely to the Calabrese-Cardy for-
mula with the same central charge cN = 2 (see Fig. 5).
It is well-known that the SU(3)-symmetric ULS model
has the SU(3) level-1 conformal field theory description
of its low-energy excitations [24]. We might speculate the
same theory to govern the low-energy behavior in the
trimer phase, especially at the exact SU(3)-symmetric
point θ = π/2.
The similarity of the pure trimer model with the ULS

model, both SU(3)-symmetric, extends into the entan-
glement spectrum. The degeneracy structure in the low-
lying ES exhibits a perfect agreement between the two
models as shown in Fig. 6. As one moves away from
the pure trimer point and the symmetry of the Hamil-
tonian lowered, some degeneracies get lifted as shown in
Fig. 6. Despite the lowered symmetry, the Calabrese-
Cardy formula fit of the entanglement entropy continues
to work well through the entire trimer region with the
same central charge c = 2.
The absence of energy gap in both ULS and pure trimer

models are guaranteed by the Lieb–Schultz–Mattis-type
theorem for SU(N) spin models proven by Affleck and
Lieb [41]. A more recent and advanced suggestion that
any symmetric representation of the SU(3) spin with a
single row of Young tableau boxes of length p not equal
to a multiple of 3 should give a gapless spectrum[42, 43]
is consistent with our observation, since both ULS and
pure trimer models are written in the fundamental rep-
resentation of SU(3) with p = 1. This symmetry is pre-
sumably lowered to U(1)×U(1) or SU(2)×U(1) as the
angle θ moves away from π/2. In both cases the overall
central charge remains at 1+1=2. The gapless modes of
the ULS model are the spinons carrying the fractional-
ized spin quantum number [13]. Guided by the identical
low-level entanglement spectrum structure we may spec-
ulate that the low-energy physical excitations of the pure
trimer model are also the spinons [44].
Algebraically decaying spin, spin-quadrupolar, and

trimer correlation functions are shown in Fig. 7. For
the spin-quadrupolar order we used (Sz

i )
2 as the opera-

tor. An interesting observation arises from our numeri-

(a) (b)

(c) (d)

ULS DT 

DT ( )DT ( )

FIG. 6: Entanglement spectrum for (a) ULS model [38]
and (b)-(d) DT model at various angles θ, starting from the
leftmost edge cut n = 1. For each cut position n, a perfect
correspondence in the degeneracy of the low-lying levels of
ULS model with the pure trimer model (θ = π/2) exists;
compare (a) and (c). Degeneracies get lifted as θ deviates
from π/2; see (b) and (d) plots.

cal investigation. For all three correlations, the ULS and
the pure trimer models, both SU(3)-symmetric, display
nearly identical results. As one moves away from either
pure trimer or the ULS point, behavior of the correla-
tion functions also changes, but not by a great deal. The
near-perfect identity of the correlation functions at the
respective SU(3)-symmetric points, together with their
slow variation with the angle θ, suggest that the trimer
phase we identify in the DT model is the same phase
as the spin-quadrupolar phase of the BLBQ model. A
large body of the BLBQ literature refers to this phase
as spin-quadrupolar, and intentionally avoids the use of
the term “trimer”, which smacks of the translational
symmetry breaking by three sites. Here we introduce
a more carefully chosen phrase “trimer liquid” to refer
to the phase without the loss of translational symme-
try, and strongly remind the readers that physical prop-
erties of the trimer liquid are identical to those of the
spin quadrupolar phase. It comes down to semantics, it
seems, to choose the preferred terminology to describe
the phase.

The remarkably similar behavior in the correlation
functions of the two SU(3) models, ULS on one hand
and pure trimer on the other, are surprising. To refresh
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(a)

(b)

(c)

BLBQ

D

BLBQ

D

BLBQ

D

BLBQ

D

BLBQ

D

BLBQ

D

FIG. 7: (a) Spin, (b) spin quadrupole, and (c) trimer correla-
tion functions for BLBQ and DT models. Left columns show
overlapping results for all correlation functions at θ = π/4 for
BLBQ and θ = π/2 for DT model. Both models are SU(3)-
symmetric. Right column shows results away from SU(3)
symmetry. Overall behavior of correlation functions in the
two phases are extremely similar.

our memory, recall that the models are given in terms of
pairwise exchange operators Pij as

HULS =
∑

i

Pij ,

HPT =
∑

i

(

2Pij + Pik − Pijk − P−1
ijk

)

. (3.3)

For lattice sizes L = 3, 6, 9 with periodic boundary con-
ditions, the overlap of the exact ground states of the two
models is very good, i.e., 1, 0.985654, 0.97127, respec-
tively. A more thorough investigation of the remarkable
similarity in the ground state properties of the two mod-
els are, however, delegated to future investigation.

D. Macroscopically degenerate phase

The fourth phase under consideration occurs over π <
θ < 3π/2, where both coefficients of the dimer and trimer
projection operators in the DT model have the positive
sign. It is flanked on either side by the pure bi-quadratic
and pure trimer Hamiltonians with overall opposite signs.
The corresponding region in the BLBQ model is called
the ferromagnetic (FM) phase, which includes the pure
ferromagnetic Heisenberg exchange model. Except at

the end points of the FM phase where there are known
macroscopic degeneracies in the ground states, the FM
ground state is unique up to the global SO(3) rotation.
By contrast, as we shall see below, the entire MD phase
has finite zero-temperature entropy.
The θ = π, anti-PBQ point is known to possess macro-

scopically degenerate ground states whose number grows
exponentially with the system size [21]. The number of
the ground states is bounded from below by that of the
classical (direct-product) states that are annihilated by
PD(i) for all i. One can count such classical states using
a standard transfer-matrix method (see Appendix B for
details). A lower bound so obtained grows with the sys-
tem size N as 2N for large N . A similar counting yields
lower bounds for the number of ground states for other
values of θ. For θ = 3π/2 (the anti-trimer limit) and
π < θ < 3π/2, lower bounds are obtained as (2.414)N

and 2 × (1.618)N , respectively. A detailed derivation is
given in Appendix B.
We have also carried out a numerical counting of the

ground state degeneracy by means of exact diagonal-
ization of the Hamiltonian for growing system sizes in
both periodic and open chains. Let ZN be the number
of ground states of the chain of length N . The results
for ZN of periodic chains are summarized in Table I.
The integer sequence found at θ = π under the peri-
odic boundary condition (first row in Table I) matches
A005248 in the On-Line Encyclopedia of Integer Se-
quences (OEIS) [45], which is called the bisection of Lu-
cas numbers [49], and is defined by the recurrence rela-
tion,

ZN = 3ZN−1 − ZN−2, Z1 = 3, Z2 = 7. (3.4)

It follows from the above relation that ZN for largeN be-
haves as ZN ∼ ϕ2N ∼ (2.618)N , where ϕ = (1+

√
5)/2 is

the golden ratio. Therefore, the true ground-state degen-
eracy grows much faster than the lower bound 2N since it
counts entangled ground states that cannot be written in
the form of classical states. The ground-state entropy per
site is given by s = lnZN/N ∼ 2 lnϕ ∼ 0.962. The other
two sequences do not match anything in the OEIS. How-
ever, from the fit to the data, we find ZN ∼ (2.412)N for
π < θ < 3π/2 and ZN ∼ (2.879)N for θ = 3π/2. Again,
they grow faster than the lower bounds estimated from
the number of classical states.
The ground-state degeneracies in the open chains are

summarized in Table II. The sequence for θ = π coin-
cides with the bisection of Fibonacci sequence (A001906
in OEIS). The recurrence relation for the sequence is

ZN = 3ZN−1 − ZN−2, Z1 = 3, Z2 = 8, (3.5)

which is the same as Eq. (3.4) with different initial con-
ditions. Therefore, the ground-state entropy per site s is
also the same in the thermodynamic limit. The sequence
for π < θ < 3π/2 matches with the partial sums of Pell
numbers (A048739 in OEIS), defined by the recurrence
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N 3 4 5 6 7 8 9 10 OEIS
θ = π 18 47 123 322 843 2207 5778 15127 A005248

π < θ < 3π/2 17 41 83 209 479 1169 2787 6745 −
θ = 3π/2 26 72 198 570 1641 4725 13605 39174 −

TABLE I: Ground-state degeneracy of the periodic chain up to N = 10 sites. The rightmost column shows the corresponding
integer sequences in the On-Line Encyclopedia of Integer Sequences (OEIS).

N 3 4 5 6 7 8 9 10 OEIS
θ = π 21 55 144 377 987 2584 6765 17711 A001906

π < θ < 3π/2 20 49 119 288 696 1681 4059 9800 A048739
θ = 3π/2 26 75 216 622 1791 5157 14849 42756 A076264

TABLE II: Ground-state degeneracy of the open chain up to N = 10 sites. The rightmost column shows the corresponding
integer sequences in the On-Line Encyclopedia of Integer Sequences (OEIS).

relation

ZN = 3ZN−1 − ZN−2 − ZN−3, Z1 = 3, Z2 = 8, Z3 = 20,
(3.6)

from which it follows that ZN ∼ (1 +
√
2)N ∼ (2.414)N

for large N . The sequence for θ = 3π/2 matches with
the number of ternary (0, 1, 2) sequences without a con-
secutive 012 ( A076264 in OEIS). It is generated by the
following rule

ZN = 3ZN−1 − ZN−3, Z1 = 3, Z2 = 9, Z3 = 26, (3.7)

from which it follows that ZN ∼ (x∗)N , where x∗ ∼ 2.874
is the largest root of the cubic equation x3+3x2+1 = 0.
To summarize, we conjecture that the exact value of

the ground-state entropy per site in the thermodynamic
limit is

s =







2 lnϕ ∼ 0.962 θ = π

ln(1 +
√
2) ∼ 0.881 π < θ < 3π/2

lnx∗ ∼ 1.06 θ = 3π/2
, (3.8)

where ϕ = (1 +
√
5)/2 and x∗ ∼ 2.874. A rigorous proof

of this conjecture is, however, beyond the scope of the
present study and is left for future work.

IV. DISCUSSION

Motivated by the two competing tendencies in the spin-
1 chain to form a singlet as either a dimer or a trimer,
we proposed a dimer-trimer Hamiltonian with relative in-
teraction strengths parameterized by the angle θ. Dimer
and trimer phases are realized respectively as one interac-
tion becomes dominant over the other. The dimer phase
is adiabatically connected to the phase of the same name
in the well-known bilinear-biquadratic spin-1 Hamilto-
nian. The trimer liquid phase is gapless and critical,
with central charge c = 2, and is likely the same phase
as the spin quadrupolar phase of the BLBQ model. The
dimer and trimer phases are separated by the SPT phase

on one side and the macroscopically degenerate phase on
the other. Our work has primarily focused on carving out
various phases of the dimer-trimer model. Although con-
siderable further effort is required to clarify the nature of
each phase transition, our current numerics seems to be
consistent with all phase boundaries being first-order.

Various extensions of the BLBQ Hamiltonian that
include the second-neighbor and three-site exchange
have been studied numerically and using field-theoretic
ideas in recent years [46, 47]. These models are adia-
batic extensions of the BLBQ model in the sense that
turning off certain interaction parameters gives back
the BLBQ Hamiltonian. The DT model, on the other
hand, certainly is not such an adiabatic extension in
the microscopic sense of the Hamiltonian, and yet its
phase diagram turns out to be extremely similar to that
of the BLBQ model. All aspects of our investigation
indicate that the nature of dimer, trimer liquid, and
SPT phases are identical in the two models. Significant
overlaps found in the ground state wavefunctions and
correlation functions of the SU(3) ULS model and the
pure trimer model render further support to the deep
connection bridging the two models. How to understand
this connection is an interesting future challenge.
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Limits).

Appendix A: MPO expression for trimer operator

This appendix is devoted to the description of the
matrix-product-operator (MPO) expression for the three-
body trimer operator. Compared to the MPO expres-
sions for the two-body operators, the three-body inter-
action MPO is not as well-known. We hope that our
expression is helpful for future research in models involv-
ing such many-body operators.
We introduce a block representation to understand the

interacting MPO’s over many sites. Indeed, with this
method, one can write down the MPO for the interac-

tions of any range. The DT Hamiltonian is given by the
contraction of blocks of MPO A’s,

H =
∑

{si,s′j}

∑

{αi}

A
s1s

′

1

20α1
A

s2s
′

2

α2α3
· · ·AsNs′N

αN−11
|s1 · · · 〉〈s′1 · · · |,

(A1)
where all the virtual indices {αi} run from 1 to 20. The
virtual indices are traced out except for the first index
of A at the far left of the MPO product, and the second
index at the far right, as shown in the above formula with
α0 = 20 and αN = 1. The physical spins at the site i
appear as upper indices {si}. The matrix representation
for the MPO A is given by the sum of two separate 20
by 20 matrices A1 and A2 as A = A1 +A2:
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A1 =





































































I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
JDλ1,1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
JDλ1,2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
JDλ1,3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
JDλ2,1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
JDλ2,2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
JDλ2,3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
JDλ3,1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
JDλ3,2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
JDλ3,3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 λ1,1 λ1,2 λ1,3 λ2,1 λ2,2 λ2,3 λ3,1 λ3,2 λ3,3 0 0 0 0 0 0 0 0 0 I





































































,

A2 =




































































0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 JTλ3,3 −JTλ3,2 0 −JTλ2,3 JTλ2,2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −JTλ3,3 0 JTλ3,1 JTλ2,3 0 −JTλ2,1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 JTλ3,2 −JTλ3,1 0 −JTλ2,2 JTλ2,1 0 0
0 0 0 0 0 0 0 0 0 0 0 −JTλ3,3 JTλ3,2 0 0 0 0 JTλ1,3 −JTλ1,2 0
0 0 0 0 0 0 0 0 0 0 0 −JTλ3,3 JTλ3,2 0 0 0 0 JTλ1,3 −JTλ1,2 0
0 0 0 0 0 0 0 0 0 0 −JTλ3,2 JTλ3,1 0 0 0 0 0 −JTλ1,2 JTλ1,1 0
0 0 0 0 0 0 0 0 0 0 0 JTλ2,3 −JTλ2,2 0 −JTλ1,3 JTλ1,2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −JTλ2,3 0 JTλ2,1 JTλ1,3 0 −JTλ1,1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 JTλ2,2 −JTλ2,1 0 −JTλ1,2 JTλ1,1 0 0 0 0 0

λ1,1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
λ1,2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
λ1,3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
λ2,1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
λ2,2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
λ2,3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
λ3,1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
λ3,2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
λ3,3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0





































































.

(A2)

Here, JD = − cos θ and JT = − sin θ are coefficients of
the DT model (1.2). All elements of the above matrices
are themselves 3 by 3 matrices, whose indices correspond
to the physical spin si and s′i at the local site i, with

the identity matrix I and λ
sis

′

i

α,β = δαsiδβs′i . The represen-

tation of the spin operators Sjk
i = −iεijk is employed,

where εijk is the anti-symmetric tensor. In this repre-
sentation, the dimer operator D and the trimer operator

T are given by

D(n) =
∑

x,y

λx,y(n)λx,y(n+ 1)

T (n) =
∑

x,y,z,l,m,n

εxyzεlmn λx,l(n)λy,m(n+ 1)λz,n(n+ 2),

(A3)

where the argument of λ represents the local site index
n. One can check that the product of A1 in the ma-
trix representation of A over the whole lattice yields the
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pure-biquadratic model. In order to generate the trimer
interaction, we must add the A2 term in the MPO A,
and multiply A = A1 +A2 through the entire lattice.
It is instructive to work with the “comb representa-

tion” to guide one’s understanding of the structure of A.
In Fig. 8(a), we show how to make a graphical repre-
sentation of the nonzero elements in the matrix A. By
contracting the graphs with the same virtual indices as
shown in Fig. 8(b), we can obtain the comb-shaped graph
representation for all the terms in the DT Hamiltonian.

Appendix B: Classical states in MD phase

In this appendix, we present a transfer-matrix analysis
for the counting of classical ground states annihilated by
dimer/trimer projection operators. At θ = π, any state
which is annihilated by all dimer projection operators
PD(i) (i = 1, ..., N) is a zero-energy ground state of the
Hamiltonian. Such states are not hard to construct. In
the basis in which Sz is diagonal, PD(i) annihilates the
state if spins at sites i and i+ 1 do not add up to zero:

PD(i)|mi,mi+1〉 = 0 if mi +mi+1 6= 0, (B1)

where mi = +1, 0 or −1 is an eigenvalue of Sz
i . There-

fore, a product state which does not contain any of the
configurations 00, +−, and −+ in any neighboring sites
is a ground state at θ = π. It is then straightforward
to construct a transfer matrix and count the number of
such classical states exactly. The number of classical
states in the periodic chain of length N is obtained as

Z
(cl)
N = Tr[TN ], where

T =





1 1 0
1 0 1
0 1 1



 (B2)

with the order of the basis states {|+〉, |0〉, |−〉}. Since

the eigenvalues of T are {2, 1,−1}, we have Z(cl)
N = 2N +

1 + (−1)N .
Let us next consider the anti-trimer limit θ = 3π/2.

At this point, any state which is annihilated by all trimer
projections PT (i) (i = 1, ..., N) is a zero-energy ground
state of the Hamiltonian. A single trimer wavefunction
(2.3) has all the basis states different from one another
over the three consecutive sites. Therefore, a product
state which does not contain a permutation of +0− in
any three consecutive sites is a ground state at θ = 3π/2.
One can again count the number of such states by con-

structing a transfer matrix:

T =



























1 1 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 0 1
1 1 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 1 1
1 0 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 1 1



























, (B3)

where the order of the basis states is {| + +〉, | + 0〉, | +
−〉, |0+〉, |00〉, |0−〉, | − +〉, | − 0〉, | − −〉}. The largest
eigenvalue of T , in modulus, can be obtained analytically,
and is given by λmax = 1 +

√
2. Therefore, we have

Z
(cl)
N ∼ (λmax)

N ∼ (2.414)N for large N .

Finally, we derive a lower bound for the number of
ground states for π < θ < 3π/2. In this region, a ground
state must be annihilated by both PD(i) and PT (i) for all
i = 1, ..., N . This happens when the spin configuration
of any three consecutive sites is one of the following: {|+
++〉, |++0〉, |+ 0+〉, |0 ++〉, |0 + 0〉, |0− 0〉, |0−−〉, | −
0−〉, | − −0〉, | − −−〉}. This 3-site rule determines the
transfer matrix

T =















1 1 0 0 0 0
0 0 1 0 0 0
1 1 0 0 0 0
0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 0 1 1















, (B4)

where the order of the basis states is {| + +〉, | +
0〉, |0+〉, |0−〉, | − 0〉, | − −〉}. The eigenvalues of T are
given by

λ =
1±

√
5

2
, 0, (B5)

each of which is two-fold degenerate. Therefore, the num-
ber of classical states in the periodic chain is obtained as

Z
(cl)
N = Tr[TN ] = 2ϕN + 2(−1)Nϕ−N , (B6)

where ϕ = (1 +
√
5)/2 is the golden ratio. The sequence

of Z
(cl)
N coincides with the Fibonacci sequence starting

from 2 and 6 (A022112 in OEIS). For large N , we have

Z
(cl)
N ∼ 2ϕN ∼ 2× (1.618)N .
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