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People just want more of it. - Ray Kroc2

1 Introduction

Every day, 34 million Chicken McNuggets are sold worldwide.3 At most

McDonalds locations in the United States today, Chicken McNuggets are

sold in packs of 4, 6, 10, 20, 40, and 50 pieces. However, shortly after their

introduction in 1979 they were sold in packs of 6, 9, and 20. The following

problem spawned from the use of these latter three numbers.

The Chicken McNugget Problem. What numbers of Chicken McNuggets

can be ordered using only packs with 6, 9, or 20 pieces?

1This article is based on a 2013 PURE Mathematics REU Project by Emelie Curl,

Staci Gleen, and Katrina Quinata which was directed by the authors and Roberto Pelayo.
2https://www.brainyquote.com/quotes/authors/r/ray_kroc.html
3http://www.answers.com/Q/How_many_nuggets_does_mcdonalds_sell_a_day?
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Figure 1: The 6 piece box

Early references to this problem can be

found in [26, 30]. Positive integers satis-

fying the Chicken McNugget Problem are

now known as McNugget numbers [22]. In

particular, if n is a McNugget number, then

there is an ordered triple (a, b, c) of nonneg-

ative integers such that

6a+ 9b+ 20c = n. (1)

We will call (a, b, c) a McNugget expansion

of n (again see [22]). Since both (3, 0, 0) and

(0, 2, 0) are McNugget expansions of 18, it is clear that McNugget expansions

are not unique. This phenomenon will be the central focus of the remainder

of this article.

If max{a, b, c} ≥ 8 in (1), then n ≥ 48 and hence determining the num-

bers x with 0 ≤ x ≤ 48 which are McNugget numbers can be checked either

by hand or your favorite computer algebra system. The only such x’s which

are not McNugget numbers are: 1, 2, 3, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19,

22, 23, 25, 28, 31, 34, 37, and 43. (The non-McNugget numbers are sequence

A065003 in the On-Line Encyclopedia of Integer Sequences4.) We demon-

strate this in Table 1 with a chart that offers the McNugget expansions

(when they exist) of all numbers ≤ 50.

What happens with larger values? Table 1 has already verified that 44,

45, 46, 47, 48, and 49 are McNugget numbers. Hence, we have a sequence

of 6 consecutive McNugget numbers, and by repeatedly adding 6 to these

values, we obtain the following.

Proposition 1.1. Any x > 43 is a McNugget number.

Thus, 43 is the largest number of McNuggets that cannot be ordered with

packs of 6, 9, and 20.

Our aim in this paper is to consider issues related to the multiple occu-

rances of McNugget expansions as seen in Table 1. Such investigations fall

4http://oeis.org/A065003.
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# (a, b, c) # (a, b, c) # (a, b, c)

0 (0, 0, 0) 17 NONE 34 NONE

1 NONE 18 (3, 0, 0) (0, 2, 0) 35 (1, 1, 1)

2 NONE 19 NONE 36 (0, 4, 0) (3, 2, 0) (6, 0, 0)

3 NONE 20 (0, 0, 1) 37 NONE

4 NONE 21 (2, 1, 0) 38 (0, 2, 1) (3, 0, 1)

5 NONE 22 NONE 39 (2, 3, 0) (5, 1, 0)

6 (1, 0, 0) 23 NONE 40 (0, 0, 2)

7 NONE 24 (4, 0, 0) (1, 2, 0) 41 (2, 1, 1)

8 NONE 25 NONE 42 (1, 4, 0) (4, 2, 0) (7, 0, 0)

9 (0, 1, 0) 26 (1, 0, 1) 43 NONE

10 NONE 27 (0, 3, 0) (3, 1, 0) 44 (1, 2, 1) (4, 0, 1)

11 NONE 28 NONE 45 (0, 5, 0) (3, 3, 0) (6, 1, 0)

12 (2, 0, 0) 29 (0, 1, 1) 46 (1, 0, 2)

13 NONE 30 (5, 0, 0) (2, 2, 0) 47 (0, 3, 1) (3, 1, 1)

14 NONE 31 NONE 48 (2, 4, 0) (5, 2, 0) (8, 0, 0)

15 (1, 1, 0) 32 (2, 0, 1) 49 (0, 1, 2)

16 NONE 33 (1, 3, 0) (4, 1, 0) 50 (2, 2, 1) (5, 0, 1)

Table 1: The McNugget numbers and their expansions from 0 to 50

under the more general purview of the theory of non-unique factorizations

in integral domains and monoids (a good technical reference on this subject

is [20]). Using a general context, we show in Section 2 that the McNugget

numbers form an additive monoid and discuss some properites shared by

the class of additive submonoids of the nonnegative integers. In Section 3,

we define the particular combinatorial characteristics of McNugget expan-

sions which we will consider. Computations of these characteristics for the

McNugget Monoid will appear in Section 4.

By emphasizing results concerning McNugget numbers, we offer the

reader a glimpse into vast literature surrounding non-unque factorizations.

While we stick to the calculation of basic factorization invariants, our results

indicate that such computations involve a fair amount of complexity. Many

of the results we touch on have appeared in papers authored or co-authored
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by undergraduates in National Science Foundation Sponsored REU Pro-

grams. This is an area which remains rich in open problems, and we hope

our discussion here spurs our readers (both young and old) to explore this

rewarding subject more deeply.

2 A brief diversion into generality

As illustrated above, Chicken McNugget numbers fit into a long studied

mathematical concept. Whether called the Postage Stamp Problem [25],

the Coin Problem [15], or the Knapsack Problem [21], the idea is as follows.

Given a set of k objects with predetermined values n1, n2, . . . , nk, what

possible values of n can be had from combinations of these objects? Thus, if

a value of n can be obtained, then there is an ordered k-tuple of nonnegative

integers (x1, . . . , xk) which satisfy the linear diophatine equation

n = x1n1 + x2n2 + · · ·+ xknk. (2)

We view this in a more algebraic manner. Given integers n1, . . . , nk > 0, set

〈n1, . . . , nk〉 = {x1n1 + · · ·+ xknk | x1, . . . , xk ∈ N0}.

Notice that if s1 and s2 are in 〈n1, . . . , nk〉, then s1+s2 is also in 〈n1, . . . , nk〉
(where + represents regular addition). Since 0 ∈ 〈n1, . . . , nk〉 and + is an

associative operation, the set 〈n1, . . . , nk〉 under + forms a monoid. Monoids

of nonnegative integers under addition, like the one above, are known as

numerical monoids, and n1, . . . , nk are called generators. We will call the

numerical monoid 〈6, 9, 20〉 the Chicken McNugget monoid, and denote it

by .

Since consists of the same elements as 〈6, 9, 20, 27〉, it is clear that

generating sets are not unique. Using elementary number theory, it is easy

to argue that any numerical monoid 〈n1, . . . , nk〉 does have a unique gener-

ating set with minimal cardinality, obtained by eliminating those generators

ni that lie in the numerical monoid generated by {n1, . . . , nk} − {ni}. In

this way, it is clear that 6, 9, 20 is indeed the minimal generating set of .
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When dealing with a general numerical monoid 〈n1, . . . , nk〉, we will assume

without loss of generality that given generating set n1, . . . , nk is minimal.

In view of this broader setting, the Chicken McNugget Problem can be

generalized as follows.

The Numerical Monoid Problem. If n1, . . . , nk are positive integers,

then which nonnegative integers lie in 〈n1, . . . , nk〉?

Example 2.1. We have already determined above exactly which nonnega-

tive integers are McNugget numbers. Suppose the Post Office issues stamps

in denominations of 4 cents, 7 cents, and 10 cents. What values of postage

can be placed on a letter (assuming that as many stamps as necessary can

be placed on the envelope)? In particular, we are looking for the elements

of 〈4, 7, 10〉. We can again use brute force to find all the solutions to

4a+ 7b+ 10c = n

and conclude that 1, 2, 3, 5, 6, 9, and 13 cannot be obtained. Since 14, 15,

16, and 17 can, all postage values larger than 13 are possible. 2

Figure 2: The 9 piece box

Let’s return to the largest number of

McNuggets that can’t be ordered (namely,

43) and the companion number 13 obtained

in Example 2.1. The existence of these

numbers is no accident. To see this in gen-

eral, let n1, . . . , nk be a set of positive inte-

gers which are relatively prime. By elemen-

tary number theory, there is a set y1, . . . , yk

of (possibly negative) integers such that

1 = y1n1 + · · ·+ yknk.

By choosing an element V = x1n1+· · ·+xknk ∈ 〈n1, . . . , nk〉 with sufficiently

large coefficients (for instance, if each xi ≥ n1|yi|), we see V + 1, . . . , V +n1

all lie in 〈n1, . . . , nk〉 as well. As such, any integers greater than V can be

obtained in 〈n1, . . . , nk〉 by adding copies of n1.

This motivates the following definition.
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Definition 2.2. If n1, . . . , nk are relatively prime positive integers, then

the Frobenius number of 〈n1, . . . , nk〉, denoted F (〈n1, . . . , nk〉), is the largest

positive integer n such that n /∈ 〈n1, . . . , nk〉.

Figure 3: The 20 piece box

We have already shown that F ( ) = 43

and F (〈4, 7, 10〉) = 13. A famous result

of Sylvester from 1884 [29] states that if a

and b are relatively prime, then F (〈a, b〉) =

ab − a − b (a nice proof of this can be

found in [6]). This is where the fun be-

gins, as strictly speaking no formula ex-

ists to compute the Frobenius number of

numerical monoids that require 3 or more

generators. While there are fast algorithms

which can compute F (〈n1, n2, n3〉) (see for

instance [17]), at best formulas for F (〈n1, . . . , nk〉) exist only in special cases

(you can find one such special case where F ( ) = 43 pops out in [1, p. 14]).

Our purpose is not to compile or expand upon the vast literature behind the

Frobenius number; in fact, we direct the reader to the excellent monograph

of Ramı́rez Alfonśın [27] for more background reading on the Diophatine

Frobenius Problem.

3 The McNugget factorization toolkit

We focus now on the multiple McNugget expansions we saw in Table 1.

In particular, notice that there are McNugget numbers which have unique

triples associated to them (6, 9, 12, 15, 20, 21, 26, 29, 32, 35, 40, 41, 46, and

49), some of which have two (18, 24, 27, 30, 33, 35, 39, 44, 47, and 50), and

even some which have three (36, 42, 45, and 48). While the “normal” notion

of factoring occurs in systems where multiplication prevails, notice that the

ordered triples representing McNugget numbers are actually factorizations

of these numbers into “additive” factors of 6, 9, and 20.

Let’s borrow some terminology from abstract algebra ([18] is a good

beginning reference on the topic). Let x and y ∈ 〈n1, . . . , nk〉. We say
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that x divides y in 〈n1, . . . , nk〉 if there exists a z ∈ 〈n1, . . . , nk〉 such that

y = x+z. We call a nonzero element x ∈ 〈n1, . . . , nk〉 irreducible if whenever

x = y + z, either y = 0 or z = 0. (Hence, x is irreducible if its only proper

divisors are 0 and itself). Both of these definitions are obtained from the

usual “multiplicative” definition by replacing “·” with “+” and 1 with 0.

We leave the proof of the following to the reader.

Proposition 3.1. If 〈n1, . . . , nk〉 is a numerical monoid, then its irreducible

elements are precisely n1, . . . , nk.

Related to irreducibility is the notion of prime elements. A nonzero

element x ∈ 〈n1, . . . , nk〉 is prime if whenever x divides a sum y + z, then

either x divides y or x divides z (this definition is again borrowed from the

multiplicative setting). It is easy to check from the definitions that prime

elements are always irreducible, but it turns out that in general irreducible

elements need not be prime. In fact, the irreducible elements n1, . . . , nk

of a numerical monoid are never prime. To see this, let ni be an irreducible

element and let T be the numerical monoid generated by {n1, . . . , nk}−{ni}.
Although ni /∈ T , some multiple of ni must lie in T (take, for instance, n2ni).

Let kn =
∑

j 6=i xjnj (for some k > 1) be the smallest multiple of ni in T .

Then n divides
∑

j 6=i xjnj over 〈n1, . . . , nk〉, but by the minimality of k,

n does not divide any proper subsum. Thus ni is not prime.

For our purposes, we restate Proposition 3.1 in terms of .

Corollary 3.2. The irreducible elements of the McNugget monoid are 6, 9,

and 20. There are no prime elements.

3.1 The set of factorizations of an element

We refer once again to the elements in Table 1 with multiple irreducible

factorizations. For each x ∈ , let

Z(x) = {(a, b, c) | 6a+ 9b+ 20c = x}.

We will refer to Z(x) as the complete set of factorizations x in , and as

such, we could relabel columns 2, 4, and 6 of Table 1 as “Z(x).” While we
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will not dwell on general structure problems involving Z(x), we do briefly

address one in the next example.

Example 3.3. What elements x in the McNugget monoid are uniquely

factorable (i.e., |Z(x)| = 1)? A quick glance at Table 1 yields 14 such

nonzero elements (namely, 6, 9, 12, 15, 20, 21, 26, 29, 32, 35, 40, 41, 46, 49).

Are there others? We begin by noting in Table 1 that

(3, 0, 0), (0, 2, 0) ∈ Z(18) and (10, 0, 0), (0, 0, 3) ∈ Z(60).

This implies that in any factorization in , 3 copies of 6 can be freely replaced

with 2 copies of 9 (this is called a trade). Similarly, 2 copies of 9 can be

traded for 3 copies of 6, and 3 copies of 20 can be traded for 10 copies of 6.

In particular, for n = 6a + 9b + 20c ∈ , if either a ≥ 3, b ≥ 2 or c ≥ 3,

then n has more than one factorization in . As such, if n is to have unique

factorization, then 0 ≤ a ≤ 2, 0 ≤ b ≤ 1, and 0 ≤ c ≤ 2. This leaves

18 possibilities, and a quick check yields that the 3 missing elements are

52 = (2, 0, 2), 55 = (1, 1, 2) and 61 = (2, 1, 2). 2.

The argument in Example 3.3 easily generalizes – every numerical monoid

which requires more than one generator has finitely many elements that fac-

tor uniquely – but note that minimal trades need not be as simple as replac-

ing a multiple of one generator with a multiple of another. Indeed, in the

numerical monoid 〈5, 7, 9, 11〉, there is a trade (1, 0, 0, 1), (0, 1, 1, 0) ∈ Z(16),

though 16 is not a multiple of any generator. Determining the “minimal”

trades of a numerical monoid, even computationally, is known to be a very

hard problem in general [28].

3.2 The length set of an element and related invariants

Extracting information from the factorizations of numerical monoid elements

(or even simply writing them all down) can be a tall order. To this end,

combinatorially-flavored factorization invariants are often used, assigning

to each element (or to the monoid as a whole) a value measuring its failure

to admit unique factorization. We devote the remainder of this paper to

examining several factorization invariants, and what they tell us about the

McNugget monoid as compared to more general numerical monoids.
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We begin by considering a set, derived from the set of factorizations,

that has been the focus of many papers in the mathematical literature over

the past 30 years. If x ∈ and (a, b, c) ∈ Z(x), then the length of the

factorization (a, b, c) is denoted by

|(a, b, c)| = a+ b+ c.

We have shown earlier that factorizations in may not be unique, and a

quick look at Table 1 shows that their lengths can also differ. For instance,

42 has three different factorizations, with lengths 5, 6 and 7, respectively.

Thus, we denote the set of lengths of x in by

L(x) = {|(a, b, c)| : (a, b, c) ∈ Z(x)}.

In particular, L(42) = {5, 6, 7}. Moreover, set

`(x) = minL(x) and L(x) = maxL(x).

(In our setting, it is easy to argue that L(x) must be finite, so the maximum

and minimum above are both well-defined.) To give the reader a feel for

these invariants, in Table 2 we list all the McNugget numbers from 1 to 50

and their associated values L(x), `(x), and L(x).

The following recent result describes the functions L(x) and `(x) for

elements x ∈ 〈n1, . . . , nk〉 that are sufficiently large with respect to the

generators. Intuitively, Theorem 3.4 says that for “most” elements x, any

factorization with maximal length is almost entirely comprised of n1, so

L(x + n1) is obtained by taking a maximum length factorization for x and

adding one additional copy of n1. In general, the “sufficiently large” hy-

pothesis is needed, since, for example, both 41 = 2 · 9 + 1 · 23 and 50 = 5 · 10

are maximum length factorizations in the numerical monoid 〈9, 10, 23〉.

Theorem 3.4 ([4, Theorems 4.2 and 4.3]). Suppose 〈n1, . . . , nk〉 is a nu-

merical monoid. If x > n1nk, then

L(x+ n1) = L(x) + 1,

and if x > nk−1nk, then

`(x+ nk) = `(x) + 1.

9



x L(x) `(x) L(x) x L(x) `(x) L(x) x L(x) `(x) L(x)

0 {0} 0 0 27 {3, 4} 3 4 41 {4} 4 4

6 {1} 1 1 29 {2} 2 2 42 {5, 6, 7} 5 7

9 {1} 1 1 30 {4, 5} 4 5 44 {4, 5} 4 5

12 {2} 2 2 32 {3} 3 3 45 {5, 6, 7} 5 7

15 {2} 2 2 33 {4, 5} 4 5 46 {3} 3 3

18 {2, 3} 2 3 35 {3} 3 3 47 {4, 5} 4 5

20 {1} 1 1 36 {4, 5, 6} 4 6 48 {6, 7, 8} 6 8

21 {3} 3 3 38 {3, 4} 3 4 49 {3} 3 3

24 {3, 4} 3 4 39 {5, 6} 5 6 50 {5, 6} 5 6

26 {2} 2 2 40 {2} 2 2

Table 2: The McNugget numbers from 0 to 50 with L(x), `(x), and L(x)

We will return to this result in Section 4.1, where we give a closed formula

for L(x) and `(x) that holds for all x ∈ .

Given our definitions to this point, we can now mention perhaps the

most heavily studied invariant in the theory of non-unique factorizations.

For x ∈ 〈n1, . . . , nk〉, the ratio

ρ(x) =
L(x)

`(x)
,

is called the elasticity of x, and

ρ(〈n1, . . . , nk〉) = sup{ρ(x) | x ∈ 〈n1, . . . , nk〉}

is the elasticity of 〈n1, . . . , nk〉. The elasticity of an element n ∈ 〈n1, . . . , nk〉
measures how “spread out” its factorization lengths are; the larger ρ(n) is,

the more spread out L(n) is. To this end, the elasticity ρ(〈n1, . . . , nk〉)
encodes the highest such “spread” throughout the entire monoid. For ex-

ample, if ρ(〈n1, . . . , nk〉) = 2, then the maximum factorization length of any

element n ∈ 〈n1, . . . , nk〉 is at most twice its minimum factorization length.

A formula for the elasticity of a general numerical monoid, given below,

was given in [10], and was the result of an undergraduate research project.
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Figure 4: A plot depicting the elasticity function ρ(n) for n ∈ .

Theorem 3.5 ([10], Theorem 2.1 and Corollary 2.3). The elasticity of the

numerical monoid 〈n1, . . . , nk〉 is

ρ(〈n1, . . . , nk〉) =
nk
n1
.

Moreover, ρ(n) = nk
n1

precisely when n is an integer multiple of the least

common multiple of n1 and nk, and for any rational r < nk
n1

, there are only

finitely many elements x ∈ 〈n1, . . . , nk〉 with ρ(x) ≤ r.

The significance of the final statement in Theorem 3.5 is that there are

rationals 1 ≤ q ≤ nk
n1

which do not lie in the set {ρ(x) | x ∈ 〈n1, . . . , nk〉}
and hence {ρ(x) | x ∈ 〈n1, . . . , nk〉} ( Q ∩ [1, nk

n1
] (to use terminology from

the literature, numerical monoids are not fully elastic). Figure 4 depicts

the elasticities of elements of up to n = 400; indeed, as n increases, the

elasticity ρ(n) appears to converge to 10
3 = ρ( ). In general, the complete

image {ρ(x) | x ∈ 〈n1, . . . , nk〉} has been determined by Barron, O’Neill, and

Pelayo in another student co-authored paper [4, Corollary 4.5]; we direct the

reader there for a thorough mathematical description of Figure 4.

We close our discussion of elasticity with the following.
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Corollary 3.6. The elasticity of the McNugget monoid is

ρ( ) =
10

3
.

While a popular invariant to study, the elasticity only tells us about the

largest and smallest elements of L(x). Looking at Table 2, it appears that

the length sets of the first few McNugget numbers are uniformly constructed

(each is of the form [a, b] ∩ N for positive integers a and b). One need not

look too much further to break this pattern; the element 60 ∈ has

Z(60) = {(0, 0, 3), (1, 6, 0), (4, 4, 0), (7, 2, 0), (10, 0, 0)}

and thus

L(60) = {3, 7, 8, 9, 10}.

This behavior motivates the following “finer” factorization invariant. Fix

x ∈ 〈n1, . . . , nk〉, and let L(x) = {m1, . . . ,mt} with m1 < m2 < · · · < mt.

Define the delta set of x as

∆(x) = {mi −mi−1 | 2 ≤ i ≤ t},

and the delta set of 〈n1, . . . , nk〉 as

∆(〈n1, . . . , nk〉) =
⋃

x∈〈n1,...,nk〉

∆(x).

The study of the Delta sets of numerical monoids (and more generally, of

cancellative commutative monoids) has been an extremely popular topic;

many such papers feature results from REU programs (see, for instance,

[7, 8, 9, 11, 12, 14]).

From Table 1 we see that the McNugget numbers from 1 to 50 all have

Delta set ∅ or {1}, and we have further showed that ∆(60) = {1, 4}. What

is the Delta set of and moreover, what possible subsets of this set occur as

∆(x) for some x ∈ ? We will address those questions is Section 4.2, with

the help of a result from [11], stated below as Theorem 3.7.

One of the primary difficulties in determining the set ∆(〈n1, . . . , nk〉) is

that even though each element’s delta set ∆(x) is finite, the definition of
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∆(〈n1, . . . , nk〉) involves the union of infinitely many such sets. The key

turns out to be a description of the sequence {∆(x)}x∈〈n1,...,nk〉 for large x

(note that this is a sequence of sets, not integers). Baginski conjectured

during the writing of [7] that this sequence is eventually periodic, and three

years later this was settled in the affirmative, again in an REU project.

Theorem 3.7 ([11, Theorem 1 and Corollary 3]). For x ∈ 〈n1, . . . , nk〉,

∆(x) = ∆(x+ n1nk)

whenever x > 2kn2n
2
k. In particular,

∆(〈n1, . . . , nk〉) =
⋃
x∈D

∆(x)

where D = {x ∈ 〈n1, . . . , nk〉 | x ≤ 2kn2n
2
k + n1nk} is a finite set.

Thus ∆(〈n1, . . . , nk〉) can be computed in finite time. The bound given

in Theorem 3.7 is far from optimal; it is drastically improved in [19], albeit

with a much less concise formula. For convenience, we will use the bound

given above in our computation of ∆( ) in Section 4.2.

3.3 Beyond the length set

We remarked earlier that no element of a numerical monoid is prime. Let’s

consider this more closely in . For instance, since 6 is not prime, there is

a sum x + y in such that 6 divides x + y, but 6 does not divide x nor

does 6 divide y (take, for instance, x = y = 9). But note that 6 satisfies the

following slightly weaker property. Suppose that 6 divides a sum x1+· · ·+xt
where t > 3. Then there is a subsum of at most 3 of the xi’s that 6 does

divide. To see this, notice that if 6 divides any of the xi’s, then we are

done. So suppose it does not. If 9 divides both xi and xj , then 6 divides

xi +xj since 6 divides 9 + 9. If no two xi’s are divisible by 9, then at least 3

xi’s are divisible by 20, and nearly identical reasoning to the previous case

completes the argument. This value of 3 offers some measure as to how far

6 is from being prime, and motivates the following definition.
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Definition 3.8. Let 〈n1, . . . , nk〉 be a numerical monoid. For any nonzero

x ∈ 〈n1, . . . , nk〉, define ω(x) = m if m is the smallest positive integer such

that whenever x divides x1 + · · · + xt, with xi ∈ 〈n1, . . . , nk〉, then there is

a set T ⊂ {1, 2, . . . , t} of indices with |T | ≤ m such that x divides
∑

i∈T xi.

Using Definition 3.8, a prime element would have ω-value 1, so ω(x) can

be interpreted as a measure of how far x is from being prime. In , we

argued that ω(6) = 3; a similar argument yields ω(9) = 3 and ω(20) = 10.

Notice that the computation of ω(x) is dependent more on Z(x) than L(x),

and hence encodes much different information than either ρ(x) or ∆(x).

Let us more closely examine the argument that ω(6) = 3. The key is that

6 divides 9 + 9 and 20 + 20 + 20, but does not divide any subsum of either.

Indeed, the latter of these expressions yields a lower bound of ω(6) ≥ 3,

and the given argument implies that equality holds. With this in mind, we

give the following equivalent form of Definition 3.8, which often simplifies

computation of ω(x).

Theorem 3.9 ([24, Proposition 2.10]). Suppose 〈n1, . . . , nk〉 is a numerical

monoid and x ∈ 〈n1, . . . , nk〉. The following conditions are equivalent.

(a) ω(x) = m.

(b) m is the maximum length of a sum x1+ · · ·+xt of irreducible elements

in 〈n1, . . . , nk〉 with the property that (i) x divides x1 + · · · + xt, and

(ii) x does not divide x1 + · · ·+ xj−1 + xj+1 + · · ·+ xt for 1 ≤ j ≤ t.

The sum x1 + · · · + xt alluded to in part (b) above is called a bullet for x.

Hence, 20 + 20 + 20 is a bullet for 6 in , and moreover has maximal length.

The benefit of Theorem 3.9 is twofold: (i) each x ∈ 〈n1, . . . , nk〉 has only

finitely many bullets, and (ii) the list of bullets can be computed in a similar

fashion to the set Z(x) of factorizations. We refer the reader to [3, 5], both of

which give explicit algorithms (again resulting from undergraduate research

projects) for computing ω-values.

Our goal is to completely describe the behavior of the ω-function of the

McNugget Monoid. We do so in Section 4.3, using the following result,

which is clearly similar in spirit to Theorems 3.4 and 3.7.
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Theorem 3.10 ([23, Theorem 3.6]). For x ∈ 〈n1, . . . , nk〉 sufficiently large,

ω(x+ n1) = ω(x) + 1.

In particular, this holds for

x >
F + n2
n2/n1 − 1

where F = F (〈n1, . . . , nk〉) is the Frobenius number.

The similarity between Theorems 3.4 and 3.10 is not a coincidence.

While L(x) and ω(x) are indeed different functions (for instance, L(6) = 1

while ω(6) = 3), they are closely related; the ω-function can be expressed in

terms of max factorization length that is computed when some collections

of generators are omitted. We direct the interested reader to [5, Section 6],

where an explicit formula of this form for ω(n) is given.

3.4 Computer software for numerical monoids

Many of the computations referenced in this paper can be performed us-

ing the numericalsgps package [16] for the computer algebra system GAP.

The brief snippet of sample code below demonstrates how the package is

used to compute various quantities discussed in this paper.

gap> LoadPackage("num");

true

gap> McN:=NumericalSemigroup(6,9,20);

<Numerical semigroup with 3 generators>

gap> FrobeniusNumberOfNumericalSemigroup(McN);

43

gap> 43 in McN;

false

gap> 44 in McN;

true

gap> FactorizationsElementWRTNumericalSemigroup(18,McN);

[ [ 3, 0, 0 ], [ 0, 2, 0 ] ]

15



gap> OmegaPrimalityOfElementInNumericalSemigroup(6,McN);

3

This only scratches the surface of the extensive functionality offered by

the numericalsgps package. We encourage the interested reader to install

and experiment with the package; instructions can be found on the official

webpage, whose URL is included below.

https://www.gap-system.org/Packages/numericalsgps.html

4 Calculations for the Chicken McNugget monoid

In the final section of this paper, we give explicit expressions for L(x), `(x),

∆(x) and ω(x) for every x ∈ . The derivation of each such expression

makes use of a theoretical result in Section 3.

We note that each of the formulas provided in this section could also be

derived in a purely computational manner, using Theorems 3.4, 3.7, and 3.10

and the inductive algorithms introduced in [5] (indeed, these computations

finish in a reasonably short amount of time using the implementation in

the numericalsgps package discussed in Section 3.4). However, several of

the following results identify an interesting phenomenon that distinguish

from more general numerical monoids (see the discussion preceeding Ques-

tion 4.5), and the arguments that follow give the reader an idea of how

theorems involving factorization in numerical monoids can be proven.

4.1 Calculating factorization lengths

Theorem 3.4 states that L(x+ n1) = L(x) + 1 and `(x+ nk) = `(x) + 1 for

sufficiently large x ∈ 〈n1, . . . , nk〉. but, it was observed during the writing

of [4] that for many numerical monoids, the “sufficiently large” requirement

is unecessary. As it turns out, one such example is the McNugget monoid ,

which we detail below.
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Theorem 4.1. For each x ∈ , L(x + 6) = L(x) + 1. In particular, if we

write x = 6q + r for q, r ∈ N and r < 6, then

L(x) =


q if r = 0 or 3

q − 5 if r = 1

q − 2 if r = 2 or 5

q − 4 if r = 4

for each x ∈ .

Proof. Fix x ∈ and a factorization (a, b, c) of x. If b > 1, then x has

another factorization (a + 3, b − 2, c) with length a + b + c + 1. Similarly,

if c ≥ 3, then (a + 10, b, c − 3) is also a factorization of x and has length

a + b + c + 7. This implies that if (a, b, c) has maximum length among

factorizations of x, then b ≤ 1 and c ≤ 2. Upon inspecting Table 1, we see

that unless x ∈ {0, 9, 20, 29, 40, 49}, we must have a > 0.

Now, assume (a, b, c) has maximum length among factorizations of x.

We claim (a+ 1, b, c) is a factorization of x+ 6 with maximum length. From

Table 1, we see that since x ∈ , we must have x+ 6 /∈ {0, 9, 20, 29, 40, 49},
meaning any maximum length factorization of x + 6 must have the form

(a′ + 1, b′, c′). This yields a factorization (a′, b′, c′) of x, and since (a, b, c)

has maximum length, we have a+ b+ c ≥ a′ + b′ + c′. As such, (a+ 1, b, c)

is at least as long as (a′ + 1, b′, c′), and the claim is proved. Thus,

L(x+ 6) = a+ 1 + b+ c = L(x) + 1.

From here, the given formula for L(x) now follows from the first claim

and the values L(0), L(9), L(20), L(29), L(40), and L(49) in Table 3.2.

A similar expression can be obtained for `(x), ableit with 20 cases instead

of 6, this time based on the value of x modulo 20. We encourage the reader

to adapt the argument above for Theorem 4.2.

Theorem 4.2. For each x ∈ , `(x + 20) = `(x) + 1. In particular, if we
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write x = 20q + r for q, r ∈ N and r < 20, then

`(x) =



q if r = 0

q + 1 if r = 6, 9

q + 2 if r = 1, 4, 7, 12, 15, 18

q + 3 if r = 2, 5, 10, 13, 16

q + 4 if r = 8, 11, 14, 19

q + 5 if r = 3, 17

for each x ∈ .

Theorems 4.1 and 4.2 together yield a closed form for ρ(x) that holds for

all x ∈ . Since lcm(6, 20) = 60 cases are required, we leave the construction

of this closed form to the interested reader.

4.2 Calculating delta sets

Unlike maximum and minimum factorization length, ∆(x) is only periodic

for sufficiently large x ∈ . For example, a computer algebra system can

be used to check that ∆(91) = {1} while ∆(211) = {1, 2}. Theorem 3.7

only guarantees ∆(x + 120) = ∆(x) for x > 21600, but some considerable

reductions can be made. In particular, we will reduce the period from 120

down to 20, and will show that equality holds for all x ≥ 92 (that is to say,

91 is the largest value of x for which ∆(x+ 20) 6= ∆(x)).

Theorem 4.3. Each x ∈ with x ≥ 92 has ∆(x+ 20) = ∆(x). Moreover,

∆(x) =


{1} if r = 3, 8, 14, 17

{1, 2} if r = 2, 5, 10, 11, 16, 19

{1, 3} if r = 1, 4, 7, 12, 13, 18

{1, 4} if r = 0, 6, 9, 15

where x = 20q + r for q, r ∈ N and r < 20. Hence ∆( ) = {1, 2, 3, 4}.

Proof. We will show that ∆(x+20) = ∆(x) for each x > 103. The remaining

claims can be verified by extending Table 2 using computer software.
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Suppose x > 103, fix a factorization (a, b, c) for x, and let l = a+ b+ c.

If c ≥ 3, then x also has factorizations (a+ 10, b, c− 3), (a+ 7, b+ 2, c− 3),

(a+ 4, b+ 4, c− 3), and (a+ 1, b+ 6, c− 3), meaning

{l, l + 4, l + 5, l + 6, l + 7} ⊂ L(x).

Alternatively, since x > 103, if c ≤ 2, then 6a+ 9b ≥ 63, and thus

l ≥ a+ b+ 2 ≥ 9 ≥ `(x) + 4.

The above arguments imply (i) any gap in successive lengths in L(x) occurs

between `(x) and `(x) + 4, and (ii) every factorization with length in that

interval has at least one copy of 20. As such, x + 20 has the same gaps

between `(x + 20) and `(x + 20) + 4 as x does between `(x) and `(x) + 4,

which proves ∆(x+ 20) = ∆(x) for all x > 103.

With a slightly more refined argument than the one given above, one

can prove without the use of software that ∆(x+ 20) = ∆(x) for all x ≥ 92.

We encourage the interested reader to work out such an argument.

4.3 Calculating ω-primality

We conclude our study of with an expression for the ω-primality of x ∈
and show (in some sense) how far a McNugget number is from being prime.

We proceed in a similar fashion to Theorems 4.1 and 4.2, showing that with

only two exceptions, ω(x+ n1) = ω(x) + 1 for all x ∈ .

Theorem 4.4. With the exception of x = 6 and x = 12, every nonzero

x ∈ satisfies ω(x+ 6) = ω(x) + 1. In particular, we have

ω(x) =



q if r = 0

q + 5 if r = 1

q + 7 if r = 2

q + 2 if r = 3

q + 4 if r = 4

q + 9 if r = 5

for each x 6= 6, 12, where x = 6q + r for q, r ∈ N and r < 6.
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Proof. Fix x ∈ . Following the spirit of the proof of Theorem 4.1, we begin

by proving each x > 12 has a maximum length bullet (a, b, c) with a > 0.

Indeed, suppose (0, b, c) is a bullet for x for some b, c ≥ 0. The element x ∈
also has some bullet of the form (a′, 0, 0), where a′ the smallest integer such

that 6a′ − x ∈ . Notice a′ ≥ 3 since x > 12. We consider several cases.

• If c = 0, then 9b − x ∈ but 9b − x − 9 /∈ . If b ≤ 3, then a′ ≥ b.

Otherwise, either 9(b − 1) or 9(b − 2) is a multiple of 6, and since

9(b− 2)− x /∈ as well, we see a′ ≥ 3
2(b− 2) + 1 ≥ b.

• If b = 0, then there are two possibilities. If c ≤ 3, then a′ ≥ c.

Otherwise, either 20(c − 1), 20(c − 2) or 20(c − 3) is a multiple of 6,

so we conclude a′ ≥ 10
3 (c− 3) + 1 ≥ c.

• If b, c > 0, then 9b+ 20c− x− 9, 9b+ 20c− x− 20 /∈ , so 9b+ 20c− x
is either 0, 6, or 12. This means either (3, b − 1, c), (2, b − 1, c), or

(1, b− 1, c) is also a bullet for x, respectively.

In each case, we have constructed a bullet for x at least as long as (0, b, c),

but with positive first coordinate, so we conclude x has a maximal bullet

with nonzero first coordinate.

Now, using a similar argument to that given in the proof of Theorem 4.1,

if (a+1, b, c) is a maximum length bullet for x+6, then (a, b, c) is a maximum

length bullet for x. This implies ω(x + 6) = ω(x) + 1 whenever x + 6 has

a maximum length bullet with positive first coordinate, which by the above

argument holds whenever x > 12. This proves the first claim.

The formula for ω(x) now follows from the first claim, the computations

ω(9) = 3 and ω(20) = 10 from Section 3.3, and analogous computations for

ω(15) = 4, ω(18) = 3, ω(29) = 13, ω(40) = 10, and ω(49) = 13.

Figure 5 plots ω-values of elements of the McNugget monoid . Since

ω(x+ 6) = ω(x) + 1 for large x ∈ , most of the plotted points occur on one

of 6 lines with slope 1
6 . It is also evident in the plot that x = 6 and x = 12

are the only exceptions.

Although ω(x + 6) = ω(x) + 1 does not hold for every x ∈ , there

are some numerical monoids for which the “sufficiently large” hypothesis in
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Figure 5: A plot depicting the ω-primality function ω(n) for n ∈ .

Theorem 3.10 can be dropped (for instance, any numerical monoids with 2

minimal generators has this property). Hence, we conclude with a problem

suitable for attack by undergraduates.

Question 4.5. Determine which numerical monoids 〈n1, . . . , nk〉 satisfy

each of the following conditions for all x (i.e. not just sufficiently large x):

1. L(x+ n1) = L(x) + 1,

2. `(x+ nk) = `(x) + 1, or

3. ω(x+ n1) = ω(x) + 1.
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