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Abstract

We study linear divisibility sequences of order 4, providing a characterization by
means of their characteristic polynomials and finding their factorization as a product of
linear divisibility sequences of order 2. Moreover, we show a new interesting connection
between linear divisibility sequences and Salem numbers. Specifically, we generate
linear divisibility sequences of order 4 by means of Salem numbers modulo 1.

1 Introduction

A sequence a = (an)
∞
n=0 is a divisibility sequence if m|n implies am|an. Divisibility se-

quences that satisfy a linear recurrence relation are particularly studied. A classic example
of linear divisibility sequence is the Fibonacci sequence. During the years linear divisibility
sequences of order 2 have been deeply studied, see, e.g., [12] and [15]. Hall [11] studied
divisibility sequences of order 3 and Bezivin et al. [4] have obtained more general results.
Divisibility sequences are very interesting for their beautiful properties. For example,
many studies can be found about their connection with elliptic curves [20], [13]. Further
results on divisibility sequences can be found, e.g, in [9] where Cornelissen and Reynolds
investigate matrix divisibility sequences, and in [23] where Horak and Skula characterize
the second–order strong divisibility sequences.

Recently, linear divisibility sequences of order 4 have been deeply examined. In par-
ticular, Williams and Guy [21], [22] introduced and studied a class of linear divisibility
sequences of order 4 that extends the Lehmer–Lucas theory for divisibility sequences of
order 2. In section 2, we consider these sequences proving that all (non degenerate) di-
visibility sequences of order 4 have characteristic polynomial equals to the characteristic
polynomial of sequences of Williams and Guy. Moreover, we provide all factorizations of
divisibility sequences of order 4 into the product of divisibility sequences of order 2.

In section 3, we generate linear divisibility sequences of order 4 by means of powers
of Salem numbers. This result is particularly intriguing, since connections between Salem
numbers and divisibility sequences have been never highlighted. Moreover, the construc-
tion of divisibility sequences by means of powers of algebraic integers is an interesting
research field that have been recently developed [19].

2 Standard linear divisibility sequences

Definition 1. Given a ring R, a sequence a = (an)
∞
n=0 over R is a divisibility sequence

if
m|n ⇒ am|an.

Conventionally, we will consider a0 = 0.
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In the following, we will deal with linear divisibility sequences (LDSs), i.e., divisibility
sequences that satisfy a linear recurrence. Classic LDSs are the Lucas sequences, i.e., the
linear recurrence sequences with characteristic polynomial x2−hx+k and initial conditions
0, 1.

In [21] and [22], the authors introduced and studied some linear divisibility sequences
of order 4. We recall these sequences in the following definition.

Definition 2. Let us consider linear recurrence sequences of order 4 over Z with charac-
teristic polynomial

x4 − px3 + (q + 2r)x2 − prx+ r2

and initial conditions
0, 1, p, p2 − q − 3r.

We say that these sequences are standard LDSs of order 4 and we call the previous poly-
nomial as standard polynomial.

In the next theorem, we prove that the product of two LDSs of order 2 is a standard
LDS of order 4. First, we need the following lemma proved in [8].

Lemma 1. Let a = (an)
∞
n=0 and b = (bn)

∞
n=0 be linear recurrence sequences with charac-

teristic polynomials f(x) and g(x), respectively. The sequence ab = (anbn)
∞
n=0 is a linear

recurrence sequence that recurs with f(x)⊗ g(x), the characteristic polynomial of the ma-
trix F ⊗G (Kronecker product of matrices), where F and G are the companion matrices
of f(x) and g(x), respectively.

Remark 1. The previous lemma can be also stated as follows. Let a = (an)
∞
n=0 and

b = (bn)
∞
n=0 be linear recurrence sequences whose characteristic polynomials have roots

α1, ..., αs and β1, ..., βt, respectively. Then, the sequence c = (cn)
∞
n=0 = (anbn)

∞
n=0 is also

a linear recurrence sequence whose characteristic polynomial has roots γ1, ..., γst, where

(γ1, ..., γst) = (α1, ..., αs)⊗ (β1, ..., βt),

Theorem 1. Let a = (an)
∞
n=0 and b = (bn)

∞
n=0 be LDSs of order 2 with characteristic

polynomials x2 − h1x+ k1, x
2 − h2x+ k2, respectively, and initial conditions 0, 1. The se-

quence ab = (anbn)
∞
n=0 is a standard LDS of order 4 with initial conditions 0, 1, h1h2, (h

2
1−

k1)(h
2
2 − k2).

Proof. Since a and b are LDSs, it immediately follows that ab is a divisibility sequence and
by Lemma 1, we know that it is a linear recurrence sequence of order 4 whose characteristic
polynomial is

x4 − h1h2x
3 + (k1h

2
1 − k2h

2
1 + 2k1k2)x

2 + h1k1h2k2x+ k21k
2
2 .

By Definition 2, ab is a standard LDS for p = h1h2, q = h21k2 + k1(h
2
2 − 4k2), r = k1k2.

The initial conditions can be directly calculated.

Moreover, we prove that all the LDSs of order 4 have characteristic polynomial equals
to the characteristic polynomial of standard LDSs.

Theorem 2. Let a = (an)
∞
n=0 be a non degenerate LDS of order 4 with a0 = 0 and a1 = 1,

then its characteristic polynomial is

x4 − px3 + (q + 2r)x2 − prx+ r2 (1)

for some p, q, r.
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Proof. Let us suppose that the characteristic polynomial of a has distinct roots in order
to avoid degenerate sequences, i.e., ratio of roots are not roots of unity. Let α, β, γ, δ be
these roots.

The sequence a is a divisor of the sequence b = (bn)
∞
n=0, where

bn =
αn − βn

α− β
·
αn − γn

α− γ
·
αn − δn

α− δ
·
βn − γn

β − γ
·
βn − δn

β − δ
·
γn − δn

γ − δ
.

See [2] and [4]. In other words, there exist a sequence c = (cn)
∞
n=0 such that bn = ancn,

for any index n.
By Lemma 1 and Remark 1, the sequence p can be written as the product of six Lucas

sequences with characteristic polynomials having roots (α, β), (α, γ), (α, δ), (β, γ), (β, δ),
(γ, δ), respectively. Thus, the roots of the characteristic polynomial of p are the entries of
the following vector of length 64:

B = (α, β) ⊗ (α, γ) ⊗ (α, δ) ⊗ (β, γ) ⊗ (β, δ) ⊗ (γ, δ),

where all the roots appear with the due multiplicity. We can write the vector B as

B = (B1, B2, B3, B4),

where

• B1 = (α3, α2δ) ⊗ (β, γ) ⊗ (β, δ) ⊗ (γ, δ),

• B2 = (α2, αδ) ⊗ (βγ, γ2)⊗ (β, δ) ⊗ (γ, δ),

• B3 = (α2β, αβδ) ⊗ (β, γ) ⊗ (β, δ) ⊗ (γ, δ),

• B4 = (αβγ, βγδ) ⊗ (β, γ)⊗ (β, δ) ⊗ (γ, δ).

Moreover, B = A ⊗ C, where C is a vector whose components are the roots of the
characteristic polynomial of c and

A = (ω1, ω2, ω3, ω4),

with (ω1, ω2, ω3, ω4) a certain permutation of (α, β, γ, δ). Thus, we can write

B = (ω1C,ω2C,ω3C,ω4C),

i.e., B1, B2, B3, and B4 are multiple of C. Considering

C = (α2, αδ) ⊗ (β, γ) ⊗ (β, δ) ⊗ (γ, δ),

we have B1 = αC, B2 = γC, B3 = βC, B4 = δ ·
βγ

αδ
C. Thus, we have ω1 = α, ω2 = γ,

ω3 = β and ω4 mus be equals to δ, i.e., we must have αδ = βγ, but this is equivalent to
say that the characteristic polynomial of a must be of the form (1).

Now, we see that any standard LDS can be factorized as a product of two LDS of order
2 over C .

Definition 3. Given the sequences (un)
+∞
n=0

, (vn)
+∞
n=0

, (sn)
+∞
n=0

, (tn)
+∞
n=0

over a ring R, we
say that the product sequences (unvn)

+∞
n=0

and (sntn)
+∞
n=0

are equivalent if

un = λn−1sn, vn = λ1−ntn

where λ ∈ R is a unit.
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Theorem 3. Let a = (an)
∞
n=0 be a standard LDS over Z, then an = bncn, for all n ≥ 0,

where b = (bn)
∞
n=0 and c = (cn)

∞
n=0 are LDSs of order 2 over C with initial conditions 0, 1

and characteristic polynomials















x2 −
√

q + 4r + 2p
√
r ±

√

q + 4r − 2p
√
r

2
√
r

x+ 1

x2 −
√

q + 4r + 2p
√
r ∓

√

q + 4r − 2p
√
r

2
x+ r

when p 6= 0. Moreover when p = 0 and q + 4r 6= 0, q 6= 0 (to avoid degenerate cases) we
have the two possible families of characteristic polynomials for b and c given by

{

x2 + 1

x2 −√
q + 4rx+ r

,

{

x2 + 1

x2 −√
qx− r

These are all the families of not equivalent factorizations of a over C.

Proof. We want to factorize a standard polynomial into the Kronecker product of two
polynomials of degree 2, i.e., we want to find h1, h2, k1, k2 such that

(x2 − h1x+ k1)⊗ (x2 − h2x+ k2) = x4 − px3 + (q + 2r)x2 − px+ r2.

Let us observe that the characteristic polynomial of a must have distinct non zero roots
in order to guarantee that a is a LDS of order 4 . Let γ1, γ2 and σ1, σ2 be the roots of
x2 − h1x+ k1 and x2 − h2x+ k2, respectively. We have























(γ1 + γ2)(σ1 + σ2) = p

(γ21 + γ22)σ1σ2 + γ1γ2(σ1 + σ2)
2 = q + 2r

γ1γ2σ1σ2(γ1 + γ2)(σ1 + σ2) = pr

(γ1γ2σ1σ2)
2 = r2

(2)

When p 6= 0 these conditions are equivalent to the system











k1k2 = r

h1h2 = p

h21k2 + h22k1 = q + 4r

(3)

which is a particular case of










k1k2 = A

h1h2 = B

h21k2 + h22k1 = C

where A 6= 0 since we suppose that the standard polynomial has not zero roots. Thus, we
can obtain

A

(

h21

k1

)2

− C

(

h21

k1

)

+B2 = 0

from which we have

h1 = ±
√

k1

√

C + 2B
√
A±

√

C − 2B
√
A

2
√
A

and

h2 = ±
√

C + 2B
√
A∓

√

C − 2B
√
A

2
√
k1

.
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Thus solutions of system 3 are



































h1 = ±
√
k1

√

q + 4r + 2p
√
r ±

√

q + 4r − 2p
√
r

2
√
r

h2 = ±
√

q + 4r + 2p
√
r ∓

√

q + 4r − 2p
√
r

2
√
k1

k2 =
r

k1

.

Let us pose

λ = ±
√
k1, s =

√

q + 4r + 2p
√
r ±

√

q + 4r − 2p
√
r

2
√
r

,, s̄ =

√

q + 4r + 2p
√
r ∓

√

q + 4r − 2p
√
r

2
.

Thus, considering solutions of system 3, we have x2 − h1x + k1 = x2 − sλx + λ2 and
x2 − h2x+ k2 = x2 − s̄

λ
x+ r

λ2 , whose roots are

γ1,2 = λ

(

s±
√
s2 − 4

2

)

, σ1,2 =
1

λ

(

s̄±
√
s̄2 − 4

2

)

.

In this case, we have un = λn−1bn and vn = λ1−ncn, where b and c are Lucas sequences
with characteristic polynomials x2 − sx+ 1 and x2 − s̄x+ r, respectively. When p = 0 in
conditions (2) we may suppose γ1 + γ2 = h1 = 0 and find the two systems











h1 = 0

k1k2 = r

h22k1 = p+ 4r

,











h1 = 0

k1k2 = −r

h22k1 = p

with respective solutions















h1 = 0

h2 = ±
√

p+4r
k1

k2 =
r
k1

,















h1 = 0

h2 = ±
√

p
k1

k2 = − r
k1

which give, with analogous considerations as in the case p 6= 0, with λ = ±
√
k1, the two

families of characteristic polynomials for b and c related to this case.

Remark 2. It would be interesting to find when previous factorizations determine se-
quences in Z or Z[i].

In the next section, we see a new connection between LDS of order 4 and Salem
numbers.

3 Construction of linear divisibility sequences by means of

Salem numbers of order 4

The Salem numbers have been introduced in 1944 by Raphael Salem [18] and they are
closely related to the Pisot numbers [17]. There are several results regarding Pisot numbers
and recurrence sequences [5], [6], [7]. In the following, we relate Salem numbers and LDS.

There are many equivalent definitions of Salem numbers, here we report the following
one.

Definition 4. A Salem number is an algebraic integer τ > 1 of degree d ≥ 4 such that all
the conjugate elements belong to the unitary circle, unless τ and τ−1.
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In the following, we work on Salem numbers of degree 4, which can be characterized
as follows (see [3], pag. 81).

Proposition 1. The Salem numbers of degree 4 are all the real roots τ > 1, of the following
polynomials with integer coefficients

x4 + tx3 + cx2 − tx+ 1

where
2(t− 1) < c < −2(t+ 1).

It is immediate to see that previous polynomials are standard polynomials for p = −t,
q = −2 + c, r = 1.

Definition 5. We call Salem standard polynomials the polynomials

x4 − px3 + (q + 2)x2 − px+ 1

with
2(−p− 1) < 2 + q < −2(−p+ 1).

The study of the distribution modulo 1 of the powers of a given real number greater
than 1 is a rich and classic research field (see, e.g, [14]). In the following, we use the same
notation of [3] (pag. 61).

Definition 6. Given a real number α, let E(α) be the nearest integer to α, i.e., α =
E(α) + ǫ(α) where ǫ(α) ∈ [−1

2
, 1
2
] is called α modulo 1.

In the original work of Salem [18], he proved that if α is a Pisot number, then αn

modulo 1 tends to zero and if α is a Salem number, then αn modulo 1 is dense in the unit
interval. Further results on the distribution modulo 1 of the Salem numbers can be found,
e.g., in [1] and [24]. Moreover, integer and fractional parts of Pisot and Salem numbers
have been studied, e.g., in [10] and [25].

Let R ⊆ C be a ring and α ∈ R with α 6∈ R∗, then the sequence (αn)∞n=0 is clearly
a LDS. Given a couple of irrational numbers λ and α, it is interesting to study when the
sequence (E(λαn))∞n=0 is a LDS.

Example 1. If we consider 1√
5
and the golden mean φ, it is well–known that

E

(

1√
5
φn

)

= Fn,

where Fn is the n–th Fibonacci number, consequently we get a LDS.

Let g(x) be a Salem standard polynomial, g(x) has real roots α > 1, α−1 and complex
roots γ, γ−1 with norm 1. Let (un)

∞
n=0 be a standard LDS with characteristic polynomial

g(x). By the Binet formula, there exist λ, λ1, λ2, λ3 such that

un = λαn + λ1α
−n + λ2γ

n + λ3γ
−n.

Since
|un − λαn| ≥ |λ1α

−n|+ |λ2|+ |λ3|,
for all ǫ > 0, with n sufficiently large, we have

|un − λαn| ≥ ǫ+ |λ2|+ |λ3|.

Thus, if |λ2|+ |λ3| < 1

2
, there exists n0 such that

un = E(λαn), ∀n > n0
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and if |λ1α
−1|+ |λ2|+ |λ3| < 1

2
, then

un = E(λαn), ∀n ≥ 1.

An interesting case is given by the Salem standard polynomial

x4 − tx3 + tx2 − tx+ 1

for t ≥ 6. In this case, we have the Salem numbers

α =
1

4

(

t+
√

(t− 4)t+ 8 +
√
2

√

t(t+
√

(t− 4)t+ 8− 2)− 4

)

and

λ =
1

√

(t− 4)t+ 8
.

Thus, we can determine infinitely many LDSs generated by powers of a Salem number,
specifically the sequences

(θn(t))
∞
n=1 = E(λαn), ∀t ≥ 6 ∈ Z

For example, when t = 6 we have the LDS

1, 6, 29, 144, 725, 3654, 18409, ...

when t = 7, we have
1, 7, 41, 245, 8897, 53621, ...

These sequences appear to be new, since they are not listed in OEIS [16]. Moreover, as a
consequence, we have the following property on Salem numbers, i.e.,

d|n ⇒ E(λαd)|E(λαn).

Finally, in the following proposition we characterize all the Salem standard polynomials
that produces LDSs of this kind.

Proposition 2. With the above notation, if |λ1α
−1| + |λ2| + |λ3| < 1

2
, then the integer

coefficients p, q of g(x) must satisfy the following inequalities











2 ≤ p ≤ 8, −4− 2p < q <
p4 + 8p3 − 160p − 400

4p2 + 32p + 64
p > 8, −4− 2p < q < −4 + 2p

Proof. The real root α > 1 of g(x) can be written as

α =
1

4

(

p+
√

p2 − 4q +

√

(p+
√

p2 − 4q)2 − 16

).

Moreover, by the Binet formula

λ = λ1 =
αγ

(α− γ)(αγ − 1)
, λ2 = λ3 = −

αγ

(α− γ)(αγ − 1)
.

Thus, from |λ1α
−1|+ |λ2|+ |λ3| < 1

2
we get

|(α − γ)(αγ − 1)| > 2α + 2.

7



Posing γ = a+ ib, with some calculations we find

α4 − 4aα3 + 2(2a2 − 7)α2 − 4(a+ 4)α − 3 > 0

from which we have
α > 2 + a+

√

(a+ 2)2 + 1

since −1 < a < 1 and α > 1. Using the explicit expression of α and that a =
p−

√
p2−4q

4
,

we finally obtain

1

4
(p+

√

−16 + (−p−
√

p2 − 4q)2+
√

p2 − 4q) > 2+
p

4
+

√

1 +
1

16
(8 + p−

√

p2 − 4q)2−1

4

√

p2 − 4q,

whose solutions are










2 ≤ p ≤ 8, −4− 2p < q <
p4 + 8p3 − 160p − 400

4p2 + 32p + 64
p > 8, −4− 2p < q < −4 + 2p

.
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