
ar
X

iv
:1

70
9.

02
22

9v
2 

 [
m

at
h.

N
T

] 
 2

0 
Se

p 
20

17

Riordan arrays and generalized Euler polynomials

E. Burlachenko

Abstract

Generalization of the Euler polynomials An (x) = (1− x)n+1∑∞
m=0 m

nxm are

the polynomials αn (x) = (1− x)n+1∑∞
m=0 un (m)xm, where un (x) is the polyno-

mial of degree n. These polynomials appear in various fields of mathematics, which

causes a variety of methods for their study. In present paper we will consider gen-

eralized Euler polynomials as an attribute of the theory of Riordan arrays. From

this point of view, we will consider the transformations associated with them, with

a participation of such objects as binomial sequences, Stirling numbers, multinomial

coefficients, shift operator, and demonstrate a constructiveness of the chosen point

of view.

1 Introduction

Transformations, corresponding to multiplication and composition of series, play the main
role in the space of formal power series over the field of real or complex numbers. Multi-
plication is given by the matrix (f (x) , x) nth column of which, n = 0, 1, 2, ... , has the
generating function f (x) xn; composition is given by the matrix (1, g (x)) nth column of
which has the generating function gn (x), g0 = 0:

(f (x) , x) a (x) = f (x) a (x) , (1, g (x)) a (x) = a (g (x)) .

Matrix
(f (x) , x) (1, g (x)) = (f (x) , g (x))

is called Riordan array [1] – [5]; nth column of the Riordan array has the generating
function f (x) gn (x). Thus

(f (x) , g (x)) b (x) an (x) = f (x) b (g (x)) an (g (x)) ,

(f (x) , g (x)) (b (x) , a (x)) = (f (x) b (g (x)) , a (g (x))) .

Matrices (f (x) , g (x)), f0 6= 0, g1 6= 0, form a group, called the Riordan group.
nth coefficient of the series a (x), nth row and nth column of the matrix A will be

denoted respectively by

[xn] a (x) , [n,→]A, [↑, n]A,

and
[xn] a (x) b (x) = [xn] (a (x) b (x)) .

We associate rows and columns of matrices with the generating functions of their elements.
Matrices

|ex|−1 (f (x) , g (x)) |ex| = (f (x) , g (x))ex ,

where |ex| is the diagonal matrix whose diagonal elements are equal to the coefficients of
the series ex: |ex| a (x) =

∑∞
n=0 anx

n/n! , are called exponential Riordan arrays. Denote

[n,→] (f (x) , g (x))ex = sn (x) , f0 6= 0, g1 6= 0.
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Then

(f (x) , g (x))ex(1− ϕx)−1 = |ex|−1 (f (x) , g (x)) eϕx = |ex|−1f (x) exp (ϕg (x))

or
∞
∑

n=0

sn (ϕ)

n!
xn = f (x) exp (ϕg (x)) .

Sequence of polynomials sn (x) is called Sheffer sequence, and in the case f (x) = 1,
binomial sequence. Matrix

P =

(

1

1− x
,

x

1− x

)

= (ex, x)ex =



















1 0 0 0 0 . . .
1 1 0 0 0 . . .
1 2 1 0 0 . . .
1 3 3 1 0 . . .
1 4 6 4 1 . . .
...

...
...

...
...

. . .



















is called Pascal matrix. Power of the Pascal matrix is defined by the identity

P ϕ =

(

1

1− ϕx
,

x

1− ϕx

)

= (eϕx, x)ex.

Paper [1] laid the foundations for the theory of Riordan arrays and introduced a
terminology that became generally accepted. Prior to this, Riordan matrices and their
varieties were considered in the literature under different names. Series of papers [6] – [16]
is devoted to study of matrices called convolution arrays. nth column of the convolution
array has the generating function b (x) an (x), where a0 = 1 or a0 = 0, depending on
the problem under consideration. Results obtained for the convolution arrays in terms
of the Riordan arrays can be stated more concisely, but for this the constraint a0 = 0
for the matrix (b (x) , a (x)) must be removed. Thus, along with lower triangular Riordan
matrices, we will consider “square” matrices (b (x) , a (x)), a0 = 1. For example,

(

1,
1

1 + x

)

=















1 1 1 1 · · ·
0 −1 −2 −3 · · ·
0 1 3 6 · · ·
0 −1 −4 −10 · · ·
...

...
...

...
. . .















.

This includes the upper triangular matrix (1, 1 + x), whose transpose is the Pascal matrix
and which coincides with the matrix of shift operator:

(1, 1 + x) = P T = E =















1 1 1 1 · · ·
0 1 2 3 · · ·
0 0 1 3 · · ·
0 0 0 1 · · ·
...

...
...

...
. . .















.

Matrix (b (x) , a (x)) can be multiplied from the right by the matrix with the finite columns
and from the left by the matrix with the finite rows. If c (x), d (x) are polynomials, then

(b (x) , a (x)) (c (x) , d (x)) = (b (x) c (a (x)) , d (a (x))) ;

if g0 = 0, then

(f (x) , g (x)) (b (x) , a (x)) = (f (x) b (g (x)) , a (g (x)))
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(see [17], where square Riordan arrays are called generalized Riordan arrays). Denote

[n,→] (1, a (x)− 1) = vn (x) =

n
∑

m=1

vmx
m, n > 0.

Identities

(1, a (x)− 1) (1, 1 + x) = (1, a (x)) , (1, a (x)− 1)

(

1,
1

1 + x

)

=
(

1, a−1 (x)
)

bear the following information. Since

[n,→] (1, 1 + x) =
xn

(1− x)n+1 ; [n,→]

(

1,
1

1 + x

)

=
(−1)nx

(1− x)n+1 , n > 0,

then

[n,→] (1, a (x)) =
αn (x)

(1− x)n+1 , [n,→]
(

1, a−1 (x)
)

=
α
(−1)
n (x)

(1− x)n+1 ,

αn (x) =

n
∑

m=1

vmx
m(1− x)n−m, α(−1)

n (x) =

n
∑

m=1

vm(−1)mx(1− x)n−m,

whence
α(−1)
n (x) = (−1)nxÎnαn (x) , (1)

where În is the operator (matrix) exchanging the coefficients of the polynomial of degree
n in reverse order. For example,

Î3 =









0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









.

If a (x) = ex, then αn (x) = An (x)/n! , where An (x) are the Euler polynomials:

An (x)

(1− x)n+1 =

∞
∑

m=0

mnxm, An (1) = n!.

For example,

A1 (x) = x, A2 (x) = x+ x2, A3 (x) = x+ 4x2 + x3,

A4 (x) = x+ 11x2 + 11x3 + x4.

Polynomials associated with the generating functions of the rows of the convolution
arrays (they are called numerator polynomials) are considered in papers [7], [8], [13], [14],
[16]. Focus is not on general issues (except paper [8]), but on specific cases associated
with the Fibonacci, Catalan sequences and their generalizations. Two such examples will
be considered in this paper (Example 3, Example 7).

Concept of the generalized Euler polynomials in general form is represented in [18].
Polynomials under consideration (they are denoted as well as ordinary Euler polynomials)
are called pn-associated Eulerian polynomials and are defined as follows:

An (x)

(1− x)n+1 =
∞
∑

m=0

pn (m)xm, pn (x) =
n
∑

m=0

(

x+ n−m
n

)

[xm]An (x) .
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Any polynomial sequence can be taken as sequence of the polynomials pn (x), but the
most interesting case arises when pn (x) is a Sheffer sequence. In this case

∞
∑

n=0

pn (t)
xn

n!
= g (x) exp (tf (x)) , g0 6= 0, f0 = 0, f1 6= 0,

∞
∑

n=0

An (t)
xn

n!
= g ((1− t)x)

1− t

1− t exp (f ((1− t) x))
. (2)

In terms of the Riordan arrays this means that

pn (x) = [n,→] (g (x) , f (x))ex ,
An (x)

n!(1− x)n+1 = [n,→]
(

g (x) , ef(x)
)

.

We narrow the scope of this generalization and will consider generalized Euler polynomials
(GEP) as pn-associated Eulerian polynomials when pn (x) is a binomial sequence.

In Section 2 we consider the basic transformations associated with the GEP. Denote
(we will bear in mind that always n > 0):

[n,→] (1, a (x)) =
αn (x)

(1− x)n+1 , [n,→] (1, log a (x))ex = un (x) ,

[n,→] (1, a (x)− 1) = vn (x) ,

1

x
αn (x) = α̃n (x) ,

1

x
An (x) = Ãn (x) ,

1

x
un (x) = ũn (x) ,

1

x
vn (x) = ṽn (x) , Ĩn = În−1.

We introduce the matrices Un, Vn, VnUn:

[↑, p]Un =
1

n!
(1− x)n−1−pÃp+1 (x) , [↑, p]U−1

n =
1

x

n−1
∏

m=0

(x− p+m),

[↑, p]Vn = (1 + x)n−p−1xp, [↑, p]V −1
n = (1− x)n−p−1xp,

[↑, p] (VnUn) =
1

n!

p+1
∑

m=1

m!S (p + 1, m) xm−1,

[↑, p]
(

U−1
n V −1

n

)

=
n!

(p+ 1)!

p+1
∑

m=1

s (p+ 1, m) xm−1,

p = 0, 1, . . . , n−1; S (p+ 1, m) are the Stirling numbers of the second kind, s (p+ 1, m)
are the Stirling numbers of the first kind. Then

Unũn (x) = α̃n (x) , Vnα̃n (x) = VnUnũn (x) = ṽn (x) .

In Section 3 we consider examples of an application of these transformations; in Ex-
ample 4 we introduce analog of the GEP for a formal Dirichlet series.

In Section 4 we consider the transformation

W(n, m) = Un (m,mx)U−1
n .

Elements of the matrix W(n, m) are the multinomial coefficients. Namely, let (b (x) , x)m
is the matrix such that

[n,→] (b (x) , x)m = [mn +m− 1,→] (b (x) , x) .
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For example,

(b (x) , x)2 =















b1 b0 0 0 · · ·
b3 b2 b1 b0 · · ·
b5 b4 b3 b2 · · ·
b7 b6 b5 b4 · · ·
...

...
...

...
. . .















, (b (x) , x)3 =















b2 b1 b0 0 · · ·
b5 b4 b3 b2 · · ·
b8 b7 b6 b5 · · ·
b11 b10 b9 b8 · · ·
...

...
...

...
. . .















.

Then

W(n, m) =

(

(

1− xm

1− x

)n+1

, x

)

m

In,

where In is the Identity square matrix of order n. Matrices (1/mn )
(

W(n,m)

)T
are known

as “amazing matrices” [19, pp. 156-160], [20] – [23]. They find application in various fields
of mathematics. From point of view of the theory of Riordan arrays, the transformation
W(n,m) has the following sense. Denote

[n,→] (1, am (x)) =
α
(m)
n (x)

(1− x)n+1 , α(1)
n (x) = αn (x) ,

1

x
α(m)
n (x) = α̃(m)

n (x) .

Then
W(n,m)α̃n (x) = α̃(m)

n (x) .

In Section 5 we consider the transformation Aβ
n = UnE

nβU−1
n , which has the following

sense. Each formal power series a (x), a0 = 1, is associated by means of the Lagrange
transform

aϕ (x) =
∞
∑

n=0

xn

aβn (x)
[xn]

(

1− xβ(log a (x))′
)

aϕ+βn (x)

with the set of series (β)a (x), (0)a (x) = a (x), such that

(β)a
(

xa−β (x)
)

= a (x) , a
(

x(β)a
β (x)

)

= (β)a (x) ,

[xn] (β)a
ϕ (x) = [xn]

(

1− xβ
a′ (x)

a (x)

)

aϕ+βn (x) =
ϕ

ϕ+ βn
[xn] aϕ+βn (x) ,

[xn]

(

1 + xβ
(β)a

′ (x)

(β)a (x)

)

(β)a
ϕ (x) =

ϕ+ βn

ϕ
[xn] (β)a

ϕ (x) = [xn] aϕ+βn (x) .

Denote

[n,→]
(

1, (β)a (x)
)

=
(β)αn (x)

(1− x)n+1 ,
1

x
(β)αn (x) = (β)α̃n (x) .

Then
Aβ

nα̃n (x) = (β)α̃n (x) .

It is interesting to observe how the properties of the shift operator, inherited by the
transformation Aβ

n, manifest themselves in new qualities. For example, since

Un (1,−x)U−1
n = (−1)n+1Ĩn,

then the transformations ĨnA
β
n, Aβ

nĨn are involutions and ĨnA
β
nĨn = A−β

n . In Example
7, following [13], we give a general formula for the GEP associated with the generalized
binomial series. Namely, let

(β)a
m (x) =

∞
∑

n=0

m

m+ βn

(

m+ βn
n

)

xn,

5



(β)αn (x)

(1− x)n+1 =
∞
∑

m=0

m

m+ βn

(

m+ βn
n

)

xm.

Then

(β)αn (x) =
1

n

n
∑

m=1

(

n (1− β)
m− 1

)(

nβ
n−m

)

xm.

In particular,

(0)αn (x) = xn, (1)αn (x) = x, (1/2 )α2n (x) =
1

2
(1 + x) xn.

2 Basic transformations

Denote

[n,→] (1, log a (x))ex = un (x) =

n
∑

p=1

upx
p.

Then

am (x) =
∞
∑

n=0

un (m)

n!
xn,

αn (x)

(1− x)n+1 =
∞
∑

m=0

un (m)

n!
xm,

αn (x)

(1− x)n+1 =
1

n!

∞
∑

m=0

xm
n
∑

p=1

upm
p =

1

n!

n
∑

p=1

∞
∑

m=0

upm
pxm =

=
1

n!

n
∑

p=1

upAp (x)

(1− x)p+1 =

1
n!

n
∑

p=1

up(1− x)n−pAp (x)

(1− x)n+1 .

We introduce the matrices Un:

[↑, p]Un =
1

n!
(1− x)n−1−pÃp+1 (x) , p = 0, 1, . . . , n− 1.

For example,

U2 =
1

2

(

1 1
−1 1

)

, U3 =
1

3!





1 1 1
−2 0 4
1 −1 1



 , U4 =
1

4!









1 1 1 1
−3 −1 3 11
3 −1 −3 11
−1 1 −1 1









.

Then
Unũn (x) = α̃n (x) .

Theorem 1.
Un (1,−x) = (−1)n+1ĨnUn.

Proof. This follows from the identities (1) and

[n,→]
(

1, log a−1 (x)
)

ex
= un (−x) .

Theorem 2.
αn (1) = (a1)

n.

Proof. Denote [↑, p]Un = Up (x). Since

a1 = [x] log a (x) , (a1)
n = [xn] un (x) ; Up (1) = 0, p < n−1; Un−1 (1) = 1.
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then

αn (1) =
n−1
∑

p=0

up+1Up (1) = un.

Theorem 3.

[↑, p]U−1
n =

1

x

n−1
∏

m=0

(x− p+m), p = 0, 1, . . . , n− 1.

Proof. Denote

xp

(1− x)n+1 =
∞
∑

m=0

(p)un (m)

n!
xm, p = 1, 2, . . . , n.

Then, according to (1),

(−1)nxÎnx
p

(1− x)n+1 =
(−1)nxn−p+1

(1− x)n+1 =

∞
∑

m=0

(p)un (−m)

n!
xm.

Hence, (p)un (x) = 0 if x = p− 1, p− 2, . . . , p−n. I.e. (p)un (x) =
∏n

m=1 (x− p+m). Let
αn (x) =

∑n
p=1 αpx

p. Then

αn (x)

(1− x)n+1 =

n
∑

p=1

αpx
p

(1− x)n+1 =

∞
∑

m=0

xm

n
∑

p=1

αp
(p)un (m)

n!
=

∞
∑

m=0

un (m)

n!
xm.

Thus,

U−1
2 =

(

1 −1
1 1

)

, U−1
3 =





2 −1 2
3 0 −3
1 1 1



 , U−1
4 =









6 −2 2 −6
11 −1 −1 11
6 2 −2 −6
1 1 1 1









.

Remark 1. If
α̃n (x) = (1− x)mcn−m (x) , m < n,

where cn−m (x) is the polynomial of degree < n−m, (in this case a1 = 0 and the matrix
(1, log a (x))ex has no inverse), then, as follows from definition of the transformation U−1

n ,

U−1
n (1− x)mcn−m (x) =

n!

(n−m)!
U−1
n−mcn−m (x) ,

or

U−1
n ((1− x)m, x) In−m =

n!

(n−m)!
U−1
n−m.

For example,




2 −1 2
3 0 −3
1 1 1









1 0
−1 1
0 −1



 =

(

3 −3
3 3

)

= 3U−1
2 .

Accordingly, if cn−m (x) is the polynomial of degree n−m− 1, then

Uncn−m (x) = (1− x)m
(n−m)!

n!
Un−mcn−m (x) ,

or
(

(1− x)−m, x
)

UnIn−m =
(n−m)!

n!
Un−m.
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For example,




1 0 0
1 1 0
1 1 1





1

3!





1 1
−2 0
1 −1



 =
1

3!

(

1 1
−1 1

)

=
1

3
U2.

Denote ĨnEĨn = Vn. For example,

V2 =

(

1 0
1 1

)

, V3 =





1 0 0
2 1 0
1 1 1



 , V4 =









1 0 0 0
3 1 0 0
3 2 1 0
1 1 1 1









,

V −1
2 =

(

1 0
−1 1

)

, V −1
3 =





1 0 0
−2 1 0
1 −1 1



 , V −1
4 =









1 0 0 0
−3 1 0 0
3 −2 1 0
−1 1 −1 1









.

If cn (x) is the polynomial of degree < n, then

Vncn (x) = (1 + x)n−1cn

(

x

1 + x

)

, V −1
n cn (x) = (1− x)n−1cn

(

x

1− x

)

.

We have already found out that

V −1
n ṽn (x) = α̃n (x) ,

where

ṽn (x) =
1

x
vn (x) , vn (x) = [n,→] (1, a (x)− 1) ,

and hence
U−1
n V −1

n ṽn (x) = ũn (x) .

It follows from Remark 1, that

[↑, p]
(

U−1
n V −1

n

)

= U−1
n (1− x)n−p−1xp =

n!

(p+ 1)!

1

x

p
∏

m=0

(x−m) =

=
n!

(p+ 1)!

p+1
∑

m=1

s (p+ 1, m) xm−1,

where s (p+ 1, m) are the Stirling numbers of the first kind. Hence

[↑, p] (VnUn) =
1

n!

p+1
∑

m=1

m!S (p + 1, m) xm−1,

where S (p+ 1, m) are the Stirling numbers of the second kind. For example,

U−1
4 V −1

4 = 4!









1 −1 2 −6
0 1 −3 11
0 0 1 −6
0 0 0 1

















1 0 0 0
0 1

2
0 0

0 0 1
3!

0
0 0 0 1

4!









,

V4U4 =
1

4!









1 0 0 0
0 2 0 0
0 0 3! 0
0 0 0 4!

















1 1 1 1
0 1 3 7
0 0 1 6
0 0 0 1









.
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Remark 2. Coefficients of the polynomials vn (x), un (x) are associated by the relation-
ship:

vn (x) =
n
∑

m=1

Bn,m (a1, a2, ..., an)x
m, un (x) = n!

n
∑

m=1

Bn,m (b1, b2, ..., bn)

m!
xm,

where

bp = [xp] log a (x) =

p
∑

m=1

(−1)m+1Bp,m (a1, a2, ..., ap)

m
,

Bn,m (a1, a2, ..., an) =
∑ m!

m1!m2! ... mn!
am1

1 am2

2 ... amn

n ,

Bn,m (b1, b2, ..., bn) =
∑ m!

m1!m2! ... mn!
bm1

1 bm2

2 ... bmn

n ,

expressions
∏n

p=1 a
mp

p ,
∏n

p=1 b
mp

p corresponding to the partition n =
∑n

p=1 pmp,
∑n

p=1mp =
m, and summation is done over all partitions of number n to m parts.

3 Examples

Example 1.

a (x) =
1 + x

1− x
, a (x)− 1 =

2x

1− x
, ṽn (x) = 2n

(

1

2
+ x

)n−1

,

α̃n (x) = V −1
n 2n

(

1

2
+ x

)n−1

= 2(1 + x)n−1,

un (x) = xU−1
n α̃n (x) = 2

n−1
∑

p=0

(

n− 1
p

) n−1
∏

m=0

(x− p+m) =

= xU−1
n V −1

n ṽn (x) = n!
n−1
∑

p=0

(

n− 1
p

)

2p+1

(p+ 1)!

p
∏

m=0

(x−m).

Example 2. Let
b (xg (x)) = g (x) , g

(

xb−1 (x)
)

= b (x) .

Then by the Lagrange inversion theorem

[xn] gm (x) = [xn]
(

1− x(log b (x))′
)

bm+n (x) ,

(1, xg (x)) =















g00 0 0 0 · · ·
g01 g10 0 0 · · ·
g02 g11 g20 0 · · ·
g03 g12 g21 g30 · · ·
...

...
...

...
. . .















=















c00 0 0 0 · · ·
c11 c10 0 0 · · ·
c22 c21 c20 0 · · ·
c33 c32 c31 c30 · · ·
...

...
...

...
. . .















,

where
gmn = [xn] gm (x) , cmn = [xn]

(

1− x(log b (x))′
)

bm (x) ,

i.e.
[n,→] (1, xg (x)) = [n,→]

((

1− x(log b (x))′
)

bn (x) , x
)

.

If

g (x) =
x

2
+

(

1 +
x2

4

)1/2

,
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then
b (x) = (1 + x)1/2 , 1− x(log b (x))′ =

(

1 +
x

2

)

(1 + x)−1,

[2n,→] (1, xg (x)) =

(

1

2
+ x

)

xn(1 + x)n−1, n > 0,

Let

a (x) =

(

x

2
+

(

1 +
x2

4

)1/2
)2

.

Then

a (x)− 1 = xa1/2 (x) = x

(

x

2
+

(

1 +
x2

4

)1/2
)

,

ṽ2n (x) =

(

1

2
+ x

)

xn−1(1 + x)n−1,

α̃2n (x) = V −1
2n

(

1

2
+ x

)

xn−1(1 + x)n−1 =
1

2
(1 + x)xn−1;

u2n (x) = xU−1
2n α̃2n (x) =

1

2

2n−1
∏

m=0

(x− n+ 1 +m) +
1

2

2n−1
∏

m=0

(x− n+m) =

= x

2n−1
∏

m=1

(x+ n−m) =

n−1
∏

m=0

(

x2 −m2
)

.

Example 3. This example was considered in [16]. We will replace the convolution arrays
by the Riordan arrays. Denote

[n,→]

(

1

1− x− kx2
,

1

1− x− kx2

)

=
Nn (x)

(1− x)n+1 ,

[n,→]

(

1

1− kx− x2
,

1

1− kx− x2

)

=
N∗

n (x)

(1− x)n+1 .

Then

Nn (x) = [n,→]

(

1

1− x− kx2
,

−kx2

1− x− kx2

)

,

N∗
n (x) = [n,→]

(

1

1− kx− x2
,

−x2

1− kx− x2

)

.

For example,

(

1

1− x− x2
,

1

1− x− x2

)

=



















1 1 1 1 1 · · ·
1 2 3 4 5 · · ·
2 5 9 14 20 · · ·
3 10 22 40 65 · · ·
5 20 51 105 190 · · ·
...

...
...

...
...

. . .



















,

(

1

1− x− x2
,

−x2

1− x− x2

)

=























1 0 0 0 · · ·
1 0 0 0 · · ·
2 −1 0 0 · · ·
3 −2 0 0 · · ·
5 −5 1 0 · · ·
8 −10 3 0 · · ·
...

...
...

...
. . .























,
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2− x

(1− x)3
= 2 + 5x+ 9x2 + 14x3 + ...,

3− 2x

(1− x)4
= 3 + 10x+ 22x2 + 40x3 + ...,

5− 5x+ x2

(1− x)5
= 5 + 20x+ 51x2 + 105x3 + ....

We generalize this example using the transformation V −1
n . Let a (x) = (1 + ϕx+ βx2)

−1
.

Then

(

1, a−1 (x)− 1
)

=



















1 0 0 0 0 · · ·
0 ϕ 0 0 0 · · ·
0 β ϕ2 0 0 · · ·
0 0 2ϕβ ϕ3 0 · · ·
0 0 β2 3ϕ2β ϕ4 · · ·
...

...
...

...
...

. . .



















.

Applying the transformation În to the nth row of this matrix, we obtain the matrix

(

1

1− ϕx
,

βx2

1− ϕx

)

=



















1 0 0 · · ·
ϕ 0 0 · · ·
ϕ2 β 0 · · ·
ϕ3 2ϕβ 0 · · ·
ϕ4 3ϕ2β β2 · · ·
...

...
...

. . .



















.

Since
α̃n (x) = (−1)nĨnV

−1
n ṽ(−1)

n (x) = (−1)nE−1Ĩnṽ
(−1)
n (x) ,

Ĩnṽ
(−1)
n (x) = Înv

(−1)
n (x) ,

then the polynomial α̃n (x) corresponds to the nth row of the matrix

(1,−x)

(

1

1− ϕx
,

βx2

1− ϕx

)(

1

1 + x
,

x

1 + x

)

=

(

1

1 + ϕx+ βx2
,

βx2

1 + ϕx+ βx2

)

.

Really,
∞
∑

n=1

α̃n (t) x
n =

−ϕx− β (1− t) x2

1 + ϕx+ β (1− t) x2
,

∞
∑

n=0

αn (t) x
n = 1 + t

∞
∑

n=1

α̃n (t) x
n =

1 + ϕ (1− t)x+ β(1− t)2x2

1 + ϕx+ β (1− t) x2
,

which corresponds to the formula (2). Since

[n,→]

(

1

1 + ϕx
,

βx2

1 + ϕx

)

= rn

⌊n/2 ⌋
∏

m=1

(

βx+
ϕ2

4
sec2

m

n+ 1
π

)

,

where r2p = 1, r2p+1 = − (p+ 1)ϕ, (i.e. these polynomials are associated in a certain way
with the Chebyshev polynomials), then

α̃n (x) = rn

⌊n/2 ⌋
∏

m=1

(

βx+
(ϕ/2 )2 − βcos2 m

n+1
π

cos2 m
n+1

π

)

.
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Example 4. In [24] Carlitz and Hoggatt considered the following generalization of Euler
polynomials:

G(p)
n (x) = (1− x)pn+1

∞
∑

m=0

(

m+ p− 1
p

)n

xm,

G
(1)
n (x) = An (x), G

(p)
n (x) is the polynomial of degree pn− p+ 1, such that

[xm]G(p)
n (x) =

[

xpn−p−m+2
]

G(p)
n (x) , 1 ≤ m ≤ pn− p+ 1;

G(p)
n (1) =

(pn)!

(p!)n
.

Properties of these polynomials will become more transparent if we associate them with
the following construction. We will consider the formal Dirichlet series a (s) =

∑∞
n=1 an/n

s

as the generating function of the sequence (an)n≥0, a0 = 0. Matrix whose nth column
has the generating function an (s) is denoted 〈a (s)〉. For example, for the Riemann zeta
function:

〈ζ (s)〉 =



















































0 0 0 0 0 · · ·
1 1 1 1 1 · · ·
0 1 2 3 4 · · ·
0 1 2 3 4 · · ·
0 1 3 6 10 · · ·
0 1 2 3 4 · · ·
0 1 4 9 16 · · ·
0 1 2 3 4 · · ·
0 1 4 10 20 · · ·
0 1 3 6 10 · · ·
0 1 4 9 16 · · ·
0 1 2 3 4 · · ·
0 1 6 18 40 · · ·
...

...
...

...
...

. . .



















































,
〈

ζ−1 (s)
〉

=



















































0 0 0 0 0 · · ·
1 1 1 1 1 · · ·
0 −1 −2 −3 −4 · · ·
0 −1 −2 −3 −4 · · ·
0 0 1 3 6 · · ·
0 −1 −2 −3 −4 · · ·
0 1 4 9 16 · · ·
0 −1 −2 −3 −4 · · ·
0 0 0 −1 −4 · · ·
0 0 1 3 6 · · ·
0 1 4 9 16 · · ·
0 −1 −2 −3 −4 · · ·
0 0 −2 −9 −24 · · ·
...

...
...

...
...

. . .



















































,

〈ζ (s)− 1〉 =



















































0 0 0 0 · · ·
1 0 0 0 · · ·
0 1 0 0 · · ·
0 1 0 0 · · ·
0 1 1 0 · · ·
0 1 0 0 · · ·
0 1 2 0 · · ·
0 1 0 0 · · ·
0 1 2 1 · · ·
0 1 1 0 · · ·
0 1 2 0 · · ·
0 1 0 0 · · ·
0 1 4 3 · · ·
...

...
...

...
. . .



















































, 〈log ζ (s)〉 =



















































0 0 0 0 · · ·
1 0 0 0 · · ·
0 1 0 0 · · ·
0 1 0 0 · · ·
0 1/2 1 0 · · ·
0 1 0 0 · · ·
0 0 2 0 · · ·
0 1 0 0 · · ·
0 1/3 1 1 · · ·
0 1/2 1 0 · · ·
0 0 2 0 · · ·
0 1 0 0 · · ·
0 0 1 3 · · ·
...

...
...

...
. . .



















































.

Such matrices are considered in [25]. If the matrix 〈a (s)〉, a1 = 0, is multiplied from
the right by the Riordan matrix (1, g (x)), g (x) =

∑∞
n=0 gnx

n, the result is the matrix
〈
∑∞

n=0 gna
n (s)〉. In particular, if a1 = 1,

〈a (s)− 1〉 (1, 1 + x) = 〈a (s)〉 , 〈a (s)− 1〉

(

1,
1

1 + x

)

=
〈

a−1 (s)
〉

,
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〈log a (s)〉 (1, ex) = 〈a (s)〉 .

We associate rows of the matrices 〈a (s)〉 with the formal power series, which are the
generating functions of their elements. For polynomials similar to polynomials associated
with the GEP, we use the same notation. Then (n > 1)

[n,→] 〈a (s)− 1〉 = vn (x) ,
1

x
vn (x) = ṽn (x) ,

[n,→] 〈a (s)〉 =
αn (x)

(1− x)v(n)+1
, [n,→]

〈

a−1 (s)
〉

=
α
(−1)
n (x)

(1− x)v(n)+1
,

where
α(−1)
n (x) = (−1)v(n)xÎv(n)αn (x) , αn (x) = xV −1

v(n)ṽn (x) ,

v (n) is the degree of polynomial vn (x);

[n,→]
(

|ex|−1 〈log a (s)〉 |ex|
)

= un (x) ,
1

x
un (x) = ũn (x) ,

am (s) =
∞
∑

n=0

un (m)

n!ns
,

αn (x)

(1− x)u(n)+1
=

∞
∑

m=0

un (m)

n!
xm,

αn (x) = x
u (n)!

n!
Uu(n)ũn (x) ,

where u (n) is the degree of polynomial un (x), equal to the degree of polynomial vn (x).
Matrix 〈a (s)− 1〉 has the form:

〈a (s)− 1〉 =



































































0 0 0 0 0 . . .
1 0 0 0 0 . . .
0 a2 0 0 0 . . .
0 a3 0 0 0 . . .
0 a4 a22 0 0 . . .
0 a5 0 0 0 . . .
0 a6 2a2a3 0 0 . . .
0 a7 0 0 0 . . .
0 a8 2a2a4 a32 0 . . .
0 a9 a23 0 0 . . .
0 a10 2a2a5 0 0 . . .
0 a11 0 0 0 . . .
0 a12 2a2a6 + 2a4a3 3a22a3 0 . . .
0 a13 0 0 0 . . .
0 a14 2a2a7 0 0 . . .
0 a15 2a3a5 0 0 . . .
0 a16 2a2a8 + a24 3a22a4 a42 . . .
...

...
...

...
...

. . .



































































vn (x) =

v(n)
∑

m=1

B̃n,m (a2, a3, ..., an) x
m, n > 1,

where

B̃n,m (a2, a3, ..., an) =
∑ m!

m2!m3! ... mn!
am2

2 am3

3 ... amn

n ,
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expression
∏n

p=2 a
mp

p corresponding to the decomposition n =
∏n

p=2 p
mp ,

∑n
p=2mp = m,

and summation is done over all decompositions of number n into m factors . If log a (s) =
b (s), then

bp =

v(p)
∑

m=1

(−1)m+1 B̃p,m (a2, a3, ..., ap)

m
, un (x) = n!

u(n)
∑

m=1

B̃n,m (b2, b3, ..., bn)

m!
xm.

If a (s) = ζ (s), then

u0 (x) = 0, u1 (x) = 1,
un (x)

n!
=

(x)m1(x)m2 ...(x)mr

m1!m2! ... mr!
,

where
(x)mi = x (x+ 1) (x+ 2) ... (x+mi − 1) ,

n = pm1

1 pm2

2 ... pmr
r is the canonical decomposition of number n. If m1 = m2 = ... = mr =

p, then
un (x)

n!
=

(

(x)p

p!

)r

, u (n) = pr, [xpr] un (x) =
n!

(p!)r
,

αn (x) = G(p)
r (x) , α(−1)

n (x) = (−1)prxp−1G(p)
r (x) .

It is clear from this that the sum of coefficients and the degree of the polynomial G
(p)
r (x)

can be defined from the transformations

G(p)
r (x) = x

(pr)!

n!
Uprũn (x) , xp−1G(p)

r (x) = xÎprG
(p)
r (x) .

4 GEP and multinomial coefficients

Denote

[n,→] (1, am (x)) =
α
(m)
n (x)

(1− x)n+1 , α(1)
n (x) = αn (x) ,

1

x
α(m)
n (x) = α̃(m)

n (x) .

Then
Unmũn (mx) = α̃(m)

n (x) , Un (m,mx)U−1
n α̃n (x) = α̃(m)

n (x) .

Denote
W(n, m) = Un (m,mx)U−1

n .

Construct the matrix (b (x) , x)m by the rule

[n,→] (b (x) , x)m = [mn +m− 1,→] (b (x) , x) .

For example,

(b (x) , x)2 =















b1 b0 0 0 · · ·
b3 b2 b1 b0 · · ·
b5 b4 b3 b2 · · ·
b7 b6 b5 b4 · · ·
...

...
...

...
. . .















, (b (x) , x)3 =















b2 b1 b0 0 · · ·
b5 b4 b3 b2 · · ·
b8 b7 b6 b5 · · ·
b11 b10 b9 b8 · · ·
...

...
...

...
. . .















.

Theorem 4.

W(n, m) =
(

wn+1
m (x) , x

)

m
In, wn+1

m (x) =

(

1− xm

1− x

)n+1

.
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Proof. Since
α̃n (x)

(1− x)n+1 =
wn+1

m (x) α̃n (x)

(1− xm)n+1 =
m−1
∑

r=0

xrcr (x)

(1− xm)n+1 ,

where

cr (x) =
∞
∑

p=0

([

xmp+r
]

wn+1
m (x) α̃n (x)

)

xmp,

and since

[xp]
α̃
(m)
n (x)

(1− x)n+1 =
[

xmp+m−1
] α̃n (x)

(1− x)n+1 ,

then
α̃
(m)
n (xm)

(1− xm)n+1 =
cm−1 (x)

(1− xm)n+1 ,

[xp] α̃(m)
n (x) =

[

xmp+m−1
]

wn+1
m (x) α̃n (x) ,

or
α̃(m)
n (x) =

(

wn+1
m (x) , x

)

m
α̃n (x) .

For example ((wn
m (x))i means the sequence of coefficients of the polynomial wn

m (x)):

(

w2
2 (x)

)

i
= (1, 2, 1) ,

(

w3
2 (x)

)

i
= (1, 3, 3, 1) ,

(

w3
2 (x)

)

i
= (1, 4, 6, 4, 1) ;

W(1, 2) = (2) , W(2, 2) =

(

3 1
1 3

)

, W(3, 2) =





4 1 0
4 6 4
0 1 4



 .

(

w2
3 (x)

)

i
= (1, 2, 3, 2, 1) ,

(

w3
3 (x)

)

i
= (1, 3, 6, 7, 6, 3, 1) ,

(

w4
3 (x)

)

i
= (1, 4, 10, 16, 19, 16, 10, 4, 1) ;

W(1, 3) = (3) , W(2, 3) =

(

6 3
3 6

)

, W(3, 3) =





10 4 1
16 19 16
1 4 10



 .

(

w2
4 (x)

)

i
= (1, 2, 3, 4, 3, 2, 1) ,

(

w3
4 (x)

)

i
= (1, 3, 6, 10, 12, 12, 10, 6, 3, 1) ,

(

w4
4 (x)

)

i
= (1, 4, 10, 20, 31, 40, 44, 40, 31, 20, 10, 4, 1);

W(1, 4) = (4) , W(2, 4) =

(

10 6
6 10

)

, W(3, 4) =





20 10 4
40 44 40
4 10 20



 .

(

w5
2 (x)

)

i
= (1, 5, 10, 10, 5, 1) ,

(

w5
3 (x)

)

i
= (1, 5, 15, 30, 45, 51, 45, 30, 15, 5, 1) ;

W(4, 2) =









5 1 0 0
10 10 5 1
1 5 10 10
0 0 1 5









, W(4, 3) =









15 5 1 0
51 45 30 15
15 30 45 51
0 1 5 15









.

Note the identities
W(n, m)Ãn (x) = mnÃn (x) ,

W(n, m)Ĩn = ĨnW(n, m), W(n, m)W(n, p) = W(n, mp),

W(n, m)(1− x)pcn−p (x) = (1− x)pW(n−p, m)cn−p (x) , p < n,
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where cn−p (x) is the polynomial of degree < n− p, or

(

(1− x)−p, x
)

W(n, m) ((1− x)p, x) In−p = W(n−p, m).

For example,





4 1 0
4 6 4
0 1 4









1
4
1



 = 8





1
4
1



 ,





10 4 1
16 19 16
1 4 10









1
4
1



 = 27





1
4
1



 ,





4 1 0
4 6 4
0 1 4









4 1 0
4 6 4
0 1 4



 =





20 10 4
40 44 40
4 10 20



 ,





1 0 0
1 1 0
1 1 1









4 1 0
4 6 4
0 1 4









1 0
−1 1
0 −1



 =

(

3 1
1 3

)

,





1 0 0
2 1 0
3 2 1









4 1 0
4 6 4
0 1 4









1
−2
1



 =

(

1 0
1 1

)(

3 1
1 3

)(

1
−1

)

= (2) .

Since
(1, a (x)− 1) (1, (1 + x)m − 1) = (1, am (x)− 1) ,

matrix W(n,m) can also be represented in the form

W(n,m) = V −1
n

(

(1 + x)m − 1

x
, (1 + x)m − 1

)T

Vn.

For example,





4 1 0
4 6 4
0 1 4



 =





1 0 0
−2 1 0
1 −1 1









2 1 0
0 4 4
0 0 8









1 0 0
2 1 0
1 1 1



 .

Theorem 5. Sum of the elements of each column of the matrix W(n,m) is mn.

Proof. According to the Theorem 2, α
(m)
n (1) = (a1m)n.

Example 5.

a (x) = (1− x)−1, α̃n (x) = 1, α̃(m)
n (x) = [↑, 0]W(n, m).

In particular,

α̃(2)
n (x) = [↑, 0]W(n, 2) = rn

[n/2 ]
∏

m=1

(

x+ tg2
m

n+ 1
π

)

,

where rn = 1 for even n, rn = n+ 1 for odd n,

xα̃(2)
n

(

x2
)

=
(1 + x)n+1 − (1− x)n+1

2
.

This corresponds to the case a (x) = (1− 2x+ x2)
−1

in Example 3.
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5 GEP and generalized Lagrange series

It follows from the Lagrange series expansion for arbitrary formal power series b (x) and
a (x), a0 = 1:

b (x)

1− x(log a (x))′
=

∞
∑

n=0

xn

an (x)
[xn] b (x) an (x)

that each formal power series a (x), a0 = 1, is associated by means of the transform

aϕ (x) =

∞
∑

n=0

xn

aβn (x)
[xn]

(

1− xβ(log a (x))′
)

aϕ+βn (x)

with the set of series(β)a (x), (0)a (x) = a (x), such that

(β)a
(

xa−β (x)
)

= a (x) , a
(

x(β)a
β (x)

)

= (β)a (x) ,

[xn] (β)a
ϕ (x) = [xn]

(

1− xβ
a′ (x)

a (x)

)

aϕ+βn (x) =
ϕ

ϕ+ βn
[xn] aϕ+βn (x) ,

[xn]

(

1 + xβ
(β)a

′ (x)

(β)a (x)

)

(β)a
ϕ (x) =

ϕ+ βn

ϕ
[xn] (β)a

ϕ (x) = [xn] aϕ+βn (x) .

Series (β)a (x) for integer β, denoted by Sβ (x), were introduced in [9]. In [26] these series,
called generalized Lagrange series, are associated with the following construction. Table
whose kth row, k = 0, ±1, ±2, . . . , corresponds to the series

aβk (x) , a0 = 1, β > 0,

will be denoted by
{

aβ (x)
}

0
. Table whose kth row is the kth ascending diagonal of the

table
{

aβ (x)
}

0
will be denoted by

{

aβ (x)
}

1
. Table whose kth row is the kth ascending

diagonal of the table
{

aβ (x)
}

1
will be denoted by

{

aβ (x)
}

2
; etc. For example, {1 + x}0,

{1 + x}1, {1 + x}2:,
...
3
2
1

k = 0
−1
−2
−3
...































...
...

...
...

1 3 3 1 · · ·
1 2 1 0 · · ·
1 1 0 0 · · ·
1 0 0 0 · · ·
1 −1 1 −1 · · ·
1 −2 3 −4 · · ·
1 −3 6 −10 · · ·
...

...
...

...
. . .































,

...
3
2
1

k = 0
−1
−2
−3
...































...
...

...
...

1 4 10 20 · · ·
1 3 6 10 · · ·
1 2 3 4 · · ·
1 1 1 1 · · ·
1 0 0 0 · · ·
1 −1 0 0 · · ·
1 −2 1 0 · · ·
...

...
...

...
. . .































,

...
3
2
1

k = 0
−1
−2
−3
...































...
...

...
...

1 5 21 84 · · ·
1 4 15 56 · · ·
1 3 10 35 · · ·
1 2 6 20 · · ·
1 1 3 10 · · ·
1 0 1 4 · · ·
1 −1 0 1 · · ·
...

...
...

...
. . .































.
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Table whose kth row is the kth descending diagonal of the table
{

aβ (x)
}

0
will be denoted

by
{

aβ (x)
}

−1
. Table whose kth row is the kth descending diagonal of the table

{

aβ (x)
}

−1

will be denoted by
{

aβ (x)
}

−2
; etc. For example, {1 + x}−1, {1 + x}−2:

...
3
2
1

k = 0
−1
−2
−3
...































...
...

...
...

1 2 0 0 · · ·
1 1 0 −1 · · ·
1 0 1 −4 · · ·
1 −1 3 −10 · · ·
1 −2 6 −20 · · ·
1 −3 10 −35 · · ·
1 −4 15 −56 · · ·
...

...
...

...
. . .































,

...
3
2
1

k = 0
−1
−2
−3
...































...
...

...
...

1 1 1 −10 · · ·
1 0 3 −20 · · ·
1 −1 6 −35 · · ·
1 −2 10 −56 · · ·
1 −3 15 −84 · · ·
1 −4 21 −120 · · ·
1 −5 28 −165 · · ·
...

...
...

...
. . .































.

It turns out that the kth row of the table
{

aβ (x)
}

v
corresponds to the series

(

1 + xvβ
(

log (vβ)a (x)
)′
)

(vβ)a
βk (x) ,

which follows from the identity

[xn] aβ(k+vn) (x) = [xn]
(

1 + xvβ
(

log (vβ)a (x)
)′
)

(vβ)a
βk (x) .

Denote

[n,→]
(

1, (β)a (x)
)

=
(β)αn (x)

(1− x)n+1 ,
1

x
(β)αn (x) = (β)α̃n (x) ,

[n,→]
(

1, log (β)a (x)
)

ex
= (β)un (x) ,

1

x
(β)un (x) = (β)ũn (x) .

Then

(β)a
ϕ (x) =

∞
∑

n=0

ϕ

ϕ+ nβ

un (ϕ+ nβ)

n!
xn, (β)un (x) = x(x+ nβ)−1un (x+ nβ) ,

Enβũn (x) = ũn (x+ nβ) = (β)ũn (x) , UnE
nβU−1

n α̃n (x) = (β)α̃n (x) .

Denote
UnE

nU−1
n = An.

Since
(1,−x)En (1,−x) = E−n, Un (1,−x)U−1

n = (−1)n+1Ĩn,

then
ĨnAnĨn = A−1

n .

For example,

A2 =

(

2 1
−1 0

)

, A3 =





5 5/2 1
−6 −2 0
2 1/2 0



 , A4 =









14 7 3 1
−28 −35/3 −10/3 0
20 22/3 5/3 0
−5 −5/3 −1/3 0









;

A−1
2 =

(

0 −1
1 2

)

, A−1
3 =





0 1/2 2
0 −2 −6
1 5/2 5



 , A−1
4 =









0 −1/3 −5/3 −5
0 5/3 22/3 20
0 −10/3 −35/3 −28
1 3 7 14









.
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Denote
Aβ

n = UnE
nβU−1

n .

For example,

A
1/2
2 =

1

2

(

3 1
−1 1

)

, A
1/2
3 =

1

8





21 7 1
−18 2 6
5 −1 1



 , A
1/2
4 =

1

6









30 10 2 0
−45 −5 5 3
27 1 −1 3
−6 0 0 0









.

Theorem 6. Sum of the elements of each column of the matrix Aβ
n is 1.

Proof. Since [x] (β)a (x) = [x] a (x) = a1, from the Theorem 2 it follows that (β)α̃n (1) =
α̃n (1).
Remark 3 (corollary of Remark 1). If cn−m (x), m < n, is the polynomial of degree
< n−m, then

Aβ
n(1− x)mcn−m (x) = (1− x)mA

nβ/(n−m)
n−m cn−m (x) ,

or
(

(1− x)−m, x
)

Aβ
n ((1− x)m, x) In−m = A

nβ/(n−m)
n−m .

Denote
logAn = UnnDU−1

n .

where D is the matrix of the differential operator. Since

Enβ =

∞
∑

m=0

(nβD)m

m!
, nD = logEn,

then

Aβ
n =

n−1
∑

m=0

βm

m!
(logAn)

m.

For example,

Aβ
2 = I2 + β

(

1 1
−1 −1

)

,

Aβ
3 = I3 + β

1

2





5 2 −1
−6 0 6
1 −2 −5



+
β2

2!
3





1 1 1
−2 −2 −2
1 1 1



 ,

Aβ
4 = I4 + β

1

3









13 3 −1 1
−18 4 8 −6
6 −8 −4 18
−1 1 −3 −13









+
β2

2!

4

3









9 5 1 −3
−21 −9 3 15
15 3 −9 −21
−3 1 5 9









+

+
β3

3!
16









1 1 1 1
−3 −3 −3 −3
3 3 3 3
−1 −1 −1 −1









,

where
[↑, p] (logAn)

n−1 = nn−2(1− x)n−1.

Example 6. If a (x) = 1 + x, then (β)a (x) is the generalized binomial series:

(β)a
ϕ (x) =

∞
∑

n=0

ϕ

ϕ+ nβ

(

ϕ+ nβ
n

)

xn;
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(1)a (x) =
1

1− x
, (2)a (x) =

1− (1− 4x)1/2

2x
,

(−1)a (x) =
1 + (1 + 4x)1/2

2
, (1/2 )a (x) =

(

x

2
+

(

1 +
x2

4

)1/2
)2

.

Since α̃n (x) = xn−1, then
[↑, n− 1]Aβ

n = (β)α̃n (x) .

In particular, as follows from Example 2,

[↑, 2n− 1]A
1/2
2n =

1

2
(1 + x) xn−1.

We can come to the transformation Aβ
n in a different way, which leads to a simpler

method of constructing the matrix Aβ
n. We introduce the matrices D̃ = D (x, x), D̃−1:

D̃ =











1 0 0 · · ·
0 2 0 · · ·
0 0 3 · · ·
...

...
...

. . .











, D̃−1 =











1 0 0 · · ·
0 1

2
0 · · ·

0 0 1
3

· · ·
...

...
...

. . .











.

Let
α̃n (x)

(1− x)n+1 =

∞
∑

m=0

bmx
m, bm = [xn] am+1 (x) .

Since

[xn] (1)a
m+1 (x) =

m+ 1

m+ 1 + n
[xn] am+1+n (x) ,

then
(1)α̃n (x)

(1− x)n+1 =
∞
∑

m=0

m+ 1

m+ 1 + n
bm+nx

m.

Since

D̃(xn, x)T D̃−1
∞
∑

m=0

bmx
m = D̃(xn, x)T

∞
∑

m=0

1

m+ 1
bmx

m =

= D̃

∞
∑

m=0

1

m+ 1 + n
bm+nx

m =

∞
∑

m=0

m+ 1

m+ 1 + n
bm+nx

m,

then

(1)α̃n (x) =
(

(1− x)n+1, x
)

D̃(xn, x)T D̃−1
(

(1− x)−n−1, x
)

α̃n (x) ,

An =
(

(1− x)n+1, x
)

D̃(xn, x)T D̃−1
(

(1− x)−n−1, x
)

In.

We use the identity

D (x, x) (g (x) , xg (x)) = D (1, xg (x)) (x, x) =
(

(xg (x))′, xg (x)
)

D (x, x) ,

or
D̃ (g (x) , xg (x)) =

(

(xg (x))′, xg (x)
)

D̃,

applied to the Pascal matrix, g (x) = (1− x)−1 :

D̃P =
(

(1− x)−1, x
)

PD̃,

(1− x, x) D̃ = PD̃P−1, D̃−1
(

(1− x)−1, x
)

= PD̃−1P−1.

20



Since
E (xn, x)E−1 = ((1 + x)n, x) , P−1(xn, x)TP = ((1 + x)n, x)

T
,

((1− x)n, x)PIn = V −1
n , P−1

(

(1− x)−n, x
)

In = ((1 + x)n, x)P−1In = Vn,

we have:

Aβ
n = ((1− x)n, x)PD̃

(

(1 + x)nβ, x
)T

D̃−1P−1
(

(1− x)−n, x
)

In =

= V −1
n D̃

(

(1 + x)nβ, x
)T

D̃−1Vn.

For example,

A2 =

(

1 0
−1 1

)(

1 0
0 2

)(

1 2
0 1

)(

1 0
0 1

2

)(

1 0
1 1

)

,

A3 =





1 0 0
−2 1 0
1 −1 1









1 0 0
0 2 0
0 0 3









1 3 3
0 1 3
0 0 1









1 0 0
0 1

2
0

0 0 1
3









1 0 0
2 1 0
1 1 1



 ,

A4 =









1 0 0 0
−3 1 0 0
3 −2 1 0
−1 1 −1 1

















1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

















1 4 6 4
0 1 4 6
0 0 1 4
0 0 0 1

















1 0 0 0
0 1

2
0 0

0 0 1
3

0
0 0 0 1

4

















1 0 0 0
3 1 0 0
3 2 1 0
1 1 1 1









.

Denote

[n,→]
(

1, (β)a (x)− 1
)

= (β)vn (x) ,
1

x
(β)vn (x) = (β)ṽn (x) .

Then

VnUnE
nβU−1

n V −1
n ṽn (x) = D̃

(

(1 + x)nβ, x
)T

D̃−1ṽn (x) = (β)ṽn (x) .

Example 7. This example was considered in [13] for a particular cases of the generalized
binomial series. We will consider it from a more general point of view, using the transfor-

mations D̃
(

(1 + x)nβ, x
)T

D̃−1In, V
−1
n . Let a (x) = 1 + x. Then (β)a (x)− 1 = x(β)a

β (x),

ṽn (x) = xn−1,

(β)ṽn (x) = D̃
(

(1 + x)nβ, x
)T

D̃−1xn−1 =

n−1
∑

m=0

m+ 1

n

(

nβ
n−m− 1

)

xm,

so that
(

(β)a
β (x) , x(β)a

β (x)
)

= D̃−1AD̃,

where
[n,→]A = [n,→]

(

(1 + x)(n+1)β, x
)

.

For example, when β = 2,

D̃−1



















1 0 0 0 0 · · ·
4 1 0 0 0 · · ·
15 6 1 0 0 · · ·
56 28 8 1 0 · · ·
210 120 45 10 1 · · ·
...

...
...

...
...

. . .



















D̃ =



















1 0 0 0 0 · · ·
2 1 0 0 0 · · ·
5 4 1 0 0 · · ·
14 14 6 1 0 · · ·
42 48 27 8 1 · · ·
...

...
...

...
...

. . .



















.
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Since

[m,→]V −1
n =

m
∑

i=0

(

m− n
m− i

)

xi =
m
∑

i=0

(−1)m−i

(

n− i− 1
m− i

)

xi,

then
[xm] (β)α̃n (x) = [xm]V −1

n (β)ṽn (x) =

=

m
∑

i=0

(−1)m−i

(

n− i− 1
m− i

)

(i+ 1)

n

(

nβ
n− i− 1

)

(nβ − n+m+ 1)!

(nβ − n+m+ 1)!
=

=
1

n

(

nβ
n−m− 1

) m
∑

i=0

(−1)m−i (i+ 1)

(

nβ − n+m+ 1
m− i

)

=

=
1

n

(

nβ
n−m− 1

)

(−1)m
(

nβ − n +m− 1
m

)

=
1

n

(

nβ
n−m− 1

)(

n (1− β)
m

)

.

Thus,

(β)αn (x) =
1

n

n
∑

m=1

(

n (1− β)
m− 1

)(

nβ
n−m

)

xm.

Note that

(1−β)a (x) = (β)a
−1 (−x) , (1−β)αn (x) = xÎn(β)αn (x) .
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